当前位置:文档之家› 精品高三复习练习题:基本不等式

精品高三复习练习题:基本不等式

精品高三复习练习题:基本不等式
精品高三复习练习题:基本不等式

1.设点2(1)(0)2t P t t +,>,则|OP uuu r |(O 为坐标原点)的最小值是( ) A.3 B.5 C.3 D.5

答案:D

解析:由已知得|OP uuu r |22()12t t

=++≥22(2)152t t ?+=,当22t t =即t=2时取得等号. 2.若a>0,b>0,a,b 的等差中项是12,且1a a α=+,β=1b b

+,则αβ+的最小值为( ) A.2

B.3

C.4

D.5

答案:D

解析:因为a+b=1, 所以111111a b a b a b αβ+=+++=++=+1+15b a a b

++≥, 故选D.

3.已知304

x <<,则函数y=5x(3-4x)的最大值为 . 答案:4516

解析:因为304x <<,所以304

x ->, 所以y=5x(334)20()4

x x x -=- 2345420()216

x x +-≤=, 当且仅当34x x =-,即38

x =时等号成立. 4.如下图,某药店有一架不准确的天平(其两臂长不相等)和一个10克的砝码,一个患者想要买20克的中药,售货员先将砝码放在左盘上,放置药品于右盘上,待平衡后交给患者;然后又将砝码放在右盘上,放置药品于左盘上,待平衡后再交给患者.设患者此次实际购买的药量为m(克),则m 20克.(请选择填”>““<“或”=”)

答案:>

解析:设两次售货员分别在盘中放置1m 、2m 克药品, 则 12121010a m b b m a m m m =,??=,??=+.?

前两个式子相乘,得12100ab m m ab =?,

得12100m m =,因为12m m ≠,

所以1212220m m m m m =+>=,所以填”>“.

题组一 利用基本不等式证明不等式

1.设a>b>0,则211()

a a

b a a b ++-的最小值是 ( )

A.1

B.2

C.3

D.4

答案:D 解析:2110()a b a ab a a b >>,++- 2222222()()2a a a a ab a ab ab a ab =+≥+-+- 2442

a a =+≥.

2.已知a 、b 、(0)c ∈,+∞且a+b+c=1,求证:111(1)(1)(1)8a b c

---≥. 证明:∵a 、b 、(0)c ∈,+∞且a+b+c=1,

∴111(1)(1)(1)a b c

--- (1)(1)(1)a b c abc

---= ()()()b c a c a b abc

+++= 2228bc ac ab ??≥=. 当且仅当13

a b c ===时取等号. 题组二 利用基本不等式求最值

3.设x 、y 均为正实数,且33122x y

+=,++则xy 的最小值为( ) A.4 B.43 C.9 D.16

答案:D

解析:由33122x y

+=++可得xy=8+x+y. ∵x,y 均为正实数,

∴882(xy x y xy =++≥+当且仅当x=y=4时等号成立),

即280xy xy --≥,

可解得4xy ≥,即16xy ≥,故xy 的最小值为16.

4.已知x y ,∈R +,且满足134

y x +=,则xy 的最大值为 . 答案:3

解析:因为x>0,y>0,所以23434

3y y xy x x +≥?=,即13

xy ≤,解得3xy ≤,所以其最大值为3. 5.已知t>0,则函数241t t y t

-+=的最小值为 . 答案:-2 解析:241142(t t y t t t

-+==+-≥-∵t>0),当且仅当t=1时min 2y ,=-. 6.若直线ax-by+2=0(a>0,b>0)和函数1()1(0x f x a a +=+>且1)a ≠的图象恒过同一个定点,则当

11a b

+取最小值时,函数f(x)的解析式是 .

答案:1()(222)1x f x +=-+ 解析:函数1()1x f x a +=+的图象恒过(-1,2),故

331111111()()222222b a a b a b a b a b a b +=,+=++=++≥+.当且仅当22

b a =时取等号,将22

b a =代入112a b +=得222a =-,故1()(222)1x f x +=-+. 题组三 基本不等式的实际应用

7.某人要买房,随着楼层的升高,上下楼耗费的精力增多,因此不满意度升高,当住第n 层楼时,上下

楼造成的不满意度为n,但高处空气清新,嘈杂音较小,环境较为安静,因此随楼层升高,环境不满意度降低,设住第n 层楼时不满意度为8n

,则此人应选( ) A.1楼

B.2楼

C.3楼

D.4楼

答案:C 解析:应是不满意度之和最小,即8n n +最小.当8n n +最小时,有8222n n n

=?=≈.828,而n 为整数,故取n=3.选C.

8.某公司租地建仓库,每月土地占用费1y 与仓库到车站的距离成反比,而每月库存货物的运费2

y 与到车站的距离成正比,如果在距离车站10千米处建仓库,这两项费用1y 和2y 分别为2万元和8万元,那么,要使这两项费用之和最小,仓库应建在离车站 千米处.

答案:5

解析:设仓库建在离车站d 千米处,

由已知11210

k y ==,得120k =,∴120y d =, 22810y k ==?,得425k =,∴425y d =,

∴122042042855

d d y y d d +=+≥?=, 当且仅当2045

d d =,即d=5时,费用之和最小. 9.某造纸厂拟建一座平面图形为矩形且面积为162平方米的三级污水处理池,池的深度一定(平面

图如图所示),如果池四周围墙建造单价为400元/米,中间两道隔墙建造单价为248元/米,池底建造单价为80元/米2

,水池所有墙的厚度忽略不计.

试设计污水处理池的长和宽,使总造价最低,并求出最低总造价.

解:设污水处理池的宽为x 米,则长为162x

米. 则总造价2162()400(2)2482801621f x x x x ?=?++?+?= 129610029612x x

?++ 960 =1 100296()12x x

++ 960 1≥ 100296212x x

?? 960=38 880(元), 当且仅当100(0)x x x

=>, 即x=10时取等号.

∴当长为16.2米,宽为10米时总造价最低,最低总造价为38 880元.

题组四 基本不等式的综合应用

10.若a 是2b -与2b +的等比中项,则2ab a b ||+||的最大值为( ) A.2 B.1 C.

24 D.22

答案:B 解析:∵a 是2b -与2b +的等比中项,

∴22

2a b =-,即222a b +=. 根据基本不等式知222212

a b ab a b a b a b ||?||+≤≤=||+||||+||. 当且仅当a=b=1或a=b=-1时等号成立.

即2ab a b ||+||

的最大值为1. 11.某单位用2 160万元购得一块空地,计划在该地块上建造一栋至少10层、每层2 000平方米的楼房.经测算,如果将楼房建为(10)x x ≥层,则每平方米的平均建筑费用为560+48x(单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用)=购地总费用建筑总面积

解:设将楼房建为x 层,则每平方米的平均购地费用为4

216010

108002000x x ?=. ∴每平方米的平均综合费用

108002255604856048()y x x x x

=++=++. ∵x>0,

∴225225230x x x x

+≥?=, 当且仅当225x x

=,即x=15时,等号成立. 所以当x=15时,y 有最小值为2 000元.

因此该楼房建为15层时,每平方米的平均综合费用最小.

基本不等式练习题及标准答案

基本不等式练习题及答案

————————————————————————————————作者:————————————————————————————————日期:

双基自测 1.(人教A 版教材习题改编)函数y =x +1 x (x >0)的值域为( ). A .(-∞,-2]∪[2,+∞) B .(0,+∞) C .[2,+∞) D .(2,+∞) 2.下列不等式:①a 2+1>2a ;②a +b ab ≤2;③x 2+1 x 2+1≥1,其中正确的个数是 ( ). A .0 B .1 C .2 D .3 3.若a >0,b >0,且a +2b -2=0,则ab 的最大值为( ). A.1 2 B .1 C .2 D .4 4.(2011·重庆)若函数f (x )=x + 1 x -2 (x >2)在x =a 处取最小值,则a =( ). A .1+ 2 B .1+ 3 C .3 D .4 5.已知t >0,则函数y =t 2-4t +1 t 的最小值为________. 考向一 利用基本不等式求最值 【例1】?(1)已知x >0,y >0,且2x +y =1,则1x +1 y 的最小值为________; (2)当x >0时,则f (x )= 2x x 2+1 的最大值为________. 【训练1】 (1)已知x >1,则f (x )=x + 1 x -1 的最小值为________. (2)已知0<x <2 5,则y =2x -5x 2的最大值为________. (3)若x ,y ∈(0,+∞)且2x +8y -xy =0,则x +y 的最小值为________. 考向二 利用基本不等式证明不等式 【例2】?已知a >0,b >0,c >0,求证:bc a +ca b +ab c ≥a +b +c . .

用基本不等式解决应用题

用基本不等式解决应用题 例1.某工厂利用辐射对食品进行灭菌消毒,现准备在该厂附近建一职工宿舍,并对宿舍进行防辐射处理,建房防辐射材料的选用与宿舍到工厂距离有关.若建造宿舍的所有费用p (万元)和宿舍与工厂的距离()x km 的关系为:(08)35 k p x x = ≤≤+,若距离为1km 时,测算宿舍建造费用为100万元.为了交通方便,工厂与宿舍之间还要修一条道路,已知购置修路设备需5万元,铺设路面每公里成本为6万元,设()f x 为建造宿舍与修路费用之和. (1)求()f x 的表达式; (2)宿舍应建在离工厂多远处,可使总费用()f x 最小,并求最小值. 变式:某学校为了支持生物课程基地研究植物生长,计划利用学校空地建造一间室面积为900m 2的矩形温室,在温室划出三块全等的矩形区域,分别种植三种植物,相邻矩形区域之间间隔1m ,三块矩形区域的前、后与墙各保留 1m 宽的通道,左、右两块矩形区域分别与相邻的左右墙保留 3m 宽的通道,如图.设矩形温室的室长为x (m ),三块种植植物的矩形区域的总面积...为S (m 2). (1)求S 关于x 的函数关系式; (2)求S 的最大值. 17.解:(1)由题设,得

N T M H G F E D C B A ()9007200822916S x x x x ?? =--=--+ ??? ,()8,450x ∈. ………………………6分 (2)因为8450x << ,所以72002240x x + ≥, ……………………8分 当且仅当60x =时等号成立. ………………………10分 从而676S ≤. ………………………12分 答:当矩形温室的室长为60 m 时,三块种植植物的矩形区域的总面积最大,最大为 676m 2 . ………………………14分 例2.某小区想利用一矩形空地ABCD 建市民健身广场,设计时决定保留空地边上的一水塘(如图中阴影部分),水塘可近似看作一个等腰直角三角形,其中60AD m =,40AB m =,且EFG ?中,90EGF ∠=,经测量得到10,20AE m EF m ==.为保证安全同时考虑美观,健身广场周围准备加设一个保护栏.设计时经过点G 作一直线交,AB DF 于N M ,,从而得到五边形MBCDN 的市民健身广场,设()DN x m =. (1)将五边形MBCDN 的面积y 表示为x 的函数; (2)当x 为何值时,市民健身广场的面积最大?并求出最大面积. 变式. 某单位拟建一个扇环面形状的花坛(如图所示),该扇环面是由以点O 为圆

基本不等式练习题及答案

双基自测 1.(人教A版教材习题改编)函数y=x+1 x (x>0)的值域为( ). A.(-∞,-2]∪[2,+∞) B.(0,+∞) C.[2,+∞) D.(2,+∞) 2.下列不等式:①a2+1>2a;②a+b ab ≤2;③x2+ 1 x2+1 ≥1,其中正确的个 数是 ( ).A.0 B.1 C.2 D.3 3.若a>0,b>0,且a+2b-2=0,则ab的最大值为( ). B.1 C.2 D.4 4.(2011·重庆)若函数f(x)=x+ 1 x-2 (x>2)在x=a处取最小值,则a= ( ). A.1+ 2 B.1+ 3 C.3 D.4 5.已知t>0,则函数y=t2-4t+1 t 的最小值为________. 考向一利用基本不等式求最值 【例1】?(1)已知x>0,y>0,且2x+y=1,则1 x + 1 y 的最小值为________; (2)当x>0时,则f(x)= 2x x2+1 的最大值为________. 【训练1】 (1)已知x>1,则f(x)=x+ 1 x-1 的最小值为________. (2)已知0<x<2 5 ,则y=2x-5x2的最大值为________. (3)若x,y∈(0,+∞)且2x+8y-xy=0,则x+y的最小值为________. 考向二利用基本不等式证明不等式

【例2】?已知a>0,b>0,c>0,求证:bc a + ca b + ab c ≥a+b+c. . 【训练2】已知a>0,b>0,c>0,且a+b+c=1. 求证:1 a + 1 b + 1 c ≥9. 考向三利用基本不等式解决恒成立问题 【例3】?(2010·山东)若对任意x>0, x x2+3x+1 ≤a恒成立,则a的取值 范围是________. 【训练3】(2011·宿州模拟)已知x>0,y>0,xy=x+2y,若xy≥m-2恒成立,则实数m的最大值是________. 考向三利用基本不等式解实际问题 【例3】?某单位建造一间地面面积为12 m2的背面靠墙的矩形小房,由于地理位置的限制,房子侧面的长度x不得超过5 m.房屋正面的造价为400元/m2,房屋侧面的造价为150元/m2,屋顶和地面的造价费用合计为5 800元,如果墙高为3 m,且不计房屋背面的费用.当侧面的长度为多少时,总造价最低【训练3】(2011·广东六校第二次联考)东海水晶制品厂去年的年产量为10万件,每件水晶产品的销售价格为100元,固定成本为80元.从今年起,工厂投入100万元科技成本.并计划以后每年比上一年多投入100万元科技成本.预计产量每年递增1万件,每件水晶产品的固定成本g(n)与科技成本的投入次数n 的关系是g(n)=80 n+1 .若水晶产品的销售价格不变,第n次投入后的年利润为 f(n)万元. (1)求出f(n)的表达式; (2)求从今年算起第几年利润最高最高利润为多少万元 【试一试】(2010·四川)设a>b>0,则a2+ 1 ab + 1 a a-b 的最小值是 ( ). A.1 B.2 C.3 D.4 双基自测

基本不等式练习题

不等式练习题 一、 基本题型 1、若0x >,求31y x x =--的最大值。 2、若22l g l g 2o x o y +=,求14x y +的最大值。 3、若lg 2lg 42x y +=,且0,0x y >>,求lg lg x y +的最大值。 4、若0,0a b >>,且142a b +=,求ab 的最小值。 5、若1x >,求11 y x x =+-的最小值。 6、若302 x <<,求()32y x x =-的最大值。 7、若52x <,求1225 y x x =+-的最大值。 8、求2 y = 9、求4sin sin y x x =+在()0,x π∈上的最小值。 10、若0,0x y >>,且3xy x y =++,求xy 的范围。 11、求()2801 x y x x +=≥+的最值。 12、0,0x y >>,且21x y +=,求41x y +的最小值。 13、0t >,求241t t y t -+=的最小值。 二、选择题 1、,a b R ∈且0ab >,则下列不等式不正确的是( ) .||A a b a b +>- .||||||B a b a b +<+ .||C a b ≤+ .2b a D a b +≥ 2、(),0,,1,22a b a b a b M ∈+∞+==+,则M 的整数部分是( ) .1A .2B .3C .4D 3、(),0,x y ∈+∞且()19a x y x y ??++≥ ???恒成立,则正实数a 的最小值为()

.2A .4B .6C .8D 4、 0,0a b >>则11a b ++() .2A B .4C .5D 5、 ,,1,1x y R a b ∈>>,若3,x y a b a b ==+=11x y +的最大值为() .2A 3.2B .1C 1.2D 6、 ()()1210f x x x x =+-<,则()f x 有() .A 最大值 .B 最小值 .C 增函数 .D 减函数 7、函数()21log 511y x x x ??=++> ?-??的最小值为() .3A - .3B .4C .4D - 8、 0,0a b >>3a 与3b 的等比中项,则11a b +的最小值为() .8A .4B .1C 1.4D 9、0,0,2a b a b ≥≥+=则() 1.2A a b ≤ 1.2B ab ≥ 2 2.2C a b +≥ 22.3D a b +≤ 10、若0,0x y >>且23x y +=则24x y +的最小值为() .A B C .4D 11、下列结论正确的是() 1 .01,l g 2 lg A x x x x >≠+≥当且 .2B x >≥ 1.22C x x ≥当时,+x 的最小值为 1.02,D x x x <<-无最大值

用基本不等式解决应用题

1文档来源为:从网络收集整理.word 版本可编辑. N T M H G F E D C B A 用基本不等式解决应用题 例1.某工厂利用辐射对食品进行灭菌消毒,现准备在该厂附近建一职工宿舍,并对宿舍进行防辐射处理,建房防辐射材料的选用与宿舍到工厂距离有关.若建造宿舍的所有费用p (万元)和宿舍与工厂的距离()x km 的关系为:(08)35 k p x x =≤≤+,若距离为1km 时,测算宿舍建造费用为100万元.为了交通方便,工厂与宿舍之间还要修一条道路,已知购置修路设备需5万元,铺设路面每公里成本为6万元,设()f x 为建造宿舍与修路费用之和. (1)求()f x 的表达式; (2)宿舍应建在离工厂多远处,可使总费用()f x 最小,并求最小值. 变式:某学校为了支持生物课程基地研究植物生长,计划利用学校空地建造一间室内面积为900m 2的矩形温室,在温室内划出三块全等的矩形区域,分别种植三种植物,相邻矩形区域之间间隔1m ,三块矩形区域的前、后与内墙各保留 1m 宽的通道,左、右两块矩形区域分别与相邻的左右内墙保留 3m 宽的通道,如图.设矩形温室的室内长为x (m ),三块种植植物的矩形区域的总面积... 为S (m 2). (1)求S 关于x 的函数关系式; (2)求S 的最大值. 17.解:(1)由题设,得 ()9007200822916S x x x x ??=--=--+ ??? ,()8,450x ∈. ………………………6分 (2)因为8 450x <<,所以72002240x x +≥, ……………………8分 当且仅当60x =时等号成立. ………………………10分 从而676S ≤. ………………………12分 答:当矩形温室的室内长为60 m 时,三块种植植物的矩形区域的总面积最大,最大为676m 2 . ………………………14分 例2.某小区想利用一矩形空地ABCD 建市民健身广场,设计时决定保留空地边上的一水塘(如图中阴影部分),水塘可近似看作一个等腰直角三角形,其中60AD m =,40AB m =,且EFG ?中,90EGF ∠=,经测量得到10,20AE m EF m ==.为保证安全同时考虑美观,健身广场周围准备加设一个保护栏.设计时经过点G 作一直线交,AB DF 于N M ,,从而得到五边形MBCDN 的市民健身广场,设()DN x m =. (1)将五边形MBCDN 的面积y 表示为x 的函数;

最新基本不等式练习题及答案

双基自测 1.(人教A 版教材习题改编)函数y =x +1 x (x >0)的值域为( ). A .(-∞,-2]∪[2,+∞) B .(0,+∞) C .[2,+∞) D .(2,+∞) 2.下列不等式:①a 2+1>2a ;②a +b ab ≤2;③x 2+1 x 2+1≥1,其中正确的个数是 ( ). A .0 B .1 C .2 D .3 3.若a >0,b >0,且a +2b -2=0,则ab 的最大值为( ). A.1 2 B .1 C .2 D .4 4.(2011·重庆)若函数f (x )=x + 1 x -2 (x >2)在x =a 处取最小值,则a =( ). A .1+ 2 B .1+ 3 C .3 D .4 5.已知t >0,则函数y =t 2-4t +1 t 的最小值为________. 考向一 利用基本不等式求最值 【例1】?(1)已知x >0,y >0,且2x +y =1,则1x +1 y 的最小值为________; (2)当x >0时,则f (x )= 2x x 2 +1 的最大值为________. 【训练1】 (1)已知x >1,则f (x )=x + 1 x -1 的最小值为________. (2)已知0<x <2 5,则y =2x -5x 2的最大值为________. (3)若x ,y ∈(0,+∞)且2x +8y -xy =0,则x +y 的最小值为________. 考向二 利用基本不等式证明不等式 【例2】?已知a >0,b >0,c >0,求证:bc a +ca b +ab c ≥a +b +c . .

【训练2】 已知a >0,b >0,c >0,且a +b +c =1. 求证:1a +1b +1 c ≥9. 考向三 利用基本不等式解决恒成立问题 【例3】?(2010·山东)若对任意x >0,x x 2+3x +1≤a 恒成立,则a 的取值范围是 ________. 【训练3】 (2011·宿州模拟)已知x >0,y >0,xy =x +2y ,若xy ≥m -2恒成立,则实数m 的最大值是________. 考向三 利用基本不等式解实际问题 【例3】?某单位建造一间地面面积为12 m 2的背面靠墙的矩形小房,由于地理位置的限制,房子侧面的长度x 不得超过5 m .房屋正面的造价为400元/m 2,房屋侧面的造价为150元/m 2,屋顶和地面的造价费用合计为5 800元,如果墙高为3 m ,且不计房屋背面的费用.当侧面的长度为多少时,总造价最低? 【训练3】 (2011·广东六校第二次联考)东海水晶制品厂去年的年产量为10万件,每件水晶产品的销售价格为100元,固定成本为80元.从今年起,工厂投入100万元科技成本.并计划以后每年比上一年多投入100万元科技成本.预计产量每年递增1万件,每件水晶产品的固定成本g (n )与科技成本的投入次数n 的关系是g (n )= 80 n +1 .若水晶产品的销售价格不变,第n 次投入后的年利润为f (n )万元. (1)求出f (n )的表达式; (2)求从今年算起第几年利润最高?最高利润为多少万元? 【试一试】 (2010·四川)设a >b >0,则a 2+1 ab +1 a (a - b ) 的最小值是( ). A .1 B .2 C .3 D .4 双基自测 D .(2,+∞) 答案 C 2.解析 ①②不正确,③正确,x 2+ 1x 2+1=(x 2 +1)+1x 2+1 -1≥2-1=1.答案 B 3.解析 ∵a >0,b >0,a +2b =2,∴a +2b =2≥22ab ,即ab ≤1 2.答案 A

均值不等式应用题

均值不等式应用 2为处理含有某种杂质的污水,要制造一个底宽为2米的无盖长方体沉淀箱(如图),污水从A 孔流入,经沉淀后从B 孔流出,设箱体的长度为a 米,高度为b 米,已知流出的水中该杂质的质量分数与a 、b 的乘积ab 成反比,现有制箱材料60平方米,问当a 、b 各为多少米时,经沉淀后流出的水中该杂质的质量分数最小(A 、B 孔的面积忽略不计)? 3..某单位决定投资3200元建一仓库(长方体状),高度恒定,它的后墙利用旧墙不花钱,正面用铁栅,每米长造价40元,两侧墙砌砖,每米长造价45元,顶部每平方米造 价20元,求: (1)仓库面积S 的最大允许值是多少? (2)为使S 达到最大,而实际投资又不超过预算,那么正面铁栅应设计为多长? 4. 如图,某海滨浴场的岸边可近似的看成直线,位于岸边A 处的救生员发现海中B 处有人求救,救生员没有直接从A 处游向B 处,而沿岸边自A 跑到距离B 最近的D 处,然后游向B 处,若救生员在岸边的行速为6米/秒,在海中的行进速度为2米/秒, ⑴分析救生员的选择是否正确; ⑵在AD 上找一点C ,是救生员从A 到B 的时间为最短,并求出最短时间。 5. 某工厂去年的某产品的年产量为100万只,每只产品的销售价为10元,固定成本为8元.今年,工厂第一次投入100万元(科技成本),并计划以后每年比上一年多投入 100万元(科技成本),预计产量年递增10万只,第n 次投入后,每只产品的固定成本为 1 )(+= n k n g (k >0,k 为常数,Z ∈n 且n ≥0),若产品销售 价保持不变,第n 次投入后的年利润为 )(n f 万元. (1)求k 的值,并求出 )(n f 的表达式; (2)问从今年算起第几年利润最高?最高利润为多少万元? 6. 已知水渠在过水断面面积为定值的情况下,过水湿周越小,其流量越大. 现有以下两种设计,如图: 图①的过水断面为等腰△ABC ,AB =BC ,过水湿周 BC AB l +=1.图②的过水断面为等腰梯形ABCD ,AB =CD ,AD ∥BC ,∠BAD =60°,过水湿周 CD BC AB l + +=2. 若△ABC 与梯形ABCD 的面积都为S , 图① 图② 米 C D B

基本不等式练习题(带答案)

《基本不等式》同步测试 一、选择题,本大题共10小题,每小题4分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 若 a ∈R ,下列不等式恒成立的是 ( ) A .21a a +> B .2 111 a <+ C .296a a +> D .2 lg(1)lg |2|a a +> 2. 若0a b <<且1a b +=,则下列四个数中最大的是 ( ) A. 1 2 B.22a b + C.2ab D.a 3. 设x >0,则1 33y x x =-- 的最大值为 ( ) A.3 B.332- C.3-23 D.-1 4. 设,,5,33x y x y x y ∈+=+R 且则的最小值是( ) A. 10 B. 63 C. 46 D. 183 5. 若x , y 是正数,且 14 1x y +=,则xy 有 ( ) A.最大值16 B.最小值 116 C.最小值16 D.最大值116 6. 若a , b , c ∈R ,且ab +bc +ca =1, 则下列不等式成立的是 ( ) A .2222a b c ++≥ B .2 ()3a b c ++≥ C . 11123a b c + + ≥ D .3a b c ++≤ 7. 若x >0, y >0,且x +y ≤4,则下列不等式中恒成立的是 ( ) A . 114x y ≤+ B .111x y +≥ C .2xy ≥ D .1 1xy ≥ 8. a ,b 是正数,则 2,, 2 a b ab ab a b ++三个数的大小顺序是 ( ) A.22a b ab ab a b +≤≤+ B.22a b ab ab a b +≤≤ + C. 22ab a b ab a b +≤≤+ D.22 ab a b ab a b +≤≤ + 9. 某产品的产量第一年的增长率为p ,第二年的增长率为q ,设这两年平均增长率为x ,则有( ) A.2p q x += B.2p q x +< C.2p q x +≤ D.2 p q x +≥ 10. 下列函数中,最小值为4的是 ( ) A.4y x x =+ B.4sin sin y x x =+ (0)x π<<

三年中考数学不等式组及应用题精选

华师大版七年级下数学:一元一次不等式(组) 一、知识导航图 一元一次不等式(组)的应用 一元一次不等式(组)的解法一元一次不等式(组)解集的含义一元一次不等式(组)的概念 不等式的性质 一元一次不等式和一元一次不等式组 二、课标要求 三、知识梳理 1.判断不等式是否成立 判断不等式是否成立,关键是分析判定不等号的变化,变化的依据是不等式的性质,特别注意的是,不等式两边都乘以(或除以)同一个负数时,要改变不等号方向;反之,若不等式的不等号方向发生改变,则说明不等式两边同乘以(或除以)了一个负数.因此,在判断不等式成立与否或由不等式变形求某些字母的范围时, 要认真观察不等式的形式与不等号方向. 2.解一元一次不等式(组) 解一元一次不等式的步骤与解一元一次方程的步骤大致相同,应注意的是,不等式两边所乘以(或除以)的数的正负,并根据不同情况灵活运用其性质,不等式组解集的确定方法:若a?? >? 的解集是x>b,即“大大取大”. (3) 00a b >??

(4)00a b ? 的解集是空集,即“大大小小取不了”. 一元一次不等式(组)常与分式、根式、一元二次方程、函数等知识相联系,解决综合性问题。 3.求不等式(组)的特殊解 不等式(组)的解往往是有无数多个,但其特殊解在某些范围内是有限的,如整数解、非负整数解,要求这些特殊解,首先是确定不等式(组)的解集, 然后再找到相应的答案.注意应用数形结合思想. 4.列不等式(组)解应用题 注意分析题目中的不等量关系,考查的热点是与实际生活密切相联的不等式(组)应用题. 四、题型例析 1.判断不等式是否成立例1 2.在数轴上表示不等式的解集例2 3.求字母的取值范围例3 4.解不等式组例4 5.列不等式(组)解应用题例5 一元一次不等式(组) 【课前热身】 【知识点链接】 1.不等式的有关概念:用 连接起来的式子叫不等式;使不等式成立的 的值叫做不等式的解;一个含有 的不等式的解的 叫做不等式的解集.求一个不等式的 的过程或证明不等式无解的过程叫做解不等式. 2.不等式的基本性质: (1)若a <b ,则a +c c b +; (2)若a >b ,c >0则ac bc (或 c a c b ); (3)若a >b ,c <0则ac bc (或c a c b ). 3.一元一次不等式:只含有 未知数,且未知数的次数是 且系数 的不等式,称为一元一次不等式;一元一次不等式的一般形式为 或ax b <;解一元一次不等式的一般步骤:去分母、 、移项、 、系数化为1. 4.一元一次不等式组:几个 合在一起就组成一个一元一次不等式组. 一般地,几个不等式的解集的 ,叫做由它们组成的不等式组的解集. 5.由两个一元一次不等式组成的不等式组的解集有四种情况:(已知a b <) x a x b ??>? 的解集是x b >,即“大大取大”; x a x b >??

基本不等式练习题(带答案)(优.选)

基本不等式 1. 若 a ∈R ,下列不等式恒成立的是 ( ) A .21a a +> B .2111 a <+ C .296a a +> D .2 lg(1)lg |2|a a +> 2. 若0a b <<且1a b +=,则下列四个数中最大的是 ( ) A. 1 2 B.22a b + C.2ab D.a 3. 设x >0,则1 33y x x =-- 的最大值为 ( ) A.3 B.3- C.3- D.-1 4. 设,,5,33x y x y x y ∈+=+R 且则的最小值是( ) A. 10 B. C. D. 5. 若x , y 是正数,且 14 1x y +=,则xy 有 ( ) A.最大值16 B.最小值 116 C.最小值16 D.最大值116 6. 若a , b , c ∈R ,且ab +bc +ca =1, 则下列不等式成立的是 ( ) A .2222a b c ++≥ B .2 ()3a b c ++≥ C . 111a b c + + ≥ D .a b c ++≤ 7. 若x >0, y >0,且x +y ≤4,则下列不等式中恒成立的是 ( ) A .114x y ≤+ B .111x y +≥ C 2≥ D .1 1xy ≥ 8. a ,b 是正数,则 2,2 a b ab a b ++三个数的大小顺序是 ( ) A.22a b ab a b ++ 22a b ab a b +≤≤ + C. 22ab a b a b ++ D.22 ab a b a b +≤ + 9. 某产品的产量第一年的增长率为p ,第二年的增长率为q ,设这两年平均增长率为x ,则有( ) A.2p q x += B.2p q x +< C.2p q x +≤ D.2 p q x +≥ 10. 下列函数中,最小值为4的是 ( ) A.4y x x =+ B.4sin sin y x x =+ (0)x π<< C.e 4e x x y -=+ D.3log 4log 3x y x =+ 11. 函数y =的最大值为 .

集合、不等式基础测试题

集合、不等式测试卷 班级 姓名 得分 一、单项选择题(本大题共10小题,每小题4分,共40分) 1. 1、已知集},2|{N n n x x P ∈==,},4|{N n n x x T ∈==,则P T =U A. },4|{N n n x x ∈= B. },2|{N n n x x ∈= C. },|{N n n x x ∈= D. },4|{Z n n x x ∈= 2、01=-x 是012=-x 的 A .充要条件 B. 必要而非充分条件 C .充分而非必要条件 D. 既非充分也非必要条件] 3. 若a >b >0,c ∈R ,则下列不等式中不正确的是( ) A . a > b B . ab >b 2 C.a + c >b +c D. ac >bc 4. 已知集合{} 12≤-=x x A ,=B {}2>x x ,则=B A I A .{}32≤x x D . {}3≥x x 5. 设集合{|03,},M x x x N =≤<∈则M 的真子集个数为 A.3 B.6 C.7 D.8 的 是则有实根, 的方程关于>设q p a c bx ax x q a ac b p )0(0:,)0(04:.622≠=++≠- A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分也不必要条件 {}{} {}2101,1,3,221.7....的值为 则实数若,,.已知集合D C B A x N M N M x -===I 8. 已知集合A={1,3,m },B={1,m},A ∪B=A ,则m= A.0或3 B.0或3 C.1或3 D.1或3 9.已知集合{}13M x x =-<,集合{} 260N x x x =--<,则A B =I A. {}23x x -<< B. {}24x x -<< C. {}3x x < D. {} 34x x << 10. 设集合{}|13,A x x x Z =-<∈,{}2|16,B x x x Z =≤∈ A B I = A . {1,2,3} B .{1,2,3,4} C . {-1,0,1,2,3} D .{0,1,2,3}

第课基本不等式经典例题练习附答案

第9课基本不等式 ◇考纲解读 ①了解基本不等式的证明过程. ②会用基本不等式解决简单的最大(小)值问题. ◇知识梳理 1.常用的基本不等式和重要的不等式 ①0,0,2≥≥∈a a R a 当且仅当,②22,______,2a b a b ab ∈+≥则 ③,_____a b ∈,则ab b a 2≥+,④222)2 (2b a b a +≤+ 2.最值定理:设,0,x y x y >+≥由 ①如积(xy P x y =+定值),则积有______②如积2(2S x y S x y += 定值),则积有______() 运用最值定理求最值的三要素: ________________________________________________ ◇基础训练 1.若1a b +=,恒有 () A .41 ≤ab B .41≥ab C .1622≤b a D .以上均不正确

2.当1 2x >时,821 y x x =+-的最小值为. 3.已知01x <<,则(12)y x x =-的最大值为. 4.实数,a b 满足22a b +=,则39a b +的最小值为. ◇典型例题 例1.求函数(5)(2)(1)1x x y x x ++= >-+的最小值. 例2.已知+∈R b a ,,且191,a b +=求a b +最小值. ◇能力提升 1.若+∈R b a ,,1)(=+-b a ab ,则b a +的最小值是() A .222+ B.25+ C.222- D.22 2.下列命题中正确的是() A .x x y 1+=的最小值是2 B .2 322++=x x y 的最小值是2 C .45 22++=x x y 的最小值是25D .x x y 432--=的最大值是342- 3.若+∈R b a ,满足3ab a b =++,则ab 的取值范围是________________. 4.若1x >时,不等式11x a x + ≥-恒成立,则实数a 的取值范围是____________. 5.若(4,1)x ∈-,求2221 x x x -+-的最大值.

高中不等式的基本知识点和练习题(含答案)

不等式的基本知识 (一)不等式与不等关系 1、应用不等式(组)表示不等关系; 不等式的主要性质: (1)对称性:a b b a (2)传递性:c a c b b a >?>>, (3)加法法则:c b c a b a +>+?>;d b c a d c b a +>+?>>,(同向可加) (4)乘法法则:bc ac c b a >?>>0,; bc ac c b a 0, bd ac d c b a >?>>>>0,0(同向同正可乘) (5)倒数法则:b a a b b a 1 10,> (6)乘方法则:)1*(0>∈>?>>n N n b a b a n n 且 (7)开方法则:)1*(0>∈>?>>n N n b a b a n n 且 2、应用不等式的性质比较两个实数的大小:作差法(作差——变形——判断符号——结论) 3、应用不等式性质证明不等式 (二)解不等式 1、一元二次不等式的解法 一元二次不等式()0002 2 ≠<++>++a c bx ax c bx ax 或的解集: 设相应的一元二次方程()002 ≠=++a c bx ax 的两根为2121x x x x ≤且、,ac b 42 -=?,则不等式的解的各种情况 如下表: 2、简单的一元高次不等式的解法: 标根法:其步骤是:(1)分解成若干个一次因式的积,并使每一个因式中最高次项的系数为正;(2)将每一个一次因式的根标在数轴上,从最大根的右上方依次通过每一点画曲线;并注意奇穿偶不穿;(3)根据曲线显现的符号变化规律,写出不等式的解集。()()()如:x x x +--<11202 3 3、分式不等式的解法:分式不等式的一般解题思路是先移项使右边为0,再通分并将分子分母分解因式,并使每一个因式中最高次项的系数为正,最后用标根法求解。解分式不等式时,一般不能去分母,但分母恒为正或恒为负时可去分母。 ()()0() () 0()()0;0()0 () ()f x g x f x f x f x g x g x g x g x ≥?>?>≥?? ≠? 4、不等式的恒成立问题:常应用函数方程思想和“分离变量法”转化为最值问题 若不等式()A x f >在区间D 上恒成立,则等价于在区间D 上()min f x A > 若不等式()B x f <在区间D 上恒成立,则等价于在区间D 上()max f x B < ()f x

基本不等式练习题(含答案)

基本不等式 1.函数y =x +1 x (x >0)的值域为( ). A .(-∞,-2]∪[2,+∞) B .(0,+∞) C .[2,+∞) D .(2,+∞) 2.下列不等式:①a 2+1>2a ;② a + b ab ≤2;③x 2+1 x 2+1≥1,其中正确的个数是 , ( ). A .0 B .1 C .2 D .3 3.若a >0,b >0,且a +2b -2=0,则ab 的最大值为( ). B .1 C .2 D .4 4.(2011·重庆)若函数f (x )=x + 1 x -2 (x >2)在x =a 处取最小值,则a =( ). ` A .1+ 2 B .1+ 3 C .3 D .4 5.已知t >0,则函数y =t 2-4t +1 t 的最小值为________. 利用基本不等式求最值 【例1】?(1)已知x >0,y >0,且2x +y =1,则1x +1 y 的最小值为________; (2)当x >0时,则f (x )= 2x x 2+1 的最大值为________. * 【训练1】 (1)已知x >1,则f (x )=x +1 x -1的最小值为________. (2)已知0<x <2 5,则y =2x -5x 2的最大值为________. (3)若x ,y ∈(0,+∞)且2x +8y -xy =0,则x +y 的最小值为________. 利用基本不等式证明不等式 【例2】?已知a >0,b >0,c >0,求证:bc a +ca b +ab c ≥a +b +c . 》

【训练2】 已知a >0,b >0,c >0,且a +b +c =1. * 求证:1a +1b +1c ≥9. } 利用基本不等式解决恒成立问题 【例3】?(2010·山东)若对任意x >0,x x 2+3x +1≤a 恒成立,则a 的取值范围是 ________. 【训练3】 (2011·宿州模拟)已知x >0,y >0,xy =x +2y ,若xy ≥m -2恒成立,则实数m 的最大值是________. [ 考向三 利用基本不等式解实际问题 【例3】?某单位建造一间地面面积为12 m 2的背面靠墙的矩形小房,由于地理位置的限制,房子侧面的长度x 不得超过5 m .房屋正面的造价为400元/m 2,房屋侧面的造价为150元/m 2,屋顶和地面的造价费用合计为5 800元,如果墙高为3 m ,且不计房屋背面的费用.当侧面的长度为多少时,总造价最低 # (2010·四川)设a >b >0,则a 2+1 ab + 1 a a -b 的最小值是( ). A .1 B .2 C .3 D .4

基本不等式应用题

基本不等式应用题 最值问题 一.教学目标:1.进一步掌握用均值不等式求函数的最值问题; 2.能综合运用函数关系,不等式知识解决一些实际问题。 二.教学重点、难点:化实际问题为数学问题。 三.教学过程: (一)复习:1.均值不等式: 2.极值定理: (一)练习题 1、已知R y x ∈,,且2=+y x ,求xy 的取值范围。 2、已知R y x ∈,,且2=xy ,求y x +的取值范围。 3、已知R y x ∈,,且2=+y x ,求22y x +的取值范围。 4、已知0,>y x ,且211=+y x ,求y x 2+的最小值。 5、已知0,,>z y x ,且4=++c b a ,求证:abc c b a 8)4)(4)(4(≥---。 6、(选做题)已知R y x ∈,,且222=+y x ,求y x +的取值范围。 7 1.4,2224,24x y x y x y x y +=++=+已知求的最小值。 变式题:已知求的最小值。22222.,4,log log ,24,log log x y R x y x y x y R x y x y ++∈+=+∈+=+已知、求的最大值。变式题:已知、求的最大值。

3+1,a b R x y x y ∈+=+已知a,b,x,y ,且 求的最小值 (二)新课讲解: 例1(1)用篱笆围成一个面积为100m 2的矩形菜园,问这个矩形的长、宽各为多少时,所用篱笆最短。最短的篱笆是多少? (2)段长为36 m 的篱笆围成一个一边靠墙的矩形菜园,问这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少? 例2 某工厂要建造一个长方体无盖贮水池,其容积为4800m 3,深为3m ,如果池底每1m 2的造价为150元,池壁每1m 2的造价为120元,问怎样设计水池能使总造价最低,最低总造价是多少元? 例3.某工厂要建造一个长方体无盖贮水池,其容积为34800m ,深为3m ,如果池底每21m 的造价为150元,池壁每21m 的造价为120元,问怎样设计水池能使总造价最低,最低总 造价是多少元? 例4.如图,设矩形()ABCD AB AD >的周长为24,把它关于AC 折起来,AB 折过去后,交DC 于P ,设AB x =,求ADP ?的最大面积及相应的x 值。 例5.甲、乙两地相距S 千米,汽车从甲地匀速行驶到乙地,速度不得超过c 千米/ 时,已A

高中数学基本不等式练习题

一.选择题 1.(2016?济南模拟)已知直线ax+by=1经过点(1,2),则2a+4b的最小值为()A. B.2C.4 D.4 2.(2016?乌鲁木齐模拟)已知x,y都是正数,且xy=1,则的最小值为() A.6 B.5 C.4 D.3 3.(2016?合肥二模)若a,b都是正数,则的最小值为() A.7 B.8 C.9 D.10 4.(2016?宜宾模拟)下列关于不等式的结论中正确的是() A.若a>b,则ac2>bc2 B.若a>b,则a2>b2 C.若a<b<0,则a2<ab<b2 D.若a<b<0,则> 5.(2016?金山区一模)若m、n是任意实数,且m>n,则() A.m2>n2B.C.lg(m﹣n)>0 D. 6.(2015?福建)若直线=1(a>0,b>0)过点(1,1),则a+b的最小值等于 () A.2 B.3 C.4 D.5 7.(2015?红河州一模)若直线mx+ny+2=0(m>0,n>0)截得圆(x+3)2+(y+1)2=1的弦长为2,则+的最小值为() A.6 B.8 C.10 D.12 8.(2015?江西一模)已知不等式的解集为{x|a<x<b},点A(a,b)在直线 mx+ny+1=0上,其中mn>0,则的最小值为() A.B.8 C.9 D.12 9.(2015?南市区校级模拟)若m+n=1(mn>0),则+的最小值为() A.1 B.2 C.3 D.4 10.(2015?湖南模拟)已知x+3y=2,则3x+27y的最小值为() A.B.4 C.D.6 11.(2015?衡阳县校级模拟)若x<0,则x+的最大值是() A.﹣1 B.﹣2 C.1 D.2 12.(2015春?哈尔滨校级期中)已知a,b,c,是正实数,且a+b+c=1,则的最小值 为() A.3 B.6 C.9 D.12 二.填空题 1.(2016?吉林三模)已知正数x,y满足x+y=1,则的最小值为. 2.(2016?抚顺一模)已知a>0,b>0,且a+b=2,则的最小值为. 3.(2016?丰台区一模)已知x>1,则函数的最小值为.4.(2016春?临沂校级月考)设2<x<5,则函数的最大值 是. 5.(2015?陕西校级二模)函数f(x)=1+log a x(a>0,a≠1)的图象恒过定点A,若点A在直线mx+ny﹣2=0上,其中mn>0,则的最小值为.

一次函数与不等式应用题(含答案)-

一次函数与不等式应用题 【例题经典】 例1(2006年武汉市)某公司以每吨200元的价格购进某种矿石原料300吨,用于生产甲、乙两种产品,生产1 煤的价格为400元/400元,?甲产品每吨售价4600元;生产1吨乙产品除原料费用外,还需其他费用500元,?乙产品每吨售价5500元,现将该矿石原料全部用完 ....,设生产甲产品x吨,乙产品m吨,公司获得的总利润为y元. (1)写出m与x之间的关系式; (2)写出y与x的函数表达式(不要求写自变量的范围); (3)若用煤不超过200吨,生产甲产品多少吨时,公司获得的总利润最大??最大利润是多少? 【点评】主要考查的是一次函数与不等式的实际应用. 例2(2006年黄冈市)我市英山县某茶厂种植“春蕊牌”绿茶,由历年来市场销售行情知道,从每年的3月25日起的180天内,绿花市场销售单价y(元)?与上市时间t (天)的关系可以近似地用如图(1)中的一条折线表示.绿茶的种植除了与气候、?种植技术有关外,某种植的成本单价z(元)与上市时间t(天)的关系可以近似地用如图(2)的抛物线表示. (1)直接写出图(1)中表示的市场销售单价y(元)与上市时间t(天)(t>0)?的函数关系式; (2)求出图(2)中表示的种植成本单价z(元)与上市时间t(天)(t>0)?的函数关系式; (3)认定市场销售单价减去种植成本单价为纯收益单价,问何时上市的绿茶纯收益单价最大?(说明:市场销售单价和种植成本单价的单位:元/500克.) 【点评】主要考查同学们从两个图像中获取信息的能力.

【考点精练】 1.(2006年广安市)某电信公司开设了甲、乙两种市内移动通信业务.?甲种使用者每月需缴15元月租费,然后每通话1分钟,再付话费0.3元;乙种使用者不缴月租费,每通话1分钟,付话费0.6元.若一个月内通话时间为x分钟,甲、?乙两种的费用分别为y1和y2元. (1)试分别写出y1、y2与x之间的函数关系式; (2)在同一坐标系中画出y1,y2的图像; (3)根据一个月通话时间,你认为选用哪种通信业务更优惠? 2.为了鼓励小强勤做家务,培养他的劳动意识,小强每月的费用都是根据上月他的家务劳动时间所得奖励加上基本生活费从父母那里获取的.?若设小强每月的家务劳动时间为x小时,该月可得(即下月他可获得)的总费为y元,则y(元)和x(小时)之间的函数图像如图所示. (1)根据图像,请你写出小强每月的基本生活费为多少元;?父母是如何奖励小强家务劳动的? (2)写出当0≤x≤20时,相对应的y与x之间的函数关系式; (3)若小强5月份希望有250元费用,则小强4月份需做家务多少时间?

相关主题
文本预览
相关文档 最新文档