当前位置:文档之家› 解析几何解题方法

解析几何解题方法

解析几何解题方法
解析几何解题方法

解析几何常规题型及解题方法探究

熊致韩

A:常规题型方面

(1)中点弦问题

具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为(,)x y 11,(,)x y 22,代入方程,然后两方程相减,再应用中点关系及斜率公式,消去四个参数。

典型例题:给定双曲线x y 2

2

2

1-=。过A (2,1)的直线与双曲线交于两点P 1 及P 2,求线段P 1P 2的中点P 的轨迹方程。

分析:设P x y 111(,),P x y 222(,)代入方程得x y 1

2

1221-=,x y 22

22

2

1-=。 两式相减得 ()()()()x x x x y y y y 121212121

2

0+--

+-=。 又设中点P (x,y ),将x x x 122+=,y y y 122+=代入,当x x 12≠时得 22201212x y

y y x x -

--=·。 又k y y x x y x =

--=--12121

2

代入得2402

2

x y x y --+=。

当弦P P 12斜率不存在时,其中点P (2,0)的坐标也满足上述方程。 因此所求轨迹方程是2402

2

x y x y --+=

说明:本题要注意思维的严密性,必须单独考虑斜率不存在时的情况。

(2)焦点三角形问题

椭圆或双曲线上一点P ,与两个焦点F 1、F 2构成的三角形问题,常用正、余弦定理搭桥。

典型例题:设P(x,y)为椭圆x a y b

222

21+=上任一点,F c 10(,)-,F c 20(,)为焦点,∠=PF F 12α,∠=PF F 21β。

(1)求证离心率β

αβαsin sin )

sin(++=

e ;

(2)求|||PF PF 13

23

+的最值。

分析:(1)设||PF r 11=,|PF r 22=,由正弦定理得

r r c

122sin sin sin()

αβαβ==+。 得

r r c

122++=+sin sin sin()

αβαβ,

β

αβαsin sin )sin(++==

a c e (2)()()a ex a ex a ae x ++-=+3

3

3

2

2

26。 当x =0时,最小值是23a ;

当a x ±=时,最大值是26323a e a +。

(3)直线与圆锥曲线位置关系问题

直线与圆锥曲线的位置关系的基本方法是解方程组,进而转化为一元二次方程后利用判别式,应特别注意数形结合的办法

典型例题:抛物线方程,直线与轴的交点在抛物线准线的右边。y p x p x y t x 210=+>+=()() (1)求证:直线与抛物线总有两个不同交点

(2)设直线与抛物线的交点为A 、B ,且OA ⊥OB ,求p 关于t 的函数f(t)的表达式。

(1)证明:抛物线的准线为114:x p

=--

由直线x+y=t 与x 轴的交点(t ,0)在准线右边,得 t p

t p >--++>14

440,而 由消去得x y t

y p x y +==+???2

1()

x t p x t p 2220-++-=()() Θ?=+--()()2422t p t p =++>p t p ()440 故直线与抛物线总有两个交点。

(2)解:设点A(x 1,y 1),点B(x 2,y 2) ∴+=+=-x x t p x x t p 121222, ΘOA OB k k OA OB ⊥∴?=-,1 则x x y y 12120+= 又y y t x t x 1212=--()() ∴+=-+=x x y y t t p 1212220() ∴==+p f t t t ()2

2

又,得函数的定义域是p t p f t >++>0440() ()()-?+∞200,, (4)圆锥曲线的有关最值(范围)问题

圆锥曲线中的有关最值(范围)问题,常用代数法和几何法解决。 <1>若命题的条件和结论具有明显的几何意义,一般可用图形性质来解决。

<2>若命题的条件和结论体现明确的函数关系式,则可建立目标函数(通常利用二次函数,三角函数,均值不等式)求最值。

典型例题:已知抛物线y 2=2px(p>0),过M (a,0)且斜率为1的直线L 与抛物线交于不同的两点A 、B ,|AB|≤2p (1)求a 的取值范围; (2)若线段AB 的垂直平分线交x 轴于点N ,求△NAB 面积的最大值。

分析:这是一道直线与圆锥曲线位置关系的问题,对于(1),可以设法得到关于a 的不等式,通过解不等式求出a 的范围,即:“求范围,找不等式”。或者将a 表示为另一个变量的函数,利用求函数的值域求出a 的范围;对于(2)首先要把△NAB 的面积表示为一个变量的函数,然后再求它的最大值,即:“最值问题,函数思想”。 解:(1)直线L 的方程为:y=x-a,将y=x-a 代入抛物线方程y 2=2px,得:设直线L 与抛物线两交点的坐标分别为A

(x 1,y 1),B(x 2,y 2),则???

??=+=+>-+221212)(204)(4a

x x p a x x a p a ,又y 1=x 1-a,y 2=x 2-a,

,

2)2(80,0)2(8,2||0)2(8]4)[(2)()(||21221221221p a p p a p p p AB a p p x x x x y y x x AB ≤+<∴>+≤<+=-+=-+-=∴Θ

解得:

.4

2p a p -≤<-

(2)设AB 的垂直平分线交AB 与点Q ,令其坐标为(x 3,y 3),则由中点坐标公式得:

p a x x x +=+=

2

2

13, .2

)

()(221213p a x a x y y y =-+-=+=

∴|QM|2=(a+p-a)2+(p-0)2=2p 2.又△MNQ 为等腰直角三角形 ∴|QM|=|QN|=P 2

∴S △NAB =

2222

2

||22||||21p p p AB p QN AB =?≤?=?,即△NAB 面积的最大值为P 22。 (6) 存在两点关于直线对称问题

在曲线上两点关于某直线对称问题,可以按如下方式分三步解决:求两点所在的直线,求这两直线的交点,使这交点在圆锥曲线形内。(当然也可以利用韦达定理并结合判别式来解决)

典型例题:已知椭圆C 的方程x y 22

43

1+=,试确定m 的取值范围,使得对于直线y x m =+4,椭圆C 上有不同两点关于直线对称。

分析:椭圆上两点(,)x y 11,(,)x y 22,代入方程,相减得31212()()x x x x +-+

412()y y +()y y 120-=。

又x x x =

+122,y y y =+122

,k y y x x =--=-1

2121

4,代入得y x =3。 又由y x

y x m ==+???

34解得交点(,)--m m 3。

交点在椭圆内,则有()()-+-

1,得-<<21313213

13m 。 B:解题的技巧方面

在教学中,学生普遍觉得解析几何问题的计算量较大。事实上,如果我们能够充分利用几何图形、韦达定理、曲

线系方程,以及运用“设而不求”的策略,往往能够减少计算量。下面举例说明: (1)充分利用几何图形

解析几何的研究对象就是几何图形及其性质,所以在处理解析几何问题时,除了运用代数方程外,充分挖掘几何条件,并结合平面几何知识,这往往能减少计算量。

典型例题:例1.如图,圆O 1与圆O 2的半径都是1,O 1O 2=4,过动点P 分别作圆O 1、圆O 2的切线PM 、PN (M 、N 分别为切点),

使得PM =

,试建立适当的坐标系,并求动点

P 的轨迹方程.

思路分析:本题是解析几何中求轨迹方程问题,由题意建立坐标系,写出相关点的坐标,由几何关系式:PM=PN 2,即 PM

=2PN2

,结合图形由勾股定理转化为:

)1(212

221-=-PO PO ,设P(x ,y ),由距离公式写出代数关系式,化简整理得出所求轨迹方程

解:以O 1O 2的中点O 为原点,O 1O 2所在直线为x 轴,建立如图所示平面直角坐标系,则O 1(-2,0),O 2(2,0),由已知:PM=PN 2,即PM2

=2PN2

,因为两圆的半径都为1,所以有:)1(212

221-=-PO PO ,设P (x ,y )

则(x +2)2+y 2-1=2[(x -2)2+y 2-1], 即33)6(2

2=+-y x

综上所述,所求轨迹方程为:33)6(2

2

=+-y x (或03122

2

=+-+x y x ).

二. 充分利用韦达定理及“设而不求”的策略

我们经常设出弦的端点坐标而不求它,而是结合韦达定理求解,这种方法在有关斜率、中点等问题中常常用到。

典型例题:已知中心在原点O ,焦点在y 轴上的椭圆与直线y x =+1相交于P 、Q 两点,且OP OQ ⊥,

||PQ =10

2

,求此椭圆方程。

解:设椭圆方程为ax by a b 2

2

10+=>>(),直线y x =+1与椭圆相交于P ()x y 11,、Q x y ()22,两点。

由方程组y x ax by =++=???

1

122

消去y 后得

()a b x bx b x x b a b x x b a b

+++-=∴+=-+=

-+21212210

21,

由k k OP OQ ?=-1,得y y x x 1212=- (1) 又P 、Q 在直线y x =+1上,

y x y x y y x x x x x x 1122121212121213111

=+=+??

?∴=++=+++,

,()()

()()()

把(1)代入,得2101212x x x x +++=(), 即

21210()b a b b

a b

-+-++=

化简后,得

a b +=2 (4) 由||PQ =

102,得()()x x y y 122122

52

-+-= ∴-=

+-=+--+=()()()()x x x x x x b a b b a b 1221221225445

4

24154

,,

把(2)代入,得48302b b -+=,解得b =

12或b =3

2

代入(4)后,解得a =

32或a =1

2 由a b >>0,得a b ==321

2

,。

∴所求椭圆方程为322

122x y += 说明:此题充分利用了韦达定理及“设而不求”的策略,简化了计算。

三. 充分利用曲线系方程

利用曲线系方程可以避免求曲线的交点,因此也可以减少计算。

典型例题:求经过两已知圆C x y x y 12

2

420:+-+=和C x y y 22

2

24:+--=0的交点,且圆心在直线l :

2410x y +-=上的圆的方程。

解:设所求圆的方程为:

x y x y x y y 222242240+-+++--=λ()

即()()()11421402

2

+++-+--=λλλλx y x y ,

其圆心为C (

211

1

+-+λλλ,

) 又C 在直线l 上,∴22141110?++?-+-=λλλ,解得λ=1

3

,代入所设圆的方程得x y x y 22310+-+-=为所

求。

说明:此题因利用曲线系方程而避免求曲线的交点,故简化了计算。 四、充分利用参数方法

参数法解题的关键是恰到好处地利用或引进参数,沟通已知和未知之间的内在联系,利用参数提供的信息,顺利地解答问题。

例3.已知直线(a-2)y=(3a-1)x-1 (1)求证无论a 为何值,直线总过第一象限.(2)为使这直线不过第二象限,求a 的范围.

解:(1)将方程整理得为a(3x-y)+(-x+2y-1)=O

对任意实数a ,所给直线恒过直线3x-y=O 与x-2y+1=0的交点(51,5

3), ∴直线系恒过第一象限内的定点(

51,5

3);

(2)当a=2时,直线为x=

51不过第二象限;当a≠2时,直线方程化为:y=213--a a x-2

1-a ,不过第二象限的充要条件为???????≤-->--0210213a a a 或 ???????≥-<--02

102

1

3a a a ?a>2,总之,a≥2时直线不过第二象限.

五、线段长的几种简便计算方法

① 充分利用现成结果,减少运算过程

一般地,求直线与圆锥曲线相交的弦AB 长的方法是:把直线方程y kx b =+代入圆锥曲线方程中,得到型如

ax bx c 20++=的方程,方程的两根设为x A ,x B ,判别式为△,则||||AB k x x A B =+-=12·|

|12a k △

·+,若直接用结论,能减少配方、开方等运算过程。

例 求直线x y -+=10被椭圆x y 2

2

416+=所截得的线段AB 的长。

② 结合图形的特殊位置关系,减少运算

在求过圆锥曲线焦点的弦长时,由于圆锥曲线的定义都涉及焦点,结合图形运用圆锥曲线的定义,可回避复杂运算。

例 F 1、F 2是椭圆

x y 22

259

1+=的两个焦点,AB 是经过F 1的弦,若||AB =8,求值||||22B F A F + ③ 利用圆锥曲线的定义,把到焦点的距离转化为到准线的距离

例 点A (3,2)为定点,点F 是抛物线y x 24=的焦点,点P 在抛物线y 2

=4x 上移动,若||||PA PF +取得最小值,求点P 的坐标。

六.待定系数法的思想:根据给定条件求直线和圆方程时,待定系数法和代点法是常用的方法.

例4.条件:(1)截y 轴弦长为2.(2)被x 轴分成两段圆弧,其弧长之比为3:1.在满足(1)(2)的所有圆中,求圆心到直线02:=-y x l 距离最小时圆的方程.

解:设所求圆的方程为:2

2

2

)()(γ=-+-b y a x ,则由截y 轴的弦长为2得12

2+=a γ

由被x 轴分成两段圆弦,其弧长之比为22

)2(21:3b =?γ

,∴1222=-a b

圆心)(b a 、到直线02=-y x 的距离5

2b a d -=

即12)(2444)2(52

2

2

2

2

2

2

2

2

2

=-=+-+≥-+=-=a b b a b a ab b a b a d

2b a = 1=a 1-=a

当且仅当 即 或 时,取“=” 122

2

=-a b 1=b 1-=b

∴5

5

min =

a , 此时22==

b γ 所以,所求圆的方程为2)1()1(2

2

=-+-y x 或2)1()1(2

2

=+++y x

七.函数、方程、不等式思想

函数与方程思想是最重要的一种数学思想,高考中所占比重较大,综合知识多、题型多、应用技巧多.函数思想即将所研究的问题借助建立函数关系式或构造中间函数,结合初等函数的图象与性质,加以分析、转化、解决有关求值、

解方程以及讨论参数的取值范围等问题;方程思想即将问题中的数量关系运用数学语言转化为方程模型加以解决.

例5. 两条平行直线分别过点P(-2,-2),Q(1,3),它们之间的距离为d ,如果这两条直线各自绕点P 、Q 旋转并互相保持平行.

(1)求d 的变化范围.

(2)用d 表示这两条直线的斜率.

(3)当d 取最大值时,求这两条直线的方程. 解 当过P 、Q 的两条直线的斜率为O 时, d=5;当这两直线斜率不存在,即与x 轴垂直时, d=3. 设l 1:y+2=k(x+2);l 2:y-3=k(x-1)

(1)由平行线间的距离公式得d=

1

|53|2

+-k k

即(d 2

-9)k 2

+30k+d 2

-25=O ……① 由△=900-4(d 2

-9)(d 2

-25)≥O,得O

(2)由①得k=9

341522

--±-d d d (d≠3)

(3)当d=34时,k=-5

3 ∴l 1:y+2=-53(x+2), l 2:y-3=-5

3

(x-1)。

(完整)高中数学解析几何解题方法

高考专题:解析几何常规题型及方法 A:常规题型方面 (1)中点弦问题 具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为(,)x y 11,(,)x y 22,代入方程,然后两方程相减,再应用中点关系及斜率公式,消去四个参数。 典型例题 给定双曲线x y 2 2 2 1-=。过A (2,1)的直线与双曲线交于两点P 1 及P 2,求线段P 1P 2的中点P 的轨迹方程。 分析:设P x y 111(,),P x y 222(,)代入方程得x y 1 2 1221-=,x y 22 22 2 1-=。 两式相减得 ()()()()x x x x y y y y 121212121 2 0+-- +-=。 又设中点P (x,y ),将x x x 122+=,y y y 122+=代入,当x x 12≠时得 22201212x y y y x x - --=·。 又k y y x x y x = --=--12121 2 , 代入得2402 2 x y x y --+=。 当弦P P 12斜率不存在时,其中点P (2,0)的坐标也满足上述方程。 因此所求轨迹方程是2402 2 x y x y --+= 说明:本题要注意思维的严密性,必须单独考虑斜率不存在时的情况。 (2)焦点三角形问题 椭圆或双曲线上一点P ,与两个焦点F 1、F 2构成的三角形问题,常用正、余弦定理搭桥。 典型例题 设P(x,y)为椭圆x a y b 222 21+=上任一点,F c 10(,)-,F c 20(,)为焦点,∠=PF F 12α,∠=PF F 21β。 (1)求证离心率β αβαsin sin ) sin(++= e ; (2)求|||PF PF 13 23 +的最值。

高考数学解析几何专题练习及答案解析版

高考数学解析几何专题练习解析版82页 1.一个顶点的坐标()2,0 ,焦距的一半为3的椭圆的标准方程是( ) A. 19422=+y x B. 14922=+y x C. 113422=+y x D. 14132 2=+y x 2.已知双曲线的方程为22 221(0,0)x y a b a b -=>>,过左焦点F 1的直线交 双曲线的右支于点P ,且y 轴平分线段F 1P ,则双曲线的离心率是( ) A . 3 B .32+ C . 31+ D . 32 3.已知过抛物线y 2 =2px (p>0)的焦点F 的直线x -my+m=0与抛物线交于A ,B 两点, 且△OAB (O 为坐标原点)的面积为,则m 6+ m 4的值为( ) A .1 B . 2 C .3 D .4 4.若直线经过(0,1),(3,4)A B 两点,则直线AB 的倾斜角为 A .30o B . 45o C .60o D .120o 5.已知曲线C 的极坐标方程ρ=2θ2cos ,给定两点P(0,π/2),Q (-2,π),则有 ( ) (A)P 在曲线C 上,Q 不在曲线C 上 (B)P 、Q 都不在曲线C 上 (C)P 不在曲线C 上,Q 在曲线C 上 (D)P 、Q 都在曲线C 上 6.点M 的直角坐标为)1,3(--化为极坐标为( ) A .)65, 2(π B .)6 ,2(π C .)611,2(π D .)67,2(π 7.曲线的参数方程为???-=+=1 232 2t y t x (t 是参数),则曲线是( ) A 、线段 B 、直线 C 、圆 D 、射线 8.点(2,1)到直线3x-4y+2=0的距离是( ) A . 54 B .4 5 C . 254 D .4 25 9. 圆0642 2 =+-+y x y x 的圆心坐标和半径分别为( ) A.)3,2(-、13 B.)3,2(-、13 C.)3,2(--、13 D.)3,2(-、13 10.椭圆 122 2 2=+b y x 的焦点为21,F F ,两条准线与x 轴的交点分别为M 、N ,若212F F MN ≤,则该椭圆离心率取得最小值时的椭圆方程为 ( )

高中数学解析几何解题方法

解析几何常规题型及方法 核心考点 1、准确理解基本概念(如直线的倾斜角、斜率、距离、截距等) 2、熟练掌握基本公式(如两点间距离公式、点到直线的距离公式、斜率公式、定比分点的坐标公式、到角公式、夹角公式等) 3、熟练掌握求直线方程的方法(如根据条件灵活选用各种形式、讨论斜率存在和不存在的各种情况、截距是否为0等等) 4、在解决直线与圆的位置关系问题中,要善于运用圆的几何性质以减少运算 5、了解线性规划的意义及简单应用 6、熟悉圆锥曲线中基本量的计算 7、掌握与圆锥曲线有关的轨迹方程的求解方法(如:定义法、直接法、相关点法、参数法、交轨法、几何法、待定系数法等) 8、掌握直线与圆锥曲线的位置关系的常见判定方法,能应用直线与圆锥曲线的位置关系解决一些常见问题 常规题型及解题的技巧方法 A:常规题型方面 (1)中点弦问题 具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为(,)x y 11,(,)x y 22,代入方程,然后两方程相减,再应用中点关系及斜率公式,消去四个参数。 典型例题 给定双曲线x y 2 2 2 1-=。过A (2,1)的直线与双曲线交于两点P 1 及P 2,求线段P 1P 2的中点P 的轨迹方程。 分析:设P x y 111(,),P x y 222(,)代入方程得x y 1 2 1221- =,x y 22 22 2 1-=。 两式相减得 ()()()()x x x x y y y y 121212121 2 0+-- +-=。 又设中点P (x,y ),将x x x 122+=,y y y 122+=代入,当x x 12≠时得 22201212x y y y x x - --=·。 又k y y x x y x = --=--12121 2 , 代入得2402 2 x y x y --+=。 当弦P P 12斜率不存在时,其中点P (2,0)的坐标也满足上述方程。

高中解析几何秒杀公式及解题套路

高中解析几何秒杀公式及解题套路 高中解析几何秒杀公式是什幺,解析几何解题套路有哪些,怎幺能 用一套完整的思路做所有类似的题目?把所有类型题都搞定?下面是高中解 析几何秒杀公式及解题套路,希望你看完能上岸。 1高考解析几何的统一解题套路以高考解析几何为例1、问题都是以平 面上的点、直线、曲线如圆、椭圆、抛物线、双曲线这三大类几何元素为基础构成的图形的问题2、演绎规则就是代数的演绎规则,或者说就是列方 程、解方程的规则。当然,能用代数规则处理的问题必须是代数形式的,比如,平面上的点、直线、曲线构成的图形能用代数方法来处理,前提是构成 这些图形的点、直线、曲线必须是代数形式的。有了以上两点认识,我们可 以毫不犹豫地下这幺一个结论,那就是解决高考解析几何问题无外乎做两项 工作1、几何问题代数化。2、用代数规则对代数化后的问题进行处理。至此,我们可以发掘出一套规整的高考解析几何的统一解题套路步骤1:把题目中 的点、直线、曲线这三大类基础几何元素用代数形式表示出来(一化)步骤 2:把题目中的点与直线、曲线的从属关系用代数形式表示出来(二代)说明:这里的“从属关系”指的是什幺?实际上,在解析几何中,“点”是比直线、曲线 更基础的几何元素——任何几何图形,包括直线和曲线,都被视为是由一个 个的“点”构成的(用数学语言来表达:任何几何图形,包括直线和曲线,都 是由点构成的集合)。但为了使我们的解题套路各步骤之间条例更分明。 我们把点、直线、曲线视为构成任何其它几何图形的基础。所以,这里的“从属关系”是点与直线、曲线的属于关系问题——如果某个点在某条直线或 曲线上,那幺这个点的坐标就可代入这条直线或曲线的方程。步骤3:图形

数学几何解题技巧

初中数学教学中几何解题思路分析 【摘要】平面几何在初中数学中一直占据着很重要的位置。而学生在对几何知识进行学习和掌握的过程中,最重要的一个部分就是能够应用到实践中进行解题。正像美国一位著名的数学家曾经所说过的那样:“数学这门学科,真正的组成部分就是问题和解题,在问题与解题中,解题就是数学的心脏所在。”学生在学习的过程中是否会解题,能否对一定的解题技巧与方法进行掌握对学生学习效果有直接的影响。对教师来说,学生对基本的解题能力进行掌握,也是“双基”教学的一个方面。在数学中对基本的解题方法和技巧进行注意,对学生的学习能力的提高无疑有着重要的促进作用,与此同时还能够对学生良好学习习惯的形成有推动作用。 【关键词】初中数学;教学;几何;解题思路; 对初中的几何教学来说,初中几何中的重要部分是解题技巧与规律教学。尤其是在初中几何的后期与复习阶段,通过对学生的几何解题技巧的培养,能够使学生对知识有系统性的掌握,同时能够培养其对知识进行灵活应用的能力。当然,处了解题技巧与规律的培养,还应该注意对学生思维能力的培养。只有思维能力得到提高,才能更好地掌握解题技巧与规律。下面我们通过具体的实例进行详细分析初中数学几何题的解题思路, 一、初中数学几何的解题技巧 1、对常见的题型与解题方法进行归纳总结 初中的几何题中,其实常见的题型并不多,所以这对经常见的几何题型与解题方法进行归纳与总结,是初中几何解题一个和实用的解题技巧。初中几何,证明题是最常见的,而证明题中,又以线段或角的一些关系的证明最为常见。对线段的关系的证明通常包括相等及其和差关系等的证明。在这些中,相等关系的证明是学生应该进行的基本掌握,对线段相等关系的证明,在思路与方法上常用的包括“三角形全等”、“比例线段”以及“等角对等边”和对中间量的过渡进行选取等思路。在这些方法中,“三角形全等”是最常用的,也是应该掌握的基本解题方法。对线段不等关系则一般常用“线段公理”,而对线段的和差及其它(如倍、分)关系,在解题过程中要注意使用截长、补短等技巧。对常见技巧进行掌握,能有效提高学生的解题效率。 2、注意对辅助线进行添加和使用 在对初中几何进行解题的过程中,除了要对常用的解题方法与规律进行掌握外,还要对辅助线的添加与使用加以关注。在初中几何题中,当直接解题出现障碍使,添加辅助线是常见的解题技巧,往往会让人产生一种“柳暗花明又一村”的感觉。对常见技巧进行掌握,能有效提高学生的解题效率。下面我们通过一道例题详细进行分析几何证明题的解题方法及技巧: 如下图所示,已知:在ABC ?中,?=∠90C ,BC AC =,DB AD =,BF AE =,求证:DF DE =,

(完整版)解析几何大题的解题技巧

目录 解析几何大题的解题技巧(只包括椭圆和抛物线) (1) 一、设点或直线 (1) 二、转化条件 (1) (1)求弦长 (2) (2)求面积 (2) (3)分式取值判断 (2) (4)点差法的使用 (4) 四、能力要求 (6) 五、补充知识 (6) 关于直线 (6) 关于椭圆: (7) 例题 (7) 解析几何大题的解题技巧(只包括椭圆和抛物线)——————————————————一条分割线——————————————— 一、设点或直线 做题一般都需要设点的坐标或直线方程,其中点或直线的设法有很多种。直线与曲线的两个交点一般可以设为等。对于椭圆上的唯一的动点,还可以设为。在 抛物线上的点,也可以设为。◎还要注意的是,很多点的坐标都是设而不求 的。对于一条直线,如果过定点并且不与y轴平行,可以设点斜式,如果不与x轴平行,可以设(m是倾斜角的余切,即斜率的倒数,下同)。如果只是过定点而且需要求与长度或面积有关的式子,可以设参数方程,其中α是直线的倾斜角。一般题目中涉及到唯一动直线时才可以设直线的参数方程。如果直线不过定点,干脆在设直线时直接设为y=kx+m或x=my+n。(注意:y=kx+m不表示平行于y轴的直线,x=my+n不表示平行于x轴的直线)由于抛物线的表达式中不含x的二次 项,所以直线设为或x=my+n联立起来更方便。 二、转化条件 有的时候题目给的条件是不能直接用或直接用起来不方便的,这时候就需要将这些条件转化一下。对于一道题来说这是至关重要的一步,如果转化得巧,可以极大地降低运算量。下面列出了一些转化工具所能转化的条件。向量:平行、锐角或点在圆外(向量积大于0)、直角或点在圆上、钝角或点在圆内(向量积小于0),平行四边形斜率:平行(斜率差为0)、垂 直(斜率积为-1)、对称(两直线关于坐标轴对称则斜率和为0,关于y=±x对称则斜率积为1

《对高中解析几何的教学感悟》

对高中解析几何的教学感悟 内容提要:从历史角度看,解析几何的创立,引入了一系列新的数学概念,特别是将变量引入数学,使数学进入了一个新的发展时期,这就是变量数学的时期。解析几何在数学发展中起了推动作用。在现代数学教学中,解析几何是学习高等数学的基础, 另一部分则是数学基础课的内容。 高中数学中,解析几何巧妙地把代数与几何结合起来,数学成为双面的工具。一方面,几何概念可以用代数表示,几何目的可通过代数运算来达到。另一方面,给代数概念以几何解释,可以直观地掌握这些概念的意义。也就是说,解析几何是用数形结合的思想将抽象的数学语言与直观的图形结合起来。本人当中,我根据6年来的高中数学教学经验结合实际问题谈谈我对解析几何的教学的一点感悟。 关键词: 代数 几何 数形结合 思想 感悟 一、重视“数形结合”的思想 数形结合的思想是解决解析几何问题的一种重要的数学思想方法,其实质是将抽象的数学语言与直观的图形结合起来,即将代数问题几何化,运用图形的几何性质来解决;或将几何问题代数化,运用代数特征进行运算解决,其方法是以形助数,以数助形,数形渗透,相互作用.其目的是将复杂的问题简单化,隐蔽的问题明朗化,抽象的问题直观化,以便迅速、简捷、合理地解决问题. 例1如图,已知(4,0)A 、(0,4)B ,从点(2,0)P 射出的光线经直线AB 反向后再射到直线OB 上,最后经直线OB 反射后又回到P 点,则光线所经过的最小路程是 A . B .6 C . D . [解析]设点P 关于直线AB 的对称点为)2,4(D ,关于y 轴 的对称、)0,2(-C ,则光线所经过的路程PMN 的长 =≥++=++=CD NC MN DM NP MN PM 【归纳小结】本例是运用数形结合解题的典范,关键是灵活利用平面几何知识与对称的性质实现转化,一般 地,在已知直线上求一点到两个定点的距离之和的最小 值,需利用对称将两条折线由同侧化为异侧,在已知直 线上求一点到两个定点的距离之差的最大值,需利用对 称,将两条折线由异侧化为同侧,从而实现转化。 关键点1:怎样将几何问题转化为代数问题?在教学中尽量让学生了解几何对象的本质特征,能够用代数形式将几何问题准确表示出来。有意识的对常见几何对象根据几何特征进行代数化训练。 关键点2:提高“代数结论”向“几何结论”转化的意识和能力。这样也就是通过代数问题的解决使几何题目得以解决。在平时的教学中将前两个关键点融会贯通,才能使学生理解解析几何的思维方法。 二、用数学思想方法指导平时的教学 在平时教学中指导学生在解决问题时运用数学思维方法,努力提高他们运用数学思维方法的意识。解题时注意分析题目,在分析时注意数学思维方法的运用。解题过程中要注意提炼数学思维方法解决问题的思维过程。解题思想的探求即是运用数学思维方法解决问题的过程。 例2抛物线D 以双曲线188:22=-x y C 的焦点)0(),,0(>c c F 为焦点.

初二数学几何解题技巧

初二数学几何解题技巧 【知识梳理】 1、几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。 2、掌握分析、证明几何问题的常用方法: (1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决; (2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止; (3)两头凑法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。 3、掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。

【专题一】证明线段相等或角相等 两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。很多其它问题最后都可化归为此类问题来证。证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到。 【专题二】证明直线平行或垂直 在两条直线的位置关系中,平行与垂直是两种特殊的位置。证两直线平行,可用同位角、内错角或同旁内角的关系来证,也可通过边对应成比例、三角形中位线定理证明。证两条直线垂直,可转化为证一个角等于90°,或利用两个锐角互余,或等腰三角形“三线合一”来证。 【专题三】证明线段和的问题 (一)在较长线段上截取一线段等一较短线段,证明其余部分等于另一较短线段。(截长法) (二)延长一较短线段,使延长部分等于另一较短线段,则两较短线段成为一条线段,证明该线段等于较长线段。(补短法)

解析几何种技巧(终审稿)

解析几何种技巧 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

本文节选自《试题调研》数学第2辑的“热点关注”,敬请品读(版权所有,转载请注明出处)。 陕西胡波 从近几年全国各省市新课标高考试题来看,解析几何主要考查直线与圆、直线与圆锥曲线的基本知识等,在选择题、填空题、解答题中都有出现,一般试卷出现3小题1大题.综合类试题多涉及函数、导数、方程、不等式、平面向量、平面几何等知识,所考查的知识点较多,试题难度中等偏上.试题往往会出现计算量较大的情况,怎样在解题中巧妙地降低计算量、减少运算错误是我们广大考生在学习中要体会和感悟的.下面通过一些典型例题的解析,说明解析几何中的解题技巧,以供读者参考学习. 1.活用定义返璞归真 圆锥曲线的定义是圆锥曲线的本质属性.许多性质和结论都是在其定义的基础上展开的,在分析求解时若考虑回归定义,可以使许多问题化繁为简. 2.活用平几 峰回路转 解决解析几何问题时,往往需要求解涉及含多个参数的两个以上方程组成的方程组,运算较为复杂,这对于运算能力稍差的同学,很难准

确迅速求解.若能联想题目所涉及图形的几何性质,并利用相关性质来解决问题,常常可以峰回路转,达到巧妙解题的效果. 【点评】本题重点考查运算能力,这对考生提出了较高的要求.通过对比上述通法与巧法,读者很容易看出:运用平面图形的有关几何性质来解决一些解析几何问题,可以有效地避免复杂的代数运算,达到简捷解题的目的. 3.巧设坐标?水到渠成 【点评】本题如果按常规设点Q(x,y),必将得到一个二元二次方程组,这将加大计算量,使问题复杂化. 4.数形结合一目了然】 … 5.引进参数柳暗花明 … 6.设而不求欲擒故纵 … 7.整体代换绝处逢生 … 8.引入向量轻车熟路 … 更多有关解析几何的解题技巧详见《试题调研》第2辑—三角函数、平面向量、解析几何。本辑定会让你识得了三角、解得了几何、破得了向量,真正做到好题先体验,笑在百花前!

高中数学解析几何解题方法~

高考专题:解析几何常规题型及方法 高考核心考点 1、准确理解基本概念(如直线的倾斜角、斜率、距离、截距等) 2、熟练掌握基本公式(如两点间距离公式、点到直线的距离公式、斜率公式、定比分点的坐标公式、到角公式、夹角公式等) 3、熟练掌握求直线方程的方法(如根据条件灵活选用各种形式、讨论斜率存在和不存在的各种情况、截距是否为0等等) 4、在解决直线与圆的位置关系问题中,要善于运用圆的几何性质以减少运算 5、了解线性规划的意义及简单应用 6、熟悉圆锥曲线中基本量的计算 7、掌握与圆锥曲线有关的轨迹方程的求解方法(如:定义法、直接法、相关点法、参数法、交轨法、几何法、待定系数法等) 8、掌握直线与圆锥曲线的位置关系的常见判定方法,能应用直线与圆锥曲线的位置关系解决一些常见问题 常规题型及解题的技巧方法 A:常规题型方面 (1)中点弦问题 具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为(,)x y 11,(,)x y 22,代入方程,然后两方程相减,再应用中点关系及斜率公式,消去四个参数。 典型例题 给定双曲线x y 2 2 2 1-=。过A (2,1)的直线与双曲线交于两点P 1 及P 2,求线段P 1P 2的中点P 的轨迹方程。 分析:设P x y 111(,),P x y 222(,)代入方程得x y 1 212 2 1-=,x y 2 222 2 1- =。 两式相减得 ()()()()x x x x y y y y 1212121212 0+-- +-=。 又设中点P (x,y ),将x x x 122+=,y y y 122+=代入,当x x 12≠时得 22201212 x y y y x x - --=· 。 又k y y x x y x = --= --1212 12 , 代入得2402 2 x y x y --+=。 当弦P P 12斜率不存在时,其中点P (2,0)的坐标也满足上述方程。 因此所求轨迹方程是2402 2 x y x y --+= 说明:本题要注意思维的严密性,必须单独考虑斜率不存在时的情况。

高中数学解析几何解题方法总结

高中数学解析几何解题方法总结 老师在讲题的时候,经常如未卜先知一般,就知道已知条件里经常存在着一个自己完全不知道的信息;或者分析着分析着,就突然来句:“这道题可以用反证法/数学归纳法……”解法是很精妙,但换你来做,你就是没有意识到要采用这样的方法。我也曾经问过老师,为什么你们当时会想到用这种方法?得到的也往往是“不知道”、“题目做多了就明白了”。 高中数学解析几何解题方法我们先来分析一下解析几何高考的命题趋势: (1)题型稳定:近几年来高考解析几何试题一直稳定在三(或二)个选择题,一个填空题,一个解答题上,占总分值的20%左右。 (2)整体平衡,重点突出:其中对直线、圆、圆锥曲线知识的考查几乎没有遗漏,通过对知识的重新组合,考查时既留意全面,更留意突出重点,对支撑数学科知识体系的主干知识,考查时保证较高的比例并保持必要深度。近几年新教材高考对解析几何内容的考查主要集中在如下几个类型: ① 求曲线方程(类型确定、类型未定); ②直线与圆锥曲线的交点题目(含切线题目);

③与曲线有关的最(极)值题目; ④与曲线有关的几何证实(对称性或求对称曲线、平行、垂直); ⑤探求曲线方程中几何量及参数间的数目特征; 高中数学解析几何解题方法: (3)能力立意,渗透数学思想:一些虽是常见的基本题型,但假如借助于数形结合的思想,就能快速正确的得到答案。 (4)题型新奇,位置不定:近几年解析几何试题的难度有所下降,选择题、填空题均属易中等题,且解答题未必处于压轴题的位置,计算量减少,思考量增大。加大与相关知识的联系(如向量、函数、方程、不等式等),凸现教材中研究性学习的能力要求。加大探索性题型的分量。 在近年高考中,对直线与圆内容的考查主要分两部分: (1)以选择题题型考查本章的基本概念和性质,此类题一般难度不大,但每年必考,考查内容主要有以下几类: ①与本章概念(倾斜角、斜率、夹角、间隔、平行与垂直、线性规划等)有关的题目; ②对痴光目(包括关于点对称,关于直线对称)要熟记解法; ③与圆的位置有关的题目,其常规方法是研究圆心到直线的间隔. 以及其他“标准件”类型的基础题。 (2)以解答题考查直线与圆锥曲线的位置关系,此类题综合性比较强,难度也较大。 预计在今后一、二年内,高考对本章的考查会保持相对稳定,即在题型、题量、难度、重点考查内容等方面不会有太大的变化。

高考解析几何压轴题精选(含答案)

1. 设抛物线22(0)y px p =>的焦点为F ,点(0,2)A .若线段FA 的中点B 在抛物线上, 则B 到该抛物线准线的距离为_____________。(3分) 2 .已知m >1,直线2:02m l x my --=,椭圆2 22:1x C y m +=,1,2F F 分别为椭圆C 的左、 右焦点. (Ⅰ)当直线l 过右焦点2F 时,求直线l 的方程;(Ⅱ)设直线l 与椭圆C 交于,A B 两点,12AF F V ,12BF F V 的重心分别为 ,G H .若原点O 在以线段GH 为直径的圆内,求实数m 的取值范 围.(6分) 3已知以原点O 为中心,) F 为右焦点的双曲线C 的离心率2 e = 。 (I ) 求双曲线C 的标准方程及其渐近线方程; (II ) 如题(20)图,已知过点()11,M x y 的直线111:44l x x y y +=与过点 ()22,N x y (其中2x x ≠)的直 线222:44l x x y y +=的交点E 在双曲线C 上,直线MN 与两条渐近线分别交与G 、H 两点,求OGH ?的面积。(8分)

4.如图,已知椭圆 22 22 1(0)x y a b a b +=>>的离心率为2,以该椭圆上的点和椭圆的左、右 焦点12,F F 为顶点的三角形的周长为1).一等轴双曲线的顶点是该椭圆的焦点,设P 为该双曲线上异于顶点的任一点,直线1PF 和2PF 与椭圆的交点分别为B A 、和C D 、. (Ⅰ)求椭圆和双曲线的标准方程;(Ⅱ)设直线1PF 、 2PF 的斜率分别为1k 、2k ,证明12·1k k =;(Ⅲ)是否存在常数λ,使得 ·A B C D A B C D λ +=恒成立?若存在,求λ的值;若不存在,请说明理由.(7分) 5.在平面直角坐标系xoy 中,如图,已知椭圆15 922=+y x

初中数学代数几何解题技巧

如何用好题目中的条件暗示 有一类题目,我们在解前面几小题时,其解题思路和方法往往对解后面问题起着很好的暗示作用,现以一次函数中出现的两道题目为例予以说明,供同学们在学习过程中参考。 【例1】直线与x轴、y轴分别交于B、A两点,如图1。 图1 (1)求B、A两点的坐标; (2)把△AOB以直线AB为轴翻折,点O落在平面上的点C处,以BC为一边作等边△BCD。求D点的坐标。 解析:(1)容易求得,A(0,1)。 (2)如图2, 图2 ∵,A(0,1), ∴OB=,OA=1。 ∴在Rt△AOB中,容易求得∠OBA=30° ∵把△AOB以直线AB为轴翻折, ∴∠OBC=2∠OBA=60°,BO=BC。 ∴△OBC是等边三角形 以BC为一边作等边△BCD,则D的落点有两种情形,可分别求得D的坐标为(0,0),。 反思:在求得第(1)小题中B、A两点的坐标分别为B(,0),A(0,1),实质上暗示着Rt△AOB中,OA=1,OB=,即暗示着∠OBA=30°,为解第(2)小题做了很好的铺垫。

【例2】直线与x轴、y轴分别交于A、B,以线段AB为直角边在第一象限内作等腰Rt△ABC,∠BAC=90°,且点P(1,a)为坐标系中的一个动点,如图3。 图3 (1)求三解形ABC的面积。 (2)证明不论a取任何实数,三角形BOP的面积是一个常数; (3)要使得△ABC和△ABP的面积相等,求实数a的值。 解析:(1)容易求得:A(,0),B(0,1), ∴。 (2)如图4,连接OP、BP,过点P作PD垂直于y轴,垂足为D,则三角形BOP的面积为,故不论a取任何实数,三角形BOP的面积是一个常数。 图4 (3)如图4,①当点P在第四象限时由第(2)小题中的结果:,和第(3)小题的条件可得: ∴, ∵,

高考专题:解析几何常规题型及方法

高考专题:解析几何常规题型及方法 一、高考风向分析: 高考解析几何试题一般共有3--4题(1--2个选择题, 0--1个填空题, 1个解答题), 共计20多分, 考查的知识点约为20个左右,其命题一般紧扣课本, 突出重点, 全面考查。选择题和填空题考查直线, 圆, 圆锥曲线中的基础知识,大多概念性较强,小巧灵活,思维多于计算;而解答题重点考查圆锥曲线中的重要知识点及其综合运用,重在考察直线与圆锥曲线的位置关系、轨迹方程,以向量为载体,立意新颖,要求学生综合运用所学代数、三角、几何的知识分析问题,解决问题。 二、本章节处理方法建议: 纵观历年全国各省市文、理高考试卷,普遍有一个规律:占解几分值接近一 半的填空、选择题难度不大,中等及偏上的学生能将对应分数收入囊中;而占解几分值一 半偏上的解答题得分很不理想,其原因主要体现在以下几个方面:(1)解析几何是代数与 几何的完美结合,解析几何的问题可以涉及函数、方程、不等式、三角、几何、数列、向 量等知识,形成了轨迹、最值、对称、范围、参系数等多种问题,因而成为高中数学综合 能力要求最高的内容之一(2)解析几何的计算量相对偏大(3)在大家的“拿可拿之分” 的理念下,大题的前三道成了兵家必争之地,而排放位置比较尴尬的第21题或22题(有 时20题)就成了很多人遗忘的角落,加之时间的限制,此题留白的现象比较普遍。 鉴于解几的特点,建议在复习中做好以下几个方面.1.由于高考中解几内容弹性很 大。有容易题,有中难题。因此在复习中基调为狠抓基础。不能因为高考中的解几解答题 较难,就拼命地去搞难题,套新题,这样往往得不偿失;端正心态:不指望将所有的题攻 下,将时间用在巩固基础、对付“跳一跳便可够得到”的常规题上,这样复习,高考时就 能保证首先将选择、填空题拿下,然后对于大题的第一个小问争取得分,第二小题能拿几 分算几分。 三、高考核心考点 1、准确理解基本概念(如直线的倾斜角、斜率、距离、截距等) 2、熟练掌握基本公式(如两点间距离公式、点到直线的距离公式、斜率公式、定比分点的坐标公式、到角公式、夹角公式等) 3、熟练掌握求直线方程的方法(如根据条件灵活选用各种形式、讨论斜率存在和不存在的各种情况、截距是否为0等等) 4、在解决直线与圆的位置关系问题中,要善于运用圆的几何性质以减少运算 5、了解线性规划的意义及简单应用 6、熟悉圆锥曲线中基本量的计算 7、掌握与圆锥曲线有关的轨迹方程的求解方法(如:定义法、直接法、相关点法、参数法、交轨法、几何法、待定系数法等) 8、掌握直线与圆锥曲线的位置关系的常见判定方法,能应用直线与圆锥曲线的位置关系解决一些常见问题 四、常规题型及解题的技巧方法 A:常规题型方面 (1)中点弦问题 具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为(,)x y 11, (,)x y 22,代入方程,然后两方程相减,再应用中点关系及斜率公式,消去四个参数。

高考解析几何压轴题精选(含答案)

专业资料 1. 设抛物线y2 2 px( p 0) 的焦点为F,点 A(0, 2) .若线段FA的中点B在抛物线上, 则 B 到该抛物线准线的距离为_____________ 。(3 分) 2 . 已知m>1,直线l : x my m20 ,椭圆 C : x 2 y21, F1,F2分别为椭圆C的左、 2m2 右焦点 . (Ⅰ)当直线l过右焦点 F2时,求直线l的方程;(Ⅱ)设直线 l 与椭圆 C 交于A, B两点,V AF1F2,V BF1F2的重心分别为G, H .若原点O在以线段GH为直径的圆内,求实数m 的取值范围. (6 分) 3 已知以原点 O为中心,F5,0 为右焦点的双曲线 C 的离心率e 5 。2 (I)求双曲线C的标准方程及其渐近线方程;(I I )如题(20)图,已知过点M x1, y1 的直线 l1 : x1 x 4 y1 y 4 与过点 N x2 , y2(其中 x2x )的直 线 l2 : x2 x 4 y2 y 4 的交点E在 双曲线 C 上,直线MN与两条渐近 线分别交与G、H两点,求OGH 的面积。(8 分)

4. 如图,已知椭圆x2y21(a> b>0) 的离心率为2 ,以该椭圆上的点和椭圆的左、右 a2b22 焦点 F1 , F2为顶点的三角形的周长为4( 2 1) .一等轴双曲线的顶点是该椭圆的焦点,设 P 为该双曲线上异于顶点的任一点,直线PF1和 PF2与椭圆的交点分别为A、B和C、D. (Ⅰ)求椭圆和双曲线的标准方程;(Ⅱ)设直线PF1、 PF2的斜率分别为 k1、 k2,证明 k1·k2 1 ;(Ⅲ)是否存在常数,使得 A B C D A·B C恒D成立?若存在,求的值;若不存在,请说明理由. ( 7 分) 5. 在平面直角坐标系 x2y2 xoy 中,如图,已知椭圆1

初中数学几何证明题解题方法--

初中数学几何证明题解题方法--

————————————————————————————————作者:————————————————————————————————日期:

浅谈初中数学几何证明题解题方法 内容摘要:几何证明题的一般结构由已知条件和求证目标组成。做几何证明题的一般步骤:审题,寻找证明的思路,书写证明过程 关键词:几何证明 条件 结论 .执因索果 执果索因 辅助线 初中学生正处于自觉形象思维向逻辑思维的过度阶段,几何证明,是学生逻辑思维的起步。这种思维方式学生刚接触,会遇到一些困难。许多学生在几何证明这里“跌倒了”,丧失了信心,以至于几何越学越糟。为此,我根据自己几年的数学教学实践,就初中数学中几何证明题的一般结构,解题思路进行初步探讨。 学好几何证明,起步要稳,要求学生在学习几何时要扎扎实实,一步一个脚印,在掌握好几何基础知识的同时,还要培养学生的逻辑思维能力。 一、几何证明题的一般结构 初中几何证明题的一般结构由已知条件和求证目标两部分(即前提和结论)组成。已知条件是几何证明的前提,指题目中用文字和符号直接给出的明确条件,也包括所给图形中暗含的条件。求证指题目要求的经过推理最终得出的结论。已知条件是题目既定成立的、毋庸置疑而且必然正确的。求证是几何证明题的最终目标,就是根据题目给出的已知条件,利用数学中的公理、定理、性质,用合理的推理形式推导出的最后结果,而且只能出现在证明过程的最后。 例如:如图,在△ABC 和△DCB 中,AB = DC ,AC = DB ,AC 与DB 交于点M . 求证:△ABC ≌△DCB ; 已知条件:文字给出的有:△ABC 和△DCB ,AB = DC ,AC = DB ,AC 与DB 交于点M 图形给出的有:BC=CB,∠BMA 与∠CMD 是对顶角等等 求证目标是:△ABC ≌△DCB 注意,已知条件除了上面列出的,就没有其它的了,不可随意出现AM=DM ,BN=CN 等等 二、做几何证明题的一般步骤 (一)、审题 审题就是读题,这一步是解决几何证明题的关键,非常重要。许多学生读几何证明题时讲快,常常忽略了题目中蕴含的重要信息。和读其它类型的题有所不同,读几何证明题要求 B A M N

高考数学压轴题解题技巧和方法之欧阳语创编

圆锥曲线的解题技巧 一、常规七大题型: (1)中点弦问题 具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为(,)x y 11,(,)x y 22,代入方程,然后两方程相减,再应用中点关系及斜率公式(当然在这里也要注意斜率不存在的请款讨论),消去四个参数。 如:(1))0(122 22>>=+b a b y a x 与直线相交于 A 、 B ,设弦AB 中点为M(x 0,y 0),则有 020 20=+k b y a x 。 (2))0,0(122 22>>=-b a b y a x 与直线 l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有 02 20=-k b y a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p. 典型例题 给定双曲线x y 2 2 2 1-=。过 A (2,1)的直线与双 曲线交于两点P 1 及P 2,求线段P 1P 2的中点P 的轨迹方程。 (2)焦点三角形问题 椭圆或双曲线上一点P ,与两个焦点F 1、F 2构成的三角形问

题,常用正、余弦定理搭桥。 典型例题 设 P(x,y)为椭圆x a y b 222 21+=上任一点,F c 10(,)-, F c 20(,)为焦点,∠=PF F 12α,∠=PF F 21β。 (1)求证离心率β αβαsin sin ) sin(++= e ; (2)求|||PF PF 1323+的最值。 (3)直线与圆锥曲线位置关系问题 直线与圆锥曲线的位置关系的基本方法是解方程组,进而转化为一元二次方程后利用判别式、根与系数的关系、求根公式等来处理,应特别注意数形结合的思想,通过图形的直观性帮助分析解决问题,如果直线过椭圆的焦点,结合三大曲线的定义去解。 典型例题 抛物线方程,直线与轴的交点在抛物线准线的右边。y p x p x y t x 210=+>+=()() (1)求证:直线与抛物线总有两个不同交点 (2)设直线与抛物线的交点为A 、B ,且OA ⊥OB ,求p 关于t 的函数f(t)的表达式。 (4)圆锥曲线的相关最值(范围)问题 圆锥曲线中的有关最值(范围)问题,常用代数法和几何法解决。 <1>若命题的条件和结论具有明显的几何意义,一般可用图形性质来解决。

解析几何全国卷高考真题

2015-2017解析几何全国卷高考真题 1、(2015年1卷5题)已知M (00,x y )是双曲线C :2 212 x y -=上的一点, 12,F F 是C 上的两个焦点,若120MF MF ?

故圆的方程为22325()24 x y -+= . 考点:椭圆的几何性质;圆的标准方程 3、(2015年1卷20题)在直角坐标系xoy 中,曲线C :y=2 4 x 与直线y kx a =+(a >0)交与M,N 两点, (Ⅰ)当k=0时,分别求C 在点M 和N 处的切线方程; (Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM=∠OPN ?说明理由. 【答案】0y a --=0y a ++=(Ⅱ)存在 【解析】 试题分析:(Ⅰ)先求出M,N 的坐标,再利用导数求出M,N.(Ⅱ)先作出判定,再利用设而不求思想即将y kx a =+代入曲线C 的方程整理成关于x 的一元二次方程,设出M,N 的坐标和P 点坐标,利用设而不求思想,将直线PM ,PN 的斜率之和用a 表示出来,利用直线PM ,PN 的斜率为0,即可求出,a b 关系,从而找出适合条件的P 点坐标. 试题解析:(Ⅰ)由题设可得)M a ,()N a -,或()M a -, )N a .

初中数学解题技巧:六种方法教你解决难题

初中数学解题技巧:六种方法教你解决难题 初中数学解题技巧:六种方法教你解决难题 1、配方法 所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。 2、因式分解法 因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。 3、换元法 换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。 4、判别式法与韦达定理 一元二次方程ax2bxc=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。 韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。 5、待定系数法 在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的

高三数学解析几何解题技巧

高三数学解析几何解题技巧 解析几何是现在高考中区分中上层学生数学成绩的一个关键考点。能顺利解答解析几何题是数学分数跃上新台阶的重要条件。在解决此类问题时的要点主要有:用运动观点看待条件;挖掘出其中隐含的几何量之间关系;用代数语言(通常即是方程或不等式)翻译几何量之间关系;注意根据题设条件分类讨论。其中对能力的要求主要体现在如何选择变量和合理的运算路径上。三种运算:坐标、向量和运用几何性质推理,如何选择?依据的不是必然的逻辑推理,而是根据经验获得的合情推理。 解析几何的学科特征是“算”,它的第一步是把几何条件转化为代数语言,转换的桥梁大致有三类:①与线段长度有关,用距离公式;②与线段比有关的用向量、坐标之间关系转换;③与角度有关用斜率或用向量夹角公式处理。一经转化,解析几何问题就转化为方程或函数问题。如讨论一元二次方程根的情况,解方程组,求代数式的最大值或最小值等等。 常见翻译方法: 距离问题:距离公式212212)()(||y y x x AB -+-= 几个特殊转换技巧: ①若一条直线上有若干点,如D C B A ,,,等,它们之间距离存在比例关系,如满足条件,||||||2BC CD AB =?则可根据它们分别在两坐标轴之间距离关系,利用平行直线分线段成比例之关系转换为坐标关系:,)(||||2C B D C B A x x x x x x -=-?-当然也可转化为向量关系再转换为坐标关系等。 ②利用向量求距离。 ③角度问题:若条件表述为所目标角A 是钝角、直角或锐角,则用向量转化为简洁,即AC AB ?的值分别是小于零、等于零或大于零。一般角度问题转化为向量夹角公式即:| |||cos b a ?= θ④面积问题:主要是三角形面积公式:在OAB ?中(O 是原点) )2 ())()((21sin 21c b a p c p b p a p p ah C ab S O ++=---=== ||2 1A B B A y x y x -== ⑤特殊地,若三角形中有某条线段是定值,则可把三角形分解为两个三角形来分别求面积。如椭圆12 2=+b y a x 的左右焦点分别为,,21F F 过左焦点直线交椭圆于),,(11y x A ),,(22y x B 则|||)||(|||2 121212121212y y c y y F F S S S F BF F AF ABF -=+=+=??? ⑥三点共线问题:一般来说,可直接写出过其中两点的直线方程,再把另一点的坐标代入即可,但在具体问题中,用两点之间斜率相等(有时是用向量共线,可不用讨论斜率存在情况)更合适。 最后,针对广东高考命题特点,请同学们记住一句话:心中有数,不如心中有图,心中有图,不如会用图。 【例题训练】 1.(本小题满分14分)

相关主题
文本预览
相关文档 最新文档