当前位置:文档之家› 函数的零点问题

函数的零点问题

函数的零点问题
函数的零点问题

函数零点问题的求解

【教学目标】

知识与技能:

1.理解函数零点的定义以及函数的零点与方程的根之间的联系,掌握用连续函数 零点定理及函数图像判断函数零点所在的区间与方程的根所在的区间.

2.结合几类基本初等函数的图象特征,掌握判断函数的零点个数和所在区间法.

3.能根据函数零点的情况求参数的取值范围.

过程与方法:

1.函数零点反映了函数和方程的联系,函数零点与方程的根能相互转化,能把方程问题合理 转化为函数问题进行解决.

2.函数的零点问题的解决涉及到分类讨论,数形结合,化归转化等数学思想方法,有效提升了 学生的数学思想方法的应用.

情感、态度与价值观:

1.培养学生认真、耐心、严谨的数学品质;

2.让学生在自我解决问题的过程中,体验成功的喜悦.

【教学重点】 理解函数的零点与方程根的关系,形成用函数观点处理问题的意识. 【教学难点】根据函数零点所在的区间求参数的取值范围 【教学方法】发现、合作、讲解、演练相结合. 【教学过程】

一、引例

(1).函数()e 2x

f x x =+-的零点所在的一个区间是( ).

A.()2,1--

B.()1,0-

C.()0,1

D.()1,2 解法一:代数解法

解:(1).因为()0

0e 0210f =+-=-<,()1

1e 12e 10f =+-=->,

所以函数()e 2x

f x x =+-的零点所在的一个区间是()0,1.故选C.

二、 基础知识回顾

1.函数零点概念

对于函数()y f x =,把使()0f x =的实数x 叫做函数()y f x =的零点.

2. 零点存在性定理:如果函数()y f x =在区间[]a,b 上的图象是连续不断一条曲线,并且有

()()0f a f b ?<,那么,函数()y f x =在区间()a,b 内有零点.即存在()c a,b ∈,使得()0f c =,

这个c 也就是方程()0f x =的根. 问题1:函数()1f x x =

,有()()11

20,2022

f f -=-<=>,那么在[]2,2-上函数()1

f x x

=

有零点吗? 问题2:函数2

()68f x x x =-+在区间[][][]1,3, 0,1, 1,5有零点吗? 引例除了用零点基本定理,还有其他方法可以确定函数零点所在的区间吗? 解法二:几何解法

(1).()e 2x

f x x =+-可化为2x

e x =-+.

画出函数x

y e =和2y x =-+的图象,可观察得出C 正确.

函数零点、方程的根与函数图像的关系

函数()()()y F x f x g x ==-()()()0x f x g x =-=有实数根

1.例

变式2:若函数为()lg cos f x x x =-,则有个零点.

解:由()lg cos 0f x x x =-=,可化为lg cos x x =,画出lg y x =和cos y x =的图像,可得

解1:设2

,y a x y x a ==+,分别画两函数的图像,两图像有两个不同的交点即方程

2a x x a =+有两个不同的实数根.x a y 2=与a x y +=的图像,当1=a 时,在第一象限

平行,第二象限有一个交点,当1a 时有两个交点,故1a >.

解2:设211,y x y x a a

==

+,分别画两函数的图像,,两图像有两个不同的交点即方程2a x x a =+有两个不同的实数根.只有当a x a

y 1

12+=的斜率小于1时有两个交点,即

2.利用零点性质求参数的取值范围

探究:32

()69f x x x x a =-++在x R ∈上有三个零点,求a 的取值范围. 解:由2

()3129f x x x '=-+令()0f x '>,得3x >或得13x <<

()f x ∴在(,1)-∞,(3,)+∞(1,3)上单调递减

()=(1)4f x f a ∴=+>极大值()=(3)0f x f a =<极小值

40a ∴-<<.

变式1:方程3

2

69x x x a -++解,求a 的取值范围.

解:由方程3

2

69x x x a -++解,即3269x x x a -+=-

由()3

2

69f x x x x =-+

变式2:3290x ax x -+=在[]2,4上有实数解,求a 的取值范围.

解1:由32

99

,[2,4]x x a x x x x

+==+∈,13[6,]2a ∈. 变式3:若不等式3290x ax x -+≥在[]2,4上恒成立,求a 的取值范围.

解:转化为[]9(),1,3a x x x ≤+∈恒成立问题,即[]min 9(),1,3a x x x

≤+∈得](

,6a ∈-∞.

四、课堂小结 解决函数零点存在的区间或方程根的个数问题的主要方法有函数零点定理和应用函数图像进行判断;根据函数零点的性质求解参数的取值范围主要有分类讨论、数形结合、等价转换等方法,注重导数求出函数的单调区间和画出函数的图像的应用可以有效解决和零点相关的问题.

新教材高中数学第三章函数3.2函数与方程、不等式之间的关系第1课时函数的零点及其与对应方程、不等式解集之

新教材高中数学第三章函数3.2函数与方程、不等式之间的关系第1课时函数的零点及其与对应方程、不等式解集之间的关系课 后课时精练新人教B 版必修第一册 A 级:“四基”巩固训练 一、选择题 1.下列说法中正确的有( ) ①f (x )=x +1,x ∈[-2,0]的零点为(-1,0); ②f (x )=x +1,x ∈[-2,0]的零点为-1; ③y =f (x )的零点,即y =f (x )的图像与x 轴的交点; ④y =f (x )的零点,即y =f (x )的图像与x 轴交点的横坐标. A .①③ B .②④ C .①④ D .②③ 答案 B 解析 根据函数零点的定义,f (x )=x +1,x ∈[-2,0]的零点为-1,函数y =f (x )的零点,即y =f (x )的图像与x 轴交点的横坐标.因此,说法②④正确.故选B. 2.函数f (x )=x 2 -x -1的零点有( ) A .0个 B .1个 C .2个 D .无数个 答案 C 解析 Δ=(-1)2 -4×1×(-1)=5>0,所以方程x 2 -x -1=0有两个不相等的实根,故函数f (x )=x 2 -x -1有2个零点. 3.函数f (x )=2x 2 -3x +1的零点是( ) A .-1 2,-1 B.12,1 C.1 2,-1 D .-12 ,1 答案 B 解析 方程2x 2-3x +1=0的两根分别为x 1=1,x 2=12,所以函数f (x )=2x 2 -3x +1的 零点是1 2 ,1. 4.函数y =x 2 -bx +1有一个零点,则b 的值为( )

A .2 B .-2 C .±2 D .3 答案 C 解析 因为函数有一个零点,所以Δ=b 2 -4=0,所以b =±2. 5.设a <-1,则关于x 的不等式a (x -a )? ?? ??x -1a <0的解集为( ) A .(-∞,a )∪? ?? ??1a ,+∞ B .(a ,+∞) C.? ????-∞,1a ∪(a ,+∞) D.? ?? ??-∞,1a 答案 A 解析 ∵a <-1,∴a (x -a )? ????x -1a <0?(x -a )? ?? ??x -1a >0.又a <-1,∴1a >a ,由函数f (x ) =(x -a )·? ?? ??x -1a 的图像可得所求不等式的解集为(-∞,a )∪? ?? ??1a ,+∞. 二、填空题 6.函数f (x )=? ???? 2x -4,x ∈[0,+∞, 2x 2 -3x -2,x ∈-∞,0的零点为________. 答案 2,-1 2 解析 当x ≥0时,由2x -4=0,得x =2;当x <0时,由2x 2 -3x -2=0,得x =-12或 2(舍去).故函数f (x )的零点是2,-1 2 . 7.已知函数f (x )=ax 2 -5x +2a +3的一个零点为0,则f (x )的单调递增区间为________. 答案 ? ????-∞,-53 解析 由已知,得f (0)=2a +3=0,∴a =-32,∴f (x )=-32x 2 -5x ,∴f (x )的单调递 增区间为? ????-∞,-53. 8.已知a 为常数,则函数f (x )=|x 2 -9|-a -2的零点个数最多为________. 答案 4 解析 令g (x )=|x 2 -9|,h (x )=a +2,在同一平面直角坐标系内画出两个函数的图像,如图所示.

函数与零点练习题

函数与零点 基础回顾: 零点、根、交点的区别 零点存在性定理:f (x )是连续函数;f (a )f (b )<0 二分法思想:零点存在性定理 一、基础知识—零点问题 1.若函数)(x f y =在区间[a ,b ]上的图象为连续不断的一条曲线,则下列说法正确的是( ) A .若0)()(>b f a f ,不存在实数),(b a c ∈使得0)(=c f ; B .若0)()(b f a f ,有可能存在实数),(b a c ∈使得0)(=c f ; D .若0)()(

嵌套函数与函数的零点问题

嵌套函数与函数的零点问题 1二已知函数f (x )=x +1,x ?0l o g 2x ,x >0{,则y =f (f (x ))+1的零点组成的集合为 .2二?变式?已知函数f (x )=x +1,x ?0l o g 2 x ,x >0{,则y =f (f (x ))-1的零点组成的集合为 .3二函数f (x )=x +1,x ?0,x 2-2x +1,x >0. { ,若关于x 的方程f 2(x )-a f (x )=0恰有5个不同的实数解,则a 的取值范围为 .4二定义域为R 的函数f (x )= |l g x |,x >0,-x 2-2 x ,x ?0.{,关于x 的函数y =2f 2(x )-3f (x )+1的零点个数为 .5二函数f (x )是定义在R 上偶函数,且当x ?0时,f (x )=x |x -2|,若关于x 的方程f 2(x )+a f (x )+b =0恰有1 0个不同的解,则a 的取值范围是 .6二已知函数f (x )=-x 2,x ?0,x 2+2x ,x <0.{ ,则不等式f f x ()()?3的解集是 .7二已知函数f (x )=l o g 2x ,x >0,2x ,x ?0. {,则满足不等式f (f (x ))>1的x 的取值范围是 .8二已知函数f (x )=x 2-2a x +a 2-1若关于x 的不等式f (f (x ))<0的解集为空集,则实数a 的取值范围是 . 9二设函数f (x )是偶函数,当x ?0时,f (x )=x (3-x ),0?x ?3,-3x +1,x >3ì?í???,若函数y =f (x )-m 有四个不同的零点,则实数m 的取值范围是 .

方程的解与函数的零点 答案

方程的解与函数的零点 一、选择题 1 .已知函数f(x)是R 上的偶函数,且f(1-x)=f(1+x),当x ∈[0,1]时,f(x)=x 2,则函数 y=f(x)-log 5x 的零点个数是 ( ) A .3 B .4 C .5 D .6 【答案】B 2 .已知函数???>-≤-=0 ,120 ,2)(x x x a x f x (R a ∈),若函数)(x f 在R 上有两个零点,则a 的取值范围是 ( ) A .)1,(--∞ B .]1,(-∞ C .)0,1[- D .]1,0( 【答案】D 3 .设函数f (x )=x |x |+bx +c ,给出下列四个命题: ①c =0时,f (x )是奇函数 ②b =0,c >0时,方程f (x )=0只有一个实根 ③f (x )的图象关于(0,c )对称 ④方程f (x )=0至多两个实根 其中正确的命题是 ( ) A .①④ B .①③ C .①②③ D .①②④ 【答案】C 4 .已知函数()ln 38f x x x =+-的零点0[,]x a b ∈,且1(,)b a a b N +-=∈,则a b += ( ) A .5 B .4 C .3 D .2 【答案】A 5 .函数21 f ()lo g 22 x x x =- +的零点个数为 ( ) ( ) A .0 B .1 C .3 D . 2 【答案】D 6 .函数 ()22x f x x =-零点的个数为 ( ) A .1 B .2 C .3 D .4 【答案】C 7 .函数12ln )(-+=x x x f 的零点的个数是 ( ) A .0 B .1 C .2 D .3 【答案】B 8 .奇函数()f x ,偶函数()g x 的图像分别如图1、2所示,方程(())0,(())0f g x g f x ==的实根个数分别 为,a b ,则a b +=

函数与方程、零点

函数与方程 一、考点聚焦 1.函数零点的概念 对于函数))((D x x f y ∈=,我们把使0)(=x f 的实数x 叫做函数)(x f y =的零点,注意以下几点: (1)函数的零点是一个实数,当函数的自变量取这个实数时,其函数值等于零。 (2)函数的零点也就是函数)(x f y =的图象与x 轴的交点的横坐标。 (3)一般我们只讨论函数的实数零点。 (4)求零点就是求方程0)(=x f 的实数根。 2、函数零点的判断 如果函数)(x f y =在区间],[b a 上的图象是连续不断的曲线,并且有0)()(

导数与函数的零点讲义(非常好,有解析)

函数的零点 【题型一】函数的零点个数 【解题技巧】用导数来判断函数的零点个数,常通过研究函数的单调性、极值后,描绘出函数的图象,再借助图象加以判断。 【例1】已知函数3 ()31,0f x x ax a =--≠ ()I 求()f x 的单调区间; ()II 若()f x 在1x =-处取得极值,直线y=m 与()y f x = 的图象有三个不同的交点, 求m 的取值范围。 变式:已知定义在R 上的奇函数)(x f ,满足(4)()f x f x -=-,且在区间[0,2]上是增函数,若方程 ()(0)f x m m =>在区间[8,8]-上有四个不同的根1234,,,x x x x ,则 1234_________. x x x x +++= 【答案】 -8 【解析】因为定义在R 上的奇函数,满足(4)()f x f x -=-,所以(4)()f x f x -=-,所以, 由)(x f 为奇函数,所以函数图象关于直线2x =对称且(0)0f =,由(4)()f x f x -=-知(8)()f x f x -=,所以函数是以8为周期的周期函数,又因为)(x f 在区间[0,2]上 是增函数,所以)(x f 在区间[-2,0]上也是增函数.如图所示,那么方程f(x)=m(m>0) 在区间 []8,8-上有四个不同的根1234,,,x x x x ,不妨设1234x x x x <<<,由对称性知 1212 x x +=-, 344 x x +=. 所以12341248 x x x x +++=-+=-. 6

【题型二】复合函数的零点个数 复合函数是由内层函数与外层函数复合而成的,在处理其零点个数问题时,应分清内层和外层函数与零点的关系。 【解题技巧】函数()(())h x f f x c =-的零点个数的判断方法可借助换元法解方程的思想 分两步进行。即令()f x d =,则()()h x f d c =- 第一步:先判断()f d c =的零点个数情况 第二步:再判断()f x d =的零点个数情况 【例2】已知函数3()3f x x x =- 设()(())h x f f x c =-,其中[22]c ∈-,,求函数()y h x =的零点个数 1.(江苏省连云港市2013届高三上学期摸底考试(数学)已知函数 322()39(0)f x x ax a x a =--≠.若方程'2()12169f x nx ax a a =---在[l,2]恰好有两个 相异的实根,求实数a 的取值范围(注:1n2≈0.69): 【题型三】如何运用导数求证函数“存在、有且只有一个”零点 【解题技巧】(1)要求证一个函数存在零点,只须要用“函数零点的存在性定理”即可证明。即:

高考复习专题:函数零点的求法及零点的个数()

函数零点的求法及零点的个数 题型1:求函数的零点。 [例1] 求函数 222 3+--=x x x y 的零点. [解题思路]求函数 222 3+--=x x x y 的零点就是求方程 0222 3=+--x x x 的根 [解析]令 32 220x x x --+=,∴ 2(2) (2) x x x --- = ∴(2)(1)(1)0x x x --+=,∴112x x x =-==或或 即函数222 3 +--=x x x y 的零点为-1,1,2。 [反思归纳] 函数的零点不是点,而是函数函数 ()y f x =的图像与x 轴交点的横坐标,即零点是 一个实数。 题型2:确定函数零点的个数。 [例2] 求函数f(x)=lnx +2x -6的零点个数. [解题思路]求函数f(x)=lnx +2x -6的零点个数就是求方程lnx +2x -6=0的解的个数 [解析]方法一:易证f(x)= lnx +2x -6在定义域(0,)+∞上连续单调递增, 又有(1)(4)0f f ?<,所以函数f(x)= lnx +2x -6只有一个零点。 方法二:求函数f(x)=lnx +2x -6的零点个数即是求方程lnx +2x -6=0的解的个数 即求ln 62y x y x =?? =-?的交点的个数。画图可知只有一个。 [反思归纳]求函数)(x f y =的零点是高考的热点,有两种常用方法: ①(代数法)求方程0)(=x f 的实数根;②(几何法)对于不能用求根公式的方程,可以将它与函数)(x f y =的图像联系起来,并利用函数的性质找出零点。 题型3:由函数的零点特征确定参数的取值范围 [例3] (2007·广东)已知a 是实数,函数 ()a x ax x f --+=3222,如果函数()x f y =在区 间[]1,1-上有零点,求a 的取值范围。 [解题思路]要求参数a 的取值范围,就要从函数()x f y =在区间[]1,1-上有零点寻找关于参数 a 的不等式(组),但由于涉及到a 作为2 x 的系 数,故要对a 进行讨论 [解析] 若0a = , ()23f x x =- ,显然在 []1,1-上没有零点, 所以 0a ≠. 令 ()248382440 a a a a ?=++=++=, 解得 37 2a -±= ①当 37 2a --= 时, ()y f x =恰有一个零 点在[ ] 1,1-上; ②当()()()()05111<--=?-a a f f ,即15a <<时, () y f x =在[ ] 1,1-上也恰有一个零点。 ③当()y f x =在[ ] 1,1-上有两个零点时, 则 ()()20824401 1121010a a a a f f >? ??=++>??-<-??-<-

专题分段函数与函数零点答案

11. 已知函数f(x)=???x ,x ≥0,x 2,x <0, 则关于x 的不等式f(x 2)>f(3-2x)的解集是__________ 11. (-∞,-3)∪(1,3) 解析:x≤32 时原不等式化为x 2>3-2x ,解得x <-3或1<x≤32;x >32时原不等式化为x 2>(3-2x)2,解得32 <x <3.综上x <-3或1<x <3.本题考查分类讨论的思想,考查解不等式的能力.本题属于中等题. 11. 已知定义在实数集R 上的偶函数f(x),当x≥0时,f(x)=-x +2,则不等式f(x)-x 2≥0的解集为________. 11. [-1,1] 解析:∵ f(x)≥x 2,而f(x)示意图如下: 令x 2=-x +2,得x =1(x>0),从而由图象知,原不等式解集为[-1,1]. 本考查了函数的综合运用,以及数形结合数学思想.本题属于中等题. 13. 已知奇函数f(x)是R 上的单调函数,若函数y =f(x 2)+f(k -x)只有一个零点,则实数k 的值是__________. 13. 14 解析:不妨设f(x)=x ,则x 2+k -x =0只有一个解,从而1-4k =0,得k =14 . 12. 已知函数f(x)是定义在R 上的奇函数,且当x≤0时,f(x)=-x 2-3x ,则不等式f(x -1)>-x +4的解集是____________. 12. (4,+∞) 解析:由题意得f(x)=???-x 2-3x ,x ≤0,x 2-3x ,x>0, f(x -1)=? ??-(x -1)2-3(x -1),x -1≤0,(x -1)2-3(x -1),x -1>0, 即f(x -1)=? ??-x 2-x +2,x ≤1,x 2-5x +4,x>1, 所以不等式f(x -1)>-x +4可化为???-x 2-x +2>-x +4,x ≤1, 或???x 2-5x +4>-x +4,x>1, 解得x >4. 11. 已知f(x)=???x 2+x (x≥0),-x 2+x (x<0), 则不等式f(x 2-x +1)<12的解集是________. 11. (-1,2) 解析:由函数图象知f(x)为R 上的增函数且f (3)

方程的根与函数的零点》说课稿

《方程的根与函数的零点》说课稿 1教材分析 1.1地位与作用 本节内容为人教版《普通高中课程标准实验教科书》A版必修1第三章《函数的应用》第一节《函数与方程》的第一课时,主要内容是函数零点概念、函数零点与相应方程根的关系、函数零点存在性定理,是一节概念课. 新课标教材新增了二分法,也因而设置了本节课.所以本节课首先是为“用二分法求方程的近似解”打基础,零点概念与零点存在性定理的是二分法的必备知识. 之前的教材虽然没有设置本节内容,但方程的根与函数的关系从来是重要且无法回避的,所以将本节课直接编入教材很有必要.本节课也就不仅为二分法的学习做准备,而且为方程与函数提供了零点这个连接点,从而揭示了两者之间的本质联系,这种联系正是“函数与方程思想”的理论基础.用函数的观点研究方程,本质上就是将局部的问题放在整体中研究,将静态的结果放在动态的过程中研究,这为今后进一步学习函数与不等式等其它知识的联系奠定了坚实的基础. 从研究方法而言,零点概念的形成和零点存在性定理的发现,符合

从特殊到一般的认识规律,有利于培养学生的概括归纳能力,也为数形结合思想提供了广阔的平台. 1.2教学重点 基于上述分析,确定本节的教学重点是:了解函数零点概念,掌握函数零点存在性定理. 2学情分析 2.1学生具备必要的知识与心理基础. 通过前面的学习,学生己经了解一些基本初等函数的模型,具备一定的看图识图能力,这为本节课利用函数图象,判断方程根的存在性提供了一定的知识基础. 方程是初中数学的重要内容,用所学的函数知识解决方程问题,扩充方程的种类,这是学生乐于接受的,故而学生具备心理与情感基础. 2.2学生缺乏函数与方程联系的观点. 高一学生在函数的学习中,常表现出不适,主要是数形结合与抽象思维尚不能胜任.具体表现为将函数孤立起来,认识不到函数在高中数学中的核心地位. 例如一元二次方程根的分布问题,学生自然会想到韦达定理,而不是看二次函数的图象.函数与方程相联系的观点的建立,函数应用的意识的初步树立,就成

导数和函数零点问题

导数和函数零点问题 Prepared on 24 November 2020

导数和函数零点 1、已知函数3()31,0f x x a x a =--≠ (1)求()f x 的单调区间; (2)若()f x 在1x =-处取得极值,直线y=m 与()y f x =的图象有三个不同的交 点, 求m 的取值范围。 2、设a 为实数,函数a x x x f ++-=3)(3 (1)求)(x f 的极值; (2)若方程0)(=x f 有3个实数根,求a 的取值范围; (3)若0)(=x f 恰有两个实数根,求a 的值。 3、已知函数)(ln 2)(2R a x ax x f ∈-= (1)讨论)(x f 的单调性; (2)是否存在a 的值,使得方程3)(=x f 有两个不等的实数根 若存在,求出a 的取值范围;若不存在,说明理由。 4、已知函数a ax x a x x f ---+=232 131)(,x R ∈,其中0>a 。 (1)求函数)(x f 的单调区间; (2)若函数)(x f 在区间)0,2(-内恰有两个零点,求a 的取值范围; 5、已知函数)0()23()(2 3>+--++=a d x b a c bx ax x f 的图象如图所示. (1)求c ,d 的值; (2)若函数,01132)(=-+=y x x x f 处的切线方程 在求函数)(x f 的解析式; (3)在(2)的条件下,函数m x x f y x f y ++= =5)(3 1)('与的图象有三个不同的交点, 求m 的取值范围; 6、已知定义域为R 的奇函数)(x f ,当0>x 时,)(1ln )(R a ax x x f ∈+-=

方程的根与函数的零点题型及解析

方程的根与函数的零点 题型及解析 标准化管理部编码-[99968T-6889628-J68568-1689N]

方程的根与函数的零点题型及解析1.求下列函数的零点 (1)f(x)=x3+1;(2)f(x)=;(3)y=﹣x2+3x+4;(4)y=x2+4x+4. 分析:根据函数零点的定义解f(x)=0,即可得到结论. 解:(1)由f(x)=x3+1=0得x=﹣1,即函数的零点为﹣1;(2)由f(x)==0 得x2+2x+1=0得(x+1)2=0,得x=﹣1,即函数的零点为﹣1.(3)由y=﹣x2+3x+4=0,可得(x﹣4)(x+1)=0,所以函数的零点为4,﹣1;(4)y=x2+4x+4,可得(x+2)2=0,所以函数的零点为﹣2. 2.①求函数f(x)=2x+x﹣3的零点的个数;②求函数f(x)=log 2 x﹣x+2的零点的个数;③求函数的零点个数是多少? 分析:①由题意可判断f(x)是定义域上的增函数,从而求零点的个数;②由题意可 得,函数y=log 2 x 的图象和直线y=x﹣2的交点个数,数形结合可得结论.③由函数 y=lnx 的图象与函数y=的图 象只有一个交点,可得函数f(x)=lnx-(1/x)的零点个数. 解:①∵函数f(x)=2x+x﹣3单调递增,又∵f(1)=0,故函数f(x)=2x+x﹣3 有且只有一个零点 ②函数f(x)=log 2x﹣x+2的零点的个数,即函数y=log 2 x 的图象和直线y=x﹣2 的交点个数,如图所示:故函数y=log 2 x 的图象(红色部分)和直线y=x﹣2(蓝 色部分)的交点个数为2,即函数f(x)=log 2 x﹣x+2的零点的个数为2;③函数 f(x)=lnx-(1/x)的零点个数就是函数y=lnx的图象与函数y=1/x的图象 的 交点的个数,由函数y=lnx 的图象与函数y=1/x的图象只有一个交点,如图 所示, 可得函数f(x)=lnx-(1/x)的零点个数是1 3.①已知方程x2﹣3x+a=0在区间(2,3)内有一个零点,求实数a的取值范围 ②已知a是实数,函数f(x)=﹣x2+ax﹣3在区间(0,1)与(2,4)上各有一个 零点,求a的取值. ③已知函数f(x)=x2﹣2ax+4在区间(1,2)上有且只有一个零点,求a的取值范围 分析:①由已知,函数f(x)在区间(2,3)内有一个零点,它的对称轴为x=3/2,得出不等式组,解出即可; ②若函数f(x)=﹣x2+ax﹣3在区间(0,1)与(2,4)上各有一个零点,则f(0)<0,f(1)>0,f(2)>0,f(4)<0,解得答案;③若函数f(x)=x2﹣2ax+4只有一个零点,则△=0,经检验不符合条件;则函数f(x)=x2﹣2ax+4有两个零点,进而f (1)f(2)<0,解得答案 解:①若函数f(x)=﹣x2+ax﹣3在区间(0,1)与(2,4)上各有一个零点,则f (0)<0,f(1)>0,f(2)>0,f(4)<0,即-3<0,a-4>0,2a-7>0,4a-19<0,解得:a∈(4,19/4);②∵令f(x)=x2﹣3x+a,它的对称轴为x=3/2,∴函数f (x)在区间(2,3)单调递增,∵方程x2﹣3x+a=0在区间(2,3)内有一个零点,∴函数f(x)在区间(2,3)内与x轴有一个交点,根据零点存在性定理得出:f(2)<0,f(3)>0,即a-2<0,9-9+a>0,解得0<a<2;③解:若函数f(x)=x2﹣2ax+4只有

函数与方程的含参零点问题

函数与方程的含参零点问题 ?方法导读 函数与方程问题常以基本初等函数或分段函数为载体,考查函数零点的存在区间、确定零点的个数、参数的取值范围、方程的根或函数图象的交点等问题.函数与方程不仅考查考生计算、画图等方面的能力,还考查考生函数与方程、数形结合及转化化归等数学思想的综合应用.在解决函数零点问题时,既要注意利用函数的图象,也要注意根据函数的零点存在性定理、函数的性质等进行相关的计算,把数与形紧密结合起来. ?高考真题 【·天津卷理·】已知,函数,若关于的方程 恰有个互异的实数解,则的取值范围是______. ?解题策略 本题属于分段函数的零点问题,所以需要分类讨论: 当时,由,推出, 当时,由,推出, 再分别画出它们的图象,由图象可知, 当直线和的图象有两个不同的交点,而直线和 的图象无交点时满足条件. ?解题过程 当时,由,得, 当时,由,得,

令,作出直线,函数的图象如图所示, 的最大值为,由图象可知,若恰有个互异的实数解,则 ,得. ?解题分析 1.求函数零点问题,是高考试卷中的热点问题,这类问题要通过学生的直观想 象能力,画出函数图象求解比较直观、易理解; 2.本题由求解问题,通过变形转化为求和 的问题,然后通过图象可以顺利求解; 3.分类讨论思想贯穿整个高中阶段的数学学习中,在每年的高考试卷做题中都 会出现,尤其是解决综合题型时,很多学生不知道该如何分类讨论,所以学生在 平时的训练中要有意识的加以培养和应用. ?拓展推广 1.判断函数零点个数的常见方法 (1)直接法:解方程,方程有几个解,函数就有几个零点;

(2)图象法:画出函数的图象,函数的图象与轴的交点个数即为函数的零点个数; (3)将函数拆成两个常见函数和的差,从而 ,则函数的零点个数即为函数与函数 的图象的交点个数; (4)二次函数的零点问题,通过相应的二次方程的判别式来判断. 2.判断函数在某个区间上是否存在零点的方法 (1)解方程,当对应方程易解时,可通过解方程,看方程是否有根落在给定区间 上; (2)利用零点存在性定理进行判断; (3)画出函数图象,通过观察图象与轴在给定区间上是否有交点来判断. 3.已知函数有零点(方程有根)求参数值(取值范围)常用的方法 (1)把函数零点问题转化为方程根的问题 利用函数的零点方程的根,把求函数零点的相关问题转化为求方程根的问题,通过方程的根所满足的条件建立不等式来解决问题. (2)把函数零点问题转化为函数图象与坐标轴的交点问题 利用函数的零点函数的图象与轴的交点,把函数零点的相关问题转化为图象与坐标轴的交点问题,再利用数形结合的思想方法来解决问题. (3)把零点问题分离变量后转化为函数值域问题 将函数零点问题先转化为方程根的问题,然后进行变量分离,将参数分离出来转化为求函数值域问题,这种方法思路简洁,学生容易想到. (4)把函数零点问题转化为两个函数图象的交点问题

函数与函数的零点知识点总结

函数及函数的零点有关概念 函数的概念:设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数.记作: y=f(x),x ∈A .其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f(x)| x ∈A }叫做函数的值域. 要点一:函数三要素及分段函数 (一)函数三要素 1.定义域:能使函数式有意义的实数x 的集合称为函数的定义域。 1.1求函数的定义域时从以下几个方面入手: (1)分式的分母不等于零; (2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零; (4)指数、对数式的底必须大于零且不等于1. (5)指数为零底不可以等于零。 (6)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x 的值组成的集合即交集.(7)三角函数正切函数tan y x =中()2 x k k Z π π≠+ ∈. (8)实际问题或几何问题中的函数的定义域不仅要考虑使其解析式有意义,还要保证实际问题或几何问题有意义. (9)以上这些在题目中都没出现,则函数的定义域为R. 1.2复合函数定义域的求法: 复合函数:如果y=f(u)(u ∈M),u=g(x)(x ∈A),则 y=f[g(x)]=F(x)(x ∈A) 称为f 、g 的复合函数。 (1)已知f(x)的定义域是[a,b],求f[g(x)]的定义域,是指满足()a g x b ≤≤的x 的取值范围; (2)已知f[g(x)]的定义域是[a,b],求f(x)的定义域,是指在[,]x a b ∈的条件下,求g(x)的值域; (3) 已知f[g(x)]的定义域是[a,b],求f[h(x)]的定义域,是指在[,]x a b ∈的条件下,求g(x)的值域,g(x)的值域就是h(x)的值域,再由h(x)的范围解出x 即可。 2).求函数的解析式的常用求法: 1、定义法; 2、换元法; 3、待定系数法; 4、函数方程法; 5、参数法; 6、配方法 3).值域 : 先考虑其定义域 3.1求函数值域的常用方法 1、图像法; 2、层层递进法; 3、分离常数法; 4、换元法; 5、单调性法; 6、判别式法; 7、有界性; 8、奇偶性法; 9、不等式法;10、几何法; 3.2分段函数的值域是各段的并集 3.3复合函数的值域

函数的零点及判断零点个数提高题

函数的零点及判断零点个数提高题 1.已知函数()22,52,x x a f x x x x a +>?=?++≤?,函数()()2g x f x x =-恰有三个不同的零点,则实数a 的取值范围是( ) A .[)1,1- B .[]0,2 C .[)2,2- D .[)1,2- 【答案】D . 【解析】 22()()232x x a g x f x x x x x a -+>?=-=?++≤?,而方程20x -+=的解为2,方程 2320x x ++=的解为1-或2-,所以?? ???≤-≤-->,当1x ≤-?1x -≥,又f (x )为奇函数, ∴0x <时, ()(] 12log (1),1,0()()13,,1x x f x f x x x ?--+∈-?=--=??-+--∈-∞-?,(也可以不求解析式,依 据奇函数的图象关于原点对称,画出y 轴左侧的图象),画出y =f (x ),y =a (01a <<)的图象,如图 共有5个交点,设其横坐标从左到右分别为x 1,x 2,x 3,x 4,x 5,则45123,322 x x x x ++=-=

函数与方程(零点问题)

§2.8 函数与方程 函数零点问题 学习目标;(1)理解函数零点定义,会应用函数零点存在性定理 (2)体会函数与方程的转化思想 一 知识导练 1. (必修1 P43练习3改编) 函数32()2f x x x x =-+的零点是____________. 解析:解方程x3-2x2+x =0得x =0或x =1,所以函数的零点是0或1. 导航:函数零点的求解 2.(必修1 P111复习13改编)已知函数()23x f x x =-,则函数f(x)的零点个数是____. 解析:解法1:令f(x)=0,则2x =3x ,在同一坐标系中分别作出y =2x 和y =3x 的图象,由图知函数y =2x 和y =3x 的图象有2个交点,所以函数f(x)的零点个数为2. 解法2:由f(0)>0,f(1)<0,f(3)<0,f(4)>0,…,所以有2个零点,分别在区间(0,1)和(3,4)内. 导航:函数零点个数的判定 3.给出以下三个结论:(1)0一定是奇函数的一个零点; (2)单调函数有且仅有一个零点; (3)周期函数一定有无穷多个零点. 其中正确的结论共有_____个。 4.(必修1 P97习题8)若关于x 的方程27(13)20x m x m -+--=的一个根在区间(0,1)上,另一个在区间(1,2)上,则实数m 的取值范围为_____________. 解析:设f(x)=7x2-(m +13)x -m -2,则???? ?f (0)>0,f (1)<0,f (2)>0,解得-41. 要点回顾:

函数与方程(零点)

§1-10 函数的应用---根与零点及二分法 【课前预习】阅读教材P86-90完成下面填空 1.方程()0=x f 有实根 ? ? 7.若()y f x =的最小值为1,则()1y f x =-的零点个数为 ( ) A .0 B .1 C .0或l D .不确定

8.已知)(x f 唯一的零点在区间(1,3)、(1,4)、(1,5)内,那么下面命题错误的( ) A .函数)(x f 在(1,2)或[)2,3内有零点 B .函数)(x f 在(3,5)内无零点 C .函数)(x f 在(2,5)内有零点 D .函数)(x f 在(2,4)内不一定有零点 9.若函数()f x 在[],a b 上连续,且有()()0f a f b >.则函数()f x 在[],a b 上 ( ) A .一定没有零点 B .至少有一个零点C .只有一个零点 D .零点情况不确定 10.如果二次函数)3(2 +++=m mx x y 有两个不同的零点,则m 的取值范围是( ) A .()6,2- B .[]6,2- C .{}6,2- D .()(),26,-∞-+∞ 11.方程22lg x x -=的实数根的个数是 ( ) A .1 B .2 C .3 D .无数个 12.二次函数()f x =ax 2 +bx+c 中,ac<0则函数的零点个数是 13.若()f x 的图像关于y 轴对称,且()f x =0有三个零点,则这三个零点之和等于 14.若()f x =???--≤≥--2 1,11 2,12 x x x x x 或则函数g(x)= ()f x -x 的零点为 15.已知()f x 是R 上最小正周期为2的周期函数,且当0≤x<2时,()f x =x 3 -x,则函数y=()f x 的图像在区间[0,6]上与x 轴的交点的个数为 16.已知函数()f x =4x +m.2x +1仅有一个零点,求m 的取值范围,并求出零点 17.若函数()f x =(m-2)x 2 +mx+(2m+1)的两个零点分别在区间(-1,0)和区间(1,2)内,则的取值范围是( ) A .(-21,41) B.(- 41,21) C.( 41,21) D.[ 41,2 1] 18.数()f x =ax+b(a ≠0)有一个零点是2,那么函数g(x)=bx 2 -ax 的零点是 19.数()f x =x 3 -3x+a 有3个不同的零点,则实数a 的取值范围是( ) A .(-2,2) B. [-2,2] C.(-∞,1) D. (1,+∞) 20.=cosx 在(-∞,+∞)内 ( ) A .没有根 B.有且仅有一个根 C. 有且仅有两个根 D. 有无穷多个根 21.()ln 2f x x x =-+的零点个数为 。 [学后反思]____________________________________________________

第16讲-导数与函数的零点(解析版)

第16讲-导数与函数的零点 一、 经典例题 考点一 判断零点的个数 【例1】已知二次函数f (x )的最小值为-4,且关于x 的不等式f (x )≤0的解集为{x |-1≤x ≤3,x ∈R }. (1)求函数f (x )的解析式; (2)求函数g (x )=f (x )x -4ln x 的零点个数. 解 (1)∵ f (x )是二次函数,且关于x 的不等式f (x )≤0的解集为{x |-1≤x ≤3,x ∈R }, ∴设f (x )=a (x +1)(x -3)=ax 2-2ax -3a ,且a >0. ∴f (x )min =f (1)=-4a =-4,a =1. 故函数f (x )的解析式为f (x )=x 2-2x -3. (2)由(1)知g (x )=x 2-2x -3x -4ln x =x -3x -4ln x -2, ∴g (x )的定义域为(0,+∞),g ′(x )=1+3x 2-4x =(x -1)(x -3)x 2 ,令g ′(x )=0,得x 1=1,x 2=3. 当x 变化时,g ′(x ),g (x )的取值变化情况如下表: X (0,1) 1 (1,3) 3 (3,+∞) g ′(x ) + 0 - 0 + g (x ) 极大值 极小值 当03时,g (e 5)=e 5-3e 5-20-2>25-1-22=9>0. 又因为g (x )在(3,+∞)上单调递增, 因而g (x )在(3,+∞)上只有1个零点, 故g (x )仅有1个零点. 规律方法 利用导数确定函数零点或方程根个数的常用方法 (1)构建函数g (x )(要求g ′(x )易求,g ′(x )=0可解),转化确定g (x )的零点个数问题求解,利用导数研究该函数的单调性、极值,并确定定义区间端点值的符号(或变化趋势)等,画出g (x )的图象草图,数形结合求解函数零点的个数.

高中数学常见题型解法归纳 函数的零点个数问题的求解方法

高中数学常见题型解法归纳 函数的零点个数问题的求解方法 【知识要点】 一、方程的根与函数的零点 (1)定义:对于函数()y f x =(x D ∈),把使f(x)=0成立的实数x 叫做函数()y f x =(x D ∈)的零点.函数的零点不是一个点的坐标,而是一个数,类似的有截距和极值点等. (2)函数零点的意义:函数()y f x =的零点就是方程f(x)=0的实数根,亦即函数()y f x =的图像与x 轴的交点的横坐标,即:方程f(x)=0有实数根?函数()y f x =的图像与x 轴有交点?函数()y f x =有零点. (3)零点存在性定理:如果函数()y f x =在区间[,]a b 上的图像是一条连续不断的曲线,并且有 0)()(

相关主题
文本预览