当前位置:文档之家› 氮化硅陶瓷制品

氮化硅陶瓷制品

氮化硅陶瓷制品
氮化硅陶瓷制品

题目名称:氮化硅陶瓷的制备

学院名称:材料科学与工程学院

班级:

学号:

学生姓名:

指导教师:

2014 年 4 月

氮化硅陶瓷的制备

1.简介

1.1 应用背景

作为结构陶瓷,氮化硅陶瓷材料具有优良的耐磨、耐腐蚀、耐高温性能以及良好的抗热震性能,广泛应用于航空航天、机械、电子电力、化工等领域。采用适当的烧结助剂可有效提高氮化硅陶瓷材料的热导率,增加材料断裂韧性,促进材料性能完善。

研究结果表明,以CeO2为烧结助剂,氮化硅的相变转换率为100%;当CeO2含量不超过8mol%时,氮化硅晶界相的构成主要为Ce4.67(SiO4)3O、Si2ON2以及Ce2Si2O7,其结晶析出状况随烧结助剂含量增加呈规律性变化;晶粒尺寸随烧结助剂含量增加变化微弱,长柱状晶数目增多。烧结助剂CeO2通过对晶界相及微观结构的影响作用于氮化硅陶瓷材料相对密度、强度、硬度及断裂韧性,CeO2含量变化对氮化硅陶瓷材料力学性能影响显著。当CeO2含量不超过7mol%时,氮化硅陶瓷材料的热扩散系数及热导率随CeO2含量增加而升高,CeO2含量由1mol%增加至7mol%时,氮化硅陶瓷材料热扩散系数增加50%,热导率增加38.7%。且氮化硅热传导导机制为声子导热,其热导率的大小依赖于氮化硅晶粒的净化程度。

1.2 研究意义

作为信息、交通、航空航天等科技领域发展基础之一的电力电子技术,应其对电力的有效控制与转换的要求,电子器件一直向小尺寸、高密度、大电流、大功率的趋势发展。伴随大功率、超大规模集成电路的发展,其所面临的热障问题愈加突出,器件设计中的热耗散问题亟待解决(在温度高于100℃时,电路失效率会随着温度的升高成倍增长)。较玻璃、树脂等材料,电子陶瓷材料凭借其优异的绝缘性能、化学稳定性以及与芯片最为相似的热膨胀系数使其在基板材料中占据重要地位。降低基板材料热阻的主要途径有两种:减小基板厚度、提高材料热导率,为此对基板材料强度要求升高。高热导率陶瓷材料主要应用于集成电路(IC)衬底,多芯片组装(MCM)基板、封装以及大功率器件散热支撑件等部位,其中研究较多的有Al2O3、BeO、AlN、BN、Si3N4、SiC 等陶瓷材料。其中多晶氧化铝的热导为25~35Wm-1K-1,其单晶结构热导为40Wm-1K-1。而以高热导率著称的氧化铍,热导率在240 Wm-1K-1左右,但因为使用安全问题而被氮化铝替代。SiC的介电性能远低于其它基板材料,易被击穿,故其使用受到限制。而现今性能较为优异的两种封装材料:氮化铝与氧化铍,前者造价昂贵后者具有毒性。氮化铝的热导率范围为175~200 Wm-1K-1,但其弯曲强度在300~350MPa之间,远低于氮化硅陶瓷材料(600~1500MPa),且氮化硅的热膨胀系数低于以上高热导率陶瓷材料。

高热导率氮化硅陶瓷材料具有其他陶瓷材料无法比拟的高强度、高断裂韧性以及抗热震性能,其作为一种理想的结构材料可以为电子器件的热耗散设计提供一种新的材料选择。具有较高热导率的高性能氮化硅陶瓷的制备需求随着氮化硅陶瓷材料的潜

在应用范围的扩展不断增加,而烧结助剂在制备高性能氮化硅过程中对材料性能影响的相关研究较少。

1.3 制备方法

致密氮化硅陶瓷材料常用的烧结方式有以下几种:反应烧结、气压烧结、热等静压烧结以及热压烧结,近年来放电等离子烧结、无压烧结等烧结方式也因其具有的不同优势受到学者的关注。上世纪90年代中期研究人员多采用热等静压烧结制备具有较高热导率的氮化硅陶瓷材料,目前制备高热导率氮化硅使用最多的两种烧结方式为气压烧结和反应烧结。

a. 气压烧结

气压烧结时较高的氮气压可使氮化硅的分解温度升高,因此气压烧结氮化硅时一般采用较高的烧结温度,而烧结温度的升高有利于氮化硅晶粒的生长和完善,有利于提高烧结体的热导率。且气压烧结条件决定了烧结体微观结构的均匀性,使用气压烧结制备氮化硅陶瓷材料,可获得各向同性的烧结体。

自1996 年Hirosaki 等人使用气压烧结(烧结温度:2000℃,氮气压:100MPa)制备出热导率高达120 Wm-1K-1的氮化硅陶瓷材料,气压烧结便以其节能、高效,对产品尺寸的无要求性逐渐成为制备高热导率氮化硅的主要烧结方式。Yokota等人也通过实验验证了晶种引入并不是影响材料热导率的因素,其烧结温度为1950℃,保温时间16小时,获得的氮化硅烧结体热导率为143 Wm-1K-1。Ye等人采用气压烧结在烧结温度2200℃条件下制备出了热导率为132.3 Wm-1K-1的氮化硅陶瓷材料。而Zhu 等人曾以气压烧结制备出了完全致密化的氮化硅(烧结温度:1900℃,氮气压:1MPa),热导率范围为94~108 Wm-1K-1。

从上文数据易知,气压烧结时提高氮化硅烧结体热导率主要有三种方式:提高烧结温度、增加氮气压以及延长保温时间。

b. 反应烧结

反应烧结氮化硅又称为SRBSN。用于制备高热导率氮化硅纯度最高的商业粉料氧杂质含量最低为1wt%,SRBSN 制备氮硅陶瓷材料使用高纯硅粉作为烧结原料,替换了其他烧结方式使用的杂质含量较高的氮化硅商业粉料,减少了杂质的引入。通过对SRBSN制备工艺流程不断改良,Zhou等人最终制备出了热导率高达177 Wm-1K-1的氮化硅陶瓷材料。

c. 放电等离子烧结和无压烧结

放电等离子烧结具有升温快、加热均匀以及烧结温度等特点,可完成致密烧结体的快速烧结,而这对于高热导率氮化硅烧结制备过程的影响较小,在烧结后依旧需要长时间的高温热处理获得晶粒生长较好的氮化硅陶瓷材料。国内对放电等离子烧结制备高热导率氮化硅陶瓷材料的研究较多,热导率最高可达到100 Wm-1K-1,远低于采用相同烧结助剂使用其他烧结方式制备的氮化硅陶瓷材料。

无压烧结制备的烧结体性能低于有压烧结,其最大优势是成本低廉、工艺简单于推广生产。制备高热导率氮化硅陶瓷材料较少采用无压烧结方式,与材料致密度较低有关。Matovic 等人曾以Li2O-Y2O3为烧结助剂使用无压烧结方式获得了致密度为98.1%的氮化硅陶瓷材料,Vu kovi等人使用无压烧结制备出了具有较高断裂韧性的氮化硅陶瓷材料,断裂韧性为8.4MPa m1/2。

2. 氮化硅陶瓷材料的制备及表征

2.1 制备工艺

(1)称量

将α-Si3N4与

CeO2分别按摩尔

比99:1、98:2、

97:3、95:5、93:7、

92:8计算出不同

摩尔比CeO2所含

的质量分数,分别

为1.23%、2.45%、

3.66%、6.07%、

8.46%、9.65%。

由公式计算出具

有α-Si3N4与CeO2不

同摩尔比试样的理论密度,α-Si3N4的单晶结构

依照所需氮化硅烧结体体积计算出粉料总质量,按质量比分别计算出α-Si3N4与CeO2粉料质量,用电子天平准确称量,精度为0.01g。

ρT=(m1+m2)/(m1/ρ1+m2/ρ2)

式中,ρT——理论密度(g/cm3);

ρ1——氮化硅密度(g/cm3);

ρ2——氧化铈密度(g/cm3);

m1——试样中含有氧化硅质量(g);

m2——试样中含有氧化铈质量(g)。

(2)混料

将称量好的粉料按比例与适量的分散剂(无水乙醇)置于内衬为四氟乙烯的球磨罐中湿混,球磨介质为氧化锆球磨珠。使用行星式球磨机球磨18h,转速为220r/min,每30 分钟反转一次。球磨时间较长,可有效混合烧结助剂与氮化硅粉料。

(3)干燥

采用真空旋转蒸发仪干燥粉料,在干燥前将水浴锅加热至85℃,而后将混合好

的浆料注入旋转蒸发瓶中,抽真空,设置转速为40r/min,干燥时间为1h。真空蒸发可有效防止料浆在干燥过程中与氧接触,减少氧杂质的引入。

(4)装模

为便于脱模,将氮化硼乙醇溶液均匀涂覆于石墨模具内壁、垫片两端,乙醇挥发后装入干燥完全的粉料,压实。粉料两端与石墨垫片之间分别置有涂覆了氮化硼的石墨纸。氮化硅陶瓷材料不易脱模,石墨模具内壁的氮化硼涂层需均匀且具有一定厚度,脱模时不易损坏模具,便于重复使用。

(5)烧结

将装好粉料的石墨模具置于真空热压炉(型号为ZRY80)内,以15℃/min的升温速率升至1600℃,而后升温速率下降至10℃/min直至1800℃。于1800℃保温1h,加载单轴压力为30MPa,而后随炉冷却,气氛为氮气。1800℃的烧结温度有利于烧结助剂促进材料的致密化,,较缓慢的升温速率有利于晶粒的完善生长,较高的机械压力可有效促进晶粒的定向生长。

(6)制样

将试样脱模后,采用平磨磨床与内圆切割机将试样分别加工成3×4×20mm与Φ12.5×3mm两种尺寸以备于力学及热性能测试。这里所制备的氮化硅陶瓷材料体系见表2-2。

表2-2

材料编号材料体系制备工艺

1C α-Si3N4+1mol%CeO2 1800℃,30Mpa热压1h

2C α-Si3N4+2mol%CeO2 1800℃,30Mpa热压1h

3C α-Si3N4+3mol%CeO2 1800℃,30Mpa热压1h

5C α-Si3N4+5mol%CeO2 1800℃,30Mpa热压1h

7C α-Si3N4+7mol%CeO2 1800℃,30Mpa热压1h

8C α-Si3N4+8mol%CeO2 1800℃,30Mpa热压1h

2.2 实验方法

通过微观结构分析、力学、热性能测试,总结本文所制备氮化硅陶瓷材料的物理性能及影响因素,试验方法如下。

2.2.1 结构与成分分析

分别使用SEM、XRD 测试方法分析所制备氮化硅陶瓷材料的表面与断面的微观结构特点、α→β相变率及晶界相构成。从烧结助剂含量与烧结工艺的差异对试样微观结构及成分的影响,结合材料性能测试分析总结最终决定材料性能的因素。A.微观结构分析(SEM)

这里使用场发射扫描电子显微镜(生产公司:FE,型号:HeliosNanolab600i,

题:

1C~试样8C的XRD图谱

分辨率较高)对材料断口截面与热腐后的试样表面形貌、晶体形态进行观测。观测前试样分别由240目、600目、1000 目砂纸打磨抛光至镜面,于无水乙醇溶液中进行超声清洗。烘干后于1500℃下真空加热1h 进行热腐,无需打磨清洗可直接喷金观测。

B.成分分析(XRD)

这里使用旋转阳极 X 射线衍射分析仪(生产公司:日本理学公司,型号:D/MAX-RB,测试条件:Cu 靶、Kα、40KV、50mA)对所制备氮化硅试样进行组分分析,确定晶界相构成。扫描分析时对晶界相衍射峰处以较慢扫描速度重复扫描,快速扫描与慢速扫描的速度分别为5°/min 与2°/min。

2.2.2 物理性能测试

(1). 弯曲强度

这里采用三点弯曲方法使用电子万能试验机(生产公司:美国英斯特朗公司,型

号:Instron-5569,测试条件:位移速率为 0.5mm/min ,跨距为 16mm )对所制备氮化硅试样进行弯曲强度测试。试样尺寸为 3×4×20mm ,试样分别由240 目、600 目、1000 目砂纸打磨抛光至镜面,倒角后进行测试。得到最大加载载荷,运用公式(2-4)计算出氮化硅陶瓷材料的弯曲强度。

σ=3PL/2h 2w

式中,σ ——试样弯曲强度(MPa );

P ——加载的最大载荷(N );

L ——测试时的跨距(mm );

h ——试样高(mm );

w ——试样宽(mm )。

(2). 维氏硬度与断裂韧性

这里使用维式硬度计(型号:HVS —50,测试条件:载荷为 20kg ,持续时间为 10s )测量所制备氮化硅陶瓷材料的维氏硬度。试样分别由 240 目、600目、1000 目砂纸打磨抛光至镜面,冲洗干燥后进行测试。压痕对角线长度由显微镜观测获得,运用如下公式可计算出氮化硅陶瓷材料的维氏硬度。

HV=0.1891F/d 2

式中,HV ——试样的维氏硬度(GPa );

F ——载荷(N );

d ——压痕对角线平均值(m )。

这里采用维氏压痕法测量材料断裂韧性,其压痕产生的裂纹长度由 SEM 观测获得。硬度计压头压力设置为 196.2N ,K IC 由下面公式可获得。 K IC =0.0819(H ×P 4l )0.5

式中,H ——试样的维氏硬度(GPa );

P ——压头加载压力(N );

l ——裂纹长度(m )。

(3). 比热容、热扩散系数与热导率

这里使用激光法导热分析仪(生产公司:德国耐驰仪器制造公司,型号:LFA427,测试条件:室温)对所制备氮化硅试样的热扩散系数、热导率及比热容进行测试。试样尺寸为 Φ12.5×3mm ,测试前试样分别由 240 目、600 目砂纸打磨以保证试样表面平滑、两端面平行度较高。

氮化硅陶瓷制品

题目名称:氮化硅陶瓷的制备 学院名称:材料科学与工程学院 班级: 学号: 学生姓名: 指导教师: 2014 年 4 月

氮化硅陶瓷的制备 1.简介 1.1 应用背景 作为结构陶瓷,氮化硅陶瓷材料具有优良的耐磨、耐腐蚀、耐高温性能以及良好的抗热震性能,广泛应用于航空航天、机械、电子电力、化工等领域。采用适当的烧结助剂可有效提高氮化硅陶瓷材料的热导率,增加材料断裂韧性,促进材料性能完善。 研究结果表明,以CeO2为烧结助剂,氮化硅的相变转换率为100%;当CeO2含量不超过8mol%时,氮化硅晶界相的构成主要为Ce4.67(SiO4)3O、Si2ON2以及Ce2Si2O7,其结晶析出状况随烧结助剂含量增加呈规律性变化;晶粒尺寸随烧结助剂含量增加变化微弱,长柱状晶数目增多。烧结助剂CeO2通过对晶界相及微观结构的影响作用于氮化硅陶瓷材料相对密度、强度、硬度及断裂韧性,CeO2含量变化对氮化硅陶瓷材料力学性能影响显著。当CeO2含量不超过7mol%时,氮化硅陶瓷材料的热扩散系数及热导率随CeO2含量增加而升高,CeO2含量由1mol%增加至7mol%时,氮化硅陶瓷材料热扩散系数增加50%,热导率增加38.7%。且氮化硅热传导导机制为声子导热,其热导率的大小依赖于氮化硅晶粒的净化程度。 1.2 研究意义 作为信息、交通、航空航天等科技领域发展基础之一的电力电子技术,应其对电力的有效控制与转换的要求,电子器件一直向小尺寸、高密度、大电流、大功率的趋势发展。伴随大功率、超大规模集成电路的发展,其所面临的热障问题愈加突出,器件设计中的热耗散问题亟待解决(在温度高于100℃时,电路失效率会随着温度的升高成倍增长)。较玻璃、树脂等材料,电子陶瓷材料凭借其优异的绝缘性能、化学稳定性以及与芯片最为相似的热膨胀系数使其在基板材料中占据重要地位。降低基板材料热阻的主要途径有两种:减小基板厚度、提高材料热导率,为此对基板材料强度要求升高。高热导率陶瓷材料主要应用于集成电路(IC)衬底,多芯片组装(MCM)基板、封装以及大功率器件散热支撑件等部位,其中研究较多的有Al2O3、BeO、AlN、BN、Si3N4、SiC 等陶瓷材料。其中多晶氧化铝的热导为25~35Wm-1K-1,其单晶结构热导为40Wm-1K-1。而以高热导率著称的氧化铍,热导率在240 Wm-1K-1左右,但因为使用安全问题而被氮化铝替代。SiC的介电性能远低于其它基板材料,易被击穿,故其使用受到限制。而现今性能较为优异的两种封装材料:氮化铝与氧化铍,前者造价昂贵后者具有毒性。氮化铝的热导率范围为175~200 Wm-1K-1,但其弯曲强度在300~350MPa之间,远低于氮化硅陶瓷材料(600~1500MPa),且氮化硅的热膨胀系数低于以上高热导率陶瓷材料。 高热导率氮化硅陶瓷材料具有其他陶瓷材料无法比拟的高强度、高断裂韧性以及抗热震性能,其作为一种理想的结构材料可以为电子器件的热耗散设计提供一种新的材料选择。具有较高热导率的高性能氮化硅陶瓷的制备需求随着氮化硅陶瓷材料的潜

陶瓷刀具的种类和性能

陶瓷刀具的种类和性能 陶瓷作为非金属刀具材料,因其能实现高硬度材料的切削和高速切削,所以作为工业的牙齿在金属切削领域中广泛应用,本文根据陶瓷刀具(含立方氮化硼刀具)的种类和性能,浅谈它们的使用区别及其适合加工材质。 一,陶瓷刀具的种类及发展脉络 陶瓷刀具的种类及发展:陶瓷刀具最明显的发展线条是刀片的韧性依次增强:氧化铝陶瓷刀具—-复合氧化铝陶瓷刀具--氮化硅陶瓷刀具--立方氮化硼刀具。 在金属切削领域,氧化铝陶瓷刀具和氮化硅陶瓷刀具合称为陶瓷刀具;在无机非金属材料学中,立方氮化硼材料归于陶瓷材料大类,立方氮化硼材料刀具的问世,是陶瓷刀具的革命。我国河南超硬材料研究所作为国内最早研究聚晶立方氮化硼材料刀具的研究所之一,最近推出纯氮化硼烧结体陶瓷刀具,其韧性和耐磨性能显着增加。 二,陶瓷刀具的性能及其在金属切削中的应用 陶瓷刀具比硬质合金刀片相比,可承受2000℃的高温,而硬质合金在800℃时则变软;所以陶瓷刀具更具有高温化学稳定性,可高速切削,但其缺 点是氧化铝陶瓷刀具的强度和韧性很低,容易破碎。因陶瓷刀具耐高温,对高温高速切削更有利,由于陶瓷热导率低,高温只在刀尖,高速切削所产生的热量都随切屑带走,所以大部分研究者认为:氧化铝陶瓷刀具能够,且最好高于硬质合 金切削的10倍线速度下进行切削,才能真正体现陶瓷刀具的优点。 为了减低陶瓷刀具对破碎的敏感性,在企图改善其韧性、提高耐冲击性能时,加入了氧化锆或加入碳化钛与氮化钛的混合物。尽管加入了这些添加剂,但是陶瓷刀具的韧性比硬质合金刀片还是低得多。 另一个提高氧化铝陶瓷刀具韧性的方法是在材料中加入结晶纹理或碳化硅晶须,通过这些特殊的平均起来仅有1纳米直径,20微米长很结实的晶须,相 当程度地增加了陶瓷的韧性、强度和抗热冲击性能。单受其抗冲击韧性限制,一直精车加工领域中使用。 和氧化铝陶瓷刀具一样,氮化硅陶瓷刀具比硬质合金刀片有更高的热硬性。它耐高温与机械冲击的性能也比较好,与氧化铝陶瓷刀具相比它的缺点是在加工

氮化硅,最强“轴承滚珠”材料

氮化硅,最强“轴承滚珠”材料 一、前景概要大量实验证明,在高转速(转速在 4×104r/min以上)环境下工作的精密轴承中“球”是轴承中最薄弱的零件,大约60%-70%的高速轴承失效都是由钢球产生不同程度的疲劳导致的。许多国内高速轴承就普遍存在轴承钢球产生不同程度疲劳破坏等问题。为了改善高速轴承性能以延长其疲劳寿命,国内外应用结构陶瓷来制造球体或其他轴承零件可显著提高“高速轴承”的使用性能和寿命。陶瓷种类繁多,而氮化硅在工业陶瓷中不是最硬的,韧性也不是最高的,但是在要求高性能的轴承应用中,氮化硅却被认为是具有最佳的机械物理综合特性。这是为啥?图1 风力发电机用“氮化硅陶瓷滚珠”混合轴承其重要原因是:其他陶瓷损坏的话是以灾难性破裂方式产生的,而氮化硅陶瓷则是以类似于轴承钢失效的方式即局部剥落的方式发生的。因此作为滚动轴承用的材料,从滚动疲劳寿命和可靠性的观点看,只有氮化硅才能胜任!下文将对氮化硅轴承材料的特点做简单的剖析,并对其滚动体(氮化硅滚珠)的成型工艺做简单介绍。二、氮化硅轴承材料的优越性在哪?1比密度小,离心力小-更利于高速运转氮化硅陶瓷材料的密度约为 3.2×103kg/m3,而轴承钢的密度约为7.8×103kg/m3。氮化硅陶瓷密度仅为轴承钢密度的40%左右。因此当滚动体使用

氮化硅陶瓷时,轴承在高速旋转时能有效抑制因离心力作用引起的滚动体载荷的增加。因此,采用低密的氮化硅球更加利于轴承的高转速发展。图2 轴承转动示意图(gif)2耐热-可适应更高温工作条件一般钢制的轴承使用温度超过120℃时,硬度就会降低,滚动寿命也会下降。例如:M50高温轴承钢的使用温度极限约为400℃,达到这一温度,钢硬度下降程度很大,而氮化硅在这一温度范围内完全保持原有硬度,只在约800℃时,其硬度和强度才开始下降。因此,对于用在高温环境的轴承来说,氮化硅材料是非常适合的。例如:航空喷气发动机、燃气轮机、核反应堆系统、X光管钨盘,以及火箭、宇宙飞船中。3线膨胀系数小-可用于环境温度变化领域氮化硅的线膨胀系数大约是轴承钢的1/4,所以氮化 硅轴承材料随温度变化的尺寸变化量小。防抱死:因此,氮化硅陶瓷材料制备的轴承,可有效的防止轴承材料因温度变化导致尺寸变化而发生“抱死”等现象。从而保证设备的稳定 运行,减少因设备故障发生的损失。4优异的自润滑性能氮化硅陶瓷材料本身具有减摩、抗磨、润滑功能,在不良的润滑工况条件下,如贫油润滑、无油干摩擦情况下,显示出优越的减摩自润滑性能,具有良好的应急状态,可以有效避免设备突发故障造成的损失。氮化硅自润滑的机理尚存在争议,目前有学者认为产生这种特性的主要原因是氮化硅在摩擦 过程中会微量分解,在表面形成很薄的气膜,从而使摩擦阻

层状氮化硅陶瓷的性能与结构

第25卷第5期硅 酸 盐 学 报V ol.25,N o.5 1997年10月JO U RN A L O F T HE CHIN ESE CERA M IC SO CIET Y O ct ober,1997  层状氮化硅陶瓷的性能与结构 郭 海 黄 勇 李建保 (清华大学材料科学与工程系) 摘 要 从结构设计的角度出发研究了层状复合Si3N4陶瓷材料。利用轧膜工艺使层内的晶粒、晶须产生定向增韧,通过调整外部层状复合结构得到材料的两级增韧效果,并实验制备了高韧性层状复合Si3N4基陶瓷材料。主层内加入一定量的SiC晶须,层状氮化硅陶瓷的断裂韧性可达到20.11M Pa?m1/2。 关键词 氮化硅,层状复合,晶须,定向 1 前 言 制备高韧性的陶瓷材料,克服陶瓷灾难性的破坏,常用增韧方法的增韧效果非常有限。为了提高增韧效果,降低增韧成本,新的增韧方法的探索是十分必要的。 近年来,国内外学者从生物界得到了启示。贝壳具有的层状结构可以产生较大的韧性这一特点给了我们一些启发,除了从组分设计上选择不同的材料体系以外,更重要的一点就是可以从材料的宏观结构角度来设计新型材料。目前国内外已有人从结构设计的角度出发,开始了层状复合陶瓷材料的探索性研究[1,2]。对于层状复合陶瓷材料来讲,如果把每层看成块体材料的结构单元,则关键的技术问题在于:(1)材料各结构单元的强度、韧性优化;(2)界面结合层的选择及与结构单元的匹配。层状结构单元基本上都是高强硬质的陶瓷材料如氮化硅、氧化铝等,通常是通过流延、干压等工艺方法制备的陶瓷薄片[3,4]。而界面结合层的选择则种类繁多,如石墨、延性金属等,它们对陶瓷薄片起到一定的分隔作用[5]。但总的来说,目前的研究结果并不令人满意,尚未达到单纯块体材料的性能水平。 针对层状复合陶瓷材料的两个关键问题,可以分别进行研究。首先是改善材料结构单元的性能,由于层状复合材料具有明显的各向异性,因此可以设计结构单元具有同样的各向异性性能,如引入可能导致各向性能差异的晶须、纤维、晶种等,并使之按指定方向分布,就有可能在特定方向上得到较高的性能[6],对晶须定向陶瓷材料的各方向的性能差异的研究证实了这一假设。其次是结构单元之间界面的选择,对层状复合陶瓷材料,界面的选择要同时考虑界面的高温性能、与陶瓷薄片的结合性能以及热匹配等多种因素,对不同的基片进行综合考虑,选择合适的界面组分及所占的比例。 1996年7月15日收到。 通讯联系人:郭 海,清华大学材料科学与工程系,北京 100084。 532

氮化硅莫来石

46│中国陶瓷│CHINA CERAMICS │2010(46)第 6 期46 │中国陶瓷│CHINA CERAMICS │2010(46)第 6 期【摘 要】:以莫来石、氮化硅为主要原料,铝酸钙水泥、硅微粉为结合系统,制备了氮化硅-莫来石复合材料,并与莫来石材料进行了对比。试样自然干燥24h 脱模后,再经110℃烘干24h,分别在空气气氛下于1000℃、1300℃和1500℃热处理3h。检测各温度热处理后试样的体积密度(B.D)、常温抗折强度(M.O.R)、常温耐压强度(C.C.S)以及试样的热膨胀系数、耐磨性能和抗热震性能。结果表明,经过1000℃、1300℃和1500℃热处理后,氮化硅-莫来石复合材料的常温抗折强度和常温耐压强度均大于莫来石材料的常温抗折强度和常温耐压强度。在本实验条件下,在莫来石基材料中添加氮化硅并不能提高材料的耐磨性能。在1250℃~1400℃温度之间,氮化硅-莫来石复合材料的热膨胀系数小于莫来石材料的热膨胀系数。氮化硅-莫来石复合材料试样热震后的耐压强度大于莫来石材料试样热震后的耐压强度,但耐压强度保持率小于莫来石材料。 【关键词】:莫来石,氮化硅,耐磨性能,热膨胀系数,抗热震性能 中图分类号:TB332/TQ175.7 文献标识码:A 引 言 莫来石因具有抗热震稳定性好,荷重软化温度高,抗渣性好及较高的抗蠕变性等优良性能,被认为是一种耐火工业、电子、光学和高温结构等领域的重要侯选材料[1-3]。在Si 3N 4结构中,氮原子与硅原子间的键力很强, 因而,Si 3N 4具有许多优异性能如耐磨、高硬度、高强度、耐化学腐蚀和很好的高温稳定性等[4]。 以莫来石为基体的材料,具有很强的抗爆裂性和较高的机械强度[5-7]。通过在莫来石基材料中添加氮化硅制备成氮化硅-莫来石复合材料,则可显著改善莫来石基材料的力学性能。本实验通过对比氮化硅添加到莫来石基材料前后的体积密度、常温抗折强度、常温耐压强度、耐磨性能、热膨胀系数和抗热震性等性能,研究了非氧化物对莫来石材料性能的影响,制备出了一种氧化物-非氧化物复合材料。 1 实验 1.1实验原料及方案 本实验的主要原料为莫来石、铝矾土、氮化硅(主要矿物为β-Si 3N 4,w(Si 3N 4)>90%)、硅微粉和铝酸钙水泥。所用原料的主要化学组成见表1。 按照表2配方组成进行配料,具体是将骨料及粉料加入搅拌罐中,搅拌均匀后再加入水搅拌3min,然后制备成160mm×40mm×40mm 的试样。试样经110℃烘干后分别于1000℃、1300℃和1500℃保温3h 煅烧,分别测试经过不同热处理温度后试样的体积密度、常温抗折强度和常温耐压强度。制备Φ20mm×100mm 的试样,用于测试材料的热膨胀系数。制备114mm×114mm×25mm 的试样,用于测试材料的耐磨性。制备160mm×40mm×40mm 的试样,经 110℃烘干再经1300℃保温3h 氮化硅-莫来石复合材料的制备 张 巍,戴文勇 (派力固(大连)工业有限公司, 大连 116600) 收稿日期:2010-3-29 作者简介:张巍(1982-),男,吉林省吉林市人,硕士,工程师,主要从事无机非金属材料结构和物性的研究。 E-mail:cnzhangwei2008@https://www.doczj.com/doc/f411433721.html, 表1 原料的主要化学组成(w) Table1 Chemical compositions of raw materials % 煅烧,用于测试材料的抗热震性。 1.2性能测试 1)体积密度试验。采用YB/T5200-1993致密耐火浇注料显气孔率和体积密度试验方法,检测烧成后试样 的体积密度。用游标卡尺测定试样的收缩量,并通过计算求得它的体积密度。 2)常温抗折强度和常温耐压强度试验。采用YB/T5201-1993致密耐火浇注料常温抗折强度和耐压强度试验方法,检测烧成后试样的常温抗折强度和常温耐压强度。 3)耐磨性试验。采用GB/T18301-2001耐火材料常温耐磨性试验方法检测试样的常温耐磨性。 4)热膨胀系数试验。采用GB/T 7320.1-2000耐 生产与应用 文章编号:1001-9642(2010)06-0046-04

氮化硅陶瓷材料的制备及应用

氮化硅陶瓷材料的制备及应用 氮化硅,子式为Si3N4,是一种重要的结构陶瓷材料。它是一种超硬物质,本身具有润滑性,并且耐磨损,为原子晶体;高温时抗氧化。而且它还能抵抗冷热冲击,在空气中加热到1 000 ℃以上,急剧冷却再急剧加热,也不会碎裂。正是由于氮化硅陶瓷具有如此优异的特性,人们常常利用它来制造轴承、气轮机叶片、机械密封环、永久性模具等机械构件。如果用耐高温而且不易传热的氮化硅陶瓷来制造发动机部件的受热面,不仅可以提高柴油机质量,节省燃料,而且能够提高热效率。我国及美国、日本等国家都已研制出了这种柴油机 一、材料的制备 Si3N4 陶瓷的制备技术在过去几年发展很快,制备工艺主要集中在反应烧结法、热压烧结法和常压烧结法、气压烧结法等类型. 由于制备工艺不同,各类型氮化硅陶瓷具有不同的微观结构(如孔隙度和孔隙形貌、晶粒形貌、晶间形貌以及晶间第二相含量等). 因而各项性能差别很大 . 要得到性能优良的Si3N4 陶瓷材料,首先应制备高质量的Si3N4 粉末. 用不同方法制备的Si3N4 粉质量不完全相同,这就导致了其在用途上的差异,许多陶瓷材料应用的失败,往往归咎于开发者不了解各种陶瓷粉末之间的差别,对其性质认识不足. 一般来说,高质量的Si3N4 粉应具有α相含量高,组成均匀,杂质少且在陶瓷中分布均匀,粒径小且粒度分布窄及分散性好等特性. 好的Si3N4 粉中α相至少应占90%,这是由于Si3N4 在烧结过程中,部分α相会转变成β相,而没有足够的α相含量,就会降低陶瓷材料的强度. 1、反应烧结法( RS) 是采用一般成型法,先将硅粉压制成所需形状的生坯,放入氮化炉经预氮化(部分氮化)烧结处理,预氮化后的生坯已具有一定的强度,可以进行各种机械加工(如车、刨、铣、钻). 最后,在硅熔点的温度以上;将生坯再一次进行完全氮化烧结,得到尺寸变化很小的产品(即生坯烧结后,收缩率很小,线收缩率< 011% ). 该产品一般不需研磨加工即可使用. 反应烧结法适于制造形状复杂,尺寸精确的零件,成本也低,但氮化时间很长. 2、热压烧结法( HPS) 是将Si3N4 粉末和少量添加剂(如MgO、Al2O3、MgF2、Fe2O3 等) ,在1916 MPa以上的压强和1600 ℃以上的温度进行热压成型烧结. 英国和美国的一些公司采用的热压烧结Si3N4 陶瓷,其强度高达981MPa以上. 烧结时添加物和物相组成对产品性能有很大的影响. 由于严格控制晶界相的组成,以及在Si3N4 陶瓷烧结后进行适当的热处理,所以可以获得即使温度高达1300 ℃时强度(可达490MPa以上)也不会明显下降的Si3N4系陶瓷材料,而且抗蠕变性可提高三个数量级. 若对Si3N4 陶瓷材料进行1400———1500 ℃高温预氧化处理,则在陶瓷材料表面上形成Si2N2O相,它能显著提高Si3N4 陶瓷的耐氧化性和高温强度. 热压烧结法生产的Si3N4 陶瓷的机械性能比反应烧结的Si3N4 要优异,强度高、密度大. 但制造成本高、烧结设备复杂,由于烧结体收缩大,使产品的尺寸精度受到一定的限制,难以制造复杂零件,只能制造形状简单的零件制品,工件的机械加工也较困难. 3、常压烧结法( PLS) 在提高烧结氮气氛压力方面,利用Si3N4 分解温度升高(通常在N2 = 1atm气压下,从

【冶金业标准】《氮化硅铁》行业标准编制说明

《氮化硅铁》行业标准(送审稿) 编制说明 2008年9月

《氮化硅铁》行业标准编制说明 一、任务来源 根据国家发展和改革委员会发改办工业〔2007〕1415号文和中国钢铁工业协会钢协〔2007〕127号文的要求,由武汉钢铁(集团)公司、宁夏中宏氮化制品有限公司和冶金工业信息标准研究院负责制定《氮化硅铁》行业标准。 二、工作过程 在接到该标准制订任务后,我们成立了《氮化硅铁》标准制订订工作小组,制定了工作计划,立即进行资料的查阅和到宁夏荣盛铁合金集团有限公司等五家氮化硅铁生产厂家进行调查研究,并收集使用单位的意见。 1.项目的提出 1.1氮化硅铁的定义 氮化硅铁是以Si 3N 4 为主要成分,伴随游离铁,未氮化硅铁及少量其它成分的混合 物。耐火用商品氮化硅铁是一种灰白色(或茶褐色)的粉末状物,炼钢用氮化硅铁是灰白色粒状物。 1.2氮化硅铁用途 粉状氮化硅铁主要用于大高炉的堵口炮泥中,少量用于铁沟料或其它不定形耐火材料中。 粒状氮化硅铁主要用于取向硅钢或其它采用氮化物提高强度的钢种(如HRB400钢筋)。 1.3国内外使用情况 氮化硅铁在发达国家的高炉炮泥中得到普遍应用,使炮泥开堵性能得到了明显改

善,满足高炉出铁的需要,成为现代化大高炉炮泥不可缺少的成分。另外在铁沟料中加入少量氮化硅铁极大地提高铁沟的通铁量。日本在上世纪70年代开始使用氮化硅铁[1]。 国内应用氮化硅铁时间较短,宝钢于1994年首先在炮泥中添加氮化硅,使炮泥性能得到改善满足了宝钢炼铁的需要。国内其它钢厂基本上都在使用氮化硅铁,因为氮化硅铁的销售价格大约为氮化硅销售价格的一半,另外在使用性能上两者基本接近。近3年来,全国重点大型钢铁企业2000M3以上高炉堵口炮泥基本上都使用氮化硅铁。添加氮化硅铁的炮泥很好地满足了大型高炉的需要,使高炉出铁次数由18次普遍降低到12次,最低的降到6次。炮泥的消耗量由1.2kg/吨铁降低到0.5kg/吨铁。 在炼钢方面,粒状氮化硅铁最初应用于取向硅钢生产,它能比较稳定的为钢水补充一定量的氮。国内使用氮化硅铁量一年达数百吨。冶炼技术的进步使我国高强度微合金化钢生产得到快速发展。钢的强化微合金化元素主要有钒、铌、钛。经计算比较和 生产实际应用,生产HRB400钢筋采用FeV50+Fe Si 3N 4 微合金化方案,合金化成本比单 一采用FeV50吨钢成本降低127.61元,比采用VN12微合金化吨钢成本降低44.21元。如果该技术得到普及,将对生产建筑钢材的生产企业降本增效意义重大。氮化硅铁作为廉价的提供氮源的合金,未来在其它钢种上的应用前景良好。 1.4标准编制的必要性 综上所述为了尽快普及氮化硅铁在国内的应用,为我国钢铁工业的更快更好发展助力,为了规范氮化硅铁交易双方的贸易行为,同时也为了促进国内生产商的良好竞争,为国内外用户提供优质价廉的产品,制定氮化硅铁产品标准势在必行。 1.5项目制定单位基本情况 武汉钢铁集团公司是国内目前最大的骨干钢铁生产商之一,是国内电工硅钢的主

氮化硅陶瓷增韧调研报告

氮化硅陶瓷增韧调研报告 1、前言 氮化硅陶瓷是典型的高温高强结构陶瓷,具有良好的室温及高温机械性能,强度高,耐磨蚀,抗热震能力强,抗化学腐蚀,低导热系数,密度相对较小,是结构陶瓷中研究最为广泛深入的材料,亦是陶瓷发动机及其它高温结构件、切削工具、耐磨件等的主要候选材料,近几年来仍是人们争相研究的热点材料之一。 但是,已有的研究对氮化硅陶瓷的脆性缺陷仍未获得彻底改善,从而大大限制了它的实际应用。如何提高氮化硅韧性仍是人们研究的焦点。目前从事氮化硅陶瓷研究的学者为了提高其韧性,主要从两大方面着手进行韧性改善。一是通过进行“显微结构设计”来提高氮化硅陶瓷的韧性。即降低气孔的含量,控制杂质的含量,提高氮化硅陶瓷的密度、纯度;对氮硅陶瓷的晶型、晶粒尺寸、发育完整程度进行控制;对晶界的大小、材质进行调控;对玻璃相的数量、性质、分布状态等进行控制,以求在烧结后获得最佳韧性的显微组织,从而提高氮化硅陶瓷的韧性【1】。二是在上述基础上开展的“晶界工程”研究。氮化硅陶瓷常以多晶陶瓷的形式出现,而对多晶材料而言,当晶体较小为微米或纳米级时,晶界状态是决定其电性能、热性能和力学性能等的一个极其重要的因素。对于氮化硅陶瓷来说,晶界强度,尤其是晶界高温强度是决定其能否作为高温工程材料运用的关键。氮化硅是强共价键化合物,其自扩散系数很小,致密化所必须的体积扩散及晶界扩散速度很小,同时它的晶界能V gb与粉末表面能V sv的比值(V gb/ V sv) 比离子化合物和金属要大得多,使得烧结驱动力Δv 较小,决定了纯氮化硅无法靠常规的固相烧结达到致密化,必须加入少量氧化物烧结助剂,在高温烧结过程中它们与氮化硅表面SiO2反应形成液相,通过液相烧结成致密体,冷却后该液相呈玻璃态存在于晶界。而此玻璃相的性能在很大程度上决定了氮化硅陶瓷材料的性能。为了提高氮化硅陶瓷的高温性能,人们对玻璃晶界结晶化进行了大量的研究工作,称之为“晶界工程”【2】。 2、氮化硅陶瓷增韧研究现状

氮化硅材料的性能、合成方法及进展

氮化硅材料的性能、合成方法及进展 摘要:氮化硅作为一种新型无机材料,以其有良好的润滑性,耐磨性,抗氧化等特性受到广泛的关注和深入的研究。以下对氮化硅的材料的性能、合成方法、意义和进展作简单介绍。 关键词:无机材料;氮化硅;合成方法;性能;进展 1前言 由于科学技术的不断发展需要,科学家们一直在不停顿地寻找适用于苛刻条件下使用的理想的新材料。在层出不穷的大量新材料队伍中,氮化硅陶瓷可算是脱颖而出,十分引人注目,日益受到世界各国科学家们的重视。 2氮化硅的材料的性能\合成方法、意义和进展 2.1氮化硅的性能和应用 氮化硅(Si3N4)是氮和硅的化合物。在自然界里,氮、硅都是极其普通的元素。氮是生命的基础,硅是无机世界的主角,这两种元素在我们生活的世界上无所不在,然而,至今人们还未发现自然界里存在这两种元素的化合物。 氮化硅是在人工条件下合成的化合物。虽早在140多年前就直接合成了氮化硅,但当时仅仅作为一种稳定的“难熔”的氮化物留在人们的记忆中。二次大战后,科技的迅速发展,迫切需要耐高温、高硬度、高强度、抗腐蚀的材料。经过长期的努力,直至1955年氮化硅才被重视,七十年代中期才真正制得了高质量、低成本,有广泛重要用途的氮化硅陶瓷制品。开发过程为何如此艰难,这是因为氮化硅粉体和氮化硅陶瓷制品之间的性能和功能相差甚远,没有一个严格而精细的对氮化硅粉体再加工过程,是得不到具有优异性能的氮化硅陶瓷制品的。没有氮化硅陶瓷就没有氮化硅如今的重要地位。 2.1.1优异的性能 氮化硅陶瓷的优异的性能对于现代技术经常遇到的高温、高速、强腐蚀介质的工作环境,具有特殊的使用价值。比较突出的性能有: (1)机械强度高,硬度接近于刚玉,有自润滑性,耐磨。室温抗弯强度可以高达980MPa以上,能与合金钢相比,而且强度可以一直维持到1200℃不下降。 (2)热稳定性好,热膨胀系数小,有良好的导热性能,所以抗热震性很好,从室温到1000℃的热冲击不会开裂。 (3)化学性能稳定,几乎可耐一切无机酸(HF除外)和浓度在30%以下烧碱(NaOH)溶液的腐蚀,也能耐很多有机物质的侵蚀,对多种有色金属熔融体(特别是铝液)不润湿,能经受强烈的放射辐照。 (4)密度低,比重小,仅是钢的2/5,电绝缘性好。

氮化硅陶瓷刀具的性能

氮化硅陶瓷刀具的性能 姓名:何健楠学号:3108007699 摘要:氮化硅陶瓷材料是新型刀具材料,其优良的切削性能解决了超硬材料的加工难题,它的使用提高了生产效率,降低了加工成本,有广泛的应用前景。本文介绍了氮化硅陶瓷刀具的切削性能、切削用量的选择及应用。 关键字:氮化硅陶瓷刀具;切削加工;性能 Abstract:As a new type tool material,the excellent capabilities of silicon nitride ceramics cutting toolsravel out many cutting problems of suoer hard materials.The use of it improves the productivity and reduces the cutting cost greatly.It has a broad foreground of applications.The cutting performances,the choices of machining para m- eters and the uses of silicon nitride ceramics cutting tools are introduced. Key words:silicon nitride ceramics cutting tools;machining.performance 0 引言 陶瓷刀具具有优良的耐热性、耐磨性、化学稳定性和高硬度,可以加工硬度高(约HRC65)的各种材料,在高速切削领域和难加工材料方面显示了传统刀具无法比拟的优势。 一氮化硅(Si3N4)陶瓷刀具 由于纯Si3N4陶瓷刀具在切削长切屑金属(如软钢)时极易产生月牙磨损,所以新一代Si3N4陶瓷刀具全是复合Si3N4陶瓷刀具。 (1)Si3N4—TiC—Co复合陶瓷刀具其韧性好玩抗弯强度高于纯Si3N4陶瓷刀具,硬度略有升高;热导率也比纯Si3N4陶瓷刀具高,所以在实际应用中比较广泛。 (2)Si3N4晶须增韧陶瓷刀具通过在Si3N4基体中加入一定量的碳化物晶须,从而提高陶瓷刀具的断裂韧性。 (3)Si3N4—Al2O3—Y2O3复合陶瓷刀具以Si3N4为硬质相、Al2O3为耐磨相,并添加少量的助烧结剂,Y2O3经热压烧结而成,常称赛隆(sialon)。 二氮化硅陶瓷刀具的优点 1、硬度高,一般为HRA93-94.因此耐磨性好.可加工传统刀具难以加工或根本不能加工的高硬材料,例如硬度达HRC65的各类淬硬钢和硬化铸铁。因而可免除退火加工所消耗的电力;并因此也可提高工件的硬度,处长机器设备的使用寿命; 2、不仅能对高硬度材料进行粗、精加工,也可进行铣削、刨削、断续切削和毛坯拔荒粗车等冲击力很大的加工;

氮化硅陶瓷讲解

氮化硅陶瓷讲解

氮化硅陶瓷及其制备成型工艺 氮化硅(Si 3N4)是氮和硅的化合物。在自然界里,氮、硅都是极其普通的元素。氮是生命的基础,硅是无机世界的主角,这两种元素在我们生活的世界上无所不在,然而,至今人们还未发现自然界里存在这两种元素的化合物。 氮化硅是在人工条件下合成的化合物。虽早在140多年前就直接合成了氮化硅,但当时仅仅作为一种稳定的“难熔”的氮化物留在人们的记忆中。二次大战后,科技的迅速发展,迫切需要耐高温、高硬度、高强度、抗腐蚀的材料。经过长期的努力,直至1955年氮化硅才被重视,七十年代中期才真正制得了高质量、低成本,有广泛重要用途的氮化硅陶瓷制品。开发过程为何如此艰难,这是因为氮化硅粉体和氮化硅陶瓷制品之间的性能和功能相差甚远,没有一个严格而精细的对氮化硅粉体再加工过程,是得不到具有优异性能的氮化硅陶瓷制品的。没有氮化硅陶瓷就没有氮化硅如今的重要地位。 Si3N4是以共价键为主的化合物,键强大,键的方向性强,结构中缺陷的形成和迁移需要的能量大,即缺陷扩散系数低(缺点),难以烧结,其中共价键Si-N 成分为70 %,离子键为30 %,同时由于Si3N4本身结构不够致密,从而为提高性能需要添加少量氧化物烧结助剂,通过液相烧结使其致密化。 Si3N4含有两种晶型,一种为α-Si3N4,针状结晶体,呈白色或灰白色,另一种为β-Si3N4,颜色较深,呈致密的颗粒状多面体或短棱柱体。两者均为六方晶系,都是以[SiN4]4-四面体共用顶角构成的三维空间网络。 在高温状态下,β相在热力学上更稳定,因此α相会发生相变,转为β相。从而高α相含量Si3N4粉烧结时可得到细晶、长柱状β-Si3N4晶粒,提高材料的断裂韧性。但陶瓷烧结时必须控制颗粒的异常生长,使得气孔、裂纹、位错缺陷出现,成为材料的断裂源。 在工业性能上,Si3N4陶瓷材料表现出了较好的工艺性能。(1)机械强度高,硬度接近于刚玉,有自润滑性耐磨;(2)热稳定性高,热膨胀系数小,有良好的导热性能;(3)化学性能稳定,能经受强烈的辐射照射等等。 晶体的常见参数如下图所示:

氮化硅

氮化硅 由于科学技术的不断发展需要,科学家们一直在不停顿地寻找适用于苛刻条件下使用的理想的新材料。在层出不穷的大量新材料队伍中,氮化硅陶瓷可算是脱颖而出,十分引人注目,日益受到世界各国科学家们的重视。 氮化硅(Si3N4)是氮和硅的化合物。在自然界里,氮、硅都是极其普通的元素。氮是生命的基础,硅是无机世界的主角,这两种元素在我们生活的世界上无所不在,然而,至今人们还未发现自然界里存在这两种元素的化合物。 氮化硅是在人工条件下合成的化合物。虽早在140多年前就直接合成了氮化硅,但当时仅仅作为一种稳定的“难熔”的氮化物留在人们的记忆中。二次大战后,科技的迅速发展,迫切需要耐高温、高硬度、高强度、抗腐蚀的材料。经过长期的努力,直至1955年氮化硅才被重视,七十年代中期才真正制得了高质量、低成本,有广泛重要用途的氮化硅陶瓷制品。开发过程为何如此艰难,这是因为氮化硅粉体和氮化硅陶瓷制品之间的性能和功能相差甚远,没有一个严格而精细的对氮化硅粉体再加工过程,是得不到具有优异性能的氮化硅陶瓷制品的。没有氮化硅陶瓷就没有氮化硅如今的重要地位。 1.优异的性能 氮化硅陶瓷的优异的性能对于现代技术经常遇到的高温、高速、强腐蚀介质的工作环境,具有特殊的使用价值。比较突出的性能有: (1)机械强度高,硬度接近于刚玉,有自润滑性,耐磨。室温抗弯强度可以高达980MPa以上,能与合金钢相比,而且强度可以一直维持到1200℃不下降。 (2)热稳定性好,热膨胀系数小,有良好的导热性能,所以抗热震性很好,从室温到1000℃的热冲击不会开裂。 (3)化学性能稳定,几乎可耐一切无机酸(HF除外)和浓度在30%以下烧碱(NaOH)溶液的腐蚀,也能耐很多有机物质的侵蚀,对多种有色金属熔融体(特别是铝液)不润湿,能经受强烈的放射辐照。 (4)密度低,比重小,仅是钢的2/5,电绝缘性好。 2.重要的应用 氮化硅陶瓷的应用初期主要用在机械、冶金、化工、航空、半导体等工业上,作某些设备或产品的零部件,取得了很好的预期效果。近年来,随着制造工艺和测试分析技术的发展,氮化硅陶瓷制品的可靠性不断提高,因此应用面在不断扩大。特别值得赞赏的是,正在研制氮化硅陶瓷发动机,并且已经取得了很大的进展,这在科学技术上成为举世瞩目的大事。有关应用的主要内容有:

氮化硅陶瓷的制作流程

一种氮化硅陶瓷,各组分及组分的重量份数如下:氮化硅80100份、氧化镁2030份、氧化铝1518份、氟化镁2025份、三氧化二铁1518份、高岭土58份、聚乙二醇58份、硅烷偶联剂25份、水3040份。本技术提出的氮化硅陶瓷耐磨性好、韧性好、润滑性好,使用寿命长,其抗蠕变性提高三个数量级。 权利要求书 1.一种氮化硅陶瓷,其特征在于各组分及组分的重量份数如下:氮化硅80-100份、氧化镁20-30份、氧化铝15-18份、氟化镁20-25份、三氧化二铁15-18份、高岭土5-8份、聚乙二醇5-8份、硅烷偶联剂2-5份、水30-40份。 2.根据权利要求1所述的氮化硅陶瓷,其特征在于各组分及组分的重量份数如下:氮化硅84份、氧化镁23份、氧化铝16份、氟化镁22份、三氧化二铁16份、高岭土6份、聚乙二醇6份、硅烷偶联剂3份、水33份。 3.根据权利要求1所述的氮化硅陶瓷,其特征在于各组分及组分的重量份数如下:氮化硅87份、氧化镁28份、氧化铝17份、氟化镁24份、三氧化二铁17份、高岭7份、聚乙二醇7份、硅烷偶联剂4份、水36份。 技术说明书 一种氮化硅陶瓷 技术领域

本技术属于氮化硅陶瓷材料领域,特别是涉及一种氮化硅陶瓷。 背景技术 目前通道、管道用的材料有铝合金材料、陶瓷等,铝合金材料耐磨性差,槽道容易消失,影响色选精度,要经常更换,成本高;目前所用的陶瓷材料脆性大,耐磨性不太高,不耐冷热刺激,耐酸碱性差,因此需要研究耐磨性好,硬度高,韧性好,耐震动,耐热,耐腐蚀等性能优异的陶瓷材料,以降低成本。 技术内容 针对现有陶瓷材料的缺陷,本技术的目的在于提出一种耐磨性好、润滑性好、使用寿命长的氮化硅陶瓷。 本技术的目的是采用以下技术方案来实现。依据本技术提出的一种氮化硅陶瓷,各组分及组分的重量份数如下:氮化硅80-100份、氧化镁20-30 份、氧化铝15-18份、氟化镁20-25份、三氧化二铁15-18份、高岭土5-8 份、聚乙二醇5-8份、硅烷偶联剂2-5份、水30-40份。 本技术的目的还采用以下技术措施来进一步实现。 所述氮化硅陶瓷,各组分及组分的重量份数如下:氮化硅84份、氧化镁23份、氧化铝16份、氟化镁22份、三氧化二铁16份、高岭土6份、聚乙二醇6份、硅烷偶联剂3份、水33份。 所述氮化硅陶瓷,各组分及组分的重量份数如下:氮化硅87份、氧化镁28份、氧化铝17份、氟化镁24份、三氧化二铁17份、高岭7份、聚乙二醇7份、硅烷偶联剂4份、水36份。 本技术提出的氮化硅陶瓷耐磨性好、韧性好、润滑性好,使用寿命长,其抗蠕变性提高三个数量级。 上述说明仅是本技术技术方案的概述,为了能够更清楚了解本技术的技术手段,而可依照说明书的内容予以实施,并且为了让本技术的上述和其他目的、特征和优点能够更明显易懂,

氮化硅

氮化硅 氮化硅,分子式为Si3N4,是一种重要的结构陶瓷材料。它是一种超硬物质,本身具有润滑性,并且耐磨损;除氢氟酸外,它不与其他无机酸反应(反应方程式:Si3N4+4HF+9H2O=====3H2SiO3(沉淀)+4NH4F),抗腐蚀能力强,高温时抗氧化。而且它还能抵抗冷热冲击,在空气中加热到1 000 ℃以上,急剧冷却再急剧加热,也不会碎裂。正是由于氮化硅陶瓷具有如此优异的特性,人们常常利用它来制造轴承、气轮机叶片、机械密封环、永久性模具等机械构件。如果用耐高温而且不易传热的氮化硅陶瓷来制造发动机部件的受热面,不仅可以提高柴油机质量,节省燃料,而且能够提高热效率。我国及美国、日本等国家都已研制出了这种柴油机。 【氮化硅的应用】 氮化硅用做高级耐火材料,如与sic结合作SI3N4-SIC耐火材料用于高炉炉身等部位; 如与BN结合作SI3N4-BN材料,用于水平连铸分离环。SI3N4-BN系水平连铸分离环是一种细结构陶瓷材料,结构均匀,具有高的机械强度。耐热冲击性好,又不会被钢液湿润,符合连珠的工艺要求。见下表 性能AL2O 3 ZrO 2 熔融石英 (SiO2) ZrO2 -MO金 属陶瓷 反应结合 Si3N4 热压 Si3N4 热压 BN 反应结合 SiN4-BN 抗热震性差差好好中好好好 抗热应力差差好好中好好好 尺寸加工精度与易 加工性能 差差好差好差好好 耐磨性好好中好好好好好 耐侵蚀性好好差好好好好 相对分子质量140.28。灰色、白色或灰白色。六方晶系。晶体呈六面体。密度3.44。 硬度9~9.5,努氏硬度约为2200,显微硬度为32630MPa。熔点1900℃(加压下)。通常在常压下1900℃分解。比热容为0.71J/(g·K)。生成热为-751.57kJ/mol。热导率为 16.7W/(m·K)。线膨胀系数为2.75×10-6/℃(20~1000℃)。不溶于水。溶于氢氟酸。在空 气中开始氧化的温度1300~1400℃。比体积电阻,20℃时为1.4×105 ·m,500℃时为4×108 ·m。弹性模量为28420~46060MPa。耐压强度为490MPa(反应烧结的)。1285摄式度时与二氮化二钙反应生成二氮硅化钙,600度时使过渡金属还原,放出氮氧化物。 抗弯强度为147MPa。可由硅粉在氮气中加热或卤化硅与氨反应而制得。可用作高温陶瓷原料。 氮化硅陶瓷材料具有热稳定性高、抗氧化能力强以及产品尺寸精确度高等优良性

陶瓷刀具的种类

陶瓷刀具的种类 氧化铝(Al2O3)基陶瓷纯氧化铝陶瓷 其中Al2O3的成份占99.9%以上,多呈白色,俗称白陶瓷。中国成都工具研究所生产的P1牌号属于这一类。它的耐磨性好,用于切削灰铸铁有较好效果,也可切削普通碳钢。但因其强度低,抗热振性及断裂韧性较差,切削时易崩刃,目前已被其它Al2O3复合陶瓷取代。 氧化铝—碳化物系复合陶瓷 它是在Al2O3基体中加入TiC、WC、MO2C、TaC、NbC、Cr3C2等成份经热压烧结而成,使用最多的是Al2O3-TiC复合陶瓷。随着TiC含量(30%~50%)的不同,其切削性能也有差异。这类陶瓷主要用于切削淬硬钢和各种耐磨铸铁。中国生产的牌号有M16、SG3、SG4和AG2等,后两种牌号还含有WC的成份。 氧化铝—碳化钛—金属系复合陶瓷 在Al2O3-TiC陶瓷中加入少量的粘结金属,如Ni和Mo等,可提高Al2O3 与TiC的连结强度,提高其使用性能,故可用于粗加工。这类陶瓷又称金属陶瓷。中国生产的牌号有AT6、LT35、LT55、M4、M5、M6、LD-1等。用其切削调质合金钢时切削速度可达一般硬质合金刀具的1~3倍,刀具寿命为硬质合金刀具的6~10倍。由于含有金属成份,所以能用电加工切割成任何形状。同时,用金刚石砂轮刃磨时,能获得较好的表面质量。LD-1是在Al2O3-TiC系陶瓷的基础上,通过添加少量的特殊微粉,利用多种增韧机制的协同作用而使断裂韧度有较大提高(可达6.0~6.6 MPa·m1/2,普通热压Al2O3-TiC陶瓷断裂韧度为4 MPa·m1/2),用其端铣淬硬钢时刀片抗破损性能比同类LT55牌号高出30%~110%。 Al2O3-SiC晶须增韧陶瓷 在Al2O3陶瓷基体中添加20%~30%的SiCw晶须(是直径小于0.6μm,长度为10~80μm的单晶,具有一定的纤维结构,抗拉强度为7GPa,抗拉弹性模量超过700GP)而成。SiCw晶须的作用犹如钢筋混凝土中的钢筋,能成为阻挡或改变裂纹发展方向的障碍物,使其韧性大幅度提高,断裂韧度可达9MPa·m1/2,可有效地用于断续切削及粗车、铣削和扩孔等工序,适于加工镍基合金、高硬度铸铁和淬硬钢等材料。中国生产的JX-1、AW9、SG5及美国WG300、Kyon250与瑞典Sandvik公司CC670等牌号均属于这一类。 Al2O3/(W,Ti)C梯度功能陶瓷 通过控制陶瓷材料的组成分布以形成合理的梯度,从而使刀具内部产生有利的残余应力分布来抵消切削的外载应力,具有表层热导率高、有利切削热的传出、

氮化硅陶瓷材料最终版

摘要氮化硅瓷是一种具有广阔发展前景的高温、高强度结构瓷,它具有强度高、抗 热震稳定性好、疲劳韧性高、室温抗弯强度高、耐磨、抗氧化、耐腐蚀性能好等高性能,已被广泛应用于各行各业。本文介绍了氮化硅瓷的基本性质,综述了氮化硅瓷的制备工艺和国外现代制造业中的应用,并展望了氮化硅瓷的发展前景。

Abtract:Silicon nitride ceramic is a broad development prospects of high temperature, high strength structural ceramics, it has high strength, thermal shock stability, high temperature fatigue toughness, high bending strength, wear resistance, oxidation resistance, corrosion resistance and good performance of high performance, has been widely used in all walks of life. This paper introduces the basic properties of silicon nitride ceramics, reviews the fabricating technique of silicon nitride ceramics at home and abroad and modern manufacturing industry in the application, and looks forward to the development prospect of silicon nitride ceramics.

氮化硅性能原理

氮化硅性能原理 (1)、作为人工合成材料之一的氮化硅陶瓷材料,具有高比强、高比模、耐高温、抗氧化和耐磨损以及抗热震等优良的综合性能,广泛应用于机械、化工、海洋工程、航空航天等重要领域。对多晶材料而言,晶界状态是决定其电性能、热性能和力学等性能的一个极其重要的因素。对于氮化硅陶瓷来说,晶界强度是决定其能否作为高温工程材料应用的关键(2)、由于氮化硅分子的si—N键中共价键成分为70%,离子键成分为30%t引,因而是高共价性化合物,而且氮原子和硅原子的自扩散系数很小,致密化所必需的体积扩散及晶界扩散速度、烧结驱动力很小,只有当烧结温度接近氮化硅分散温度(大于1850℃)时,原子迁移才有足够的速度。这决定了纯氮化硅不能靠常规固相烧结达到致密化,所以除用硅粉直接氮化的反应烧结外,其它方法都需采用烧结助剂,利用液相烧结原理进行致密化烧结(3)、因此,研究烧结助剂对氮化硅陶瓷致密化烧结的影响显得尤为重要。氮化硅陶瓷作为新型的结构材料,受到越来越广泛的重视。 氮化硅工程陶瓷-家电领域 一、材料特性 抗弯强度kg/cm2 1700-2000 1600-1900 2100-2700 2200-2880 抗压kg/cm2 6500-9500 6000-8700 11000-14000 11000-15000 硬度HRA 78-82 76-80 83-85 85-87 热膨胀系数 (1/℃) (20~800℃) 2.3-2.9 x 10-6 2.3-2.9 x 10-6 2.3-2.9 x 10-6 2.3-2.9 x 10-6 摩擦系数 0.1 0.1 0.1 0.1 抗金属熔体浸蚀铝、锌、锡、铅等 适用范围: 适用于机械、化学与耐火材料、军事工业。 已适用情况: 可作为机械密封用的密封件、耐腐蚀泵体、熔融铝液中的热电偶保护管,适用效果良好。 二、企业接产条件 所有的原材料和设备全部国产化,生产线、建筑面积、劳动定员、水、电等随生产规模而定。 三、经济效益分析 该产品是一种新型的高温结构陶瓷材料,特别是注浆成型工艺的关键技术,填补了国内空白,另外,该材料为陶瓷发动机的首选材料,具有一定的社会效益。 前言

相关主题
文本预览
相关文档 最新文档