当前位置:文档之家› dtidwi]dti(弥散张量成像)简介及原理

dtidwi]dti(弥散张量成像)简介及原理

dtidwi]dti(弥散张量成像)简介及原理
dtidwi]dti(弥散张量成像)简介及原理

[DTI/DWI]DTI(弥散张量成像)简介及原理

磁共振弥散张量成像技术是利用水分子的弥散各向异性进行成像,可用于脑白质纤维研究,常用扫描技术包括单次激发平面回波成像(EPI),线阵扫描弥散成像, 导航自旋回波弥散加权成像(LSDI),半傅立叶探测单发射快速自旋回波成像等.每种成像技术各有其优缺点,EPI扫描时间短,图像信噪比高,但存在化学位移伪影、磁敏感性伪影、几何变形;LSDI精确度高,几乎无伪影及变形,但扫描时间过长;导航自旋回波弥散加权成像运动伪影少,但扫描时间长;半傅立叶探测单发射快速自旋回波成像扫描时间短,但图像模糊.综合比较,单次激发平面回波成像是用于临床研究较适宜的方法.

(引自%26lt;%26lt;医学影像学杂志%26gt;%26gt;2006年04期王海燕, 赵斌, 于富华) 1827 Robert Brown 首次发现弥散现象

1950 Hanh 从理论上提出用自旋回波测量水分子弥散过程的方法

1985 Taylor 和Bushel 首次实现磁共振弥散成像

1986 Denis LeBihan 首次将磁共振弥散成像应用于活体

1990 Michael Moseley 发现弥散成像在早期脑缺血诊断中的价值

1996 首次实现人脑弥散张量成像

1999首次实现人脊髓弥散张量成像

一、弥散张量成像的基本原理

弥散张量成像(DTI)是利用弥散加权成像技术改进和发展的一项新技术,弥散张量不是平面过程,以三维立体角度分解,量化了弥散各向异性的信号数据,使组织微结构更加精细显示,弥散需要用张量显示,扫描应用多个梯度场方向,现用6-55个方向。

DTI:弥散具有方向依靠性,分子向各个方向弥散的距离不相等,则成为各向异性(anistrophic)。而DWI则为水分子弥散的方向相一致,即相同性。

弥散张量成像的原理:在完全均质的溶质中,分子向各方向的运动是相等的,此种弥散方式为各向同性(isotrophic),其向量分布轨迹成一球形,而另一种弥散是在非均一状态中,分子向各方向运动具有方向依靠性,分子向各方向弥散的距离不相等,称为各向异性(anisotrophic),其向量分布轨迹成一椭圆形。如在大脑白质分子的弥散表现为各向异性,分子沿白质纤维通道方向的弥散速度快于垂直方向。

张量是一个工程物理学的名称,张量是一个数学结构,是一个椭圆形结构,有三维空间,各

向异性有3× 3个二级分量,张量的矩阵是9个非0因素,其中3个分量是相同的(对称性),而其余6个因素(Dxx,Dyy,Dzz ,Dxy,Dxz,Dyz)决定弥散张量的特征。3个非0因素沿着张量的主对角线,称为本征值(eigevalue)λ1,λ2,λ3, 本征值反应出椭圆形的外形,大小与方向无关。而其数学关系代表方向为3个本征向量(eigevector)V1,V2,V3。

弥散张量成像(DTI)的数据分析:

①平均弥散率(mean diffusivity. MD):MD反映分子整体弥散水平和弥散阻力的整体情况,他只表示弥散的大小,而与弥散的方向无关,也即ADC值。

②各向异性程度,反映分子在空间位移的程度,与方向有关。用来分析各向异性的参数很多,有各向异性指数(anisotraphy index,AI),相对各向异性(relative anisotraphy RA)各向异性分数或称部分各向异性(fractional anisotraphy FA)。其中由于FA图像观察大脑白质纤维结构最清楚,灰白质分界好,FA值用于肿瘤诊断有益,故应用广泛。

RA值反映水分子弥散的各向异性成分与各相同性成分的比值。

λ是描写弥散张量的三个特性值,亦即本征值(eigevalue)。FA值反映水分子各向异性成分占整个弥散张量的比例,其范围从0-1,自由水为0,对于非常规则的大脑白质纤维FA值接近1。

弥散张量白质束成像(Diffusion tensor Tractography,DTT) 或称纤维束示踪成像技术(Fiber tractography FT),是在弥散张量成像发展起来得一项新技术,可在活体中显示纤维束的方向及完整性。

DTI图像反映脑白质纤维素的走行方向,并可观查白质纤维束的方向,称谓白质束成像(Tractography)。

垂直于神经纤维走行方向的弥散难

平行于神经纤维走行方向的弥散易

DTI图像反映了水分子在脑实质空间内向各个方向进行弥散运动的主导方向

在正常的黑白FA图上,白质是高信号,可以辨认白质束的主要走行,亦可形成二维彩色的FA图,彩色强度代表异向性的程度,颜色代表方向性,红色代表左右走行方向,绿色代表前后走行方向,兰色代表上下走行方向。

在硬件上有一定要求:需要有螺旋桨扫描技术的MR机,有并行采集技术,有多个方向的敏感梯度,现在最好的已达642个方向。且需要放大梯度线圈等。在软件上须有纤维束跟踪软件。

在操作上也要注重,应对白质束的解剖有了解,一般在彩色FA图上画出感爱好区(ROI), 感爱好区的位置很重要,如追踪皮质脊髓束,如下面的ROI放在大脑脚,则很难将几个皮质脊

髓束分开,放在桥脑下面较好

脑白质束成像可以在活体无创性显示白质纤维束的走行、病理及与肿瘤、病变等的关系等。DTI扫描条件:,GE Signa Excite HD

头部:EPI

TE minium

TR 10000

128x128

层厚:4mm/0

1nex

B值1000

25个方向

颈椎:EPI

TE minium

TR 2950

128x128

层厚:3mm/0

6nex

B值500

15个方向

(引自:大连医科大学附属第一医院郎志谨)

**本帖评分记录:水晶:+70(thinking) 宝贵分享!极有价值!70分

>>> 2007-12-07 14:55

wonder溅出的水花儿:二、DTI后处理图像

1. 黑白FA图

2. 彩色FA图

3. 彩色MD图

4. 彩色定向图

5. 彩色主本征向量图

6. 三维彩色白质纤维示踪图

正常FA图:彩色及黑白图

白质纤维束可分为致密的白质结构(如胼胝体,内囊,大脑脚)及非致密的白质结构(如放射冠及四周白质),FA值致密的白质结构大于非致密的白质结构。

三. 弥散张量成像在临床上的应用

我们应用DTT技术,对正常白质束的解剖及病理做了一些初步探讨。正常人白质纤维束分为三类:连合纤维是胼胝体,前连合,等。联络纤维是弓形纤维,钩束,扣带束,上纵束,下纵束等。投射纤维有锥体束,视放射,内侧丘系等。

正常神经束

胼胝体束

皮质脊髓束

钩束

上纵束

下纵束

扣带回

前联合

四、DTI在大脑疾病中应用

1.星形细胞廇间变型,部分呈恶性胶母细胞廇改变(病理证实)的DTI改变:

肿瘤的FA图肿瘤的FA值低于对侧

肿瘤的FA值:113;正常侧:343

肿瘤的MD图肿瘤的MD值高于对侧

肿瘤的MD值:;正常侧:

DTI脑白质纤维束成像术,肿瘤导致皮质脊髓束移位及纤维束的破坏

肿瘤的彩色定位(定向)图,可见脑干受压移位

2.弥散张量成像在炎症,脱髓鞘性病变及神经变性性疾病上的应用。

神经髓鞘是影响向异性因素之一,当脱髓鞘疾病时,如多发性硬化由于轴突髓鞘的破坏,斑块的FA值降低,彩色FA图上可见红色度降低,白质纤维束成像可见破坏。而在神经变性性疾病如肌萎缩侧索硬化症(ALS),有时在T2WI冠状位上,可见从那囊后肢到大脑脚的纵向连续的带状高信号影,但这种典型所见不多见,应用DTI 可见FA值的降低

3.弥散张量成像在中枢神经系统发育异常的应用。

中枢神经系统发育性疾病,可以看到纤维束的方向和连接错误,如胼胝体发育异常,脑瘫,皮质异位等

皮质发育不全

先天性胼胝体发育不全

肾上腺白质发育不良

4.弥散张量成像在脊髓中的应用。

1) 正常脊髓DTI及脊髓白质纤维束成像.

2) 颈间盘凸出: 均有颈髓压迫的临床体征, DTI图见FA值洚低MD值升高,非凡注重到T2WI 影像上无改变,而在DTI 上有改变.

3) 脊髓脱髓鞘病及神经变性性疾病:MRI :T2WI 可见高信号, DTI见FA值洚低MD值升高.并见白质束的变形破坏

4) 脊髓外伤.

立体融合图像指导神经外科治疗方案。

(引自:大连医科大学附属第一医院郎志谨)

遥感原理试题及其答案

A卷参考答案要点 名词解释 1.绝对黑体:指能够全部吸收而没有反射电磁波的理想物体。 2.大气窗口:大气对电磁波有影响,有些波段的电磁波通过大气后衰减较小,透过率较高的波段。3.图像融合:由于单一传感器获取的图像信息量有限,难以满足应用需要,而不同传感器的数据又具有不同的时间、空间和光谱分辨率以及不同的极化方式,因此,需将这些多源遥感图像按照一定的算法,在规定的地理坐标系,生成新的图像,这个过程即图像融合。 4.距离分辨力:指测视雷达在发射脉冲方向上能分辨地物最小距离的能力。它与脉冲宽度有关,而与距离无关。 5.特征选择:指从原有的m个测量值集合中,按某一规则选择出n个特征,以减少参加分类的特征图像的数目,从而从原始信息中抽取能更好的进行分类的特征图像。即使用最少的影像数据最好的进行分类。 二、简答题(45) 1.分析植被的反射波谱特性。说明波谱特性在遥感中的作用。 由于植物进行光合作用,所以各类绿色植物具有相似的反射波谱特性,以区分植被与其他地物。 (1)由于叶绿素对蓝光和红光吸收作用强,而对绿色反射作用强,因而在可见光的绿波段有波峰,而在蓝、红波段则有吸收带; (2)在近红外波段(0.8-1.1微米)有一个反射的陡坡,形成了植被的独有特征; (3)在近红外波段(1.3-2.5微米)受绿色植物含水量的影响,吸收率大增,反射率大大下降;但是,由于植被中又分有很多的子类,以及受到季节、病虫害、含水量、波谱段不同等影响使得植物波谱间依然存在细部差别。 波谱特性的重要性: 由于不同地物在不同波段有着不同的反射率这一特性, 1使得地物的波谱特性成为研究遥感成像机理,选择遥感波谱段、设计遥感仪器的依据; 2在外业测量中,它是选择合适的飞行时间和飞行方向的基础资料; 3有效地进行遥感图像数字处理的前提之一; 4用户判读、识别、分析遥感影像的基础;定量遥感的基础。 2.遥感图像处理软件的基本功能有哪些? 1)图像文件管理——包括各种格式的遥感图像或其他格式的输入、输出、存储以及文件管理等;2)图像处理——包括影像增强、图像滤波及空间域滤波,纹理分析及目标检测等; 3)图像校正——包括辐射校正与几何校正; 4)多图像处理——包括图像运算、图像变换以及信息融合; 5)图像信息获取——包括直方图统计、协方差矩阵、特征值和特征向量的计算等; 6)图像分类——非监督分类和监督分类方法等; 7)遥感专题图制作——如黑白、彩色正射影像图,真实感三维景观图等地图产品; 8)三维虚拟显示——建立虚拟世界; 9)GIS系统的接口——实现GIS数据的输入与输出等。

一种新的多b值弥散加权成像后处理模型

一种新的多 b 值弥散加权成像后处理模型第 1 部分改良三指数模型的提出及其- 与双指数模型和传统三指数模型的比 较目的:建立多b值DWI后处理新模型并与双指数模型和传统三指数模型进行比较。材料和方法:本研究通过了浙二医院伦理委员会评审,纳入了6例健康受试者,采集多b值DWI影像资料,包含从0 s/mm2到8000 s/mm2的17个b值。 在白质区域选取了6个感兴趣区(ROI),在灰质区域选取了1个ROI。采用前16个b值所得DW信号值分别对三个模型进行拟合,拟合方法采用最速下降法, 计算得到各个参数图以及拟合残差平方和(RSS)和赤池信息量修正准则(AICc), 并预测 b=8000s/mmm时的DWI信号值,进而计算得到预测平方差(SPE)。 本研究将RSS和AICc视为模型拟合程度的评价指标,而将SPE视为模型可预测性评价指标。结果:在所有白质区域内,改良三指数模型的RSS值均显著低于其他两个模型(p<0.05), 传统的三指数模型的AICc显著高于其他两个模型 (p<0.05), 而双指数模型的SPE显著高于其他两个模型(p<0.05)。 白质的f0 中位值介于11.9%到19.6%之间,而灰质的f0 中位值仅为0.8%。 白质区域的ADC very-slow中位数(0-7 X10-6mm2/s)远小于在灰质区域的ADCvery-slow 中位数(487 X 10-6 mm2/s)。 结论:采用新模型拟合多b值DWI影像效果优于其他两个模型。新模型可以用来探测组织中弥散严格受限的组分, 而传统的三指数模型不能探测此组分。 第2部分改良三指数模型在胶质瘤分级及胶质瘤鉴别诊断中的价值目的:探索改良三指数模型在胶质瘤分级及胶质瘤鉴别诊断中的价值。材料和方法:研究纳入了18例低级别胶质瘤(LGG),45例高级别胶质瘤(HGG以及5例原发性中枢 系统淋巴瘤(PCNSL)。

磁共振弥散张量成像对脊髓损伤的临床应用价值

磁共振弥散张量成像对脊髓损伤的临床 应用价值 (作者:___________单位: ___________邮编: ___________) 作者:陈蕾,刘国利,王大维,陈延杰 【摘要】目的:探讨磁共振弥散张量成像(diffusion tensor imaging, DTI)对脊髓损伤的临床应用价值。方法:选择42例健康志愿者作为对照组和54例脊髓型颈椎病作为病例组进行颈椎常规磁共振成像(MRI)及DTI,分别测量各组表观弥散系数(apparent diffusion coefficient, ADC)、部分各项异性(fractional anisotropy, FA)值,并显示其弥散张量纤维束(diffusion tensor tracking, DTT)。结果:对照组的平均ADC值为(830.34±215.86)×106 mm2/s,平均FA值为(536.03±40.00)×103。脊髓慢性损伤患者平均ADC值为(1107.60±47.55)×106 mm2/s,较对照组升高,有统计学意义(P0.01),平均FA值为(425.91±59.48)×103,较对照组下降,有统计学意义(P0.01)。结论:DTI较常规MRI成像能更早显示脊髓的损伤,ADC值、FA值及DTT 图是检测早期脊髓损伤微观结构的敏感指标。 【关键词】磁共振;弥散张量成像;脊髓损伤

Clinical application of magnetic resonance diffusion tensor imaging for spinal cord injury diagnosisCHEN Lei1, LIU Guo li2, WANG Da wei2, CHEN Yan jie2(1. Interventional Radiology Department,Longgang Central Hospital of Shenzhen, Shenzhen 518116;2.Department of Radiology, Changchun Communicable Disease Hospital, Changchun 130123, China)[ABSTRACT] Objective: To investigate the clinical application of magnetic resonance (MR) diffusion tensor imaging for spinal cord injury diagnosis. Methods: Conventional cervical magnetic resonance imaging (MRI) scanning and MR diffusion tensor imaging were performed on 54 patients with cervical spondylotic myelopathy and 42 cases of healthy volunteers as a healthy control group. Apparent diffusion coefficient (ADC) and fractional anisotropy (FA) were measured, diffusion tensor tracking (DTT) was showed in each group. Results: The average ADC value is(830.34±215.86)×106 mm2/s, the average FA value is (536.03±40.00) ×103 in control group; in contrast the average ADC value is(1 107.60±47.55)×106 mm2/s,higher than the control group with statistical significant difference(P0.01), and the average FA value is (425.91 ±59.48)×103 , lower than the control group with statistical significant difference(P0.01). Conclusion: MR diffusion tensor imaging can show the injury in the spinal cord at earlier stage. ADC value, FA

遥感成像原理与遥感图像特征

第三章遥感成像原理与遥感图像特征 目的与要求:掌握可见光、近红外、热红外和SAR成像机理,遥感器的类型及其特性对遥感影像的影响,评价遥感影像的主要指标等。 重点及难点:遥感器与遥感成像特性,评价遥感影像的主要指标;遥感成像机理。教学法:讲授法、演示法 教学过程: 第一节传感器 一、传感器的定义和功能 传感器是收集、探测、记录地物电磁波辐射信息的工具。 它的性能决定遥感的能力,即传感器对电磁波段的响应能力、传感器的空间分辨率及图像的几何特征、传感器获取地物信息量的大小和可靠程度。 二、传感器的分类 按工作方式分为: 主动方式传感器:侧视雷达、激光雷达、微波辐射计。 被动方式传感器:航空摄影机、多光谱扫描仪(MSS)、TM、ETM、HRV、红外扫描仪等。 三、传感器的组成 收集器:收集地物的辐射能量。 探测器:将收集的辐射能转变成化学能或电能。 处理器:将探测后的化学能或电能等信号进行处理。 输出器:将获取的数据输出。 四、传感器的工作原理 收集、量测和记录来自地面目标地物的电磁波信息的仪器,是遥感技术的核心部分。 ?根据传感器的工作方式分为:主动式和被动式两种。 主动式:人工辐射源向目标物发射辐射能量,然后接收目标物反射回来的能量,如雷达。 被动式:接收地物反射的太阳辐射或地物本身的热辐射能量,如摄影机、多光谱扫描仪(MSS、TM、ETM、HRV)。 ?传感器按照记录方式 1)非成像方式:探测到地物辐射强度,以数字或者曲线图形表示。 如:辐射计、雷达高度计、散射计、激光高度计等。 2)成像方式:地物辐射(反射、发射或两个兼有)能量的强度用图象方式表示。如:摄影机、扫描仪、成像雷达。 五、摄影型传感器 1、航空摄影机:是空中对地面拍摄像片的仪 器,它通过光学系统采用感光材料记录地物 的反射光谱能量。记录的波长范围以可见光~ 近红外为主。 2、成像原理:由于地物各部分反射的光线强 度不同,使感光材料上感光程度不同,形成 各部分的色调不同所致。 涉及的概念

遥感原理与应用名词解释

1.电磁波:变化的电场和磁场交替产生,以有限的速度由近及远在空间内传播的过程。 2.干涉:由两个(或两个以上)频率、振动方向相同、相位相同或相位差恒定的电磁波在空间叠加时,合成波振幅为各个波的振幅的矢量和。因此会出现交叠区某些地方振动加强,某些地方振动减弱或完全抵消的现象。 3.衍射:光通过有限大小的障碍物时偏离直线路径的现象。 4偏振:指电磁波传播的方向性。 5电磁波谱:按电磁波在真空中传播的波长或频率递增或递减顺序排列。 6绝对黑体:对任何波长的电磁辐射都全部吸收的物体,称为绝对黑体。绝对白体则能反射所有的入射光。与温度无关。 7等效温度:为了便于分析,常常用一个最接近灰体辐射曲线的黑体辐射曲线作为参照,这时的黑体辐射温度称为等效黑体辐射温度(或称等效辐射温度)。 8大气窗口:通过大气后衰减较小,透过率较高,对遥感十分有利的电磁辐射波段通常称为大气窗口。而透过率很小甚至完全无法透过的电磁波称为“大气屏障”。 9遥感:即遥远的感知,是在不直接接触的情况下,对目标或自然现象远距离探测和感知的一种技术。 10光谱发射率:实际物体与同温度的黑体在相同条件下辐射功率之比。 11光谱反射率:物体的反射辐射通量与入射辐射通量之比,它是波长的函数。12波谱特性:指各种地物各自所具有的电磁波特性(发射辐射或反射辐射)。13反射波谱特性:物体反射率(或反射辐射能)随波长变化而改变的特性。 14方向反射:具有明显方向性的反射。 15漫反射:入射能量在所有方向均匀反射。 16镜面反射:当入射能量全部或几乎全部按相反方向反射,且反射角等于入射角。 17波谱特性曲线:以波长为横坐标,反射率为纵坐标所得的曲线。 18散射:电磁波在传播过程中遇到小微粒而使传播方向发生改变,并向各个方向散开。 1近极地轨道:卫星从南向北或从北向南通过两极运行。 2太阳同步轨道:指卫星轨道面与太阳地球连线之间在黄道面内的夹角不随地球绕太阳公转而改变。 3.赤道轨道:i=0度,轨道平面与赤道平面重合。 4.地球静止轨道:i=0度且卫星运行方向与地球自转方向一致,运行周期相等。 5重复周期:指卫星从某地上空开始,经过若干时间的运行后,回到该地上空时所需要的时间。 6星下点:卫星质心与地心连线同地球表面的交点。 7春分点:黄道面与赤道面在天球上的交点。 8升交点:卫星由南向北运行时与赤道面的交点。

正常成人大脑内囊磁共振弥散张量成像研究

弥散张量成像(diffusiontensorimaging,DTI)是一新的具有无创伤性优点的磁共振成像方法,不仅能够定量分析大脑的微细结构,还可定量分析病变组织和正常组织的弥散特征,从而为疾病的诊断和鉴别诊断提供更多的信息;而且可以利用DTI所获的数据,进行大脑白质纤维的成像。内囊是大脑组织的重要结构,其内主要含有联系大脑皮质和皮质下中枢的上行和下行的投射纤维。在活体显示大脑内囊的形状和结构,我们利用 DTI技术对此进行了初步研究。现报道如下:1资料与方法 1.1研究对象:10例正常志愿者,男5例,女5例。年龄25~65岁,平均40.9岁。志愿者均无任何脑部疾病、外伤和手术史。1.2 机器和扫描参数:采用GE公司SignaVH/i3TMR扫描 仪。应用标准头部正交线圈,让志愿者头部固定,耳内塞一适当大小的棉球,以减少噪音对志愿者的影响。志愿者首先进行常规的T1WI、T2WI、FLAIR扫描。常规MRI扫描大脑内未见明显异常信号后,进行DTI成像扫描,DTI扫描采用单次激发SE EPI序列,扫描参数为TR/TE9999/89.2ms,矩阵128×128,FOV240mm×240mm,1次采集,b=1000s/mm2 ,弥散敏感梯度方向 数13个,层厚5mm、层间距0mm。 1.3图像后处理:将10名志愿者扫描所得DTI的数据输入个 人计算机,应用日本东京大学附属医院放射科影像计算和分析实验室所研制的软件:Volume-one1.56和diffusionTENSOR Visualizer1.5(dTV)进行后处理,在z-轴方向进行插值计算,使 每个体素呈立方形(大小约0.9mm×0.9mm×0.9mm)。通过运算可以获得各向异性分数图(fractionalanisotropyFA)和彩色 FA图,在彩色FA图中红色代表左右走行的纤维束,绿色代表 前后走行的纤维束,蓝色则代表上下走行的纤维束。 首先在FA图和彩色FA图像上观察内囊的结构和形态,然后在FA图和彩色FA图像的基础上,根据蒋文华等[1]神经解剖学关于大脑白质纤维束的解剖描述,用 “种子点(seed)”标记所要显示的内囊结构,计算机自动追踪纤维束,获得内囊的白质纤维束图像。 2结果 10例志愿者均成功进行了DTI扫描,可以清晰显示大脑 内囊的结构。内囊是投射纤维在大脑的集中部分,在内囊平面以上,纤维呈四向放射与皮质相联,称为辐射冠,辐射冠呈扇形联结内囊和皮层下结构。通过内囊的纤维束很多,走行方向不一致,在FA图(见图1),为内囊的FA图,可见内囊呈高信号,呈“<”状。内囊前后肢之间差别不大,前肢显示较短,但彩色FA图(见图2)则明显不同,则显示内囊前后肢颜色不同,前肢显示为绿色,后肢则为蓝色。弥散张量纤维束图的矢状面,更直观的显示内囊的白质纤维束形态(见图3)。 3讨论 磁共振弥散成像的概念最早于80年代中期提出[2],其方法 为应用双极磁场梯度脉冲(bipolarmagneticfieldgradientpuls-es),将编码的分子弥散效应增加到磁共振信号上。 随后,磁共振弥散加权成像(diffusionweightedimaging,DWI)被应用,该技术在3个不同的方向x、y、z轴施加弥散梯度,可以获得水分子空 【摘要】目的:利用磁共振弥散张量成像技术,研究正常成人大脑内囊的形状和结构。方法:分别对10例正常志愿者(男5例,女5例。年龄24~65岁,平均40.9岁)进行弥散张量成像,将所得数据输入个人计算机,应用日本东京大学附属医院放射科影像计算和分析实验室所研制的软件:Volume-one1.56和diffusionTENSORVisualizer1.5(dTV)进行大脑内囊成像。结果:本研究成功的在活体进行了大脑内囊的弥散张量成像,在FA、 彩色FA图和弥散张量纤维束图上分别显示了内囊的形状和结构。结论:弥散张量成像可以显示正常人大脑内囊的结构,为大脑白质纤维束的研究开辟了一新的广阔领域。 【关键词】内囊;弥散张量成像;弥散张量纤维束成像文章编号:1009-5519(2006)08-1113-03 中图分类号:R445 文献标识码:A Studyofnormaladultcerebralinternalcapsulebydiffusiontensorimaging HEGuang-wu,XIANGHua,HEJiang-bo,etal. (DepartmentofRadiology,BaoshanBranchofShanghaiFirstPeople’sHospital,Shanghai200940,China) 【Abstract】Objective:Toanalysetheshape,fiberstructureofnormaladultcerebralinternalcapsuleinlivinghumansbydiffusion tensorimaging.Methods:10healthyadultvolunteers(5men,5women,aged24~ 65years,meanage40.9years)wereexaminedbyMRdiffu-siontensorimaging.AlldataweretransferredtoapersonalcomputerandwereprocessedwithdTV(TokyoUniversityJapan).Results:Theinternalcapsuleofallvolunteerswasobserved.Theshapeandstructureofinternalcapsulewereshowedonthefractionalanisotropymap,colorfractionalanisotropymapanddiffusiontensortrackingmap.Conclusion:Diffusiontensorimagingisusefulforshowingthenormaladultcerebralinternalcapsuleandopensanewfieldforresearchingcerebralwhitematterfiberinvivo. 【Keywords】Internalcapsule;Diffusiontensorimaging;Diffusiontensortracking正常成人大脑内囊磁共振弥散张量成像研究 何光武1,项 华1,何江波1,成中意1,徐建荪1,汪守中1,沈天真2,陈星荣2 (1.上海市第一人民医院宝山分院放射科,上海200940;2.复旦大学附属华山医院,上海200040) 作者简介:何光武(1965—),男,山东省莱芜市人,副主任医师,学士。研究方向:中枢神经系统影像学。

dtidwi]dti(弥散张量成像)简介及原理

[DTI/DWI]DTI(弥散张量成像)简介及原理 磁共振弥散张量成像技术是利用水分子的弥散各向异性进行成像,可用于脑白质纤维研究,常用扫描技术包括单次激发平面回波成像(EPI),线阵扫描弥散成像, 导航自旋回波弥散加权成像(LSDI),半傅立叶探测单发射快速自旋回波成像等.每种成像技术各有其优缺点,EPI扫描时间短,图像信噪比高,但存在化学位移伪影、磁敏感性伪影、几何变形;LSDI精确度高,几乎无伪影及变形,但扫描时间过长;导航自旋回波弥散加权成像运动伪影少,但扫描时间长;半傅立叶探测单发射快速自旋回波成像扫描时间短,但图像模糊.综合比较,单次激发平面回波成像是用于临床研究较适宜的方法. (引自%26lt;%26lt;医学影像学杂志%26gt;%26gt;2006年04期王海燕, 赵斌, 于富华) 1827 Robert Brown 首次发现弥散现象 1950 Hanh 从理论上提出用自旋回波测量水分子弥散过程的方法 1985 Taylor 和Bushel 首次实现磁共振弥散成像 1986 Denis LeBihan 首次将磁共振弥散成像应用于活体 1990 Michael Moseley 发现弥散成像在早期脑缺血诊断中的价值 1996 首次实现人脑弥散张量成像 1999首次实现人脊髓弥散张量成像 一、弥散张量成像的基本原理 弥散张量成像(DTI)是利用弥散加权成像技术改进和发展的一项新技术,弥散张量不是平面过程,以三维立体角度分解,量化了弥散各向异性的信号数据,使组织微结构更加精细显示,弥散需要用张量显示,扫描应用多个梯度场方向,现用6-55个方向。 DTI:弥散具有方向依靠性,分子向各个方向弥散的距离不相等,则成为各向异性(anistrophic)。而DWI则为水分子弥散的方向相一致,即相同性。 弥散张量成像的原理:在完全均质的溶质中,分子向各方向的运动是相等的,此种弥散方式为各向同性(isotrophic),其向量分布轨迹成一球形,而另一种弥散是在非均一状态中,分子向各方向运动具有方向依靠性,分子向各方向弥散的距离不相等,称为各向异性(anisotrophic),其向量分布轨迹成一椭圆形。如在大脑白质分子的弥散表现为各向异性,分子沿白质纤维通道方向的弥散速度快于垂直方向。 张量是一个工程物理学的名称,张量是一个数学结构,是一个椭圆形结构,有三维空间,各

第六节MR扩散加权成像技术

第六节MR扩散加权成像技术 MR扩散加权成像(diffusion-weighted imaging, DWI)是20世纪90年代初中期发展起来的MRI新技术,国内于90年代中期引进该技术并在临床上推广应用。DWI是目前唯一能够检测活体组织内水分子扩散运动的无创性方法。 一、扩散的基本概念 扩散(diffusion)是指分子热能激发而使分子发生一种微观、随机的平移运动并相互碰撞,也称分子的热运动或布朗运动。任何分子都存在扩散运动。扩散在很多非平衡态系统中可以观察到,如在一杯纯水中加入一滴红墨水,红墨水在水中逐渐散开即是一种扩散现象。但当平衡状态建立后,如上述例子中红墨水最后完全在水中散开,杯中各处红墨水浓度完全一样时,宏观的扩散不再观察得到,但实际上微观的扩散运动依然存在。通过一些特殊的技术可以检测这种分子的微观扩散运动。DWI技术就是检测这种微观扩散运动的方法之一。由于一般人体MR成像的对象是质子,主要是水分子中的质子,因此DWI技术实际上检测的是人体组织内水分子的扩散运动。 如果水分子扩散运动不受任何约束,我们把这种扩散运动称为自由扩散运动。但在生物体中,水分子由于受周围介质的约束,其扩散运动将受到一定程度的限制,我们把这种扩散运动称为限制性扩散。在人体中,我们可以把脑脊液、尿液等的水分子扩散运动视作自由扩散,而人体一般组织中水分子的扩散运动属于限制性扩散。实际上DWI就是通过检测人体组织中水分子扩散运动受限制的方向和程度等信息,间接反映组织微观结构的变化。 在人体组织中,由于组织结构的不同,限制水分子扩散运动的阻碍物的排列和分布也不同,水分子的扩散运动在各方向上受到的限制可能是对称,也可能是不对称的。如果水分子在各方向上的限制性扩散是对称的,我们称之为各向同性扩散(isotropic diffusion)。如果水分子在各方向上的限制性扩散是不对称的,我们称之为各向异性扩散(anisotropic diffusion)。各向异性扩散在人体组织中普遍存在,其中最典型的是脑白质神经纤维束。由于神经细胞膜和髓鞘沿着神经轴突的长轴分布并包绕轴突,水分子在神经纤维长轴方向上扩散运动相对自由,而在垂直于神经纤维长轴的各方向上,水分子的扩散运动将明显受到细胞膜和髓鞘的限制。 二、DWI的原理 DWI的物理学原理比较复杂,这里我们仅作简单介绍。 MRI检测到的信号最后都分配到每个像素中,每个像素实际上代表受检组织的一个体素,我们就以一个体素为例,并结合目前最常用于DWI的SE-EPI序列来介绍DWI的基本原理。 射频脉冲使体素内的质子相位一致,射频脉冲关闭后,由于组织的T2弛豫和主磁场不均匀将造成质子逐渐失相位,从而造成宏观横向磁化矢量的衰减。除了上述两种因素以外,如果我们在某个方向上施加一个梯度场,实际上是人为在该方向上制造磁场不均匀,那么体素内该方向上质子的进动频率将出现差别,从而也造成体素内质子群失相位,最后也引起宏观磁化矢量的衰减,MR信号减弱。

相关主题
文本预览
相关文档 最新文档