当前位置:文档之家› 巧用直线的参数方程解题方法模板

巧用直线的参数方程解题方法模板

巧用直线的参数方程解题方法模板
巧用直线的参数方程解题方法模板

巧用直线的参数方程解题

摘要:我们都知道解析几何在高考数学中的重要性,解析几何常常让考生感到 头痛,特别是关于直线与圆锥曲线的位置关系、求轨迹方程等类型的题目。这类型的题目所涉及的知识点多、覆盖面广、综合性比较强。从而考察考生的运算能力和综合解题能力,不少学生常常因缺乏解题策略而导致解答过程繁难、运算量大,甚至半途而废。而想要比较简单的解决此类问题运用直线的参数方程是较合适的方法,运用直线的参数方程去解决一些解析几何问题会比较简便。

关键词:直线的参数方程;平面;空间;弦长。 1、引言

在解决的某一解析几何的问题时,运用直线的参数方程解题是非常合适的。运用的直线的参数方程解题它的优点在于能化繁为简、减少计算过程,而它的缺点就是它的局限性,不是所有的题目都适合运用直线的参数方程解决的。在平面几何里,一些关于焦点弦长、某点的坐标、轨迹方程、等式证明等问题的题目我们可以考虑运用直线的参数方程去解决。在空间几何里用直线的参数方程可以解决的问题有求柱面和锥面的方程、空间中的一些轨迹方程、对称点等相关问题。在平面中或是空间里的解析几何问题,我们都可以考虑运用直线的参数方程去解决,我们会举相关的例题,运用直线的参数方程去解题。

2.1 在平面中运用直线的参数方程解题

直线的参数方程的标准式:过点()000,p x y 倾斜角为α的直线l 参数方程为

θ

θsin cos 00t y y t x x +=+=(t 为参数,θ为直线的倾斜角)

t 的几何意义是:t 表示有向线段p p 0的数量,()y x p ,为直线上任意一点。 2.1.1 用直线的参数方程求弦长相关问题

如果知道过某点的某一直线与一个圆锥曲线相交,要求求直线被截的弦长。我们把这一直线的参数方程代入圆锥曲线的方程里,然后韦达定理和参数t 的几

何意义得出弦长。

例1 过点()2,1P 有一条倾斜角为π43

的直线与圆922=+y x 相交,求直线被圆截

得的弦的长。

分析: 1、考虑点P 在不在圆上; 2、这个题目如果用一般方 法解就要写出直线方程, 然后代入圆方程,要想 求出弦长过程比较复杂、 计算量大;

3、适合运用直线的参数方 程进行求解。

解: 把点()2,1P 代入圆的方程,得952122≠=+ 所以点P 不在圆上,在圆内 可设直线与圆的交点分别为A 、B 两点 由题意得直线的参数方程为

t

y t x 2

2

2221+=-

= ,(t 为参数) 代入圆的方程,得

92212212

2

=????

??++???? ?

?-t t 整理后得 0422=-+t t ① 因为Δ=

()()01841422

>=-??-

设①的两根为21,t t ,即对应交点A 、B 的参数值,由韦达定理得 221-=+t t ; -421=t t 由t 的几何意义,得弦长 ()()()23

44242

2

122121=-?--=

-+=

-=t t t t t t AB

评注: 此类求弦长的问题,一般方法得求出直线与二次曲线的两个 交点坐标,然后用两点间的距离公式求出弦长,这样计算量 会比较大,而运用直线的参数方程参数方程去解,根据参数t 的几何意义和韦达定理就能比较简捷的求出弦长。

小结:我们在运用直线的参数方程解决求弦长问题时,发现在解决例1 此类题型时有一定的规律,这个规律在解决此类问题时可以当 公式来用,对解题速度很有帮助的。下面我对这个规律进行阐述:

问题1 求二次曲线

()0,=y x F ① 截直线

θ

θ

sin cos 00t y y t x x +=+= (t 是参数,θ为直线的倾斜角)

② 所得的弦的长。

解: 有①和②消去y x ,整理后,若能得到一个关于参数t 的二元 一次方程:

02=++c bt at ③ 则当有Δ=042≥-ac b ,截得的弦长为

a ac

b l 42-= (公式一)

证明:设21,t t 为③的两个实根,根据韦达定理有 a b t t -

=+21 a

c

t t =21 ④ 又设直线与二次曲线的两个交点为()()222111,,,y x p y x p ,则

θ

θsin cos 101101t y y t x x +=+= ,

θ

θsin cos 202202t y y t x x +=+= ⑤

根据两点的距离公式,由④,⑤得弦长

()()22122121y y x x p p l -+-==

()()θθ22212221sin cos t t t t -+-= ()

212

214t t t t -+=

??

?

??-??? ??-=a c a b 42

a

ac

b 42-= (证毕)

上述公式适用于已知直线的倾斜角,那如果已知直线的斜率呢? 问题2 求二次曲线

()0,=y x F ① 截直线

bt y y at

x x +=+=00 ,(t 是参数,直线的斜率为a

b

) ②

所得的弦的长。

解: 有①和②消去y x ,整理后,若能得到一个关于参数t 的二元 一次方程:

02=++C Bt At ③ 则当有Δ=042≥-AC B ,截得的弦长为 A

b a l ?

?+=22 (公式二)

利用上述公式我再举个例

例2 若抛物线x y 42=截直线d x y +=2所得的弦长是53,求d 的值。 解:由直线的方程d x y +=2,得

直线的斜率k=a b =2,且直线恒过点??

?

??-0,2d

∴该直线的参数方程为

t

y t d x 22

=+-

= ,(t 为参数) 把参数方程代入抛物线方程,整理后得 02442=+-d t t

因为t 是实数,所以Δ=().0321624442

≥-=??--d d

由公式二,有534

32162122=-?+d

解得 -4=d

评注:我们通过运用直线的参数方程得到了公式一和公式二,在 解决关于弦长问题时运用公式一或者公式二解题就会更加 方便。如果题目已知的是直线的倾斜角,就应该考虑用公 式一;如果题目已知的是直线的斜率,就应该先考虑用公 式二。

2.1.2 运用直线的参数方程解中点问题 例3 已知经过点()0,2P ,斜率为

3

4

的直线和抛物线x y 22=相交 于A,B 两点,若AB 的中点为M ,求点M 坐标。 解:设过点()0,2P 的倾斜角为α,则3

4

tan =α, 则53cos =

α,5

4sin =α 可设直线的参数方程为

t

y t

x 54532=+= (t 为参数) 把参数方程代入抛物线方程x y 22=中,整理后得 0501582=--t t

设21,t t 为方程的两个实根,即为A,B 两点的对应参数,根据韦达定理 8

1521=

+t t 由M 为线段AB 的中点,根据的几何意义可得 16

15

221=+=

t t PM 所以中点M 所对应的参数为16

15

=

M t ,将此值代入直线的参数方程里,得 M

的坐标为

4

316155416411615532=

?==

?+=y x 即??

?

??43,1641M

评注:在直线的参数方程中,当0>t 时,则MA 的方向向上;当0

2

1t t +, 这与求两点之间的中点坐标有点相似。 2.1.3 运用直线的参数方程求轨迹方程

运用直线的参数方程,我们根据参数t 的几何意义得出某些线段的 数量关系,然后建立相关等式,最后可得出某动点的轨迹。

例4 过原点的一条直线,交圆()112

2=-+y x 于点Q ,在直线OQ 上取一

点P ,使P 到直线2=y 的距离等于PQ ,求当这条直线绕原点旋转时点P 的轨迹。

解:设该直线的方程为

θ

θsin cos t y t x == ()πθ<≤0,t 为参数,θ为直线的倾斜角

把直线方程代入圆方程,得 ()()11sin cos 2

2

=-+θθt t

即 0sin 22=-θt t 根据公式一,可得

θθsin 2sin 4422==-=

=a

ac

b OQ OQ ,()πθ<≤0 可设p 点坐标为()y x p ,,起对应的参数值为t ,则有t OP =, 因为OQ OP PQ -=,所以θsin 2-=t PQ

易知,点p 到直线2=y 的距离是2-y ,即2sin -θt ; 由题意有 θsin 2-t =2sin -θt 等式两边同时平方,化简后得 ()

0cos 422=-θt 解得 42=t 或0cos =θ

当42=t 时,轨迹的一支为422=+y x ; 当0cos =θ时,0sin =θ,从而得另一支轨迹

t

y t x =?=0 即0=x ;

因此所求轨迹系是由圆422=+y x 和直线0=x 组成。

评注:遇到此类题目,考虑运用直线的参数方程先把弦长求出来, 在根据题意建立相关等式,根据等式消元化简得出结果,本 题的关键主要是建立等式θsin 2-t =2sin -θt 。 2.1.4 运用直线的参数方程证明相关等式

运用直线的参数方程,根据参数t 的几何意义,我们可以得到一些 线段的数量关系,对证明一些几何等式很有帮助。

例5 设过点()0,p A 的直线交抛物线px y 22=于B 、C,求证:=+2211AC AB 2

1p

证明:设过点()0,p A 的直线的参数方程为

α

α

sin cos t y t p x =+= (t 为参数,α为直线的倾斜角)

因为直线与抛物线交B 、C 两点,故0≠α。 把直线参数方程代入抛物线方程,整理后得 02cos 2sin 222=--p at p at

设21,t t 为两根,即点B 、C 的对应参数值,根据韦达定理得

αα221sin cos 2p t t =+; α

22

21sin 2p t t -=

根据参数t 的几何意义有AB=1t ,AC=2t ,所以

=+2211AC AB ()()2

212

12

2122

21211t t t t t t t t -+=+ 2

222222

21sin 2sin 4sin cos 2p p p p =?

??

?

??-+

???

??=αααα

评注:在证明一些相关等式问题时,引用直线的参数方程辅助证明, 会让证明思路更加清晰易懂,在证明过程中根据参数t 的几何 意义,用参数t 去替换其它变量,把所要证的等式化繁为简。

2.2 在空间中用直线的参数方程解题

在空间中过点()000,,z y x M ,方向向量为()Z Y X v ,,的直线l 的坐标式参数

方程为 Zt

z z Yt y y Xt

x x +=+=+=000,(t 为参数) 直线l 标准方程为:

t Z

z z Y y y X x x =-=-=-0

00。

2.2.1 用空间直线的参数方程求柱面和锥面方程

已知柱面、锥面的准线方程,可以根据母线的参数方程或者标准方程 很方便的求出柱面或者锥面方程。

例6 若柱面的母线的方向向量()01,1-v ,准线方程是 021

222=++=++z y x z y x ,

求柱面方程。

解:设()1111,,z y x P 为准线上任意一点,过点1P

的母线的参数方程为 t

z z y y t

x x +==-=11

1 ,(t 为参数)即 t

z z y

y t

x x +==-=111

代入准线方程得

()()()()0

21

2

22=-+++=-+++t z y t x t z y t x

消去参数t ,可得到所求柱面方程

()()1222

22

=++++++z y x y z y x

评注:此题假设准线上任意一点,然后过此点写出对应的参数方程, 通过参数t 的引入便可变形代入相关方程,最终消去参数t 得 到所求柱面方程。

例7 已知锥面顶点为()2,1,3--,准线为 01

222=+-=-+z y x z y x ,求锥面的方程。

解: 设()1111,,z y x P 为准线上任意一点,连接点1P 与顶点()2,1,3--的 母线为

2

2

1133111++=++=--z z y y x x , 将它们的比值记为t

1

,得

()

()()

221133111++-=++-=-+=z t z y t y x t x , (t 为参数)

代入111,,z y x 所满足的方程

11112

12121=+-=-+z y x z y x ,得

()[]()[]()[]()()()[]0

221312211332

22=++++--=++--++-+-+z y x t z t y t x t

消去t ,由上式的第二式得 ()()()

2132

+-++--=

z y x t ,代入第一式,

化简整理后得锥面的一般方程为

()()()()()()()()()0

21223101362715332

2

2

=++-+-++--+++--z y z x y x z y x 评注:此题的关键是母线方程的表示,然后引入参数t ,得到一个参数方程。

通过参数t 代入化简得出所求的锥面方程。 2.2.2 用空间直线的参数方程求空间轨迹

空间的点或者直线的轨迹的空间解析几何的一个重要课题,是重点 也是难点,在求解过程中,通常非常复杂,但对于某些轨迹问题,运 用直线的参数方程去解决会相对简单。

例8 一直线分别交坐标面y x z x z y 0,0,0于三点A 、B 、C ,当直线变动时,直线上的三定点A 、B 、C 也分别在三个坐标面上变动,另外直线上有第四个点P ,它与A 、B 、C 三点的距离分别为a 、b 、c 。当直线按照这样的规定(即保持A 、B 、C 分别在三坐标面上变动),试求P 点的轨迹。

解:设点P 的坐标为()000,,z y x P ,直线的方向余弦为γβαcos ,cos ,cos 。则直

线的参数方程为 γ

βα

cos cos cos 000t z z t y y t x x +=+=+= ,(t 为参数)

令0=x ,即的与z y 0面的交点A ,根据t 的几何意义,a t ±=,则αc o s 0a x ±=。

同理可得,βcos 0b y ±=,γcos 0c z ±=。

由以上三式可得1cos cos cos 22222

022

022

0=++=++γβαc

z

b y a x

所以P 点轨迹方程为122

2222=++c

z b y a x ,是一个椭球面。

评注:通过运用直线的参数方程,然后根据t 的几何意义,用t 去表示 点P 的坐标,通过观察代入某式子得出轨迹方程。 2.2.3 用空间直线的参数方程求对称点

运用空间直线的参数方程我们可以求出定点关于定平面、定直线对 称的点的坐标。

例9 求定点()1,2,10P 关于定平面012=-++z y x 的对称点。 分析:1、可设对称点为点1P ;

2、点0P 和点1P 到平面的距离是相等的;

3、10P P 与平面是垂直的。

解:设()1111,,z y x P 是所求的对称点,则平面012=-++z y x 到0P 和1P 的有向距离是等值异号,即

?

??

?

??++-++-=++-?+?+?2221112

22112121121

112112z y x 化简后得 032111=+++z y x (1)

又10P P 的一组方向向量为()010101,,z z y y x x ---,由于10P P 与平面

012=-++z y x 垂直,故有

t z y x =-=-=-1

1

1221111, (t 为参数) 即, t

z t y t

x +=+=+=1221111 (2)

把(2)代入(1),得()()()0312212=++++++t t t

解得, t=3

4

- 代入(2),得

3

1

34132

342353421111-

=-==-=-

=??

?

??-?+=z y x ,

即所求的对称点为??

?

??--31,32,351P 。

评注:此题的关键是根据10P P 与平面垂直引入参数t ,然后用参数t 表示 其它未知量,通过代入求出参数t 的值,所求的未知量也就相应 得出。

结语

我们运用直线的参数方程对以上例题进行解答,在解题过程中,我们能体会到直线的参数方程的魅力所在,它使我们在解决某类问题时可以化繁为简、容易理解。从中我们还发现直线参数方程的参数t 和韦达定理的和谐统一,这会让我们发现数学中的一种美,从某种意义上说它是一种简洁美,它让我们在解题过程中更加简单、更有效率。而且直线参数方程的加盟,为我们的解题带来了无穷的想象空间和更为广阔的解题思路,正是因为直线参数方程给我们带来如此多的便捷和快乐,所以掌握用直线的参数方程解题的方法应该是我们不二的选择。

参考文献

[1]彭耿铃.巧用直线的参数方程解题例说[J].福建中学数学,2009,(8).

[2]刘培杰.新编中学数学解题方法全书[M],高中版.哈尔滨:哈尔滨工业大学出版社,2011.

[3]吴业分、肖利华.浅谈直线参数方程及应用[J].中国教科创新导刊,2009,(537).

[4]李养成.空间解析几何[M],新版.北京:科学出版社,2007.

[5]张许伟.空间直线参数方程应用初探[J].苏州教育学院学报,1988,(1).

高三数学一轮复习 专题 直线的参数方程导学案

第三课时 直线的参数方程 一、教学目标: 知识与技能:了解直线参数方程的条件及参数的意义 过程与方法:能根据直线的几何条件,写出直线的参数方程及参数的意义 情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识。 二重难点:教学重点:曲线参数方程的定义及方法 教学难点:选择适当的参数写出曲线的参数方程. 三、教学方法:启发、诱导发现教学. 四、教学过程 (一)、复习引入: 1.写出圆方程的标准式和对应的参数方程。 圆222r y x =+参数方程? ? ?==θθ sin cos r y r x (θ为参数) (2)圆22020)\()(r y y x x =+-参数方程为:???+=+=θ θ sin cos 00r y y r x x (θ为参数) 2.写出椭圆参数方程. 3.复习方向向量的概念.提出问题:已知直线的一个点和倾斜角,如何表示直线的参数方程? (二)、讲解新课: 1、问题的提出:一条直线L 的倾斜角是0 30 ,并且经过点P (2,3),如何描述直线L 上任意点的位置呢? 如果已知直线L 经过两个 定点Q (1,1),P (4,3), 那么又如何描述直线L 上任意点的 位置呢? 2、教师引导学生推导直线的参数方程: (1)过定点),(00y x P 倾斜角为α的直线的 参数方程

?? ?+=+=α α sin cos 00t y y t x x (t 为参数) 【辨析直线的参数方程】:设M(x,y)为直线上的任意一点,参数t 的几何意义是指从点P 到点M 的位移,可以用有向线段PM 数量来表示。带符号. (2)、经过两个定点Q 1 1 ( ,)y x ,P 2 2 (,)y x (其中12x x ≠)的直线的参数方程为 12112 1(1){ x X y y x y λλ λλλλ++++= =≠-为参数,。其中点M(X,Y)为直线上的任意一点。这里 参数λ的几何意义与参数方程(1)中的t 显然不同,它所反映的是动点M 分有向线段QP 的 数量比QM MP 。当o λ >时,M 为内分点;当o λ<且1λ≠-时,M 为外分点;当o λ=时, 点M 与Q 重合。 例题演练: 例1、 已知直线l :10x y +-=与抛物线2 y x =相交于A,B 两点,求线段AB 的长和点 M (1,2)-到A,B 两点的距离之积。 例2、 经过点M(2,1)作直线l ,交椭圆 22 1164 x y +=于A,B 两点,如果点M 恰好为线段AB 的中点,求直线l 的方程。

高中数学 《参数方程的概念》教案 新人教A版选修4-4

参数方程 目标点击: 1.理解参数方程的概念,了解某些参数的几何意义和物理意义; 2.熟悉参数方程与普通方程之间的联系和区别,掌握他们的互化法则; 3.会选择最常见的参数,建立最简单的参数方程,能够根据条件求出直线、圆锥曲线等常用曲线的一些参数方程并了解其参数的几何意义; 4.灵活运用常见曲线的参数方程解决有关的问题. 基础知识点击: 1、曲线的参数方程 在取定的坐标系中,如果曲线上任意一点的坐标x,y 都是某个变数t 的函数,?? ?==)()(t g y t f x (1) 并且对于t 的每一个允许值,由方程组(1)所确定的点M(x,y)都在这条曲线上,那么方程组(1)叫做这条曲线的参数方程. 联系x 、y 之间关系的变数叫做参变数,简称参数. 2、求曲线的参数方程 求曲线参数方程一般程序: (1) 设点:建立适当的直角坐标系,用(x,y)表示曲线上任意一点M 的坐标; (2) 选参:选择合适的参数; (3) 表示:依据题设、参数的几何或物理意义,建立参数与x ,y 的关系 式,并由此分别解出用参数表示的x 、y 的表达式. (4) 结论:用参数方程的形式表示曲线的方程 3、曲线的普通方程 相对与参数方程来说,把直接确定曲线C 上任一点的坐标(x,y )的方程F (x,y )=0叫做曲线C 的普通方程. 4、参数方程的几个基本问题 (1) 消去参数,把参数方程化为普通方程. (2) 由普通方程化为参数方程. (3) 利用参数求点的轨迹方程. (4) 常见曲线的参数方程. 5、几种常见曲线的参数方程 (1) 直线的参数方程 (ⅰ)过点P 0(00,y x ),倾斜角为α的直线的参数方程是 ? ??+=+=αα s i n c o s 00t y y t x x (t 为参数)t 的几何意义:t 表示有向线段P P 0的数量,P(y x ,) 为直线上任意一点. (ⅱ)过点P 0(00,y x ),斜率为a b k =的直线的参数方程是 ???+=+=bt y y at x x 00 (t 为参数) (2)圆的参数方程

高中数学第二讲参数方程三直线的参数方程互动课堂学案新人教A版选修4_4

三 直线的参数方程 互动课堂 重难突破 本课时重点是对直线参数方程的理解,关键是理解参数t 的几何意义,难点是应用直线的参数方程解决相关问题 一、直线参数方程的意义 相对于直线的一般方程,参数方程更能反映一条直线上点的特征.判断与其他曲线的关系时,直接代入横坐标和纵坐标对应的参数表达式,方便运算.又由于直线参数方程的标准方程中的参数有一定的几何意义,对于那些需要直接求线段长度或者求有向线段的数量值的问题会更加方便快捷 用坐标的观点理解直线参数方程中的参数,在解决有关直线问题时,可以自然地将新旧知识联系起来,特别是在求直线被圆锥曲线所截得的弦长或弦中点问题时,可以提供更广阔的思考空间;具体问题中根据实际情况可以使用参数方程的标准式和非标准式,使解题的方法灵活多样,有利于一题多解和创新思维的培养 二、直线参数方程的形式 对于同一条直线的普通方程随着参数选取的不同,会得到不同的参数方程.例如,对于直线普通方程y =2x +1,如果令x =t 即可得到参数方程?? ?+==1 2,t y t x (t 为参数);如果令x =2t 则得到参数方程?? ?+==1 4,2t y t x (t 为参数).这样随便给出的参数方程中的参数t 不具有一定的 几何意义,但是在实际应用中也能简化某些运算. 而过定点M 0(x 0,y 0)、倾斜角为α的直线l 的参数方程都可以写成为?????+=+=a t y y a t x x sin , cos 00 (t 为参数),我们把这一形式称为直线参数方程的标准形式,其中t 表示直线l 上以定点M 0 为起点,任意一点M (x ,y )为终点的有向线段?? →?M M 0 的数量且cos 2α+sin 2 α=1是标准参数方程的基本特征 三、直线参数方程中参数的几何意义 1.对于一般的参数方程,其中的参数可能不具有一定的几何意义,但是对于直线参数方程中的参数有一定的几何意义. 过定点M 0(x 0,y 0)、倾斜角为α的直线l 的参数方程都可以写成为x =x 0+t cos αy =y 0+t sin α(t 为参数),其中t 表示直线l 上以定点M 0为起点,任意一点M (x ,y )为终点的有向线段M 0M 的数量,也就是 (1)直线l 上的动点M 到定点M 0的距离等于参数t 的绝对值,即|M 0M |=| t (2)若t >0,则M 0M 的方向向上;若t <0,则M 0M 的方向向下;若t =0,则点M 与点M 0重合. 2.根据直线的参数方程判断直线的倾斜角. 根据参数方程判断倾斜角,首先要看参数方程的形式是不是标准形式,如果是标准形式,根据方程就可以判断出倾斜角,例如x =2+t y =-4+t sin20°(t 为参数),可以直接 判断出直线的倾斜角是 但是如果不是标准形式,就不能直接判断出倾斜角了.例如判断直线

高中数学直线的参数方程优质课教学设计

直线的参数方程教学设计 教材内容解析 本节内容是人教A 版选修4—4第二讲第三部分的内容.直线是学生最熟悉的几何图形,在教材《必修2》中学生已经学习了直线的五种方程.教科书先引导学生回顾了用倾斜角的正切表示的直线的点斜式方程,这是为推导直线的参数方程做准备,从代数变换的角度看,教材P35的直线参 数方程00+cos ,+sin . x x t t y y t αα=??=?(为参数) 就是点斜式的变形.在提出“如何建立直线的参数方程?”后,教材引导学生借助向量工具探究直线的参数方程.这一过程,教师引导学生通过类比、联想的思想方法,将直线和单位方向向量联系起来,引入恰当的参数,从而建立直线的参数方程. 学情分析 学生对事物的认识多是从直观到抽象,从感性到理性.而对事物的理解多以自己的经验为基础来建构或解释现象,而并不是把知识从外界直接搬到记忆中.高二学生的学习过程更是如此. 之前圆锥曲线的参数方程学生已经熟悉,也能够理解各种曲线的参数的几何意义,但是直线的参数方程还能否用角作为参数呢?这是完全不同的,应该选择那个量作为直线的参数呢?需要引入“方向向量的概念”,之前的必修教材从未学习过,所以,在讲本节课之前,提前对方向向量的知识作了补充学习,为本节课的学习提前进行知识储备. 教学方法与教学手段 教学方法:启发探究式(教师设问引导,学生自主探究、合作解决). 教学手段:多媒体辅助教学(利用计算机和实物投影辅助教学). 教学目标 1.利用直线的单位方向向量推导直线的参数方程,体会直线的普通方程与参数方程的联系; 2.理解并掌握直线的参数方程中参数t 的几何意义; 3.通过直线参数方程的探究,体会参数的形成过程,培养严密地思考和严谨推理的习惯; 4.在学习过程中渗透类比、归纳、推理的数学思想方法,以及引领学生体会“根据几何性质选取恰当的参数,建立参数方程”的几何问题代数化的解析思想. 教学重点 1.分析直线的几何条件,选择恰当的参数写出直线的参数方程; 2.直线的参数方程中参数t 的几何意义. 教学难点 1.直线的参数方程中参数t 的几何意义; 2.直线参数方程中参数t 的几何意义的初步应用.

直线的参数方程及其应用举例

直线的参数方程及应用 问题1:(直线由点和方向确定) 求经过点P 0(00,y x ),倾斜角为α的直线l 设点P(y x ,)是直线l 上任意一点,方向为直线L 的正方向)过点P 作y P 0作x 轴的平行线,两条直线相交于Q 点. 1)当P P 0与直线l 同方向或P 0和P 重合时, P 0P =|P 0P | 则P 0Q =P 0Pcos α Q P =P 02)当P P 0与直线l 反方向时,P 0P 、P 0Q 、Q P P 0P =-|P 0P | P 0Q =P 0Pcos α Q P =P 0Psin α 设P 0P =t ,t 为参数, 又∵P 0Q =0x x -, 0x x -=tcos α Q P =0y y - ∴ 0y y -=t sin α 即? ??+=+=αα sin cos 00t y y t x x 是所求的直线l 的参数方程 ∵P 0P =t ,t 为参数,t 的几何意义是:有向直线l 上从已知点P 0(00,y x )到点 P(y x ,)的有向线段的数量,且|P 0P |=|t| ① 当t>0时,点P 在点P 0的上方; ② 当t =0时,点P 与点P 0重合; ③ 当t<0时,点P 在点P 0的下方; 特别地,若直线l 的倾斜角α=0时,直线?+=0t x x ④ 当t>0时,点P 在点P 0的右侧; ⑤ 当t =0时,点P 与点P 0重合; ⑥ 当t<0时,点P 在点P 0的左侧; 问题2:直线l 上的点与对应的参数t 是不是一 对应关系? 我们把直线l 看作是实数轴, 以直线l 向上的方向为正方向,以定点 这样参数t 便和这条实数轴上的点P 一一对应关系. 问题3:P 1、P 2为直线l 上两点所对应的参数分别为t 1、t 2 , x x

导学案:参数方程与普通方程的互化(可编辑修改word版)

? + = 2 课题:参数方程与普通方程的互化 【学习目标】 1. 进一步理解参数方程的概念及参数的意义。 2. 能通过消去参数将参数方程化为普通方程,由普通方程识别曲线的类型 3. 能选择适当的参数将普通方程化成参数方程 【重点、难点】 参数方程和普通方程的等价互化。 自主学习案 【问题导学】阅读课本 P24—P26,然后完成下列问题: 1. 参数方程的概念 (1) 在平面直角坐标系中,如果曲线上任意一点的坐标 x 、 y 都是某个变数t ? x = f (t ) 的函数? y = g (t ) (t ∈ D ) , 并且对于 t 的每一个允许值,由方程组所确定的点 M (x,y )都在这条曲线上,那么方程就叫这条曲线的 ,联系变数 x 、 y 的变数 t 叫做 ,简称 。相对于参数方程而言,直接给出点的坐标间关系的方程 F (x , y ) = 0 叫做 。 (2) 是联系变数 x,y 的桥梁,可以是一个有 意义或 意义的 变数,也可以是 的变数。 2、 ( 1) 圆 心 在 原 点 O , 半 径 为 r 的 圆 的 一 个 参 数 方 程 是 ; (2)圆(x - a )2 + ( y - b )2 = r 2 的一个参数方程是 . 3、指出下面的方程各表示什么样的曲线: (1)2x+y+1=0 表示 (2) y = 3x 2 + 2x +1 表示 2 (3) x y 1表示 9 4

t ? (4) ?x = cos + 3(为参数) 表示 ? y = sin 【预习自测】把下列参数方程化为普通方程,并说明它们各表示什么曲线? ?x = t +1 ?x = 2 c os 1、? y = 1- 2t (t 为参数) 2、? y = sin (为参数) ? ? 思考: 1、通过什么样的途径,能从参数方程得到普通方程? 2、在参数方程与普通方程互化中,要注意哪些方面? 合作探究案 考向一、参数方程化普通方程 例 1.把下列参数方程化为普通方程,并说明它们各表示什么曲线 (1) ??x = ? + 1 ?x = sin + cos (t 为参数) (2) ? y = 1 + sin 2 (为参数) ?? y = 1 - 2 ? 小结: t

参数方程专题练习(整理)

1(本小题满分10分)选修4—4:坐标系与参数方程。 已知曲线C 1:4cos ,3sin ,x t y t =-+??=+? (t 为参数), C 2:8cos ,3sin ,x y θθ=??=?(θ为参数)。 (1)化C 1,C 2的方程为普通方程,并说明它们分别表示什么曲线; (2)若C 1上的点P 对应的参数为2t π =,Q 为C 2上的动点,求PQ 中点M 到直线 332,:2x t C y t =+??=-+? (t 为参数)距离的最小值。 2(2009宁夏海南卷文)(本小题满分10分)选修4—4:坐标系与参数方程。 已知曲线C 1:4cos ,3sin ,x t y t =-+??=+? (t 为参数), C 2:8cos ,3sin ,x y θθ=??=?(θ为参数)。 (1)化C 1,C 2的方程为普通方程,并说明它们分别表示什么曲线; (2)若C 1上的点P 对应的参数为2t π =,Q 为C 2上的动点,求PQ 中点M 到直线 332,:2x t C y t =+??=-+? (t 为参数)距离的最小值。 3.(2010年高考福建卷理科21)(本小题满分7分)选修4-4:坐标系与参数方程 在直角坐标系xoy 中,直线l 的参数方程为3,2x y ?=-????=??(t 为参数)。在极坐标系(与 直角坐标系xoy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方程为ρθ=。 (Ⅰ)求圆C 的直角坐标方程;(Ⅱ)设圆C 与直线l 交于点A 、B ,若点P 的坐标为,

求|PA|+|PB|。 4.(2010年高考江苏卷试题21)选修4-4:坐标系与参数方程 (本小题满分10分) 在极坐标系中,已知圆ρ=2cos θ与直线3ρcos θ+4ρsin θ+a=0相切,求实数a 的值。 5. (2010年全国高考宁夏卷23)(本小题满分10分)选修4-4:坐标系与参数方程 已知直线C 1x 1t cos sin y t αα=+??=?(t 为参数),C 2x cos sin y θθ=??=? (θ为参数), (Ⅰ)当α=3 π时,求C 1与C 2的交点坐标; (Ⅱ)过坐标原点O 做C 1的垂线,垂足为,P 为OA 中点,当α变化时,求P 点的轨迹的参数方程,并指出它是什么曲线。 6.(2010年高考辽宁卷理科23)(本小题满分10分)选修4-4:坐标系与参数方程 (θ为参数,πθ≤≤0)上的点,点A 的坐标为(1,0), 已知P 为半圆C : O 为坐标原点,点M 在射线OP 上,线段OM 与C 的弧的长度均为3 π。 (I )以O 为极点,x 轴的正半轴为极轴建立极坐标系,求点M 的极坐标; (II )求直线AM 的参数方程。 7.(2011·福建高考理科·T21)(2)在直角坐标系xOy 中,直线l 的方程为x-y+4=0,曲 线C 的参数方程为x 3cos y sin ?=??=??ααα ,(为参数). (I )已知在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴

高中数学选修4-4坐标系与参数方程完整教案(精选.)

选修4-4 教案 教案1 平面直角坐标系(1 课时) 教案2 平面直角坐标系中的伸缩变换(1 课时)教案3 极坐标系的的概念(1 课时) 教案4 极坐标与直角坐标的互化(1 课时) 教案5 圆的极坐标方程(2 课时) 教案6 直线的极坐标方程(2 课时) 教案7 球坐标系与柱坐标系(2 课时) 教案8 参数方程的概念(1 课时) 教案9 圆的参数方程及应(2 课时) 教案10 圆锥曲线的参数方程(1 课时) 教案11圆锥曲线参数方程的应用(1 课时)教案12 直线的参数方程(2 课时) 教案13 参数方程与普通方程互化(2 课时)教案14 圆的渐开线与摆线(1 课时)

课题:1、平面直角坐标系教学目的: 知识与技能:回顾在平面直角坐标系中刻画点的位置的方法能力与与方法:体会坐标系的作用 情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识教学重点:体会直角坐标系的作用教学难点:能够建立适当的直角坐标系,解决数学问题授课类型:新授课 1 2 坐标系的作用————教学过程————复习回顾和预习检查 1 平面直角坐标系中刻画点的位置的方法 情境1:为了确保宇宙飞船在预定的轨道上运行,并在按计划完成科学考察任务后,安全、准确的返回地球,从火箭升空的时刻开始,需要随时测定飞船在空 中的位置机器运动的轨迹。 情境2:运动会的开幕式上常常有大型团体操的表演,其中不断变化的背景图案是由看台上座位排列整齐的人群不断翻动手中的一本画布构成的。要出现正确 的背景图案,需要缺点不同的画布所在的位置。 刻画一个几何图形的位置,需要设定一个参照系 1、数轴它使直线上任一点P都可以由惟一的实数x 确定 2、平面直角坐标系 在平面上,当取定两条互相垂直的直线的交点为原点,并确定了度量单位和这两条直线的方向,就建立了平面直角坐标系。它使平面上任一点P 都可以由惟一的实数对(x,y)确定 3、空间直角坐标系 在空间中,选择两两垂直且交于一点的三条直线,当取定这三条直线的交点为原点,并确定了度量单位和这三条直线方向,就建立了空间直角坐标系。它使空间上任一点P 都可以由惟一的实数对(x,y,z)确定1、建立坐标系是为了确定点的位置,因此,在所建的坐标系中应满足:任意一点都有确定的坐标与其对应;反之,依据一个点的坐标就能确定这个点的位置 2、确定点的位置就是求出这个点在设定的坐标系中的坐标 word.

直线的参数方程导学案

《直线的参数方程》导学案 紫云民族高级中学高二数学组 学习目标: 1、了解直线的参数方程及参数的的意义 2、能选取适当的参数,求直线的参数方程 教学重点:联系数轴、向量等知识,写出直线的参数方程. 教学难点:通过向量法,建立参数t (数轴上的点坐标)与点在直角坐标系中的坐标,x y 之间的联系. 一、回忆旧知,做好铺垫 1.→a 与→b 共线向量的充要条件是什么?________________________ 2.直线l 的方向向量怎样表示?________________________ 3.什么是单位向量?________________________ 4.斜率存在且为k 的直线l 的方向向量怎样表示?________________________ 5.倾斜角为α的直线l 的单位方向向量怎样表示?________________________ 6直线方程的有几种形式? 二直线参数方程探究 问题1:经过点M(x0,y0),倾斜角为 ??? ??≠2παα 的直线l 的 普通方程是________________________; 合作探究:过定点0M ),(00y x ,倾斜角为α的直线l 的参数方程如何建立?

得出结论:定点 ) ,(000y x M 倾斜角 α直线的参数方程为 观察直线的参数方程,知道那些量可以把直线的参数方程写出来? 练一练 1.写出满足下列条件直线的参数方程: (1)过点(2,3)倾斜角为4π (2)过点(4,0)倾斜角为32π

知识探究一: 由 t M 0 ,你能得到直线l 的参数方程中参数t 的几何 意义吗? 知识探究二: 如图所示:请讨论参数t 的符号; 利用t 的几何意义,如何求过M0直线上两点AB 的距离? 点A,点B 在M0同侧点A,点B 在M0异侧 e

直线的参数方程教案

直线的参数方程 教学目标: 1. 联系数轴、向量等知识,推导出直线的参数方程,并进行简单应用,体会直线参数方程在解决问题中的作用. 2.通过直线参数方程的推导与应用,培养综合运用所学知识分析问题和解决问题的能力,进一步体会运动与变化、数形结合、转化、类比等数学思想. 3. 通过建立直线参数方程的过程,激发求知欲,培养积极探索、勇于钻研的科学精神、严谨的科学态度. 教学重点:联系数轴、向量等知识,写出直线的参数方程. 教学难点:通过向量法,建立参数t(数轴上的点坐标)与点在直角坐标系中的坐标,x y之间的联系. 教学方式:启发、探究、交流与讨论. 教学手段:多媒体课件. 教学过程: 一、回忆旧知,做好铺垫 教师提出问题: 1.曲线参数方程的概念及圆与椭圆的参数方程. 2.直线的方向向量的概念. 0 / 13

3.在平面直角坐标系中,确定一条直线的几何条件是什么? 4.已知一条直线的倾斜角和所过的一个定点,请写出直线的方程. 5.如何建立直线的参数方程? 这些问题先由学生思考,回答,教师补充完善,问题5不急于让学生回答,先引起学生的思考. 【设计意图】通过回忆所学知识,为学生推导直线的参数方程做好准备. 二、直线参数方程探究 1.回顾数轴,引出向量 数轴是怎样建立的?数轴上点的坐标的几何意义是什么? 教师提问后,让学生思考并回答问题. 教师引导学生明确:如果数轴原点为O ,数1所对应的点为A ,数轴上点M 的坐标为t ,那么: ①OA 为数轴的单位方向向量,OA 方向与数轴的正方向一致,且OM tOA =;②当OM 与OA 方向一致时(即OM 的方向与数轴正方向一致时),0t >; 当OM 与OA 方向相反时(即OM 的方向与数轴正方向相反时),0t <; 当M 与O 重合时,0t =; ③||OM t =.教师用几何画板软件演示上述过程.

东北师大附属中学高三第一轮复习导学案参数方程A

参数方程(教案)A 一、知识梳理:(阅读教材:选修4-4第21页至39页) 1、曲线的参数方程的概念: 一般地,在平面直角坐标系中,如果曲线上任意一点的坐标,x y 都是某个变数t 的函数() () x f t y g t =?? =?①,并且对于t 的每一个允许值,由方程组①所确定的点(,)M x y 都 在这条曲线上,那么方程①就叫做这条曲线的参数方程,联系变数,x y 的变数t 叫做参变数,简称参数,相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程. 2.参数方程和普通方程的互化 (1)曲线的参数方程和普通方程是曲线方程的不同形式,一般地可以通过消去参数得到普通方程. (2)如果知道变数,x y 中的一个与参数t 的关系,例如()x f t =,把它代入普通方 程,求出另一个变数与参数的关系()y g t =,那么() () x f t y g t =?? =?就是曲线的参数方程,在 参数方程与普通方程的互化中,必须使,x y 的取值范围保持一致. 注:普通方程化为参数方程,参数方程的形式不一定唯一。应用参数方程解轨迹问题,关键在于适当地设参数,如果选用的参数不同,那么所求得的曲线的参数方程的形式也不同。 3.圆的参数方程 设圆O (O 为坐标原点)的半径为r ,点M 从初始位置0M 出发,按逆时针方向在圆O 上作匀速圆周运动,设(,)M x y ,则cos ()sin x r y r θθθ =?? =?为参数。 这就是圆心在原点O ,半径为r 的圆的参数方程,其中θ的几何意义是0OM 转过的角度。 圆心为(,)a b ,半径为r 的圆的普通方程是2 2 2 ()()x a y b r -+-=, 它的参数方程为:cos ()sin x a r y b r θ θθ=+??=+? 为参数。 4.椭圆的参数方程 以坐标原点O 为中心,焦点在x 轴上的椭圆的标准方程为

[数学教学设计]《直线的参数方程》教学设计

教学设计:《直线的参数方程》(选修4-4) 教学目标: (一)知识与技能:联系数轴、向量等知识,推导出直线的参数方程,并进行简单应用,体会直线参数方程在解决问题中的作用. (二)过程与方法:通过直线参数方程的推导与应用,培养综合运用所学知识分析问题和解决问题的能力,进一步体会运动与变化、数形结合、转化、类比等数学思想. (三)情感、态度与价值观:通过建立直线参数方程的过程,激发求知欲,培养学生积极探索、勇于钻研的科学精神和严谨的科学态度. 教学重点:联系数轴、向量等知识,写出直线的参数方程. 教学难点:通过向量法,建立参数t(数轴上的点坐标)与点在直角坐标系中的坐标,x y之间的联系. 教学方式:启发、探究、交流与讨论. 教学手段:多媒体课件. 教学过程: 一、回忆旧知,做好铺垫 教师提出问题: 1.曲线参数方程的概念及圆与椭圆的参数方程. 2.直线的方向向量的概念. 3.在平面直角坐标系中,确定一条直线的几何条件是什么? 4.已知一条直线的倾斜角和所过的一个定点,请写出直线的方程. 5.如何建立直线的参数方程? 这些问题先由学生思考,回答,教师补充完善,问题5不急于让学生回答,先引起学生的思考. 【设计意图】通过回忆所学知识,为学生推导直线的参数方程做好准备. 二、直线参数方程探究 1.回顾数轴,引出向量 数轴是怎样建立的?数轴上点的坐标的几何意义是什么?

教师提问后,让学生思考并回答问题. 教师引导学生明确:如果数轴原点为O,数1所对应的点为A,数轴上点M 的坐标为t,那么: =; ①OA为数轴的单位方向向量,OA方向与数轴的正方向一致,且OM tOA ②当OM与OA方向一致时(即OM的方向与数轴正方向一致时),0 t>; 当OM与OA方向相反时(即OM的方向与数轴正方向相反时),0 t<; 当M与O重合时,0 t=; ③|| =.教师用几何画板软件演示上述过程. OM t 【设计意图】回顾数轴概念,通过向量共线定理理解数轴上的数的几何意义,为选择参数做准备. 2.类比分析,异曲同工 问题:(1)类比数轴概念,平面直角坐标系中的 任意一条直线能否定义成数轴? (2)把直线当成数轴后,直线上任意一点 就有两种坐标.怎样选取单位长度和方向才有利 于建立这两种坐标之间的关系? 教师提出问题后,引导学生思考并得出以下 M为原点,与直线l平 结论:选取直线l上的定点 行且方向向上(l的倾斜角不为0时)或向右(l的倾斜角为0时)的单位向量e确定直线l的正方向,同时在直线l上确定进行度量的单位长度,这时直线l就变成了数轴.于是,直线l上的点就有了两种坐标(一维坐标和二维坐标).在规定数轴的单位长度和方向时,与平面直角坐标系的单位长度和方向保持一致,有利于建立两种坐标之间的联系. 【设计意图】使学生明确平面直角坐标系中的任意直线都可以在规定了原点、单位长度、正方向后成为数轴,为建立直线参数方程作准备.

高中数学 直线参数方程导学案 新人教A版选修44

三维目标: 知识与技能:了解直线参数方程的条件及参数的意义 过程与方法:能根据直线的几何条件,写出直线的参数方程及参数的意义 情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识。 学习重点:参数t 的含义,直线单位方向向量)sin ,(cos αα=e 的含义。 学习难点:如何引入参数t ,理解和写直线单位方向向量)sin ,(cos αα=e 学法指导:认真阅读教材,按照导学案的导引,深刻领会数学方法,认真思考、独立规范作答。 知识链接: 我们学过的直线的普通方程都有哪些? 学习过程: 问题1已知一条直线过点),(000y x M ,倾斜角α,求这条直线方程。 问题2在直线l 上,任取一个点M (x ,y ),求0M M 坐标。 问题3试用直线l 的倾斜角α表示直线l 的方向单位向量e 。 问题4设0M M t =,则e 与0M M 具有什么位置关系?用t 能否表示出这种关系。 问题5通过坐标运算,用),(000y x M ,α,t 把在直线l 上,任取一点M (x ,y )的坐标表示出来 即过定点00M (x ,y )倾斜角为α的直线的参数方程: 问题6在直线l 的参数方程中,哪些是变量,哪些是常量? 问题70,M M te l t =由你能得到直线的参数方程中参数的几何意义吗? 问题8参数t 的取值范围是什么?分别代表什么含义? 练习:A1、直线?????=+=0020 cos 20sin 3t y t x (t 为参数)的倾斜角是( ) A, 020 B, 070 C, 0110 D, 0 160 A2、求直线01=-+y x 的一个参数方程。

直线的参数方程练习题有答案

直线的参数方程 1.设直线l 过点A (2,-4),倾斜角为5 6π,则直线l 的参数方程是____________. 解析:直线l 的参数方程为? ?? x =2+t cos 5 6 π, y =-4+t sin 5 6 π (t 为参数), 即???x =2-32t y =-4+1 2t ,(t 为参数). 答案:???x =2-32t y =-4+1 2t ,(t 为参数) 2.设直线l 过点(1,-1),倾斜角为5π 6 ,则直线l 的参数方程为____________. 解析:直线l 的参数方程为??? x =1+t cos 5π 6 y =-1+t sin 5π 6,(t 为参数), 即???x =1-32t y =-1+1 2t ,(t 为参数) 答案:???x =1-32t y =-1+1 2t ,(t 为参数) 3.已知直线l 经过点P (1,1),倾斜角α=π 6 . 写出直线l 的参数方程; 解:①直线l 的参数方程为?????x =1+3 2t y =1+12t ,(t 是参数). 4.已知直线l 经过点P ????12,1,倾斜角α=π 6 , 写出直线l 的参数方程. [解] (1)直线l 的参数方程为???x =12+t cos π 6 y =1+t sin π6,(t 为参数),即???x =12+3 2 t y =1+1 2t ,(t 为参 数).2分 5.已知直线l 的斜率k =-1,经过点M 0(2,-1).点M 在直线上,则直线l 的参数方程为____________. 解析:∵直线的斜率为-1, ∴直线的倾斜角α=135°. ∴cos α=- 22,sin α=2 2 . ∴直线l 的参数方程为???x =2-22t y =-1+2 2t ,(t 为参数). 答案:???x =2-22t y =-1+2 2 t ,(t 为参数) 6.已知直线l :???x =-3+32t y =2+1 2t ,(t 为参数) , 求直线l 的倾斜角; 解:(1)由于直线l :? ??x =-3+t cos π 6 , y =2+t sin π 6 (t 为参数)表示过点M 0(-3,2)且斜率

2.2.3直线的参数方程(教学设计)

2.2.3直线的参数方程(教学设计)(2课时) 教学目标: 知识与技能: 1. 联系数轴、向量等知识,推导出直线的参数方程,并进行简单应用,体会直线参数方程在解决问题中的作用. 2.通过直线参数方程的推导与应用,培养综合运用所学知识分析问题和解决问题的能力,进一步体会运动与变化、数形结合、转化、类比等数学思想. 过程与方法:能根据直线的几何条件,写出直线的参数方程及参数的意义 情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识。 通过建立直线参数方 程的过程,激发求知欲,培养积极探索、勇于钻研 的科学精神、严谨的科学态度. 教学重点:联系数轴、向量等知识,写出直线的参数方程. 教学难点:通过向量法,建立参数t (数轴上的点坐标)与点在直角坐标系中的坐标,x y 之间的联系. 教学过程: 一、复习回顾: 1.曲线参数方程的概念及圆与椭圆的参数方程. 2.直线的方向向量的概念. 3.在平面直角坐标系中,确定一条直线的几何条件是什么? 4.已知一条直线的倾斜角和所过的一个定点,请写出直线的方程. 5.如何建立直线的参数方程? 二、师生互动,新课讲解 1.回顾数轴,引出向量 数轴是怎样建立的?数轴上点的坐标的几何意义是什么? 教师提问后,让学生思考并回答问题. 教师引导学生明确:如果数轴原点为O ,数1所对应的点为A ,数轴上点M 的坐标为t ,那么: ①OA 为数轴的单位方向向量,OA 方向与数轴的正方向一致,且OM tOA = ;②当OM 与OA 方向一致时(即OM 的方向与数轴正方向一致时),0t >; 当OM 与OA 方向相反时(即OM 的方向与数轴正方向相反时),0t <; 当M 与O 重合时,0t =;

高中数学第二章参数方程21直线的参数方程学案北师大版4

2.1 直线的参数方程 [对应学生用书P24] [自主学习] 1.有向线段的数量 如果P ,M 是l 上的两点,P 到M 的方向与直线的正方向一致,那么PM 取正值,否则取 负值.我们称这个数值为有向线段PM u u u r 的数量. 2.直线参数方程的两种形式 (1)经过点P (x 0,y 0)、倾斜角是α的直线的参数方程为:? ?? ?? x =x 0+t cos α, y =y 0+t sin α(t 为 参数). 其中M (x ,y )为直线上的任意一点,参数t 的几何意义是从点P 到M 的位移,可以用有向线段PM u u u r 的数量来表示. (2)经过两个定点Q (x 1,y 1),P (x 2,y 2)(其中x 1≠x 2)的直线的参数方程为 ????? x =x 1 +λx 2 1+λ,y =y 1 +λy 2 1+λ (λ为参数,λ≠-1). 其中M (x ,y )为直线上的任意一点,参数λ的几何意义是:动点M 分有向线段QP u u u r 的数 量比QM MP . ①当λ>0时,M 为内分点; ②当λ<0且λ≠-1时,M 为外分点; ③当λ=0时,点M 与Q 重合. [合作探究] 1.如何引入参数求过定点P (x 0,y 0)且与平面向量a =(a ,b )? ?? ?? 或斜率为b a 平行的直线的 参数方程? 提示:在直线l 上任取一点M (x ,y ),因为PM u u u r ∥a ,由两向量共线的充要条件以及PM u u u r =(x -x 0,y -y 0),可得 x -x 0a =y -y 0b ,设这个比值为t ,即:x -x 0a =y -y 0 b =t ,则有:

直线的参数方程教学设计

《直线的参数方程》教学设计 紫云民族高级中学高二数学组教学目标: 1.联系数轴、向量等知识,推导出直线的参数方程,并进行简单应用,体会直线参数方程在解决问题中的作用. 2.通过直线参数方程的推导与应用,培养综合运用所学知识分析问题和解决问题的能力,进一步体会运动与变化、数形结合、转化、类比等数学思想. 3.通过建立直线参数方程的过程,激发求知欲,培养积极探索、勇于钻研 的科学精神、严谨的科学态度. 教学重点:联系数轴、向量等知识,写出直线的参数方程. 教学难点:通过向量法,建立参数(数轴上的点坐标)与点在直角坐标系中的坐标之间的联系. 教学方式:启发、探究、交流与讨论. 教学手段:多媒体课件. 教学过程: 一、回忆旧知,做好铺垫 教师提出问题: 1.共线向量的条件是什么 b // a ( a 0 ) b a 2.直线方程的有几种形式

这些问题先由学生思考,回答,教师补充完善。 【设计意图】引导学生从几何条件思考参数的选择, 为学生推导 直线的参数方程做好准备. 二、直线参数方程探究 问题1经过点M (xO,yO ),倾斜角为 2 的直线 I 的 普通方程是 _______________________________ ; (x x),y y 。)t(cos ,sin ) x x 0 tcos y y 。tsin 教师启发学生:如果所有单位向量起点相 同,那么终点的集合就是- 个圆.为了研究问题方便,可以把起点放在原点,这样所有单位向量 的终点的集合就是一个单位圆.因此在单位圆中来确定直线的单位方 合作探究:过定点Mod 。」。),倾斜角为 .立 的直线L y 勺参数方程如何建 ’ e (cos ,sin ) M(x,y) M °M (x,y ) (x 。y °)| (x X 。,y y 。) 1.由图可以看出:M °M 〃e e / M o (x),y 。) 存在唯一的实数t R 使得M te

2017参数方程学案.doc

第2讲 参数方程 【考情分析】 考查直线、圆和圆锥曲线的参数方程以及简单的应用问题. 基础梳理 1.参数方程的意义 在平面直角坐标系中,如果曲线上的任意一点的坐标x ,y 都是某个变量的函数??? x =f (t ),y =f (t ), 并且对于t 的每个允许值,由方程组所确定的点M (x ,y )都在这条曲线上,则该方程叫曲线的参数方程,联系变数x ,y 的变数t 是参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程. 2.常见曲线的参数方程的一般形式 (1)经过点P 0(x 0,y 0),倾斜角为α的直线的参数方程为??? x =x 0+t cos α, y =y 0+t sin α(t 为参 数). 设P 是直线上的任一点,则t 表示有向线段P 0P → 的数量. (2)圆的参数方程??? x =r cos θ, y =r sin θ(θ为参数). (3)圆锥曲线的参数方程 椭圆x 2a 2+y 2 b 2=1的参数方程为??? x =a cos θ,y =b sin θ(θ为参数). 双曲线x 2a 2-y 2 b 2=1的参数方程为??? x =a sec φ,y =tan φ(φ为参数). 抛物线y 2=2px 的参数方程为??? x =2pt 2,y =2pt (t 为参数). 双基自测 1.极坐标方程ρ=cos θ和参数方程??? x =-1-t , y =2+t (t 为参数)所表示的图形分别 是( ).

A .直线、直线 B .直线、圆 C .圆、圆 D .圆、直线 解析 ∵ρcos θ=x ,∴cos θ=x ρ代入到ρ=cos θ,得ρ=x ρ,∴ρ2=x ,∴x 2+y 2=x 表示圆. 又∵??? x =-1-t ,y =2+t ,相加得x +y =1,表示直线. 答案 D 2.若直线??? x =1-2t , y =2+3t (t 为实数)与直线4x +ky =1垂直,则常数k =________. 解析 参数方程??? x =1-2t , y =2+3t ,所表示的直线方程为3x +2y =7,由此直线与直线 4x +ky =1垂直可得-32×? ???? -4k =-1,解得k =-6. 答案 -6 3.二次曲线??? x =5cos θ, y =3sin θ(θ是参数)的左焦点的坐标是________. 解析 题中二次曲线的普通方程为x 225+y 2 9=1左焦点为(-4,0). 答案 (-4,0) 4.(2011·广州调研)已知直线l 的参数方程为:??? x =2t , y =1+4t (t 为参数),圆C 的极 坐标方程为ρ=22sin θ,则直线l 与圆C 的位置关系为________. 解析 将直线l 的参数方程:??? x =2t , y =1+4t 化为普通方程得,y =1+2x ,圆ρ=22 sin θ的直角坐标方程为x 2+(y -2)2=2,圆心(0,2)到直线y =1+2x 的距离为 2-1 1+4 ,因为该距离小于圆的半径,所以直线l 与圆C 相交. 答案 相交

直线的参数方程(t的几何意义)复习教案

二轮复习:选修4-4 直线的标准参数方程t 的几何意义应用 一.考纲要求: 参数方程 1. 了解参数方程,了解参数的意义; 2. 能选择适当的参数写出直线、圆和圆锥曲线的参数方程。 二. 一轮知识课前回顾(请同学们独立默写完成) 1. 过点,倾斜角为的直线标准参数方程为____________________ 其中t 的意义如下: 设,则是直线方向上的单位向量, 若M 为直线上任一点,则, ,即直线上动点M 到定点的距离,等于直线标准参数方程中参数t 的__________ 即 ?? ?+=+=)(为参数t Bt n y At m x 为直线标准参数方程的条件为:①=+22B A __________ ②______>0 2.直线的非标准参数处理方案 ①转为________方程解决问题. ②转为标准参数方程: 如: 将直线:(为参数)的方程化为标准参数方程____________________ 3.已知过点M 0(x 0,y 0)的直线的参数方程为:(为参数),点M 、N 为直线l 上相异两点,点M 、N 所对应的参数分别为、, 请根据下列图象判断、的符号以及用、表示下列线段长度: (2) (3) 请用、表示线段长度: 4.若点Q 是线段MN 的中点,则点Q 对应的参数t=_________ ()000,y x M αl ()ααsin ,cos =e l ______=l e t M M =0_________=()000,y x M l ???? ?= 方向向下 ,若方向向上 若M M M M 000______,||l 222x t y t =+??=-? t l ???+=+=α α sin cos 00t y y t x x t 1t 2t 1t 2t 1t 2t ()11t 2t

2.1.3参数方程与普通方程的互化(教学设计)

2.1.3 参数方程与普通方程互化(教学设计) 教学目标: 知识与技能:掌握参数方程化为普通方程几种基本方法 过程与方法:选取适当的参数化普通方程为参数方程 情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识。 教学重点:参数方程与普通方程的互化 教学难点:参数方程与普通方程的等价性 教学过程: 一、复习引入: 1、圆的参数方程; (1)圆2 22r y x =+参数方程? ??==θθsin cos r y r x (θ为参数) (2)圆2 2020)\()(r y y x x =+-参数方程为:???+=+=θθ sin cos 00r y y r x x (θ为参数) 2、参数方程的定义 二、师生互动,新课讲解: 小结: 1、参数方程化为普通方程的过程就是消参过程常见方法有三种: (1) 代入法:利用解方程的技巧求出参数t ,然后代入消去参数 (2) 三角法:利用三角恒等式消去参数 (3) 整体消元法:根据参数方程本身的结构特征,从整体上消去。 化参数方程为普通方程为0),(=y x F :在消参过程中注意变量x 、y 取值范围的一致性,必须根据

参数的取值范围,确定)(t f 和)(t g 值域得x 、y 的取值范围。 2、探析常见曲线的参数方程化为普通方程的方法,体会互化过程,归纳方法。 3、理解参数方程与普通方程的区别于联系及互化要求。 答:B 变式训练2:曲线y=x 2的一种参数方程是( D ) 例3:指出下列参数方程表示什么曲线: (1)?????x =3cos θ,y =3sin θ????θ为参数,0<θ<π 2; (2)?????x =2cos t , y =2sin t (t 为参数,π≤t ≤2π); (3)? ????x =3+15cos θ,y =2+15sin θ(θ为参数,0≤θ<2π). 2 224 sin A B C sin x t x t x t x y t y t y t y t ==??=??=??????====??????、、、、

相关主题
文本预览
相关文档 最新文档