当前位置:文档之家› 概率论课程论文

概率论课程论文

概率论课程论文
概率论课程论文

概率论与数理统计课程论文

摘要:通过本学期概率论与数理统计这门课的学习,我基本掌握了基本的概率知识,这对于自己以后的发展和创新有着很大的帮助。本文将从概率论的历史、发展,主要内容以及自己的学习心得三个方面来阐述我对本门课的总结。

关键词:概率论,数理统计,产生发展,主要内容,自我心得

一.概率论的历史、发展

概率论产生于十七世纪,本来是又保险事业的发展而产生的,但是来自于赌博者的请求,却是数学家们思考概率论中问题的源泉。早在1654年,有一个赌徒梅累向当时的数学家帕斯卡提出一个使他苦恼了很久的问题:“两个赌徒相约赌若干局,谁先赢 m局就算赢,全部赌本就归谁。但是当其中一个人赢了 a (a

近几十年来,随着科技的蓬勃发展,概率论大量应用到国民经济、工农业生产及各学科领域。许多兴起的应用数学,如信息论、对策论、排队论、控制论等,都是以概率论作为基础的。

概率论和数理统计是一门随机数学分支,它们是密切联系的同类学科。但是应该指出,概率论、数理统计、统计方法又都各有它们自己所包含的不同内容。概率论——是根据大量同类随机现象的统计规律,对随机现象出现某一结果的可能性作出一种客观的科学判断,对这种出现的可能性大小做出数量上的描述;比较这些可能性的大小、研究它们之间的联系,从而形成一整套数学理论和方法。

数理统计是应用概率的理论来研究大量随机现象的规律性;对通过科学安排的一定数量的实验所得到的统计方法给出严格的理论证明;并判定各种方法应用的条件以及方法、公式、结论的可靠程度和局限性。使我们能从一组样本来判定是否能以相当大的概率来保证某一判断是正确的,并可以控制发生错误的概率。

二.概率论与数理统计主要内容

概率论作为一门数学分支,它所研究的内容一般包括随机事件的概率、统计独立性和更深层次上的规律性。

概率是随机事件发生的可能性的数量指标。在独立随机事件中,如果某一事件在全部事件中出现的频率,在更大的范围内比较明显的稳定在某一固定常数附近。就可以认为这个事件发生的概率为这个常数。对于任何事件的概率值一定介于 0和 1之间。

有一类随机事件,它具有两个特点:第一,只有有限个可能的结果;第二,各个结果发生的可能性相同。具有这两个特点的随机现象叫做“古典概型”。在客观世界中,存在大

量的随机现象,随机现象产生的结果构成了随机事件。如果用变量来描述随机现象的各个结果,就叫做随机变量。

随机变量有有限和无限的区分,一般又根据变量的取值情况分成离散型随机变量和非离散型随机变量。一切可能的取值能够按一定次序一一列举,这样的随机变量叫做离散型随机变量;如果可能的取值充满了一个区间,无法按次序一一列举,这种随机变量就叫做非离散型随机变量。

在离散型随机变量的概率分布中,比较简单而应用广泛的是二项式分布。如果随机变量是连续的,都有一个分布曲线,实践和理论都证明:有一种特殊而常用的分布,它的分布曲线是有规律的,这就是正态分布。正态分布曲线取决于这个随机变量的一些表征数,其中最重要的是平均值和差异度。平均值也叫数学期望,差异度也就是标准方差。

数理统计包括抽样、适线问题、假设检验、方差分析、相关分析等内容。抽样检验是要通过对子样的调查,来推断总体的情况。究竟抽样多少,这是十分重要的问题,因此,在抽样检查中就产生了“小样理论”,这是在子样很小的情况下,进行分析判断的理论。三.学习概率论的自我心得

我在学习《概率论与数理统计》时通常的感觉是“课文看得懂,习题做不出”。要做出题目,至少要弄清概念,有些还要掌握一定的技巧。这句话说起来简单,但是真正的做起来就需要花费大量的力气。我在学习时,只注重公式、概念的记忆和套用,自己不对公式等进行推导。这就造成一个现象:虽然在平时的做题过程中,自我感觉还可以;尤其是做题时,看一眼题目看一眼答案,感觉自己已经掌握的不错了,但一上了考场,就考砸。这就是平时的学习过程中只知其一、不知其二,不注重对公式的理解和推导造成的。在看书的时候注意对公式的推导,这样才能深层次的理解公式,真正的灵活运用。做到知其一,也知其二。

现在概率统计的考试考的是基础知识,主要涉及排列组合、导数、积分、极限这四部分。说这部分是基础,本身就说明这些知识不是概率统计研究的内容,只是在研究概率统计的时候不可缺少的一些工具。既然这样,在考试中就不会对这部分内容作过多的考察,也会尽量避免在这些方面丢分。有些人花大量的力气学习微积分,甚至学习概率统计之前,将微积分重现学一边,这是不可取的。对这部分内容,将教材上涉及到的知识选出来进行复习,理解就可以。万不能让基础知识成为概率统计的拦路虎。学习中要知道那是重点,那是难点。

考试有技巧,学习无捷径。平时的学习要注重知识点的掌握,踏踏实实,这才是方法中的方法。

参考文献:

[1] 王勇主编,《概率论与数理统计》,高等教育出版社,2007.7

[2] 徐传胜,《概率论简史》,2004

哈工大概率论与数理统计课后习题答案 一

·1· 习 题 一 1.写出下列随机试验的样本空间及下列事件中的样本点: (1)掷一颗骰子,记录出现的点数. A =‘出现奇数点’; (2)将一颗骰子掷两次,记录出现点数. A =‘两次点数之和为10’,B =‘第一次的点数,比第二次的点数大2’; (3)一个口袋中有5只外形完全相同的球,编号分别为1,2,3,4,5;从中同时取出3只球,观察其结果,A =‘球的最小号码为1’; (4)将,a b 两个球,随机地放入到甲、乙、丙三个盒子中去,观察放球情况,A =‘甲盒中至少有一球’; (5)记录在一段时间内,通过某桥的汽车流量,A =‘通过汽车不足5台’,B =‘通过的汽车不少于3台’。 解 (1)123456{,,,,,}S e e e e e e =其中i e =‘出现i 点’1,2,,6i = , 135{,,}A e e e =。 (2){(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)S = (2,1),(2,2),(2,3),(2,4),(2,5),(2,6) (3,1),(3,2),(3,3),(3,4),(3,5),(3,6) (4,1),(4,2),(4,3),(4,4),(4,5),(4,6) (5,1),(5,2),(5,3),(5,4),(5,5),(5,6) (6,1),(6,2),(6,3),(6,4),(6,5),(6,6)}; {(4,6),(5,5),(6,4)}A =; {(3,1),(4,2),(5,3),(6,4)}B =。 (3){(1,2,3),(2,3,4),(3,4,5),(1,3,4),(1,4,5),(1,2,4),(1,2,5)S = (2,3,5),(2,4,5),(1,3,5)} {(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)}A = (4){(,,),(,,),(,,),(,,),(,,),(,,),S ab ab ab a b a b b a =--------- (,,),(,,,),(,,)}b a a b b a ---,其中‘-’表示空盒; {(,,),(,,),(,,),(,,),(,,)}A ab a b a b b a b a =------。 (5){0,1,2,},{0,1,2,3,4},{3,4,}S A B === 。 2.设,,A B C 是随机试验E 的三个事件,试用,,A B C 表示下列事件: (1)仅A 发生; (2),,A B C 中至少有两个发生;

哈工大概率论参考答案习题

习 题 一 1.写出下列随机试验的样本空间及下列事件中的样本点: (1)掷一颗骰子,记录出现的点数. A =‘出现奇数点’; (2)将一颗骰子掷两次,记录出现点数. A =‘两次点数之和为10’,B =‘第一次的点数,比第二次的点数大2’; (3)一个口袋中有5只外形完全相同的球,编号分别为1,2,3,4,5;从中同时取出3只球,观察其结果,A =‘球的最小号码为1’; (4)将,a b 两个球,随机地放入到甲、乙、丙三个盒子中去,观察放球情况,A =‘甲盒中至少有一球’; (5)记录在一段时间内,通过某桥的汽车流量,A =‘通过汽车不足5台’,B =‘通过的汽车不少于3台’。 解 (1)123456{,,,,,}S e e e e e e =其中i e =‘出现i 点’1,2,,6i =, 135{,,}A e e e =。 (2){(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)S = (2,1),(2,2),(2,3),(2,4),(2,5),(2,6) (3,1),(3,2),(3,3),(3,4),(3,5),(3,6) (4,1),(4,2),(4,3),(4,4),(4,5),(4,6) (5,1),(5,2),(5,3),(5,4),(5,5),(5,6) (6,1),(6,2),(6,3),(6,4),(6,5),(6,6)}; {(4,6),(5,5),(6,4)}A =; {(3,1),(4,2),(5,3),(6,4)}B =。 (3){(1,2,3),(2,3,4),(3,4,5),(1,3,4),(1,4,5),(1,2,4),(1,2,5)S = (2,3,5),(2,4,5),(1 {(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)}A = (4){(,,),(,,),(,,),(,,),(,,),(,,),S ab ab ab a b a b b a =--------- (,,),(,,,),(,,)}b a a b b a ---,其中‘-’表示空盒; {(,,),(,,),(,,),(,,),(,,)}A ab a b a b b a b a =------。 (5){0,1,2,},{0,1,2,3,4},{3,4,}S A B ===。 2.设,,A B C 是随机试验E 的三个事件,试用,,A B C 表示下列事件: (1)仅A 发生; (2),,A B C 中至少有两个发生;

概率论课程小论文

《概率论与数理统计》小论文概率与理性的发展 哈尔滨工业大学 2014年12月

《概率论与数理统计》课程小论文 概率与理性的发展 摘要概率论是一门研究事件发生的数学规律的学科。他起源于生活中的实际问题的思考,较传统的几何学等起步较晚,在伯努利、泊松等数学家的努力下,形成了现如今较为完备的理论体系。他与数理统计一起,在工程设计、自然科学、社会科学、军事等领域起着重要作用。而概率论提出后有很多人感感兴趣对其进行研究的原因之一是很多事件的主观上对概率的判 断与实际的理论概率有着很大的差异,于是有关概率的悖论有很多,也有很多与直觉相悖的概率问题,这也是概率的魅力之一。本文将从概率的发展、概率与感性的差异等方面出发对概率与感性和理性进行探讨。 关键词概率悖论直觉理性 一、概率的发展 概率论的初步发展起源于十七世纪中叶的法国。在那里出现了对赌博问题的研究,也正是对赌博问题的研究,推动了概率论的发展。最初的问题是从分赌金开始的。[1] 最初的问题大致是这样的:甲乙双方是竞技力量相当的对手,每人各拿出32枚金币,以争胜负。在竞争中,取胜一次,得一分。最先获得3分的人取得全部赎金64枚金币。可是,因某种缘故,竞争3次,赌博被迫终止。而此时,甲得2分,乙得1分,问赌金如何分配?很多问题的开端都是利益的纠纷,这也是一个例子,双方都会为自己的利益考虑而提出对这笔赌金的分法,而从直觉上看,很多理由似乎也是很有道理的。但是真相只有一个,到底理论上最公平的分法是怎样的?这个问题的当事人爱好赌博的德梅雷 向其好友著名的数学家帕斯卡请教,这个问题也受到了帕斯卡的关注。帕斯卡与其好友费尔马进行了三个月的书信往来讨论这个问题,最终得到了满意的答案:假设两赌徒中甲赢了两局,乙一局未赢,那么接下来可能出现的情况是:若甲再赢一局,得3分,将获全部赌金;若乙赢一局,出现2:1的局

概率论小论文

浅谈概率论 专业:环境设计 姓名:zhou 学号:66626edfe 【摘要】:概率论与数理统计课程是我们哈工大学生学习的一门应用性很强的必修基础课程。通过近一个学期的学习,我对概率论也有了一些粗浅的认识,这篇文章将从概率论的历史和发展讲起,接着对二项分布、泊松分布和正态分布之间的关系进行一个简单的论述,然后将概率论的一些概念与以往学过的概念进行类比,最后对概率论在工科数学分析中的几个巧用进行说明,并附加了几个实例。 【关键词】:二项分布泊松分布正态分布类比级数广义积分

正文 1 概率论的起源和发展 概率论不仅是当代科学的重要数学基础之一,而且还是当代社会和人类日常生活最必需的知识之一。正如十九世纪法国著名数学家拉普拉斯所说:“对于生活中的大部分, 最重要的问题实际上只是概率问题。你可以说几乎我们所掌握的所有知识都是不确定的, 只有一小部分我们能确定地了解。甚至数学科学本身, 归纳法、类推法和发现真理的首要手段都是建立在概率论的基础之上的。因此,整个的人类知识系统是与这一理论相联系的。”然而, 饶有趣味的是, 这门被拉普拉斯称为“人类知识的最重要的一部分”的数学却直接地起源于一种相当独特的人类行为的探索: 人们对于机会性游戏的研究思考。所谓机会性游戏就是靠运气取胜一些游戏, 如赌博等。这种游戏不是哪一个民族的单独发明, 它几乎出现在世界各地的许多地方, 如埃及、印度、中国等。著名的希腊历史学家希罗多德在他的巨著《历史》中写道: 早在公元前1500年, 埃及人为了忘却饥饿的困扰, 经常聚集在一起掷骰子和紫云英,这是一种叫做“猎犬与胡狼”的游戏, 照一定规则,根据掷出各种不同的紫云英而移动筹码。大约从公元前1200年起, 人们把纯天然的骨骼(如脚上的距骨) 改进成了立方体的骰子。[1] 二十世纪以来, 概率论逐渐渗入到自然科学、社会科学、以及人们的日常生活等几乎无所不在的领域中去.无论在研究领域, 还是教育领域, 它愈来愈成为一门当今最重要的学科之一。于是, 对于概率论历史的研究也日益引起科学史学家们的重视。在概率论发展历史上, 十八、十九世纪之交法国最伟大的科学家之一拉普拉斯具有特殊的地位, 1812年拉普拉斯首次出版的《分析概率论》标志着概率论历史上的一个重要阶段--古典概率论的成熟。概率论发展到1901年, 中心极限定理终于被严格的证明了, 以后数学家正利用这一定理第一次科学地解释了为什么实际中遇到的许多随机变量近似服从以正态分布。到了20世纪的30年代, 人们开始研究随机过程, 著名的马尔可夫过程的理论在1931年才被奠定其地位。到了近代, 出现了理论概率及应用概率的分支, 及将概率论应用到不同范筹, 从而产生了不同学科。因此, 现代概率论已经成为一个非常庞大的数学分支。 2二项分布、泊松分布和正态分布之间的关系 2.1 二项分布、泊松分布之间的关系 定理1 泊松定理:在n重伯努利试验中,事件A在每次试验中发生的概率为 p n ,它与试验次数有关,如果 n lim0 n npλ →∞ =>,则对任意给定的k, 有

概率论结课论文

条件期望的性质和应用 1 条件期望的几种定义 1.1 条件分布角度出发的条件期望定义 从条件分布的角度出发,条件分布的数学期望称为条件期望。 由离散随机变量和连续随机变量条件分布的定义,引出条件期望的定义。 定义1 离散随机变量的条件期望 设二维离散随机变量(X,Y)的联合分布列为(),ij j i p P X x Y y ===, 1,2,,1,2,.i j =???=???,对一切使()10j j ij i P Y y p p +∞ ?====>∑的j y ,称 ()() |,(),1,2,j ij i i j i j j j P X x Y y p p P X x Y y i p P Y y ?====== = =???= 为给定j Y y =条件下X 的条件分布列。 此时条件分布函数为 () ()i i j i j i j x x x x F x y P X x Y y p ≤≤====∑∑; 同理,对一切使()1 0i i ij j P X x p p +∞ ?====>∑的i x ,称 ()()() j|i ,,1,2,j ij i j i i j P X x Y y p p P Y y X x j p P X x ? ====== = =???= 为给定i X x =条件下Y 的条件分布列。 此时条件分布函数为 ()()j j i j i j i y y y y F y x P Y y X x p ≤≤= === ∑∑。 故条件分布的数学期望(若存在)称为条件期望,定义如下 ()()i i i E X Y y x P X x Y y ====∑或()()j j j E Y X x y P Y y X x ====∑。 定义2 连续随机变量的条件期望 设二维连续随机变量(X,Y )的联合密度函数为(,)p x y ,边际密度函数为 ()X p x 和()Y p y 。 对一切使()Y p y >0的y ,给定Y y =条件下X 的条件分布函数和条件密度函数 分别为(,) ()()x Y p u y F x y du p y -∞ =? ,()()() ,Y p x y p x y p y =; 同理对一切使()X p x >0的x ,给定X=x 条件下Y 的条件分布函数和条件密度

哈工大概率论小论文

哈工大概率论小论文 篇一:哈工大概率论小论文概率论课程小论文计算机科学与技术学院信息安全专业一班(1303201) 姓名:宫庆红学号:1130320103 概率论中用到的几种数学思想作为数学中的一个重要分支,概率论同时用到了其他几种数学思想。本文着重从数学归纳法、集合论和微积分等几个方面进行简单的讨论。一.概率论中的数学归纳法思想在概率问题中常会遇到一些与试验次数无关的重要结论, 这些结论在使用数学归纳法来证明时, 常常需要配合使用全概率公式, 从而使概率论中的数学归纳法具有自己的特色。例l 设有冷个罐子, 在每一个罐子中各有m 个白球与k 个黑球, 从第一个罐子中任取一球放入第二个罐子中, 并依次类推。求从最后一个罐子中取出一个白球的概率。分析: 先探索规律, 设n =2 令H1=“ 从第一个罐子中取出一个球, 是白球” H2=“ 从第二个罐子中取出一个球, 是白球” 显然P(H1)=m m?k,所求之概率 P(HL)=P(H1)P(H2|H1)+P(H1’)P(H2|H1) =mm?1kmm???? m?km?k?1m?km?k?1m?k 这恰与n=1时的结论是一样的,于是可以预见,不管n为什么自然数,所求的概率都应是m。 m?k上述预测的正确性是很容易用大家所熟知的数学归纳法来证明的。事实上,另Hi=“从i个罐子中去除一个球,是白球”(i=1,2,……n)设当n=t时,结论成立,即P(Ht)=m m?k 则当n=t+1时,有P(Ht+1)=P(Ht)P(Ht+1|Ht)+P(Ht’)P(Ht+1|Ht’) mm?1kmm???? m?km?k?1m?km?k?1m?k k于是,结论P(Hn)=对任意自然数n都是成立的。 m?k = 不难看出,在这里数学归纳法之所以能顺利进行,那是由于在知道从第t个罐中取出的球的颜色(比如是白球)之后,第t+1罐的新总体成分就完全清楚了。(相当于从第t罐取出的是白球,这时新的第t+1罐中就有m+1个白球,k个黑球)所以相应的条件概率P(Ht+1|Ht)=m?1m(或P(Ht|Ht’)=)也就随之而得了。m?k?1m?k?1 二.概率论中的微积分思想在我们现阶段所学习的概率论课程中,微积分是重要的基础。如何正确、巧妙地运用微积分方法和技巧是值得重视的问题。现在,简单归纳一些问题来说明微积分方法在概率论中有着广泛的应用。幂级数方法例1 设随机变量ξ服从参数为(r,p)的负二项分布,(r≧1,0 p 1),即P{ξ=m}=Cm?1pr?1rqm?r,m=r,r+1,……q=1-p, 求E(ξ).解这道题的解题过程中要用到公式 1 (1?x)??Cmxr?1 m?r?rm?r。 ?1n这个公式是有??x(0?x?1)

哈工大2015年概率统计试题及答案

2015年哈工大概率统计试题 一、填空题(每小题3分,共5小题,满分15分) 1.设()()0.7P A P B +=,且,A B 只发生一个的概率为0.5,则,A B 都发生的概率为 ________________ . 2.设随机变量X 的概率密度为???<≥=0 ,00e )(-x x x f x X ,,则随机变量X Y e =的概率密度为 ()Y f y = ______________ _ _ . 3.设随机变量, X Y 的相关系数为0.5,220,2EX EY EX EY ====,则 2()E X Y +=. 4.生产一个零件所需时间2(,)X N μσ ,观察25个零件的生产时间得 5.5x =秒,样本 标准差 1.73s =秒,则μ的置信度为0.95的置信区间为________________ __. 5.设随机变量, X Y 相互独立,且均服从区间[]0,3上的均匀分布,则 {max(,)1}P X Y ≤=______ . 注:可选用的部分数值:0.050.0250.025(24) 1.7109, (24) 2.0639, (25) 2.0595,t t t === .95.0645.1975.096.1=Φ=Φ)(,)( 二、选择题(每小题3分,共5小题,满分15分) 1.设()01,P B <<(|)(|)1P A B P A B +=,则 (A ),A B 互不相容.(B ),A B 互为对立事件. (C ),A B 相互独立.(D ),A B 不独立.【】 2.下列函数可作为随机变量的分布函数的是 (A )()2 1,1F x x x =-∞<<+∞+.(B ), 0() 1 0, 0 x x F x x x ?≥? =+??

哈工大概率论与数理统计课后习题答案四

习 题 四 1.一个袋子中装有四个球,它们上面分别标有数字1,2,2,3,今从袋中任取一球后不放回,再从袋中任取一球,以,X Y 分别表示第一次,第二次取出的球上的标号,求(,)X Y 的 分布列. 解 (,)X Y 的分布列为 其中 (1,1)(1)(1|1)0P X Y P X P Y X ======= (1,2)(1)(2|1)P X Y P X P Y X ====== 121436 =?= 余者类推。 2.将一枚硬币连掷三次,以 X 表示在三次中出现正面的次数,以Y 表示三次中出现正 面次数与出现反面次数之差的绝对值,试写出(,)X Y 的分布列及边缘分布列。 解 一枚硬币连掷三次相当于三重贝努里试验,故1 ~(3,).2 X B 331 ()(),0,1,2,32 k P X k C k ===,于是(,)X Y 的分布列和边缘分布为 其中 (0,1)(0)(1|0)0P X Y P X P Y X =======,

13 313(1,1)(1)(1|1)()128 P X Y P X P Y X C =======?=, 余者类推。 3.设(,)X Y 的概率密度为 1 (6),02,24, (,)80,.x y x y f x y ?--<<<

概率论课程期末论文大作业

《概率论与数理统计》论文题目:正态分布及其应用 学院:航天学院 专业:空间科学与技术 姓名:黄海京 学号:1131850108

正态分布及其应用 摘要:正态分布(normal distribution),是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。正态分布有极其广泛的实际背景, 例如测量误差, 人的生理特征尺寸如身高、体重等 ,正常情况下生产的产品尺寸:直径、长度、重量高度,炮弹的弹落点的分布等, 都服从或近似服从正态分布,以及确定医学参考值范围,药品规格,用量等。可以说,正态分布是自然界和社会现象中最为常见的一种分布, 一个变量如果受到大量微小的、独立的随机因素的影响, 那么这个变量一般是一个正态随机变量。 关键词:正态分布, 一、正态分布的由来 正态分布(normal distribution)又名高斯分布(Gaussian distribution)。正态分布概念是由德国的数学家和天文学家Moivre于1733年受次提出的,但由于德国数学家Gauss率先将其应用于天文学家研究,故正态分布又叫高斯分布,高斯这项工作对后世的影响极大,他使正态分布同时有了“高斯分布”的名称,后世之所以多将最小二乘法的发明权归之于他,也是出于这一工作。 正态分布是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。若随机变量X服从一个数学期望为μ、标准方差为σ2的高斯分布,记为:则其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。因其曲线呈钟形,因此人们又经常称之为钟形曲线。我们通常所说的标准正态分布是μ= 0,σ= 1的正态分布。 二、正态分布的特性 1. 正太分布的曲线特征 正态曲线呈钟型,两头低,中间高,左右对称,曲线与横轴间的面积总等于1。 (1)集中性:正态曲线的高峰位于正中央,即均数所在的位置。 (2)对称性:正态曲线以均数为中心,左右对称,曲线两端永远不与横轴相交。 (3)均匀变动性:正态曲线由均数所在处开始,分别向左右两侧逐渐均匀下降。

概率论论文

概率论与数理统计在日常生活中的应用 学院:通信工程学院 班级:电子信息工程152 学号:208150654 姓名:王鑫 学校:南京工程学院

目录 摘要 引言 第一章基本知识点 1.1概率论的基本概念 1.2随机变量及其分布 1.3多维随机变量及其分布 1.4随机变量的数字特征 1.5大数定律和中心极限定理 1.6样本及抽样分布 1.7参数估计 1.8假设检验 1.9方差分析与回归分析 第二章在日常生活中的应用 2.1经济保险问题中的应用 2.2在经济损失估计中的应用 2.3在求解最大经济利润中的应用 2.4在医学领域中的概率论思想 2.5金融领域中的概率论思想 第三章结语及参考文献

摘要:数学作为一门工具性学科在我们的日常生活以及科学研究中扮演着极其重要的角色。概率论与数理统计作为数学的一个重要组成部分,在生活中的应用也越来越广泛,近些年来,概率论与数理统计知识也越来越多的渗透到经济学,心理学,遗传学等学科中,另外在我们的日常生活之中,赌博,彩票,天气,体育赛事等都跟概率学有着十分密切的关系。本文通过实例讨论概率统计在经济保险,经济损失估计、最大经济利润求解、医学应用、金融应用等日常生活中的应用 关键词:概率统计经济领域医学领域金融领域生活 引言:概率论与数理统计是一门相当有用的数学分支学科,随着社会的发展,概率论与数理统计在生活中的应用越来越多,我们在学习过程中也了解到概率论与数理统计在疾病预测,彩票,抽样调查,评估,彩票,保险,以及在经济中的一些广泛的应用比如说经济损失估计、最大经济利润求解、经济保险等,下面我用一些实例谈谈一些常见的概率论与数理统计在生活中的应用问题

概率论小论文Word版

概率论论文 浅谈敏感性问题调查与全概率公式的应用 学院专业: 班级: 学号:

姓名:Rabbit 联系方式: 浅谈敏感性问题调查与全概率公式的应用 Rabbit 英才学院自动化 摘要:敏感性问题在常见的各种调查中存在很大比重。然而,直接的敏感性问题提问由于极有可能导致受访者难堪而难以得到准确回答,进而严重影响了调查效果。而借助随机回答法和不相关问题模型,可以极大减少由于受访者主观因素导致的非抽样误差,进而得到关于敏感性问题问题的小误差统计结果。 关键词:敏感性问题随即回答法不相关问题模型全概率公式误差分析 引言:你考试是否作过弊吗?你是否违反过学校纪律?当被问及这些敏感问题时,许多人会然拒绝回答或者编造答案。然而,这样便难以得出准确的统计结果,也就难以根据所得数据进行分析,得出相关结论。 随机回答法给出了一种使被问人放心的方法,访问者并不知道被问者所回答的内容。不相关问题模型则在一定程度上减缓了受访者对询问者的敌意,更有助于得到诚实回答。随即回答法的本质则是全概率公式的应用。

一、随机回答法 1、随机化回答法与Warner模型 沃纳在1965年提出的随机化回答技术,基于“愈少泄漏问题的答案实质,愈能较好合作”的思想,通过巧妙设计的间题形式对被调查者的隐私和秘密加以保护,引导被问者的答案仅仅提供概率意义下的信息。通过这些信息完成调查,再用这种方法对总体的比例进行估计的模型,通称为沃纳模型。 假定我们想要估计总体中属于团体A 2、概率推导 数字12,除此以外,小球没有其它的区别。访问者从 被问者从混合均匀的一桶球中随便地选取一个,记下球上的数字,数字不要让访问者看见。被问者面前有两个问题: 问题1 问题2 他要求按照所选的数字回答相应的问题。虽然,访问者仅仅获得了“是”和“不是”的 下列的记号: 1 1的牌的概率。 2的牌的概率。

最大似然估计学习总结(概率论大作业)

最大似然估计学习总结(概率论大作业)

最大似然估计学习总结 航天学院探测制导与控制技术杨若眉1110420123 摘要:最大似然估计是一种统计方法,它用来求一个样本集的相关概率密度函数的参数。最大似然法明确地使用概率模型,其目标是寻找能够以较高概率产生观察数据的系统发生树。最大似然法是一类完全基于统计的系统发生树重建方法的代表。 关键词:最大似然估计;离散;连续;概率密度最大似然估计是一种统计方法,它用来求一个样本集的相关概率密度函数的参数。这个方法最早是遗传学家以及统计学家罗纳德·费雪爵士在1912年至1922年间开始使用的。 “似然”是对likelihood 的一种较为贴近文言文的翻译,“似然”用现代的中文来说即“可能性”。故而,若称之为“最大可能性估计”则更加通俗易懂。最大似然法明确地使用概率模型,其目标是寻找能够以较高概率产生观察数据的系统发生树。最大似然法是一类完全基于统计的系统发生树重建方法的代表。该方法在每组序列比对中考虑了每个核苷酸替换的概率。

最大似然法是要解决这样一个问题:给定一组数据和一个参数待定的模型,如何确定模型的参数,使得这个确定参数后的模型在所有模型中产生已知数据的概率最大。通俗一点讲,就是在什么情况下最有可能发生已知的事件。举个例子,假如有一个罐子,里面有黑白两种颜色的球,数目多少不知,两种颜色的比例也不知。我们想知道罐中白球和黑球的比例,但我们不能把罐中的球全部拿出来数。现在我们可以每次任意从已经摇匀的罐中拿一个球出来,记录球的颜色,然后把拿出来的球再放回罐中。这个过程可以重复,我们可以用记录的球的颜色来估计罐中黑白球的比例。假如在前面的一百次重复记录中,有七十次是白球,请问罐中白球所占的比例最有可能是多少? 我想很多人立马有答案:70%。这个答案是正确的。可是为什么呢?(常识嘛!这还要问?!)其实,在很多常识的背后,都有相应的理论支持。在上面的问题中,就有最大似然法的支持例如,转换出现的概率大约是颠换的三倍。在一个三条序列的比对中,如果发现其中有一列为一个C,一个T和一个G,我们有理由认为,C和T所

概率论与数理统计结课论文

概率论与数理统计课程总结报告——概率论与数理统计在日常生活中的应用 姓名: 学号: 专业:电子信息工程

摘要:数学作为一门工具性学科在我们的日常生活以及科学研究中扮演着极其重要的角色。概率论与 数理统计作为数学的一个重要组成部分,在生活中的应用也越来越广泛,近些年来,概率论与数理统计知识也越来越多的渗透到经济学,心理学,遗传学等学科中,另外在我们的日常生活之中,赌博,彩票,天气,体育赛事等都跟概率学有着十分密切的关系。本文着眼于概率论与数理统计在我们生活中的应用,通过前半部分对概率论与数理统计的一些基本知识的介绍,包括概率的基本性质,随机变量的数字特征及其分布,贝叶斯公式,中心极限定理等,结合后半部分的事例分析讨论了概率论与数理统计在我们生活中的指导作用,可以说,概率论与数理统计是如今数学中最活跃,应用最广泛的学科之一。 关键词:概率论 数理统计 经济生活 随机变量 贝叶斯公式 基本知识 §1.1 概率的重要性质 1.1.1定义 设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率。 概率)(A P 满足下列条件: (1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P (3)可列可加性:设n A A A ,,,21 是两两互不相容的事件,有∑===n k k n k k A P A P 1 1 )()( (n 可以取∞) 1.1.2 概率的一些重要性质 (i ) 0)(=φP (ii )若n A A A ,,,21 是两两互不相容的事件,则有∑===n k k n k k A P A P 1 1 )()( (n 可以取∞) (iii )设A ,B 是两个事件若B A ?,则)()()(A P B P A B P -=-,)A ()B (P P ≥ (iv )对于任意事件A ,1)(≤A P (v ))(1)(A P A P -= (逆事件的概率) (vi )对于任意事件A ,B 有)()()()(AB P B P A P B A P -+=?

概率论论文10篇全面版

《概率论论文》 概率论论文(一): 《概率论与数理统计》论文 摘要 概率论的发展具有很长的历史,多位数学家对概率论的构成做出了巨大贡献。纵观其发展史,在实际生活中具有很强的应用好处。正是有了前人的努力,才有了现代的概率论体系。本文将从概率论的研究好处、定义,以及发展历程进行叙述。 概率论的发展与起源 1.1概率论的定义 概率论是研究随机现象数量规律的数学分支。随机现象是相对于决定性现象 而言的,随机现象是指在基本条件不变的状况下,一系列或观察会得到不同结果的现象。每一次实验或观察前,不能肯定会出现哪种结果,呈现出偶然性。例如,抛一枚硬币,可能会出现正面或者反面;在同一工艺条件下生产出的灯泡,其寿命长短参差不齐等等。随机现象的实现和对它的观察称为随机试验。随机试验的每一可能结果称为一个基本事件,一个或者一组基本事件统称为随机事件,或者简称为事件。事件的概率则是衡量该事件发生的可能性的量度。虽然在一次随机试验中某个事件的发生是带有偶然性的,但那些可在相同条件下超多重复的随机实验却往往呈现出明显的数量规律。例如,连续多次抛一枚硬币,出现正面的频率随着抛次数的增加逐渐趋近于1/2;犹如,多次测量一物体的长度,其测量结果的平均值随着测量次数的增加,逐渐稳定于一常数,并且测量值大多落在此常数的附近,其分布状况呈现中间多,两头少及某种程度的对称性。大数定律和中心极限定律就是描述和论证这些规律的。在实际生活中,人们往往还需要研究某一特定随机现象的演变状况。例如,微小粒子在液体中受周围分子的随机碰撞而构成不规则的运动,即布朗运动,这就是随机过程。随机过程的统计特征、计算与随机过程有关的某些事件的概率,个性是研究 与随机过程样本轨道(及过程的一次实现)有关的问题,是现代概率论的主要课题。 在当代,随着概率论本身的发展和学科之间的交叉融合,囊括了概率理论和 统计理论两大部分的广义概率论已经成为一门应用十分广泛的学科,概率方法与统计方法逐渐渗透到了其它学科的研究工作当中。无论是在自然科学领域还是社会科学领域,各门学科中都能看到概率论的身影。概率论已经成为一种重要的工具,在社会发展中发挥着巨大的作用。 1.2课题背景及研究的目的和好处 现代社会步调快,信息更新快,信息量大,如何从中选取分析最有效的信息 成为发展的先决条件,故概率统计学有着不可比拟的重要地位与作用。无论是在日常生活中,还是商业经济、科学研究,小到日常下雨,大到卫星发射,各种事物发展中都有概率统计的影子。在这个科技革新的时代,概率统计学必将发挥前所未有的重大影响,所以研究概率学具有十分重要的好处。

概率论与数理统计论文

概率论与数理统计论文与总结 概率论与数理统计这门数学科学在我们的生活中有着广泛的应用,从初中我们便开始接触古典概型。经过将近一个学期的学习,我们对概率论和数理统计这两门课程的基本理论和方法了进一步的了解,同时也深刻的意识到自己所学的知识还是十分有限的。 在这门课程中我们并没有研究特别高深的理论知识,而是主要学习了概率论和数理统计的基本理论和基本方法,学会用概率论和数理统计的思维去思考并且将其应用于科学研究和工程实际中。在本学期课堂上,我也听到了王老师讲的许多“课外的知识”,使我对人生有了不少新的认识与看法。 一 概率论与数理统计在生活中的应用 在日常生活中,我们经常可以看到让参赛选手选择不同奖励盒子的电视节目。如果参赛选手选对了盒子就可以得到丰厚的奖品。如果选错了盒子的话则会一无所有。这样的游戏不仅仅是运气的问题,我们也可以通过概率论与数理统计的知识进行分析,从而提高获奖的概率。下面我们描述这样一个游戏并对其进行数学建模。 参赛选手面前有三个完全相同的盒子,其中一个有5000元的奖金,另外两个什么也没有。参赛选手可以从中任选一个盒子,但暂且不打开它。节目主持人随后打开一个盒子,其中什么也没有,然后问参赛者是坚持原来的选择还是换成另一个没有被打开的盒子。一般的人可能会认为那么既然现在只剩下两个盒子,每个盒子中有奖金的概率都是0.5,所以他坚持原来的选择。这个推理看似是没有缺陷的,但是经过应用概率论与数理统计的知识仔细分析后我们会发现,他选择另一个没有被打开过的盒子获取奖金的概率是坚持原来选择获得奖金的两倍。下面我们对该过程进行分析: 首先我们假设有三个盒子,分别标号为1、2、3,不妨假设5000元奖金在1号盒子中。在题目中隐含的一个条件就是主持人知道奖金在哪一个盒子中,并且他打开的总是没有奖金的盒子。 首先我们假定参赛选手决定不换盒子,则参赛选手从1、2和3中任选一个 盒子。设事件A 、B 及C 分别为选择1号盒子,2号盒子,3号盒子。获得奖金为事件W ,则参赛选手获取奖金的概率为: ()()13 P W P A == 假设参赛选手总决定换盒子。当参赛选手选择第一个盒子时,无论主持人打开的是2号盒子还是3号盒子,参赛选手换了盒子后都无法获取奖金。当参赛选手选择2号盒子时,主持人一定会打开没有奖金的3号盒子,参赛选手换了盒子后一定会获得奖金。参赛选手选择3号盒子时同理。则参赛选手获得奖金的概率为: ()()()23 P W P B P C =+=

概率论与数理统计习题 三解析【哈工大版】

习 题 三 1.掷一枚非均质的硬币,出现正面的概率为p (01)p <<,若以X 表示直至掷到正、反面都出现时为止所需投掷次数,求X 的分布列。 解 ()X k =表示事件:前1k -次出现正面,第k 次出现反面,或前1k -次出现反面,第k 次出现正面,所以 11()(1)(1),2,3,.k k P X k p p p p k --==-+-= 2.袋中有b 个黑球a 个白球,从袋中任意取出r 个球,求r 个球中黑球个 数X 的分布列。 解 从a b +个球中任取r 个球共有r a b C +种取法,r 个球中有k 个黑球的取法有k r k b a C C -,所以X 的分布列为 ()k r k b a r a b C C P X k C -+==,max(0,),max(0,)1,,min(,)k r a r a b r =--+ , 此乃因为,如果r a <,则r 个球中可以全是白球,没有黑球,即0k =;如果r a >则r 个球中至少有r a -个黑球,此时k 应从r a -开始。 3.一实习生用一台机器接连生产了三个同种零件,第i 个零件是不合格品的概率1 (1,2,3)1 i p i i ==+,以X 表示三个零件中合格品的个数,求X 的分布列。 解 设i A =‘第i 个零件是合格品’1,2,3i =。则 1231111(0)()23424 P X P A A A === ??=, 123123123(1)()P X P A A A A A A A A A ==++ 123123123()()()P A A A P A A A P A A A =++ 1111211136 23423423424 = ??+??+??=, 123123123(2)()P X P A A A A A A A A A ==++ 123123123()()()P A A A P A A A P A A A =++ 12111312311 23423423424 = ??+???+??=, 1231236 (3)()23424 P X P A A A ===??=. 即X 的分布列为

概率论小论文

概率论小论文

概率论的发展简介 摘要:概率作为数学的一个重要部分,在生活中的应用越来越广,同样也在发挥着越来越广泛的用处。加强数学的应用性,让学生用数学知识和数学的思维方法去看待,分析,解决实际生活问题,在数学活动中获得生活经验。概率论是指导人们从事物表象看到其本质的一门科学,本文主要简单介绍了概率论的发展史和由现实生活中的部分现象分析概率知识的广泛应用。 关键字:概率论简介发展史应用分析 正文:概率论是研究随机现象数量规律的数学分支。随机现象是相对于决定性现象而言的。在一定条件下必然发生某一结果的现象称为决定性现象。例如在标准大气压下,纯水加热到100℃时水必然会沸腾等。随机现象则是指在基本条件不变的情况下,一系列试验或观察会得到不同结果的现象。每一次试验或观察前,不能肯定会出现哪种结果,呈现出偶然性。例如,掷一硬币,可能出现正面或反面,在同一工艺条件下生产出的灯泡,其寿命长短参差不齐等等。随机现象的实现和对它的观察称为随机试验。随机试验的每一可能结果称为一个基本事件,一个或一组基本事件统称随机事件,或简称事件。 概率论同其他数学分支一样,是在一定的社会条件下,通过人类的社会实践和生产活动发展起来的一种智力积累.今日的概率论被广泛应用于各个领域,已成为一棵参天大树,枝多叶茂,硕果累累。正如钟开莱1974年所说:“在过去半个世纪中,概率论从一个较小的、孤立的课题发展为一个与数学许多其它分支相互影响、内容宽广而深入的学科。”概率论发展的每一步都凝结着数学家们的心血,正是一代又一代数学家的辛勤努力才有了概率论的今天。 人类认识到随机现象的存在是很早的.从太古时代起,估计各种可能性就一直是人类的一件要事。早在古希腊哲学家就已经注意到必然性与偶然性问题;我国春秋时期也已有可考词语(辞海);即使提到数学家记事日程上的可考记载,也至少可推到中世纪。最初概率论的起源与赌博问题有关。16世纪,意大利的学者吉罗拉莫·卡尔达诺(Girolam oCardano,1501——1576)开始研究掷骰子等赌博中的一些简单问题。17世纪中叶,当时的法国宫廷贵族里盛行着掷骰子游戏,游戏规则是玩家连续掷 4 次骰子,如果其中没有 6 点出现,玩家赢,如果出现一次 6 点,则庄家(相当于赌场)赢。按照这一游戏规则,从长期来看,庄家扮演赢家的角色,而玩家大部分时间是输家,因为庄家总是要靠此为生的,因此当时人们也就接受了这种现象。 后来为了使游戏更刺激,游戏规则发生了些许变化,玩家这回用 2 个骰子连续掷 24 次,不同时出现2个6点,玩家赢,否则庄家赢。当时人们普遍认为,2 次出现 6 点的概率是一次出现 6 点的概率的 1 / 6 ,因此 6 倍于前一种规则的次数,也既是 24 次赢或输的概率与以前是相等的。然而事实却刚好相反,从长期来看,这回庄家处于输家的状态,于是他们去请教当时的数学家帕斯卡,求助其对这种现象作出解释,这个问题的解决直接推动了概率论的产生。 最早对概率论来严格化进行尝试的,是俄国数学家伯恩斯坦(с.н.бернщтейн,1880—1968)和奥地利数学家冯·米西斯(R.von Mises,1883—1953)。他们都提出了一些公理来作为概率论的前提,但他们的公理理论都是不完善的。 作为测度论的奠基人,博雷尔(Borel)在1905年指出概率论理论如果采用测度论术语来表述将会方便许多,并首先将测度论方法引入概率论重要问题的研究,特别是1909年他

哈工大概率论课程论文

哈尔滨工业大学 课程论文概率论与数理统计的发展与应用 课程名称概率论与数理统计姓名 学院英才学院 专业电气工程及其自动化班级 学号 指导教师王勇 日期2014年12月11日

[摘要]:通过本学期概率论与数理统计这门课的学习,我基本掌握了基本的概率知识,这对于自己以后的发展和创新有着很大的帮助。本文将根据自己的学习心得,概率论的历史、发展和主要内容,应用方向,课程感悟等四个方面来阐述我对本门课的总结。 [关键词]:概率论数理统计生产发展主要内容应用方向

概率论与数理统计是研究随机现象规律性的一门科学。前者是从数学观点研究随机现象的基本性质,后者从搜集到的随机数据,估计或推断随机现象的基本特性。 一:概率论与数理统计的起源与发展 1、概率论 概率论起源于对赌博问题的研究。早在16世纪,意大利学者卡丹与塔塔里亚等人就已从数学角度研究过赌博问题。他们的研究除了赌博外还与当时的人口、保险业等有关,但由于卡丹等人的思想未引起重视,概率概念的要旨也不明确,于是很快被人淡忘了。 概率论的早期研究大约在十六世纪到十一七世纪之间。(若考虑到概率与统计在早期难于区分的辜实,它的历史可远溯到许多世纪之前。根据科学史记载,在1390年就有人讨论过掷般子的问题,若把文明古国的抽签活动也加以考虑,还可有更早的史料。)这段期间,欧洲进入文艺复兴时期,工业革命已开始蔓延。伴随工业发展提出的误差问题,伴随航海事业发展产生的天气预报问题,伴随商业发展而产生的贸易、股票、彩票和银行、保险公司等,加之人们越来越需要了解的患病率、死亡率、灾害规律等问题,急需创立一门分析研究随机现学学科。概享论应社会实践的需要出现了。 在这个时期,意大利著名物理学家伽俐略就曾对物理实验中出现的误差进行了科学的研究,把误差作为一种随机现象,并估计了他们产生的概率。十八世纪,概率论发展很快,几乎初等概率的全部内容都在这个期间形成。在这个期间,概率论工作者已经不是孤立地、静止地研究事件发生的概率,而是把随机现象视为一种特殊的变量——随机变量。随机变量的引入,数学家如鱼得水,他们利用各种数学工具,研究随机变量的分布,从而使概率论的研究得到了一次飞跃。在整个十八世纪和十九世纪初叶,概率论风行一时。但是,由于一些学者过分夸大了它的作用,许多人企图把它应用到诸如诉讼之类的“精神”或“道德”的科学上去,遭到了失败。这以后,欧洲的一些数学家认为概率论只是一种数学游戏,不可能有重大的具有科学根据的应用。甚至概率论在气体动力论、误差论、射击论等方面的卓有成效的应用也因此而受到忽视。这些错误后来被形容为“数学诞语”,导致概率论的发展在西欧较长的一段时间(十九世纪下半叶)出现停滞。虽然概率论在这段时期走了一段弯路,但它的发展仍是主流。在这个时期,概率论工作者较好地应用数学工具,使概率论的理论更加严密,基本上完成了概率论作为数学的一个分支应具备的条件。二十世纪以来,由于公理化体系的建立,使得概率论的理论更加完备。另外,极限理论的研究取得了一系列的结果。随机过程,数理统计从概率论中独立出来,成为两门生命力极强的新学科。概率的应用性越来越显示出来,产生了应用概率的研究分支,并由此滋生出许多分支。概率论与其它学科相结合,又出现了不少边缘学科。

相关主题
文本预览
相关文档 最新文档