当前位置:文档之家› 仪器分析-质谱法

仪器分析-质谱法

仪器分析-质谱法
仪器分析-质谱法

仪器分析——质谱法

质谱法是将被测物质离子化,按离子的质荷比分离,测量各种离子谱峰的强度而实现分析目的的一种分析方法。质量是物质的固有特征之一,不同的物质有不同的质量谱——质谱,利用这一性质,可以进行定性分析(包括分子质量和相关结构信息);谱峰强度也与它代表的化合物含量有关,可以用于定量分析。

质谱仪一般由四部分组成:进样系统——按电离方式的需要,将样品送入离子源的适当部位;离子源——用来使样品分子电离生成离子,并使生成的离子会聚成有一定能量和几何形状的离子束;质量分析器——利用电磁场(包括磁场、磁场和电场的组合、高频电场、和高频脉冲电场等)的作用将来自离子源的离子束中不同质荷比的离子按空间位置,时间先后或运动轨道稳定与否等形式进行分离;检测器——用来接受、检测和记录被分离后的离子信号。一般情况下,进样系统将待测物在不破坏系统真空的情况下导入离子源(10-6~10-8mmHg),离子化后由质量分析器分离再检测;计算机系统对仪器进行控制、采集和处理数据,并可将质谱图与数据库中的谱图进行比较。

一、进样系统和接口技术

将样品导入质谱仪可分为直接进样和通过接口两种方式实现。

1.直接进样

在室温和常压下,气态或液态样品可通过一个可调喷口装置以中性流的形式导入离子源。吸附在固体上或溶解在液体中的挥发性物质可通过顶空分析器进行富集,利用吸附柱捕集,再采用程序升温的方式使之解吸,经毛细管导入质谱仪。

对于固体样品,常用进样杆直接导入。将样品置于进样杆顶部的小坩埚中,通过在离子源附近的真空环境中加热的方式导入样品,或者可通过在离子化室中将样品从一可迅速加热的金属丝上解吸或者使用激光辅助解吸的方式进行。这种方法可与电子轰击电离、化学电离以及场电离结合,适用于热稳定性差或者难挥发物的分析。

目前质谱进样系统发展较快的是多种液相色谱/质谱联用的接口技术,用以将色谱流出物导入质谱,经离子化后供质谱分析。主要技术包括各种喷雾技术(电喷雾,热喷雾和离子喷雾);传送装置(粒子束)和粒子诱导解吸(快原子轰击)等。

2.电喷雾接口

带有样品的色谱流动相通过一个带有数千伏高压的针尖喷口喷出,生成带电液滴,经干燥气除去溶剂后,带电离子通过毛细管或者小孔直接进入质量分析器。传统的电喷雾接口只适用于流动相流速为1~5μl/min的体系,因此电喷雾接口主要适用于微柱液相色谱。同时由于离子可以带多电荷,使得高分子物质的质荷比落入大多数四极杆或磁质量分析器的分析范围(质荷比小于4000),从而可分析分子量高达几十万道尔顿(Da)的物质。

3.热喷雾接口

存在于挥发性缓冲液流动相(如乙酸铵溶液)中的待测物,由细径管导入离子源,同时

加热,溶剂在细径管中除去,待测物进入气相。其中性分子可以通过与气相中的缓冲液离子(如NH4+)反应,以化学电离的方式离子化,再被导入质量分析器。热喷雾接口适用的液体流量可达2ml/min,并适合于含有大量水的流动相,可用于测定各种极性化合物。由于在溶剂挥发时需要利用较高温度加热,因此待测物有可能受热分解。

4.离子喷雾接口

在电喷雾接口基础上,利用气体辅助进行喷雾,可提高流动相流速达到1ml/min.电喷雾和离子喷雾技术中使用的流动相体系含有的缓冲液必须是挥发性的。

5.粒子束接口

将色谱流出物转化为气溶胶,于脱溶剂室脱去溶剂,得到的中性待测物分子导入离子源,使用电子轰击或者化学电离的方式将其离子化,获得的质谱为经典的电子轰击电离或者化学电离质谱图,其中前者含有丰富的样品分子结构信息。但粒子束接口对样品的极性,热稳定性和分子质量有一定限制,最适用于分子量在1000Da以下的有机小分子测定。

6.解吸附技术

将微柱液相色谱与粒子诱导解吸技术(快原子轰击,液相二次粒子质谱)结合,一般使用的流速在1~10μl/min之间,流动相须加入微量难挥发液体(如甘油)。混合液体通过一根毛细管流到置于离子源中的金属靶上,经溶剂挥发后形成的液膜被高能原子或者离子轰击而离子化。得到的质谱图与快原子轰击或者液相二次离子质谱的质谱图类似,但是本底却大大降低。

二、离子源

离子源的性能决定了离子化效率,很大程度上决定了质谱仪的灵敏度。常见的离子化方式有两种:一种是样品在离子源中以气体的形式被离子化,另一种为从固体表面或溶液中溅射出带电离子。在很多情况下进样和离子化同时进行。

1.电子轰击电离(EI)

气化后的样品分子进入离子化室后,受到由钨或铼灯丝发射并加速的电子流的轰击产生正离子。离子化室压力保持在10-4~10-6mmHg.轰击电子的能量大于样品分子的电离能,使样品分子电离或碎裂。电子轰击质谱能提供有机化合物最丰富的结构信息,有较好的重现性,其裂解规律的研究也最为完善,已经建立了数万种有机化合物的标准谱图库可供检索。其缺点在于不适用于难挥发和热稳定性差的样品。[医学教育网搜集整理]

2.化学电离(CI)

引入一定压力的反应气进入离子化室,反应气在具有一定能量的电子流的作用下电离或者裂解。生成的离子和反应气分子进一步反应或与样品分子发生离子分子反应,通过质子交换使样品分子电离。常用的反应气有甲烷,异丁烷和氨气。化学电离通常得到准分子离子,如果样品分子的质子亲和势大于反应气的质子亲和势,则生成[M+H]+,反之则生成[M-H]+.根据反应气压力不同,化学电离源分为大气压、中气压(0.1~10mmHg)和低气压(10-6mmHg)三种。大气压化学电离源适合于色谱和质谱联用,检测灵敏度较一般的化学

电离源要高2~3个数量级,低气压化学电离源可以在较低的温度下分析难挥发的样品,并能使用难挥发的反应试剂,但是只能用于傅里叶变换质谱仪。

3.快原子轰击(FAB)

将样品分散于基质(常用甘油等高沸点溶剂)制成溶液,涂布于金属靶上送入FAB离子源中。将经强电场加速后的惰性气体中性原子束(如氙)对准靶上样品轰击。基质中存在的缔合离子及经快原子轰击产生的样品离子一起被溅射进入气相,并在电场作用下进入质量分析器。如用惰性气体离子束(如铯或氩)来取代中性原子束进行轰击,所得质谱称为液相二次离子质谱(LSIMS)。

此法优点在于离子化能力强,可用于强极性、挥发性低、热稳定性差和相对分子质量大的样品及EI和CI难于得到有意义的质谱的样品。FAB比EI容易得到比较强的分子离子或准分子离子;不同于CI的一个优势在于其所得质谱有较多的碎片离子峰信息,有助于结构解析。缺点是对非极性样品灵敏度下降,而且基质在低质量数区(400以下)产生较多干扰峰。FAB是一种表面分析技术,需注意优化表面状况的样品处理过程。样品分子与碱金属离子加合,如[M+Na]和[M+K],有助于形成离子。这种现象有助于生物分子的离子化。因此,使用氯化钠溶液对样品表面进行处理有助于提高加合离子的产率。在分析过程中加热样品也有助于提高产率。

在FAB离子化过程中,可同时生成正负离子,这两种离子都可以用质谱进行分析。样品分子如带有强电子捕获结构,特别是带有卤原子,可以产生大量的负离子。负离子质谱已成功用于农药残留物的分析。

4.场电离(fieldionization,FI)和场解吸(fielddesorption,FD)

FI离子源由距离很近的阳极和阴极组成,两极间加上高电压后,阳极附近产生高达10+7~10+8V/cm的强电场。接近阳极的气态样品分子产生电离形成正分子离子,然后加速进入质量分析器。对于液体样品(固体样品先溶于溶剂)可用FD来实现离子化。将金属丝浸入样品液,待溶剂挥发后把金属丝作为发射体送入离子源,通过弱电流提供样品解吸附所需能量,样品分子即向高场强的发射区扩散并实现离子化。FD适用于难气化,热稳定性差的化合物。FI和FD均易得到分子离子峰。

5.大气压电离源(API)

API是液相色谱/质谱联用仪最常用的离子化方式。常见的大气压电离源有三种:大气压电喷雾(APESI),大气压化学电离(APCI)和大气压光电离(APPI)。电喷雾离子化是从去除溶剂后的带电液滴形成离子的过程,适用于容易在溶液中形成离子的样品或极性化合物。因具有多电荷能力,所以其分析的分子量范围很大,既可用于小分子分析,又可用于多肽、蛋白质和寡聚核苷酸分析。APCI是在大气压下利用电晕放电来使气相样品和流动相电离的一种离子化技术,要求样品有一定的挥发性,适用于非极性或低、中等极性的化合物。由于极少形成多电荷离子,分析的分子量范围受到质量分析器质量范围的限制。APPI是用紫外灯取代APCI的电晕放电,利用光化作用将气相中的样品电离的离子化技术,适用于非极性化合物。由于大气压电离源是独立于高真空状态的质量分析器之外的,故不同大气压电

离源之间的切换非常方便。

6.基质辅助激光解吸离子化(MALDI)

将溶于适当基质中的样品涂布于金属靶上,用高强度的紫外或红外脉冲激光照射可实现样品的离子化。此方式主要用于可达100000Da质量的大分子分析,仅限于作为飞行时间分析器的离子源使用。

7.电感耦合等离子体离子化(ICP)

等离子体是由自由电子、离子和中性原子或分子组成,总体上成电中性的气体,其内部温度高达几千至一万度。样品由载气携带从等离子体焰炬中央穿过,迅速被蒸发电离并通过离子引出接口导入到质量分析器。样品在极高温度下完全蒸发和解离,电离的百分比高,因此几乎对所有元素均有较高的检测灵敏度。由于该条件下化合物分子结构已经被破坏,所以ICP仅适用于元素分析。

三、质量分析器

质量分析器将带电离子根据其质荷比加以分离,用于纪录各种离子的质量数和丰度。质量分析器的两个主要技术参数是所能测定的质荷比的范围(质量范围)和分辨率。

1.扇形磁分析器

离子源中生成的离子通过扇形磁场和狭缝聚焦形成离子束。离子离开离子源后,进入垂直于其前进方向的磁场。不同质荷比的离子在磁场的作用下,前进方向产生不同的偏转,从而使离子束发散。由于不同质荷比的离子在扇形磁场中有其特有的运动曲率半径,通过改变磁场强度,检测依次通过狭缝出口的离子,从而实现离子的空间分离,形成质谱。

2.四极杆分析器

因其由四根平行的棒状电极组成而得名。离子束在与棒状电极平行的轴上聚焦,一个直流固定电压(DC)和一个射频电压(RF)作用在棒状电极上,两对电极之间的电位相反。对于给定的直流和射频电压,特定质荷比的离子在轴向稳定运动,其他质荷比的离子则与电极碰撞湮灭。将DC和RF以固定的斜率变化,可以实现质谱扫描功能。四极杆分析器对选择离子分析具有较高的灵敏度。[医学教育网搜集整理]

3.离子阱分析器

由两个端盖电极和位于它们之间的类似四极杆的环电极构成。端盖电极施加直流电压或接地,环电极施加射频电压(RF),通过施加适当电压就可以形成一个势能阱(离子阱)。根据RF电压的大小,离子阱就可捕获某一质量范围的离子。离子阱可以储存离子,待离子累积到一定数量后,升高环电极上的RF电压,离子按质量从高到低的次序依次离开离子阱,被电子倍增监测器检测。目前离子阱分析器已发展到可以分析质荷比高达数千的离子。离子阱在全扫描模式下仍然具有较高灵敏度,而且单个离子阱通过时间序列的设定就可以实现多级质谱(MSn)的功能。

4.飞行时间分析器

具有相同动能,不同质量的离子,因其飞行速度不同而分离。如果固定离子飞行距离,则不同质量离子的飞行时间不同,质量小的离子飞行时间短而首先到达检测器。各种离子的飞行时间与质荷比的平方根成正比。离子以离散包的形式引入质谱仪,医学教育网搜集整理这样可以统一飞行的起点,依次测量飞行时间。离子包通过一个脉冲或者一个栅系统连续产生,但只在一特定的时间引入飞行管。新发展的飞行时间分析器具有大的质量分析范围和较高的质量分辨率,尤其适合蛋白等生物大分子分析。

5.傅里叶变换分析器

在一定强度的磁场中,离子做圆周运动,离子运行轨道受共振变换电场限制。当变换电场频率和回旋频率相同时,离子稳定加速,运动轨道半径越来越大,动能也越来越大。当电场消失时,沿轨道飞行的离子在电极上产生交变电流。对信号频率进行分析可得出离子质量。将时间与相应的频率谱利用计算机经过傅里叶变换形成质谱。其优点为分辨率很高,质荷比可以精确到千分之一道尔顿。

四、串联质谱及联用技术

1.串联质谱

两个或更多的质谱连接在一起,称为串联质谱。最简单的串联质谱(MS/MS)由两个质谱串联而成,其中第一个质量分析器(MS1)将离子预分离或加能量修饰,由第二级质量分析器(MS2)分析结果。最常见的串联质谱为三级四极杆串联质谱。第一级和第三级四极杆分析器分别为MS1和MS2,第二级四极杆分析器所起作用是将从MS1得到的各个峰进行轰击,实现母离子碎裂后进入MS2再行分析。现在出现了多种质量分析器组成的串联质谱,如四极杆-飞行时间串联质谱(Q-TOF)和飞行时间-飞行时间(TOF-TOF)串联质谱等,大大扩展了应用范围。离子阱和傅里叶变换分析器可在不同时间顺序实现时间序列多级质谱扫描功能。

MS/MS最基本的功能包括能说明MS1中的母离子和MS2中的子离子间的联系。根据MS1和MS2的扫描模式,如子离子扫描、母离子扫描和中性碎片丢失扫描,可以查明不同质量数离子间的关系。母离子的碎裂可以通过以下方式实现:碰撞诱导解离,表面诱导解离和激光诱导解离。不用激发即可解离则称为亚稳态分解。

MS/MS在混合物分析中有很多优势。在质谱与气相色谱或液相色谱联用时,即使色谱未能将物质完全分离,也可以进行鉴定。MS/MS可从样品中选择母离子进行分析,而不受其他物质干扰。

MS/MS在药物领域有很多应用。子离子扫描可获得药物主要成分,杂质和其他物质的母离子的定性信息,有助于未知物的鉴别,也可用于肽和蛋白质氨基酸序列的鉴别。

在药物代谢动力学研究中,对生物复杂基质中低浓度样品进行定量分析,可用多反应监测模式(multiplereactionmonitoring,MRM)消除干扰。如分析药物中某特定离子,而来自基质中其他化合物的信号可能会掩盖检测信号,用MS1/MS2对特定离子的碎片进行选择监测可以消除干扰。MRM也可同时定量分析多个化合物。在药物代谢研究中,为发现与代谢前物质具有相同结构特征的分子,使用中性碎片丢失扫描能找到所有丢失同种功能团的离

子,如羧酸丢失中性二氧化碳。如果丢失的碎片是离子形式,则母离子扫描能找到所有丢失这种碎片的离子。

2.联用技术

色谱可作为质谱的样品导入装置,并对样品进行初步分离纯化,因此色谱/质谱联用技术可对复杂体系进行分离分析。因为色谱可得到化合物的保留时间,质谱可给出化合物的分子量和结构信息,故对复杂体系或混合物中化合物的鉴别和测定非常有效。在这些联用技术中,芯片/质谱联用(Chip/MS)显示了良好前景,但目前尚不成熟,而气相色谱/质谱联用和液相色谱/质谱联用等已经广泛用于药物分析。

(1)气相色谱/质谱联用(GC/MS)

气相色谱的流出物已经是气相状态,可直接导入质谱。由于气相色谱与质谱的工作压力相差几个数量级,开始联用时在它们之间使用了各种气体分离器以解决工作压力的差异。随着毛细管气相色谱的应用和高速真空泵的使用,现在气相色谱流出物已可直接导入质谱。

(2)液相色谱/质谱联用(HPLC/MS)

液相色谱/质谱联用的接口前已论及,主要用于分析GC/MS不能分析,或热稳定性差,强极性和高分子量的物质,如生物样品(药物与其代谢产物)和生物大分子(肽、蛋白、核酸和多糖)。

(3)毛细管电泳/质谱联用(CE/MS)和芯片/质谱联用(Chip/MS)

毛细管电泳(CE)适用于分离分析极微量样品(nl体积)和特定用途(如手性对映体分离等)。CE流出物可直接导入质谱,或加入辅助流动相以达到和质谱仪相匹配。微流控芯片技术是近年来发展迅速,可实现分离、过滤、衍生等多种实验室技术于一块芯片上的微型化技术,具有高通量、微型化等优点,目前也已实现芯片和质谱联用,但尚未商品化。

(4)超临界流体色谱/质谱联用(SFC/MS)

常用超临界流体二氧化碳作流动相的SFC适用于小极性和中等极性物质的分离分析,通过色谱柱和离子源之间的分离器可实现SFC和MS联用。

(5)等离子体发射光谱/质谱联用(ICP/MS)

由ICP作为离子源和MS实现联用,主要用于元素分析和元素形态分析。

五、数据处理和应用

检测器通常为光电倍增器或电子倍增器,所采集的信号经放大并转化为数字信号,计算机进行处理后得到质谱图。质谱离子的多少用丰度表示(abundance)表示,即具有某质荷比离子的数量。由于某个具体离子的“数量”无法测定,故一般用相对丰度表示其强度,即最强的峰叫基峰(basepeak),其他离子的丰度用相对于基峰的百分数表示。在质谱仪测定的质量范围内,由离子的质荷比和其相对丰度构成质谱图。在LC/MS和GC/MS中,常用各分析物质的色谱保留时间和由质谱得到其离子的相对强度组成色谱总离子流图。也可确定某固定的质荷比,对整个色谱流出物进行选择离子检测(selectedionmonitoring,SIM),得到

选择离子流图。质谱仪分离离子的能力称为分辨率,通常定义为高度相同的相邻两峰,当两峰的峰谷高度为峰高的10%时,两峰质量的平均值与它们的质量差的比值。对于低、中、高分辨率的质谱,分别是指其分辨率在100~2000、2000~10000和10000以上。

质谱在药物领域的主要应用为药物的定性鉴别、定量分析和结构解析。

如果一个中性分子丢失或得到一个电子,则分子离子的质荷比与该分子质量数相同。使用高分辨率质谱可得到离子的精确质量数,然后计算出该化合物的分子式,或者用参照物作峰匹配可以确证分子量和分子式。分子离子的各种化学键发生断裂后形成碎片离子,由此可推断其裂解方式,得到相应的结构信息。

质谱用于定量分析,其选择性、精度和准确度较高。化合物通过直接进样或利用气相色谱和液相色谱分离纯化后再导入质谱。质谱定量分析用外标法或内标法,后者精度高于前者。定量分析中的内标可选用类似结构物质或同位素物质。前者成本低,但精度和准确度以使用同位素物质为高。使用同位素物质为内标时,要求在进样、分离和离子化过程中不会丢失同位素物质。在使用FAB质谱和LC/MS(热喷雾和电喷雾)进行定量分析时,一般都需要用稳定的同位素内标。分析物和内标离子的相对丰度采用选择离子监测(只监测分析物和内标的特定离子)的方式测定。选择离子监测相对全范围扫描而言,由于离子流积分时间长而增加了选择性和灵敏度。利用分析物和内标的色谱峰面积或峰高比得出校正曲线,然后计算样品中分析物的色谱峰面积或它的量。

【第二届原创大赛参赛作品】浅谈四极杆、离子阱、飞行质谱和各种离子源

看过很多人问,那些质量分析器好,本人查了些书,有些是论坛网友介绍的。我只做一个简单的归结.

单四极质量分极器Q由四根严格平行并与中心轴乖间隔的圆柱形或双曲面柱状电极构成正负两组电极,其上施加直流和射频电压,产生一动态电场子

有全扫描和选择离子检测方式SIM,后者比前者灵敏度提高几个量级,但在不熟识测量物质的情况下,有可能造成误判

三重四极杆QQQ是由三组四极杆串接起来,第一和第三组是质量分析器,第二组是活化室。如果第二个质量分析器不加电压,QQQ就可以作用Q使用。当然也在第一个质量分析器后加一个检测器。作为Q使用

有子离子扫描、母离子扫描、中性丢失扫描和多反应选择扫描MRM,MRM扫描主要用于定量分析,比单极的SIM灵敏度更高。

离子阱分析器它是由环行电极和上、下两个端盖电极构成的三维四极场。原理:将离子储存在阱里,然后改变电场按不同质荷比将离子推出阱外进行检测。

离子阱有全扫描和选择离子扫描功能,同时利用离子储存技术,可以选择任一质量离子进行碰撞解离,实现二级或多级MSn分析功能。但离子阱的全扫描和选择离子扫描的灵敏度是相似的。。广泛应用于蛋白质组学和药物代谢分析。

飞行时间质谱TOF-MS,它与离子的飞行速度和质量相关,线性同轴的飞行时间质量分析器由一段无场的飞行管构成。离子束被高压加速以肪冲方式推出离子源进入飞行管,自由漂移到达检测器,由于分了质量不同,获得的加速度不同,质量小的离子比大的具有较高速度,

离子选到达检测器。

TOF理论上不存在质量上限,因此在高分子量分析应用中重要性是无敌的,目前主要应用在生物质谱领域。

扇形场质量分析器:在离子源中生成的离子被几千伏高压加速,以一定的的曲率半径通过电场、磁场,其运动轨道半径取决于离子的动量、质荷比、加速电压、磁场强度,不同质量离子在变化的电、磁场或加速电压下被分离。

配置和功能

质量范围:质谱仪器能检测的最低和最高质量。

注:质谱检测是m/z,所以如果检测物带的电荷z比较多,就算它分子量大于4000,四极杆也是能检测的。但是GCMS上的EI、CI、FI只能给出单电荷的z=1,只有LCMS和ESI 源能给出多电子荷。

准确度:指离子质量测定的准确性。

分辨率:指质谱分辨相邻两个离子质量的能力

注:高分辨率不等于高准确度的。灵敏度是和分辨率成反比的,所以不要一味追求高分辨率。

扫描速度

没有最好的质谱,只要最适合自己用的。

离子源的功能是使样品转变为离子,将离子聚焦并加加速进入质量分析器。

现在常用的离子源有:EI、CI、FI/FD三种,而除处以外还有ESI(电喷雾离子化)和APCI (大气压化学电离),后两者常用在LC/MS技术中。

EI源主要由电离室(离子盒)、灯丝、离子聚焦透镜和一对磁极组成。灯丝发射电子,经聚焦并在磁场作用下穿过离子余弦定理到达收集极。此时进入离子化室的样品分子在一定能量电子的作用下发生电离,离子被聚焦、加速聚焦成离子束进入质量分析器。

EI的优点:非选择性电离,只要样品能气化都能够离子化;离子化效率高,灵敏度高;EI 谱白日做提供丰富的结构信息,是化合物的“指纹谱”;有庞大的标准谱库供检索,谱图是在

70eV条件下获得的,谱图重复性好,被称作经典的EI谱(是指谱图中同位素峰的比例能反映构成该离子的天然同位素丰度分布规律。

EI的缺点:样品必须能气化,不适于难挥发,热不稳定的样品;有的化合物在EI方式下分子离子不稳定易碎裂,得不到分子量信息,谱图复杂解释有一定困难;EI方式只能检测正离子,不检测负离子。

解释一下为什么要用70eV:因为EI的电离效率和电离能量是有关的,电离能量低于50eV 时,离子产生率随着电离能量增加较快,而在70EV时,增加渐趋于稳定,发后电子能量再增加,离子产率几乎不变,所以谱图的重现性较好。同时标准谱图库在70EV下获得的

CI和EI一样,灯丝发射的电子使中性分子电离,不同的是样品和反应试剂一起进入离子化室,反应所浓度高于样品浓度,首先电离的是反应试剂中性分子,由于压力较高,发生离子-分子反应,产生各种活性反应离子,这些离子与样品分子再发生离子-分子反应,实现样品分子电离。常用的反应气试剂有甲烷、异丁烷、氨气等

CI的优点:CI不仅是获得分子量信息的重要手段,还可通过控制反应,根据离子亲和力和电负性选择不同的反应试剂,用于不同化合物的选择性检测。

CI的缺点:和EI一样要样品必须能气化,不适于难挥发,热不稳定的样品;而且CI谱图重现性不如EI,没有标准谱库。另外反应试剂易形成较高本低,影响检测限。反应试剂的压力需要摸索。

FI源由一个电极和一组聚焦透镜组成,电压高达几千伏的电极形成一强电场,气态的样品被导入离子区,在强电场作用下使气态分子的电子被拉出电离,形成的离子不会有过剩的能量,因此电子几乎不再进一步裂解

FD源,将样品涂在长晶须的电极上,通过电流加热使样品吸解并在强电场作用下发生电离FI/FD的优点:只有分子离子几乎没有碎片离子,而且没有反应试剂形成的本底,谱图比EI图更为简洁。适合于聚合物和同系物的分子量测定,尤其是烃类混合物中各类烃分子量测定。结合高分辨质谱能给出元素组成,从而获得分子式,对化合物鉴定非常有利。

FI/FD的缺点:和EI、CI一样要样品必须能气化,不适于难挥发,热不稳定的样品。FD虽然可解决样品不易气化和热不稳定问题,但FD源的发射丝需要活化成本较高,重现性较差;灵敏度差,别外高电压易发生放电效应,操作难。同时四极杆和离子阱质谱是不能配置FI 源。

电离方式电离媒介样品状态分子离子碎片离子

EI 电子蒸气M+ 有

CI 气相离子蒸气{M+H}+;{M-H}+;{M+NH4}+ 很少

FI/FD 电场蒸气、溶液M+;{M+H}+;{M+Na}+ 无或很少

现代仪器分析技术在食品中的应用

现代仪器分析技术在食品中的应用 湖南科技学院符国栋 前言: 仪器分析是指借用精密仪器测量物质的某些理化性质以确定其化学组成、含量及化学结构的一类分析方法,尤其适用于微量或痕量组分的测定。近年来食品仪器分方法的发展十分迅速,一些先进技术不断渗透到食品分析领域中,这类技术具有快速、灵敏、准确的特点,在食品分析中所占的比重不断增长,并成为现代食品分析的重要支柱。本文主要探讨现代仪器分析在食品检测中的应用及展望,其中对分光光度法和高效液相色谱法作了较详细的介绍。 关键词:仪器分析/理化性质/食品分析/检测/应用 目前在食品分析检测中基本采用仪器分析的方法代替手工操作 的传统方法,气相色谱仪、高效液相色谱仪、氨基酸自动分析仪、原子吸收分光光度计及可进行光谱扫描的紫外—可见分光光度计、荧光分光光度计等均得到了普遍应用。同时由于计算机技术的引入,使仪器分析的快速、灵敏、准确等特点更加明显,多种技术的结合与联用使仪器分析应用更加广泛,有力推动了食品仪器分析的发展,使得食品分析正处在一个崭新的发展时代。 现代分析仪器的种类十分庞杂,应用的原理不尽相同,而根据仪器的工作原理以及应用范围,可划分为:电化学分析仪器、光学式分析仪器、射线式分析仪器、色谱类分析仪器、离子光学式分析仪器、磁学式分析仪器、热学式分析仪器、电子光学物性测定仪器及其它专

用型和多用型仪器[1]。 1.光谱分析法 紫外—可见分光光度法具有专属性强,灵敏度和准确度高,操作简单、快速、安全、检品用量少等特点,广泛用于食品分析领域。原子吸收光谱分析法为食品分析、食品营养、食品生物化学、食品毒理学等诸多领域的空前发展提供了条件,成为测量痕量和超痕量元素的最有效方法之一。 1975年丹麦的Ruzicka和HansonE首次提出流动注射分析(flow—injection analysis, FIA) 的概念,指出化学分析可以在非平衡的动态条件下进行。FIA 具有适应性广泛,分析效率高,试样和试剂消耗量少,检测精度高等优点,已被广泛应用于很多领域。在与FIA 联用的各种监测器中, 分光光度检测器因其结构简单、价格低廉,易于推广。流动注射分光光度法是通过测定样品在检测池中吸收紫外-可见光的大小来确定样品含量的, 与各种在线分离富集、转化技术相结合(如溶剂萃取、离子交换、膜渗析、多流切换、合并区带、停流技术、动力学技术等),提高了分析方法的灵敏度和选择性。将快速扫描的光电二极管阵列检测器与流动注射和专用微机联用,可形成连续自动多组分同时测定的分光光度法系统,更进一步拓宽了流动注射分析的应用范围。近年来,流动注射分光光度法在食品分析特别是微量元素、蛋白质及氨基酸、维生素、食品添加剂等方面的分析研究取得了一定进展。 测定食品中的元素含量, 可以了解食品的营养价值和食品的污

食品仪器分析-高效液相色谱参考答案演示教学

高效液相色谱 1. 高效液相色谱分析是将流动相用高压泵输送,使压力高达 采用新型的 化学键合固定相 ,是分离效率很高的液相色谱法。 2. 高效液相色谱法的特点是 分离性能高、分析速度快、检测器灵敏度高、应用 范围广。 3. 高效液相色谱法和气相色谱法的共同之处是 分离功能、分析功能、在线分 析。 4. 高效液相色谱分析根据分离机理不同可分为四种类型,即 液固 色谱、 液液 色谱、 键合相 色谱、 凝胶 色谱。 5. 高效液相色谱中的液一液分配色谱采用的新型固定相叫 化学方法将固定液官能团键合在载体表面上的。 6. 通常把固定相极性大于流动相极性的一类色谱称为 反相色谱。 7. 高效液相色谱仪通常由 储液器、输液泵 检测器、色谱工作站七部分组成。 8. 高效液相色谱仪中使用最广泛的检测器为 紫外检测器,另外还有折光检测器、 荧光检测器等等。 9. 高效液相色谱主要用于 分析沸点高的、分子量大的、受热易分解的以及具有 生理活性物质的分析。 、判断题 、、、、、、、、、、、、、、、、、、、、、、 、 、 、 、 、 、 、 1 ?液一液色谱流动相与被分离物质相互作用,流动相极性的微小变化,都会使组分的 保留值出现较大的改变。 (Y ) 2. 利用离子交换剂作固定相的色谱法称为离子交换色谱法。 (V ) 5 MPa 以上,并 化学键合相,它是利用 正相色谱。反之称为 梯度淋洗器、进样器、色谱柱

3 ?紫外吸收检测器是离子交换色谱法通用型检测器。(X ) 4 ?检测器性能好坏将对组分分离产生直接影响。(X ) 5. 高效液相色谱适用于大分子,热不稳定及生物试样的分析。() 6. 高效液相色谱中通常采用调节分离温度和流动相流速来改善分离效果。(X ) 7?键合固定相具有机械性能稳定,可使用小粒度固定相和高柱压来实现快速分离。 (V ) &在液相色谱中为避免固定相的流失,流动相与固定相的极性差别越大越好。(X ) 9?正相分配色谱的流动相极性大于固定相极性。(X ) 10. 反相分配色谱适于非极性化合物的分离。(V ) 11 . 高效液相色谱法采用梯度洗脱,是为了改变被测组分的保留值,提咼分离度(X ) 12 . 液相色谱柱一般采用不锈钢柱、玻璃填充柱。(X) 13 . 液相色谱固定相通常为粒度 5 ?10m。(X) 14 . 示差折光检测器是属于通用型检测器,适于梯度淋洗色谱。(X) 15 . 离子交换色谱主要选用有机物作流动相。(X) 16 . 体积排阻色谱所用的溶剂应与凝胶相似,主要是防止溶剂吸附。(X) 17 . 在液一液色谱中,为改善分离效果,可采用梯度洗脱。(V) 18?化学键合固定相具有良好的热稳定性,不易吸水,不易流失,可用梯度洗脱。(X ) 19.液相色谱的流动相又称为淋洗液,改变淋洗液的组成、极性可显著改变组分分离效 果。(V ) 20?液相色谱指的是流动相是液体,固定相也是液体的色谱。(X ) 21. 高效液相色谱柱柱效高,能用液相色谱分析的样品不用气相色谱法分析。(X ) 22. 在液相色谱中,流动相的流速变化对柱效影响不大。(X ) 23. 正相键合色谱的固定相为非(弱)极性固定相,反相色谱的固定相为极性固定相。(X )

食品现代仪器分析实验指导2016课件

食品现代仪器分析实验指导福州大学生物科学与工程学院 吴佳 2016年5月

实验一苦味饮料中硫酸奎宁的荧光法测定 1. 目的意义 喹啉结构是“苯并吡啶”。即一个苯环与一个吡啶环稠合而成。奎宁是喹啉的衍生物,其结构如下: N 喹啉 CH2 CH N CH 3 O C H OH C H 2 N CH2 CH2 CH2 奎宁 奎宁是金鸡纳树皮中含有的苦味晶状粉末,抗疟疾药。疟疾曾是热带、亚热带地区猖獗流行的疾病,曾夺走成千上万人的生命。17世纪末,奎宁由欧洲传入我国,曾称为“金鸡纳霜”,当时是非常罕见的药。后来,瑞典纳尤斯对这种植物的树皮进行了认真的研究,提取了其中的有效成分金鸡纳碱,起名为“奎宁”。“奎宁”这个词在秘鲁文字中是树皮的意思。直到1945年,奎宁才实现了人工合成。奎宁是碱性物质,与硫酸反应生成盐,俗名硫酸奎宁。 在饮料中硫酸奎宁是调味料,主要用在滋补品和苦柠檬水中,有调味及预防疟疾之功效,例如汤力水是Tonic Water的音译,又叫奎宁水、通宁汽水。是苏打水与糖、水果提取物和奎宁调配而成的。可作为苦味饮料或用于配制鸡尾酒或其它饮料。奎宁饮料以其微苦的口味成为畅销的解渴饮料,特别是在夏季人们大量饮用,但大量消费含奎宁成分的饮料对一些个体有害,如新陈代谢紊乱或对这种物质有超敏性的人要避免摄取奎宁,特别是孕妇。对怀孕期间每天饮用一升以上奎宁饮料的孕妇进行的调查显示,出生后24小时,新生儿就出现神经战栗症状,在他们的尿液中发现了奎宁成分,但2个月以后这些症状就不存在了。为此,对奎宁含量的测定具有重要意义。 2. 原理: 本实验包括荧光光谱和激发光谱测定,以及苦味饮料中硫酸奎宁含量测定。硫酸奎宁是强荧光性物质,在紫外光照射下,会发射蓝色荧光。在稀溶液中荧光强度与硫酸奎宁浓度成正比,可根据荧光强度求出硫酸奎宁浓度。 荧光(发射)光谱: 固定激发光波长和强度,在不同的波长下测定所发射的荧光强度,以发射波长为横坐标,以荧光强度为纵坐标,所作曲线为荧光发射光谱。 荧光发射光谱是选择最大荧光发射波长的依据。 荧光激发光谱: 固定荧光发射波长(一般在最大发射波长处),改变激发光波长,得出不同激发波长的荧光强度,以激发光波长为横坐标,以荧光强度为纵坐标,所得曲线称为激发光谱。 荧光激发光谱是选择最大激发波长的依据。

现代仪器分析技术在食品中应用课后)

第二章气象色谱习题解答 1.简要说明气相色谱分析的基本原理 借在两相间分配原理而使混合物中各组分分离。 气相色谱就是根据组分与固定相与流动相的亲和力不同而实现分离。组分在固定相与流动相之间不断进行溶解、挥发(气液色谱),或吸附、解吸过程而相互分离,然后进入检测器进行检测。 2.气相色谱仪的基本设备包括哪几部分?各有什么作用? 气路系统.进样系统、分离系统、温控系统以及检测和记录系统. 气相色谱仪具有一个让载气连续运行管路密闭的气路系统. 进样系统包括进样装置和气化室.其作用是将液体或固体试样,在进入色谱柱前瞬间气化, 然后快速定量地转入到色谱柱中. 25. 丙烯和丁烯的混合物进入气相色谱柱得到如下数据: 计算:(1)丁烯的分配比是多少?(2)丙烯和丁烯的分离度是多少? 解:(1)kB= t’R(B)/tM =(4.8-0.5)/0.5=8.6 29.测得石油裂解气的气相色谱图(前面四个组分为经过衰减1/4而得到),经测定各组分的f 值并从色谱图量出各组分峰面积为: 用归一法定量,求各组分的质量分数各为多少? 解:根据公式: 故:CH4, CO2, C2H4, C2H6, C3H6, C3H8的质量分数分别为: wCH4 =(214×0.74 ×4/2471.168 )×100%=25.63% wCO2 =(4.5 ×1.00 ×4/2471.168 )×100% =0.73%

wC2H4 =(278 ×4 ×1.00/2471.168) ×100% =45.00% wC2H6 =(77 × 4 ×1.05/2471.168 )×100% =13.09% wC3H6 = (250 ×1.28 /2471.168)× 100%=12.95% wC3H8 =(47.3 ×1.36/2471.68 )×100%=2.60% 30.有一试样含甲酸、乙酸、丙酸及不少水、苯等物质,称取此试样1.055g。以环己酮作内标,称取环己酮0.1907g,加到试样中,混合均匀后,吸取此试液3mL 进样,得到色谱图。从色谱图上测得各组分峰面积及已知的S’值如下表所示: 求甲酸、乙酸、丙酸的质量分数。 解:根据公式: 求得各组分的校正因子分别为: 3.831; 1.779; 1.00; 1.07 代入质量分数的表达式中得到各组分的质量分数分别为: w甲酸=(14.8/133)×(0.1907/1.055) ×3.831 ×100% = 7.71% w乙酸 = (72.6/133) ×(0.1907/1.055) ×1.779 ×100% = 17.55% w丙酸=(42.4/133) ×(0.1907/1.055) ×1.07 ×100% = 6.17% 31.在测定苯、甲苯、乙苯、邻二甲苯的峰高校正因子时,称取的各组分的纯物质质量,以及在一定色谱条件下所得色谱图上各组分色谱峰的峰高分别如下:求各组分的峰高校正因子,以苯为标准。 解:对甲苯:f甲苯=(hs/hi) × (mi/ms)=180.1 ×0.5478/(84.4 × 0.5967)=1.9590 同理得: 乙苯:4.087; 邻二甲苯:4.115

食品仪器分析-高效液相色谱参考答案

高效液相色谱习题 一、填空题 1.高效液相色谱分析是将流动相用高压泵输送,使压力高达 5 MPa以上,并采用新型的化学键合固定相,是分离效率很高的液相色谱法。 2.高效液相色谱法的特点是分离性能高、分析速度快、检测器灵敏度高、应用范围广。 3.高效液相色谱法和气相色谱法的共同之处是分离功能、分析功能、在线分析。 4.高效液相色谱分析根据分离机理不同可分为四种类型,即液固色谱、 液液色谱、键合相色谱、凝胶色谱。 5.高效液相色谱中的液一液分配色谱采用的新型固定相叫化学键合相,它是利用 化学方法将固定液官能团键合在载体表面上的。 6.通常把固定相极性大于流动相极性的一类色谱称为正相色谱。反之称为 反相色谱。 7.高效液相色谱仪通常由储液器、输液泵、梯度淋洗器、进样器、色谱柱、检测器、色谱工作站七部分组成。 8.高效液相色谱仪中使用最广泛的检测器为紫外检测器,另外还有折光检测器、 荧光检测器等等。 9.高效液相色谱主要用于分析沸点高的、分子量大的、受热易分解的以及具有生理活性物质的分析。 二、判断题

√、√、?、?、√、√、?、√、?、√、?、√、√、?、√、?、?、√、?、√、√、?、?、?、?、?、?、?、√、? 1.液一液色谱流动相与被分离物质相互作用,流动相极性的微小变化,都会使组分的保留值出现较大的改变。 (√) 2.利用离子交换剂作固定相的色谱法称为离子交换色谱法。(√)3.紫外吸收检测器是离子交换色谱法通用型检测器。(×)4.检测器性能好坏将对组分分离产生直接影响。(×)5.高效液相色谱适用于大分子,热不稳定及生物试样的分析。(√)6.高效液相色谱中通常采用调节分离温度和流动相流速来改善分离效果。(×)7.键合固定相具有机械性能稳定,可使用小粒度固定相和高柱压来实现快速分离。(√) 8.在液相色谱中为避免固定相的流失,流动相与固定相的极性差别越大越好。(×)9.正相分配色谱的流动相极性大于固定相极性。(×)10.反相分配色谱适于非极性化合物的分离。(√)11.高效液相色谱法采用梯度洗脱,是为了改变被测组分的保留值,提高分离度(×)12.液相色谱柱一般采用不锈钢柱、玻璃填充柱。(×) 13.液相色谱固定相通常为粒度5~10μm。(×) 14.示差折光检测器是属于通用型检测器,适于梯度淋洗色谱。(×) 15.离子交换色谱主要选用有机物作流动相。(×) 16.体积排阻色谱所用的溶剂应与凝胶相似,主要是防止溶剂吸附。(×) 17.在液一液色谱中,为改善分离效果,可采用梯度洗脱。(√)

仪器分析 质谱练习题

质谱分析习题 一、简答题 1.以单聚焦质谱仪为例,说明组成仪器各个主要部分的作用及原理。 2.双聚焦质谱仪为什么能提高仪器的分辨率? 3.试述飞行时间质谱计的工作原理,它有什么特点? 4.比较电子轰击离子源、场致电离源及场解析电离源的特点。 5.试述化学电离源的工作原理。 6.有机化合物在电子轰击离子源中有可能产生哪些类型的离子?从这些离子的质谱峰中可以得到一些什么信息? 7.如何利用质谱信息来判断化合物的相对分子质量?判断分子式? 8.色谱与质谱联用后有什么突出特点? 9.如何实现气相色谱-质谱联用? 10.试述液相色谱-质谱联用的迫切性。 二、选择题 1.3,3-二甲基戊烷:受到电子流轰击后, 最容易断裂的键位是: ( ) A 1和4 B 2和3 C 5和6 D 2和3 2.在丁烷的质谱图中,M对(M+1)的比例是() A 100:1.1 B 100:2.2 C 100:3.3 D 100:4.4 3.下列化合物含 C、H或O、N,试指出哪一种化合物的分子离子峰为奇数?( ) A C6H6 B C6H5NO2 C C4H2N6O D C9H10O2

4.在下列化合物中, 何者不能发生麦氏重排? ( ) 5.用质谱法分析无机材料时,宜采用下述哪一种或几种电离源? () A 化学电离源 B 电子轰击源 C 高频火花源 D B或C 6.某化合物的质谱图上出现m/z31的强峰, 则该化合物不可能为 ( ) A 醚 B 醇 C 胺 D 醚或醇 7.一种酯类(M=116),质谱图上在m/z 57(100%),m/z 29(27%)及m/z 43(27%)处均有离子峰,初步推测其可能结构如下,试问该化合物结构为 ( ) A (CH3)2CHCOOC2H5 B CH3CH2COOCH2CH2CH3 C CH3(CH2)3COOCH3 D CH3COO(CH2)3CH3 8.按分子离子的稳定性排列下面的化合物次序应为 ( ) A 苯 > 共轭烯烃 > 酮 > 醇 B 苯 > 酮 > 共轭烯烃 > 醇 C 共轭烯烃 > 苯 > 酮 > 醇 D 苯 > 共轭烯烃 > 醇 > 酮 9.化合物在质谱图上出现的主要强峰是() A m/z 15 B m/z 29 C m/z 43 D m/z 71 10.溴己烷经 均裂后,可产生的离子峰的最可能情况为: ( ) A m/z 93 B m/z 93和m/z 95 C m/z 71 D m/z 71和m/z 73 11.在C2H 5F 中,F对下述离子峰有贡献的是 ( )

食品仪器分析教学知识点

色谱分析法导论 1)色谱法分类 1、气相色谱(流动相为气体,称为载气)。 2、液相色谱(液体,淋洗液)。 3、其他色谱:薄层色谱和纸色谱、凝胶色谱、超临界色谱、高效毛细管电泳。 2)色谱法特点 1、分离效率高,复杂混合物,有机同系物、异构体、手性异构体。 2、灵敏度高,可以检测出μg.g-1(10-6)级甚至ng.g-1(10-9)级的物质量 3、分析速度快,一般在几分钟或几十分钟内可以完成一个试样的分析。 4、应用范围广,气相:沸点低于400℃、结构稳定的有机或无机试样;液相:高沸点、热不稳定、生物试样。 3)术语: 1、组分分离:当流动相中样品混合物经过固定相时,就会与固定相发生作用,由于各组分在性质和结构上的差异,与固定相相互作用的类型、强弱也有差异,因此在同一推动力的作用下,不同组分在固定相滞留时间长短不同,从而按先后不同的次序从固定相中流出。 2、色谱流出曲线:由检测器输出的信号强度对时间作图,所得曲线称为色谱流出曲线。 3、色谱峰:色谱流出曲线上突起部分就是色谱峰。 4、基线:在实验操作条件下,色谱柱后没有样品组分流出时的流出曲线称为基线,稳定的基线应该是一条水平直线。 5、峰高:色谱峰顶点与基线之间的垂直距离,以(h)表示。 6、死时间tM:不被固定相吸附或溶解的物质进入色谱柱时,从进样到出现峰极大值所需的时间称为死时间,它正比于色谱柱的空隙体积。 7、保留时间tR:试样从进样到柱后出现峰极大点时所经过的时间,称为保留时间。 8、调整保留时间tR′:某组分的保留时间扣除死时间后,称为该组分的调整保留时间。 4)定性的方法 1、利用保留值定性:通过对比试样中具有与纯物质相同保留值的色谱峰,来确定试样中是否含有该物质及在色谱图中的位置。不适用于不同仪器上获得的数据之间的对比。 2、利用加入法定性:将纯物质加入到试样中,观察各组分色谱峰的相对变化。 5)定量分析方法 1、外标法(标准曲线法):将欲测组分的纯物质配制成不同浓度的标准溶液进行色谱分析,以峰面积对浓度作图。测得样品的信号后从标准曲线上查出对应浓度。 2、内标法:准确称取样品(m),加入一定量(m s)某种纯物质作为内标物,进行色谱分析,根据被测物与内标物的相应峰面积(或峰高)和相对校正因子,求出被测组分的含量。 内标物要满足以下要求:试样中不含有该物质;与被测组分性质比较接近;不与试样发生化学反应;出峰位置应位于被测组分附近。 3、归一化法:将试样中所有组分的含量之和按100%计算,以它们相应的色谱峰面积或峰高为定量参数,通过计算各组分峰面积占总面积比例即为其在总质量中所占比例,由此算出各组分的含量。 6)分离度 分离度是描述难分离物质对的实际分离程度。即柱效为多大时,相邻两组份能够被完全分离。 分离度受两因素影响:1、保留值之差──色谱过程的热力学因素,即两物质峰顶点间距离,同时也反应了两物质在固定相与流动相间的分配系数的差别;2、区域宽度──色谱过程的动力学因素,即峰的宽度,与色谱柱的柱效有关,即根据塔板理论,柱效越高,单位长度的塔板数越多,出峰越窄尖。 7)塔板理论 将色谱分离过程比拟作蒸馏过程,将连续的色谱分离过程分割成多次的平衡过程的重复。 塔板理论的假设: (1) 在每一个平衡过程间隔内,平衡可以迅速达到; (2) 将载气看作成脉动(间歇)过程; (3) 试样沿色谱柱方向的扩散可忽略; (4) 每次分配的分配系数相同。

仪器分析名词解释

绪论 1 仪器分析: 是指通过测量物质是某些物理或者物理化学性质` 参数及其变化来确定物质的组成成分含量级化学结构的分析方法。仪器分析的产生与生产实践科学技术发展的迫切需要方法核心原理发现及相关技术产生等密切相关。 2 定性分析: 鉴定式样由哪些元素、离子、基团或化合物组成,即确定物质的组成。 3 定量分析: 测定试样中各种组分(如元素、根或官能团等)含量的操作。 4 精密度: 指同一分析仪器的同一方法多次测定所得到数据间的一致程度,是表征随机误差大小的指标,亦成为重复测定结果随测定平均值的分散度,即重现性。 5 灵敏度: 仪器或分析方法灵敏度是指区别具有微小浓度差异分析物能力的度量,它取决于两个因素:即校准曲线的斜率和仪器设备的重现性或精密度。 6 检出限: 又称检测下限或最低检出量,指一定置信水平下检出分析物或组分的最小量或最低浓度。它取决于分析物产生信号与本底空白信号波动或噪声统计平均值之比。 7 动态范围: 定量测定最低浓度(LOQ)扩展到校准曲线偏离线性响应(LOL)的浓度范围。 8 选择性: 一种仪器方法的选择性是指避免试样中含有其它组分干扰组分测定的程度。 9 分辨率: 指仪器鉴别由两相近组分产生信号的能力。不同类型仪器分辨率指标各不相同,光谱仪器指将波长相近两谱线(或谱峰)分开的能力;质谱仪器指分辨两相邻质量组分质谱峰的分辨能力;色谱指相邻两色谱峰的分离度;核磁共振波谱有它独特的分辨率指标,以临二氯甲苯中特定峰,在最大峰的半宽度为分辨率大小。 10 分析仪器的校正: 仪器分析中将分析仪器产生的各种响应信号值转变成被测物质的质量或浓度的

过程称为校正。一般包括分析仪器的特征性能指标和定量分析方法校正。 光谱法导论 11 电磁辐射: 电场和磁场的交互变化产生的电磁波,电磁波向空中发射或汇聚的现象,叫电磁辐射举例说,正在发射讯号的射频天线所发出的移动电荷,便会产生电磁能量。 12 电磁辐射的吸收、发射、散射、折射、干涉、衍射: (1) 吸收物质选择性吸收特定频率的辐射能,并从低能级跃迁到高能级; (2) 发射将吸收的能量以光的形式释放出; (3) 散射丁铎尔散射和分子散射; (4) 折射折射是光在两种介质中的传播速度不同; (6) 干涉干涉现象; (7) 衍射光绕过物体而弯曲地向他后面传播的现象; 13 分子光谱、原子光谱 分子光谱:分子从一种能态改变到另一种能态时的吸收或发射光谱(可包括从紫外到远红外直至微波谱)。 原子光谱:是由原子中的电子在能量变化时所发射或吸收的一系列光所组成的光谱。 14 辐射源: 指能发射比所需波长范围更宽的光谱的器件。 15 拉曼散射 :当光子与分子间发生非弹性碰撞的相互作用时,相互间有能量交换,使光子的能量增加或减少,这时将产生与入射光波长不同的散射光,这种散射称为拉曼散射。 紫外光谱、分子发光、原子吸收光谱 16 透光率: 透光率是指透过透明或半透明体的光通量与其入射光通量之比。 17 辐射跃迁:

现代仪器分析技术在食品检测中的应用

现代仪器分析技术在食品检测中的应用摘要:综述了光谱分析法、色谱分析法、质谱分析法检测技术等几种主要的现代仪器分析技术在食品检测方面的应用。 关键词:仪器分析食品分析检测应用 中图分类号:文献标识码:A 文章编号:1672-5336(2014)06-0035-02 仪器分析是指借用精密仪器测量物质的某些理化性质以确定其化学组成、含量及化学结构的一类分析方法,尤其适用于微量或痕量组分的测定。由于计算机技术的引入,使仪器分析的快速、灵敏、准确等特点更加明显,多种技术的结合与联用使仪器分析应用更加广泛。近年来,食品仪器分析方法的发展十分迅速,一些先进技术不断渗透到食品分析领域中,使仪器分析方法在食品分析中所占的比重不断增长,并成为现代食品分析的重要支柱。 现代分析仪器的种类十分庞杂,应用的原理不尽相同[1],本文主要介绍光谱分析法、色谱分析法、质谱分析法检测技术等几种主要的现代仪器分析技术在食品检测方面的应用。 1 光谱分析法 光谱分析是一种活体快速、无损测试技术,它是利用各种化学物质(包括原子、基团、分子及高分子化合物)所具有的发射、吸收或散射光谱的特征,来确定其性质、结构或含量,在国内外得到了广泛的应用。分光光度法是食品分析中应用最广最多的方法之一,其中涉及红外、原子吸收等分光光度技术。

原子吸收分光光度法 20世纪60~70年代原子吸收光谱仪日渐普及,随着用于准确测定生物样品中痕量矿物质的原子吸收方法的发展,为食品分析、食品营养、食品生物化学、食品毒理学等诸多领域的空前发展铺平了道路。潘锦武[5]采用在酸性条件下,加入KI-MIBK萃取食品中痕量铅和镉,导入火焰原子吸收分光光度法测定,解决了食品基体物质物质干扰铅、镉测定的问题,提高检测结果的准确性。 红外光谱分析法 随着科学技术的发展,红外光谱技术的应用从中红外、到近红外、再到现在较为热门的傅立叶红外变换光谱(FTIR),技术得到不断的改进,应用领域得到不断的扩充。近年来,其在食品行业的应用研究也已展开,它已成为现代结构化学、分析化学最常用和最不可缺少的工具之一,在目前关于食品中低含量物质的检测中具有极其重要的价值[6]。 2 色谱分析法 色谱技术在食品分析中的应用与色谱法的发展史几乎是同步的。1952年诺贝尔化学奖获得者英国化学家James和生物学家Martin最早发明气一液色谱,就是用来分析脂肪酸等混合物。色谱法在各种干扰物质中对分析物具有极强的分离能力、高的分析精确度、灵敏度和重复性,已成为食品分析中最有效的分离分析方法。 气相色谱法 气相色谱是20世纪50~60年代发展起来的一种高效、快速分

仪器分析在食品分析中的应用

仪器分析在食品分析中的应用 生物化工与环境工程学院 xxxxxx xxx xxxxx [摘要]食品是人类生活中不可缺少的必需品,是人类生命活动能源的来源。近年来,仪器 分析方法的发展十分迅速,一些先进技术不断渗透到食品分析领域中,使仪器分析方法在 食品分析中所占的比重不断增长并成为现代食品分析的重要支柱。 [关键词]仪器分析食品检测高效液相色谱法 正文:仪器分析是指借用精密仪器测量物质的某些理化性质以确定其化学组成、含量及化 学结构的一类分析方法,尤其适用于微量或痕量组分的测定。目前在食品分析检测中基本 采用仪器分析的方法代替手工操作的传统方法,气相色谱仪、高效液相色谱仪、氨基酸自 动分析仪、原子吸收分光光度计及可进行光谱扫描的紫外——可见分光光度计、荧光分光 光度计等均得到了普遍应用。 高效液相色谱法(HPLC)是20世纪60年代发展起来的一种新型分析、分离技术。它是在经典液相色谱法的基础上,引入气相色谱法的理论和技术,以高压输送流动相,采用 高效固定相及高灵敏度检测器发展而成的现代液相色谱分析方法。现代HPLC采用了小口 径柱(约1~3mm)和极细小的高效色谱填料(粒径<5μm),用高压输液泵使溶剂以高 流速(1~10cm/s)通过色谱柱,分离速度比经典柱色谱法快100~1000倍,分离效率已 接近毛细管柱气相色谱法。具有高压、高速、高效、高灵敏度四大特点。HPLC能够分析受到热稳定性和挥发性限制的化合物,而用GC分析这些化合物时则必须借助其衍生物。由 于HPLC具有高分辨率、高灵敏度、速度快、色谱柱可反复利用、流出组分易收集等优点,所以被广泛应用到食品分析的各个领域[1]。不仅可以对食品中各类营养成分及含量进行分 离和测定, 而且还可以对食品中残留的一些有害的微量物质及在食品腐败过程中产生的各 种毒素进行分析[2]。从而向人们展示出高效液相色谱法在食品分析中的重要地位。 食品分析在主要分三个方面:①食品营养成分分析:蛋白质、氨基酸、糖类、维生素、有机酸等;②食品添加剂分析:甜味剂、防腐剂、着色剂、抗氧化剂等;③食品污染物分析:霉菌毒素、农药残留、多环芳烃等[3]。 1.食品营养成分的分析: 1.1 食品中碳水化合物的分析 食物中的碳水化合物是人体必需的营养素之一,是人体热能的主要来源。化学法只能测总糖,气相色谱法虽可分别测定各种糖分,但样品需衍生化,操作麻烦。而HPLC法操作 简便,灵敏度高,可同时测定各种糖。国际上已将HPLC法作为酒类糖份含量测定的仲裁。 1.2 食品中维生素的分析 维生素是人体内代谢过程中起重要作用的物质,人体所需维生素量很少,但却是构成 生命活动不可缺少的营养物质。维生素种类很多,在化学结构上并无共性,它们可分为胺 类(VB ),醛类(VB )或醇类(VA)。 1.3 食品中氨基酸的分析

北京化工大学仪器分析答案之质谱

质谱分析法 1. 质谱仪由哪几部分组成?各部分的作用是什么?(划出质谱仪的方框示意图) 由进样系统、离子源、质量分析器、离子检测器和记录器组成,此外还有真空系统和电气系统等辅助设备。 进样系统:高效重复地将样品引入到离子源,并且不能造成真空度的降低。 离子源:将进样系统引入的气态样品分子转化为离子 质量分析器:将离子源产生的离子按荷质比大小分开 离子检测器:将从质量分析器出来的只有10-9~10-12A的微小离子流加以接收、放大,以便记录。 记录器:记录实验数据和图谱等 2. 在质谱分析中,较常遇到的离子断裂方式有哪几种? 单纯开裂、重排与消除、复杂开裂和双重开裂 4. 有一束含有不同值的离子通过一个具有固定狭缝位置和恒定加速电压V的质谱仪单聚焦磁分析器,磁场H由小到大扫描,首先通 过出口狭缝而被检测的是最小还是最大的离子?为什么? 答案: 最小值的离子。 5. 用质谱法对四种化合物的混合物进行定量分析,它们的分子量分别为260.2504,260.2140,260.1201和260.0922,若以它们的分子离子

峰作为分析峰,需多大分辨率的质谱仪? 答案: 9322。 6. 试计算下列分子的(M+2)与 M 峰之强度比: ① C 2H 5Br ; ② C 6H 5Cl ; (忽略13C 、2H 的影响)。 答案:①1:1;②1:3; 7. 试计算下列化合物的(M+2)/M 和(M+4)/M 峰之强度比: ① C 7H 6Br 2; ② CH 2Cl 2; ③ C 2H 4BrCl (忽略13C 、2H 的影响)。 答案: ①2:1和1:1;②6:9和1:9;③4:3和1:3。 8. 解释下列化合物质谱中某些主要离子的可能断裂途径: ① 丁酸甲酯质谱中的 43、59、71、74; ② 乙基苯质谱中的 91、92; ③ 庚酮-4质谱中的 43、71、86; ④ 三乙胺质谱中的 30、58、86。 m/z=86为 断裂 m/z=86 H 3C 2(C 2H 5)3N (C 2H 5)2H 2

现代仪器分析技术及其在食品中的应用课后答案

第二章 习题解答 1.简要说明气相色谱分析的基本原理 借在两相间分配原理而使混合物中各组分分离。 气相色谱就是根据组分与固定相与流动相的亲和力不同而实现分离。组分在固定相与流动相之间不断进行溶解、挥发(气液色谱),或吸附、解吸过程而相互分离,然后进入检测器进行检测。 8.为什么可用分离度R 作为色谱柱的总分离效能指标? 答: 分离度同时体现了选择性与柱效能,即热力学因素和动力学因素,将实现分离的可能性与现实性结合了起来. 个 20.在一根2 m 长的色谱柱上,分析一个混合物,得到以下数据:苯、甲苯、及乙苯的保留时间分别为1’20“, 2‘2”及3’1“;半峰宽为0.211cm, 0.291cm, 0.409cm ,已知记录纸速为1200mm.h-1, 求色谱柱对每种组分的理论塔板数及塔板高度。 解:三种组分保留值用记录纸上的距离表示时为: 苯: (1+20/60)×[(1200/10)/60]=2.67cm 甲苯:(2+2/60) ×2=4.07cm 乙苯: (3+1/60) ×2=6.03cm 故理论塔板数及塔板高度分别为: 甲苯和乙苯分别为:1083.7,0.18cm; 1204.2,0.17cm ) 1)(1(41)(2121)1()2(k k n Y Y t t R R R +-=--=αα%100%%100%1 1?=?=∑ ∑==n i h is h is i n i A is A is i hf hf m or Af Af m cm m n L H Y t n R 23.0)(00225.009.887 /2/09.887)211.067.2(54.5)(54.5222/1=======苯 苯

食品分析方法的分类

食品分析方法的分类 对食品品质的评价,主要包括食品营养、卫生和嗜好性三个方面。食品分析所采用的分析方法主要有感观分析法、理化分析法、微生物分析法和酶分析法。 1.感观分析法感官分析又叫感观检验或感观评价,是通过人体的各种感 官器官(眼、耳、鼻、舌、皮肤)所具有的视觉、听觉、嗅觉、味觉和触觉,结合平时积累的实践经验,并借助一定的器具对食品的色、香、味、形等质量特性和卫生状况做出判定和客观评价的方法。感观检验作为食品检验的重要方法之一,具有简便易行、快速灵敏、不需要特殊器材等特点,特别适用于目前还不能用仪器定量评价的某些食品特性的检验,如水果滋味的检验、食品风味的检验以及烟、酒、茶的气味检验等。 依据所使用的感觉器官的不同,感官检验可分为视觉检验、嗅觉检验、味觉检验、触觉检验和听觉检验五种。 (1)视觉检定是鉴定者利用视觉器官,通过观察食物的外观形态、颜色光泽、透明度等,来评价食品的品质如新鲜程度、又无不良改变以及鉴别果蔬成熟度等的方法。 (2)嗅觉鉴定是通过人的嗅觉器官检验食品的气味,进而评价食品质量(如纯度、新鲜度或劣变程度) (3)味觉鉴定是利用人的味觉器官(主要是舌头),通过品尝食物的滋味和风味,从而鉴别食品品质优劣的方法。味觉检验主要用来评价食品的风味(风味是食品的香气、滋味、入口获得的香气和口感的综合构成),也是识别某些食品是否酸败、发酵的重要手段。 (4)听觉器官听觉鉴定是凭借人体的听觉器官对声音的反应来检验食品品质的方法。听觉鉴定可以用来评判食品的成熟度、新鲜度、冷冻程度及罐头食品的真空度等。 (5)触觉鉴定是通过被检食品用于鉴定者的触觉器官(手、皮肤)所产生的反应来评价食品品质的一种方法。如根据某些食品的脆性、弹性、干湿、软硬、黏度、凉热等情况,可评判食品的品质优劣和是否正常。 感官分析的方法很多,常用的检验方法有差别检验法,标度和类别检验法、分析或描述性检验法等。

《仪器分析》课后作业-质谱分析

1、 某有机化合物(M=140)其质谱图中有m /z 分别为83和57的离子峰,试问下述哪种结构式与上述质谱数据相符合,原因?。 (1) (2) 2、 某一液体的化学式为C 5H 12O ,bp 138℃,质谱数据如下图所示,试推测其结构。 3、在下列化合物中, 何者不能发生麦氏重排? 为什么? A . ;B . ;C .;D .。 4、化合物C O CH 3C 3H 7 在质谱图上出现的主要强峰是( ),为什么? A. m/e 15 B.m/e 29 C.m/e 43 D.m/e 71

5、指出下列的哪种说法是不正确的?( ) A. 分子离子峰的质量数一定符合“氮律”; B .不符合“氮律”的峰,一定不是分子离子峰; C .符合“氮律”的峰, 一定是分子离子峰; D .发生麦氏重排所产生的离子峰也符合“氮律”。 6. 一种酯类(M =116), 质谱图上在m /z 57(100%), m /z 29(27%)及m /z 43(27%)处均有离子峰, 初 步推测其可能结构如下, 试问该化合物结构为( )?为什么?请写出分析过程。 (A) (CH 3)2CHCOOC 2H 5 (B) CH 3CH 2COOCH 2CH 2CH 3 (C) CH 3(CH 2)3COOCH 3 (D) CH 3COO(CH 2)3CH 3 7质谱方程式: ;由质谱方程式可知:在固定狭缝位置,固定加速电压的质谱仪中,当进行磁场扫描时,随着磁场强度H 的增加,质核比 z m (大还是小)的先通过,在电压扫描时,随着电压V 的增大, z m (大还是小)的先通过。 8、某有机分子的IR 谱在3030,2930/2850,750,700,550cm -1 处有吸收峰; MS 谱如下所示,经解析,其结构式应为________。为什么? CH 2.Cl A. CH 2.Br B. CH 3Br C. CH 3Br D. CH 3Br E. 170 65 91 172 51 m/z

食品仪器分析技术电子版练习题

项目一思考与练习教材P12 一、填空题 1. 单色光是指具有单一_______ 的光。 2. 红外光区、紫外光区、可见光区3 个电磁波谱区,能量最小的是_______,频率最 小的是_______,波长最短的是_______。 3. 某溶液选择性地吸收了可见光区某段波长的光,则该溶液呈现_______ 颜色。 4. 朗伯定律说明在一定条件下,光的吸收与_______ 成正比;比尔定律说明在一定条 件下,光的吸收与_______ 成正比,二者合为一体称为朗伯- 比尔定律,其数学表达式为_______。 5. 摩尔吸光系数的单位是_______,它表示物质的浓度为_______、液层厚度为 _______ 时在一定波长下溶液的吸光度,常用符号_______ 表示。因此光的吸收定律的表达式可写为_______。 6. 吸光度和透射比的关系是:_______。 二、选择题 1. 人眼能感觉到的光称为可见光,其波长范围是()。 A.380 ~ 780 nm B.200 ~ 380 nm C.200 ~ 1 000 nm D.100 ~ 380 nm 2. 物质吸收光辐射后产生紫外- 可见吸收光谱,这是由于()。 A. 分子的振动 B. 分子的转动 C. 原子核外层电子的跃迁 D. 分子的振动和转动跃迁 3. 物质的颜色是由于选择性吸收了白光中的某些波长的光所致。硫酸铜溶液的蓝色是 由于它吸收白色光中的()。 A. 蓝色光波 B. 绿色光波 C. 黄色光波 D. 青色光波 4. 吸光物质的摩尔吸光系数与下面因素中有关的是()。 A. 吸收池材料 B. 吸收池厚度 C. 吸光物质浓度 D. 入射光波长 5. 符合吸收定律的溶液稀释时,其最大吸收峰波长位置()。 A. 向长波移动 B. 向短波移动 C. 不移动 D. 不移动,吸收峰值降低 6. 当吸光度A = 0 时,透光度T(%)为()。 A.0 B.10 C.100 D. ∞ . 三、简答题 1. 下列波长的电磁辐射分别在电磁波谱的什么区域? 300nm,520nm,20μm,2m。 2. 某试液显色后用2.0 cm 的吸收池测量时,T = 50.0%。若用1.0 cm 或5.0 cm 吸收池测量,T 及A 各为多少? 3. 某一溶液含47.0 mg/L 铁。吸取此溶液5.0 mL 于100 mL 容量瓶中,以邻二氮菲分光 光度法测定铁,用1.0 cm 吸收池于508 nm 处测得吸光度为0.467,计算质量吸光系数a 和摩尔吸光系数ε。已知M(Fe)= 55.85 g/mol。 学习情境一思考与练习教材P17 一、填空题 1. 分光光度计由_______、_______、_______、_______、_______ 五部分组成。 2. 分光光度计的色散元件常用的有_______、_______ 两种。 3. 吸收池又叫_______,有玻璃材质和石英材质两种,玻璃吸收池用于_______,石 英吸收池用于_______。 4. 根据光路数目,分光光度计分为_______ 和_______ 两类。

仪器分析在食品领域的应用及发展

仪器分析在食品领域的应用及发展仪器分析在食品领域的应用及发展

仪器分析是指借用精密仪器测量物质的某些理化性质以确定其化学组成、含量及化学结构的一类分析方法,尤其适用于微量或痕量组分的测定。目前,在食品分析检测中仪器分析方法有代替传统手工操作方法的趋势,气相色谱仪、高效液相色谱仪、氨基酸自动分析仪、原子吸收分光光度计及可进行光谱扫描的紫外-可见分光光度计、荧光分光光度计等均得到了普遍应用。由于计算机技术的引入,使仪器分析的快速、灵敏、准确等特点更加明显,多种技术的结合与联用使仪器分析应用更加广泛,有力推动了食品仪器分析的发展,使得食品分析处在一个崭新的发展时代。 现代分析仪器的种类十分庞杂,根据仪器的工作原理以及应用范围,可划分为:电化学分析仪器、光学式分析仪器、射线式分析仪器、色谱类分析仪器、离子光学式分析仪器、磁学式分析仪器、热学式分析仪器、电子光学、物性测定仪器及其它专用型和多用型仪器 1 电化学分析法 电化学分析是食品生产控制、理论研究的新型重要工具。由于电极品种仍限于一些低价离子(主要是阳离子),因此在实际应用中还受到一定的限制;另一方面,电极电位值的重现值受实验条件变化影响较大,其标准曲线不及光度法测定的曲线稳定,由于这些因素的影响,目前许多已制成的离子电极,其实际应用的潜力尚未充分发挥。但其中涉及的极谱分析技术已进入了成熟阶段,特别是阳极溶出法和极谱催化波的出现与应用,提高了极谱法的检测能力,使极谱法的检测下限向下延伸了三个数量级左右。在对食品及水样中的氰化物进行单扫描极谱法测定时,产生一个明显的极谱波峰,结果令人满意。另外电势溶出法特别适合于分析痕量金属和混合金属,能方便地测定酱油、醋等中砷的含量,且无需消化和预处理。同时表面活性剂的加入,更能显著提高分析的灵敏度、选择性和重现性,甚至还具有改善极谱波形和消除干扰等作用。 2 光谱分析法 光谱分析法法是食品分析中应用最广最多的方法之一,其中涉及可见、紫外、原子吸收等分光光度技术。 2.1紫外-可见分光光度法

食品仪器分析教学知识点

食品仪器分析 1、色谱分析法导论 色谱法分类、特点; 分类: (1)气相色谱:流动相为气体(称为载气)。按固定相的不同又分为:气固色谱和气液色谱;按色谱柱可分为:填充柱色谱和毛细管柱色谱; (2)液相色谱:流动相为液体(称为淋洗液)。按固定相的不同分为:液固色谱和液液色谱。 (3)其他色谱方法 薄层色谱和纸色谱:用于初步定性的色谱方法 凝胶色谱法:测聚合物分子量分布 超临界色谱: CO2流动相 高效毛细管电泳:九十年代快速发展、特别适合生物试样分析分离的高效分析仪器 特点: (1)分离效率高:复杂混合物,有机同系物、异构体、手性异构体。 (2)灵敏度高:可以检测出μg.g-1(10-6)级甚至ng.g-1(10-9)级的物质量。 (3)分析速度快:一般在几分钟或几十分钟内可以完成一个试样的分析。 (4)应用范围广: 气相色谱:沸点低于400℃、结构稳定的各种有机或无机试样的分析。 液相色谱:高沸点、热不稳定、生物试样的分离分析。 色谱曲线图及有关术语; (一)组分分离 当流动相中样品混合物经过固定相时,就会与固定相发生作用,由于各组分在性质和结构上的差异,与固定相相互作用的类型、强弱也有差异,因此在同一推动力的作用下,不同组分在固定相滞留时间长短不同,从而按先后不同的次序从固定相中流出。 (二)色谱流出曲线和色谱峰 由检测器输出的信号强度对时间作图,所得曲线称为色谱流出曲线。曲线上突起部分就是色谱峰。 色谱流出曲线和色谱峰 基线:在实验操作条件下,色谱柱后没有样品组分流出时的流出曲线称为基线,稳定的基线应该是一条水平直线。 峰高:色谱峰顶点与基线之间的垂直距离,以(h)表示。 (三)保留值 1.死时间t M 不被固定相吸附或溶解的物质进入色谱柱时,从进样到出现峰极大值所需的时间称为死时间,它正比于色谱柱的空隙体积,如下图。 2. 保留时间t R 试样从进样到柱后出现峰极大点时所经过的时间,称为保留时间,如下图。 组分在色谱柱中的保留时间t R包含组分通过柱子的时间和组分在固定相中滞留的时间,所以t R实际上是组分在固定相中保留的总时间。

相关主题
文本预览
相关文档 最新文档