当前位置:文档之家› A practical use of CFD for ventilation of underground works

A practical use of CFD for ventilation of underground works

A practical use of CFD for ventilation of underground works
A practical use of CFD for ventilation of underground works

A practical use of CFD for ventilation of underground works

Isidro Diego ?,Susana Torno,Javier Tora?o,Mario Menéndez,Malcolm Gent

School of Mines of Oviedo,University of Oviedo,Spain

a r t i c l e i n f o Article history:

Received 18March 2009

Received in revised form 1June 2010Accepted 25August 2010Available online xxxx Keywords:Pressure drop Air losses CFD

Tunnel ventilation

a b s t r a c t

Any underground work of a minimum length has associated a study of a ventilation system.The tradi-tional way to calculate these systems requires the calculation of the air losses all over the installation in order to select an adequate group of fans.This paper calculates the losses in 138situations of circular tunnels (varying tunnel diameter,air velocity and surface characteristics),by both traditional and CFD (computational ?uid dynamics)means.The results of both methods are compared and adequate correla-tion has been observed,with CFD values constantly a 17%below the values calculated by traditional means.The paper deals with the main problems commonly encountered in the CFD use,meshing and tur-bulence,and shows guidance on the practical use of this numerical method.There are also shown the capabilities of the method in simulation domains including machinery of underground works:road head-ers,dumpers and excavators.

ó2010Elsevier Ltd.All rights reserved.

1.Introduction

The creation of underground spaces is a complicated engineer-ing problem,mainly due to the complex physical phenomena in-volved in the excavation and support of the underground opening.But the mere fact of introducing ourselves in an underground space with a minimum length has always associated the resolution of two fundamental problems:?rst the lack of light and second the limited,in time,fresh air which requires the use of ventilation sys-tems.The lack of light has been solved since the end of XIX century through the use of electrical illumination systems.The solution to the problem of ventilation can be entrusted to Nature,to the air ?ows created by the existing air pressure differences among sev-eral parts of the installation.Gribble (2009)has suggested that the ancient Egyptians already took advantage of the pressure dif-ferences created by the temperature change between day and night in order to ventilate the construction works of their under-ground tombs and temples.

However,the ventilation of an underground work must be,gen-erally speaking,forced,both during the construction and during the use of the installation once ?nalized.During the construction there are created ‘‘dead end”volumes,blind spaces where the air cannot enter in a natural manner,and where the fresh air entrance must be guaranteed as this is the area where workers and ma-chines execute the installation.The required air ?ows are high,

as not only the breathing needs of the workers must be assured,but also the contaminants present in the air must be adequately di-luted below the levels established by the local regulations.Typical contaminants can be:blast fumes,exhaust gases from motors and ?oating dust.

Once the opening is excavated and stabilized,it has to be guar-anteed that the users of the underground space can pass through it in a safe manner,which means that a proper renovation of the air has to be done to maintain air quality levels under the values per-mitted by the regulations of each country.The air contribution from the outside has to be calculated in order to guarantee the fresh air presence in both standard operational circumstances and exceptional emergencies or accidents.For example,in case of a road tunnel the required air to dilute vehicles exhaust gases has to be calculated,as well as the required ?ows needed in the event of an accident followed by a ?re.

The forced air ?ow will be created by a fan or group of fans.Their selection and calculation will be determined by two factors:the air ?ow that they must provide and the head losses that they must overcome.The ‘‘wind”that these machines create will slip over the walls of the installation generating energy losses so-called ‘‘head losses”or ‘‘aerolic resistance”.The determination of the head losses has been done in several ways,but always starting from empirical formulations that relate the geometrical and surface characteristics of the elements that the air touches.

The underground ventilation studies divide the complex air vol-umes,composed by multiple galleries or branches,in sections with the same aerodynamic characteristics,assign each section an air resistance and solve the obtained circuits through network methods such as Hardy-Cross.There is speci?c software as

0886-7798/$-see front matter ó2010Elsevier Ltd.All rights reserved.doi:10.1016/j.tust.2010.08.002

?Corresponding author.Address:Oviedo School of Mines,C/Independencia 13,

33004Oviedo,Spain.Tel.:+34696155597;fax:+34985104245.

E-mail address:diegoisidro@uniovi.es (I.Diego).

VENTSIM;VNET-PC or VENPRI that quickly solve the networks once the resistance parameters of each branch of the network have been provided.Good examples of these methods are the works by Prosser et al.(2002)or Stefopoulos and Damigos (2007).In all cases each software has a database of air resistances taken from special-ized bibliography or ?eld measurements.

However,the ventilation study is not more than a ?uid mechan-ics problem,and the current state of the art in this ?eld are the CFD (computational ?uid dynamics)methods,implemented in free and commercial software.This method allows for the calculation of the variables that de?ne a ?uid movement in three dimensional spaces,after a laborious work of model creation,discretization (meshing)and adjustment of the equations used.

The CFD is widely extended and validated at industrial level whenever ?uids are present,with immediate applications in the calculation of ventilation ?ows in all kinds of ventilation ?ows,as show Santolaria-Morros et al.,2006or Hargreaves and Lowndes (2007),with an especial relevance of the multiphase studies in ?re situations,as studies by Galdo Vega et al.(2008)or Yuan and You (2007).

However,we have not found references of studies relative to the calculation of air losses in underground works using CFD.But in case of complex geometries,with multiple obstacles of surface characteristics dif?cult to determine,the network software is lim-ited or has to be conveniently adjusted to work.

This paper will develop a method to calculate air losses in tun-nels of any geometry through the CFD use,checking the accuracy of the method through the results of the experimental equations that are currently used.The success of the comparison proofs the appli-cability of CFD to calculate ?ows in this kind of work,and opens path to the 4D simulation (three spatial dimensions and time)of the contaminant dispersion,(smoke,dust,gases)in such spaces.The comparison will be done in multiple circular tunnel sections,simulating the tunnels done with shields or TBMs (Tunnel boring machines),in diameter ranges from 5to 15m.

The working procedure in this paper will be the following:–Traditional methods exposition.

–Ventilation requirements:there will be shown the require-ments usually present in tunneling works.

–CFD fundamentals and particularities of the calculations done.–Comparison of the CFD results and the traditional methods.

2.Theoretical foundations of the air pressure drop:application to the ventilation of underground works

To our knowledge,the calculation methods available to esti-mate an airway resistance in mining applications are three.Firstly,those arising from the direct application of the Moody’s Diagram following Fluid Mechanics theories;secondly the application of the ‘‘k ”coef?cients coming from the measurements included in McPherson (2007);and ?nally the application of the ‘‘lambda”coef?cients obtained from the gained experience in mining and underground works in Spain.The three methods will be brie?y ex-plained in the following paragraphs.

2.1.Experimental data from the Moody diagram

The ?rst calculation method that can be used is derived from pure Fluid Mechanics theory,Darcy–Weissbach expression (Potter and Wiggert,2002),which gives the air losses expressed in Pascals:

D p ;f

?1áf áL áV 2áq e1T

The friction factor can be obtained from the Moody diagram.As

can be seen in the diagram,the friction factor depends on the Rey-nolds number and the duct relative roughness (e r =e /D ),where e is the duct absolute roughness.The bigger is the Reynolds number,the less importance has the roughness in the result.

There are several mathematical expressions that ?t the Moody diagram values and avoid the use of the diagram,thus allowing the automation of the calculation in worksheets or programmable software.Here,it will be used the Colebrook–White one:

1???f

p ?à2log e r 3:7t2:51Re ???

f p !

e2T

The roughness values to use can be determined by direct mea-sure of the physical conditions of the duct walls.In case of the

walls of underground works the data are obtained from the related bibliography,as the ones included by Hacar Rodriguez (2000).Therefore,considering these roughness values and using them in Eq.(2)there can be obtained the friction factors,and by intro-ducing these values in Eq.(1)the air losses can be estimated.

Nomenclature

D p ,f frictional air losses (Pa)

f friction factor (dimensionless)D duct diameter (m)p air losses (Pa)

per perimeter of duct (m)Q air ?ow (m 3/s)

V c critical air velocity (m/s)a tunnel grade (%)

R o average air density (1.2kg/m 3)K g grade factor

HRR heat release rate (kW)

T o temperature of fresh air (K)r divergence operator P pressure (Pa)T temperature (K)t time (s)

~u speci?c heat (kJ/K kg)E energy (m)h p losses (m)

V

velocity (m/s)

q

air density (kg/m 3)L duct length (m)

k empirical factor (kg/m 3)A cross section of duct (m 2)k coef?cient of support system

K 0.606or 0.61(as appears in Eq.(5))H height of tunnel at the ?re site (m)

T f average temperature of ?re site gases (K)g gravity (9.81m/s 2)

C p

speci?c heat of air (1.1kJ/K kg)q

density (kg/m 3)

U

velocity vector (m/s)l

viscosity (Pa s)r

gradient

V velocity (m/s)

K d

conductivity (W K à1m à1)c

speci?c weight (N/m 3)

2I.Diego et al./Tunnelling and Underground Space Technology xxx (2010)

xxx–xxx

2.2.Experimental data from McPherson

In a similar way as in the preceding calculation method there is available,see McPherson book,Eq.(3)that allows the calculation of the air losses:

k áL áper áQ 2

A 3

?Pa e3T

where ‘‘k ”can be obtained from empirical data sheets as the ones re?ected in Table 2.

2.3.Experimental data available in Spain

Finally there are available methods obtained from practical and experimental measurements in Spanish mining see Luque Cabal (1988),and civil works,see López Jimeno (1996).

The value of the resistance that a duct or gallery opposes to be crossed by an air ?ow,R S ,expressed in Murgues,can be obtained from the following expression:

R S ?15:6ák

per áL A ?Murgues e4T

The lambda coef?cient is usually different in case of the walls,roof and ?oor,but in this paper all the values will be considered equal as the section will be supposed to be perfectly circular and with the same aerodynamic properties all over the perimeter.

of Spain the minimum air velocity is 0.2m/s and the maximum velocity is 8m/s,according to the RGNBSM Spanish standard .We consider that this range of values could cover the whole range of air requirements both during the construction phase and opera-tional phase of the tunnel.

Only during special events,as ?res or accidents,these require-ments could vary.A specially demanding situation is a ?re event inside the tunnel.This paper is not focused in these events,but at least a rough study of the range of ventilation requirements will be done in order to check whether the above referred velocity lev-els are enough for these emergency situations.

The presence of ?re in underground spaces requires strong ven-tilation ?ows in order to evacuate the hazard combustion products from the areas where tunnel users can be present.This can be achieved using an air ?ow that guarantees that the smoke will be swept in the ventilation ?ow direction,instead diluting all over the ?re surroundings.The air velocity that guarantees the smoke sweep is de?ned as the critical velocity.In order to calculate it there has been used the formulation given in a ventilation study by Stefopoulos and Damigos (2007),who summarizes methods from Wu and Bakar (2000)and Li and Chow (2000).The excellent experimental setup of Vauquelin (2008)corroborates the referred formulations.The following Eqs.(5)–(7)allow the calculation of the critical velocity.

V c ?K áK g á

g áH áHRR

q áC p áA áT f 13

e5T

I.Diego et al./Tunnelling and Underground Space Technology xxx (2010)xxx–xxx 3

level programming language Python2.5.The referred software is completed with module Matplotlib0.98.1for bi-dimensional visu-alization purposes.

Fig.1shows the results of multiple calculations varying the heat release rate and the diameter of a leveled tunnel.According to Lac-roix(1998),typical heat release rate varies from4MW in case of a burning car,up to100MW in case of a tanker?re.Other authors as Beard(2009)give possible?re events over200MW.Results shown in the?gure explain how in the worst case scenario considered in this study,a200MW?re in a tunnel of diameter15m,the critical velocity remains below4.5m/s.

The values of all the studied air velocities,the studied range of tunnel diameters,as well as the different values of wall roughness which will be detailed in the following sections,can be graphically expressed using the Moody Diagram.Fig.2shows this diagram with a blue overlay that indicates the range of?ow studies that can be encountered in the ventilation of tunnels.

https://www.doczj.com/doc/f04365155.html,putational?uid dynamics

The equations that govern the?uid?ow are the Navier Stokes, Eq.(8),which relates the velocity and pressure?elds as well as density;the continuity equation,Eq.(9),that expresses the mass conservation;and?nally the energy equation,Eq.(10),which re-lates also the temperature?elds.These expressions create a system of differential equations that can only be solved,in the vast major-ity of cases,by numerical methods.One possible approach is the so-called CFD method,computational?uid dynamics.

q D V

Dt

?à r Ptq gtl r2 Ve8T

D q

Dt

tq r V?0e9T

q D~u Dt ?K d r2TàP r Ve10T

An important part of the research in the CFD?eld has been fo-

cused in the different mathematical models used to resolve the

turbulent terms of the equations solving the microscopic scales

of the?uid eddies.A complete numerical solution of the referred

equations,down to the minimum scale of the?uid movements,

is only possible in very limited situations and with the use of enor-

mous amounts of computational efforts(Blazek,2001),so the?uid

movement is solved through the use of quasi-statistical methods

that estimate the turbulent terms of the equations.There can be

used several models,from the simple‘‘Zero Equation Models”to

complex methods as LES(Large Eddy Simulation)or DES(Detached

Eddy Simulation).RANS methods(Reynolds Averaged Navier–

Stokes)are a good compromise between calculation effort and

numerical accuracy,being widely used in engineering applications.

The software to use in order to develop these studies will be

Solidworks in case of the three dimensional modeling,ICEM-CFD

in case of domain meshing and Ansys CFX10.0as CFD solver and

post-processing tool.There has been decided to use a commercial

tool as it allows the researcher to focus in the ventilation study it-

self,and also because it allows the use of extremely complex

geometries,developed in Solidworks,as will be seen at the end

of this paragraph.

The post-processing is undoubtedly the most visually stunning

part of the elaborated work required to?nish a CFD simulation,as

the modern3D tools allow performing multiple analysis from the

data that the solver module has dumped to the hard disk:isosur-

faces,variable contours over any location or user-created feature,

video creating,?ow lines,user-created variables and expressions,

etc.We will focus now in the tools that permit the calculation of

the pressure losses between the beginning and end of the simula-

tion domain.

Air pressure drop is identi?ed with the energy losses of a?uid

passing through a duct,as an effect of the friction of the?uid par-

ticles against the duct walls.

According to Bernoulli Eq.(11),applying it in a leveled circular

cross section duct,and naming with subscript‘‘1”the inlet of the

duct and with subscript‘‘2”the outlet:

E1?E2th p?V2

1

2g

t

P1

c?

V2

2

2g

t

P2

cth p!h p?E1àE2e11T

?nite volumes which the mesh forms,and whose composing nodes

locations are used to make the discretization,are evenly spaced.

the air surrounding an excavator inside a tunnel(upper and middle?gures)and surface shells of a continuous

system(below).

I.Diego et al./Tunnelling and Underground Space Technology xxx(2010)xxx–xxx5

Assuming that a logarithmic pro?le reasonably approximates the velocity distribution near the wall,it provides a means to numerically compute the?uid shear stress as a function of the velocity at a given distance from the wall without the need of extensive meshes.In ANSYS CFX,Scalable Wall Functions are used for all turbulence models based on the e-equation.But a certain assumption has to be made in order to put a minimum amount of calculating nodes in the vicinity of the walls.

Authors as Norton et al.(2007),Versteeg and Malalsekeera (1995)or Sorensen and Nielsen(2003)show that the k–epsilon model with y+values of500have sustained a good behavior when dealing with near-wall simulations.Ansys CFX documentation re-quests(Ansys CFX-Solver,2008)that at least10nodes have to be placed inside the boundary layer.

From the determining factors referred to above,a circular tun-nel is de?ned in Solidworks and once the geometry has been ex-ported in STEP-IGES format to the ICEM-CFD package,the mesh is obtained.In this case the geometry is quite simple(circular sec-tion)but the method is perfectly applicable to much more complex geometries,where the powerful tools of geometry cleaning and mesh modifying can get good use.Fig.3shows(upper part)the 3D design and meshing results in case of a Caterpillar325B L/LN excavator working in the advance of a tunnel.

In the right upper side of that Fig.3there is shown a cross sec-tion of the mesh colored by the quality of the mesh(Green,good; Yellow:medium;Red:low1).Quality is de?ned as the proximity of the tetrahedral to the perfect tetrahedron,which is the optimal sit-uation for the location of the nodes.The meshes can be improved by both automated and manual means.Notice the smaller size of the tetras in the vicinity of the excavator surfaces and the absence of prisms in the tunnel walls that are still to be created.

The lower image of Fig.3shows the shells(super?cial meshing) of a dead end ventilation simulation where a continuous miner Al-pine ATM105-IC and an articulated dumper Volvo A35E are work-ing.The excavator model is meshed with approximately200,000 elements,while the miner and dumper are meshed with750,000 elements.Both numbers will rise in around250,000in order to in-stall the prisms in the walls,but in any case both models will re-main below1million of elements,which will avoid the use of parallel processing in order to ful?ll calculations.

Fig.4shows the?nal mesh to be used,quite simple as com-pared to the referred above models.

At the left side of the?gure there can be seen two cut views of the meshing:one parallel to the tunnel axis where it can be noticed the tetras in the diameter of the tunnel and prisms accumulation in the vicinity of the wall(triangular parallelograms);and a second one in a cross section of the tunnel.The right side of the?gure shows the node location in a certain cut plane.Notice again the accumulation of nodes in the walls.

Regarding the turbulence model to be chosen,there are several references available when dealing with CFD calculations of head losses.Song and Han(2005)show,in case of air losses in static mixers,that k–epsilon model is enough to his calculation needs. However,suggest results independence from the mesh used in case of enormous mesh densities of1.6?1010elements by cubic meter.

Ballesteros-Tajadura et al.(2006)also used k–epsilon model to simulate ventilation?ows in tunnels of several slopes.Gimbun et al.(2005)made studies of?ows in cyclones with?uids at several temperatures.Although their recommendation is the use of RSM models,they also showed enough accuracy in case of k–epsilon models,around15–18%in these swirling?ows.This kind of?ows could be present in the vicinity of the ventilation stations or fans in tunnel applications.

Regarding possible Coanda effects,with application to the ven-tilation extension in the proximity of walls,Tapsoba et al.(2007) have shown the applicability of k–epsilon models in the simulation of this phenomenon.

Also Zhang and Chen(2006)obtain valid results with this tur-bulence model in studies of contaminant dispersion in indoor ven-tilation,with air?ow velocity in range with the ones previously referred.

There can be observed how the k–epsilon model is widely ex-tended in these CFD applications,and has the enormous advantage that is not as high resource consuming as other RANS methods as SST,which use seven equations to solve the turbulent terms,as an opposite to the k–epsilon which uses only two.Our goal is to cal-culate CFD models in wide spaces as road tunnels where hundreds of thousands of elements,even millions,will be used.To solve these models with affordable hardware,k–epsilon turbulence model is the perfect compromise between accuracy and calculation

Fig.4.Meshing details of a circular tunnel.

1For interpretation of color in Figs.2and3,the reader is referred to the web

version of this article.

time and hardware requirements.Full data of the standard k–epsi-lon model can be found in Launder and Sharma (1974)https://www.doczj.com/doc/f04365155.html,parison of the air pressure losses calculation

In the beginning of this paper there have been shown the sev-eral available methods to calculate the air losses in underground installations,including tables that re?ect the empirical factors used in each method.Then,the possibilities and practical use of the CFD method in underground spaces ventilation calculations were shown.In this paragraph a comparison will be made among the empirical calculation methods and the CFD one.This is,there will be made a comparison of the numerical method against the exper-imental results that are obtained through the use of the empirical coef?cients of the theoretical methods.

The CFD software needs a value for the absolute roughness of each surface that con?ne the simulation domain.There are three data sets of surface characteristics (Tables 1–3)that have to be adequately treated in order to obtain a value of absolute roughness for each surface characteristic.

In the ?rst case,see Table 1,the absolute roughness values are directly available,as they are used to obtain through the use of Eq.(2)the friction factor that will be used in Eq.(1)to get the air losses values.

In the second case,data from Table 2,the ‘‘k ”factors of each sur-face condition must be related to a roughness value,identifying the circular tunnel to a circular ventilation shaft.Following McPherson (2007),that factor can be related to a friction factor that,once mul-tiplied by four and introduced in Eq.(2),allows obtaining the abso-lute roughness value according to each Reynolds number value and tunnel diameter.Table 4shows such calculations in case of a circu-lar tunnel of 10m of diameter and an air velocity of 0.2m/s.

In the third case,by the comparison of the results of Eqs.(4)and (1),there can be inferred that the lambda factor is the same value as the friction factor,and using the Colebrook–White equation there can be obtained the absolute roughness values,for each dif-ferent Reynolds number.The calculations in case of a 10m diame-ter tunnel with a 0.2m/s air ?ow appear in Table 5.

A lump sum of 138calculation cases appear by combining the velocities of 0.2and 8m/s,circular section of 5,10and 15m of diameter,and the different considered roughness (properly ad-justed as per the Reynolds number).

All the simulations have been done,according to the consider-ations about meshing already done,in meshes with 14tetrahe-drons in the diameter and 10prisms in the boundary layer,which means,in case of tunnel of 10m of diameter and 500m length,simulation domains of 600,000elements,of which 170,000are tetrahedrons.In case of models of 5and 15m of diam-eter the mesh density is similar.

Table 6shows a summary of the calculations corresponding to a 10m diameter tunnel,8m/s of air velocity and roughness of Table 4.The values of energy E1and E2have been calculated according to Eq.(11)and from the CFD post-processing data.

The simulations have been mainly done in modest hardware,Pentium-4at 2.80GHz and 1.50GB of RAM,although equipped with SCSI hard disks at 15,000rpm,achieving convergences in 108min for 60iterations,running Windows XP 32bits.In some of the cases the solver has been run in a workstation equipped with Intel core 2Extreme Q6800at 2.93GHz,4GB of Ram,and SATA hard disks,running over Windows XP 64bits.In this workstation

Table 1

Usual roughness values in tunnel works.Underground support

Roughness (mm)Smooth concrete all around Smooth surface 0.3Medium conditions 2.5Rough surface

9Steel reinforced concrete all around 2.5Tunnel excavated in rock with no support Rough rock surface

100Very rough rock surface 200Irregular rock surface

300

Table 2

Average values of friction factors (referred to air density of 1.2kg/m 3),taken from McPherson.Duct type

Friction factor,k (kg/m 3)Rectangular airways Smooth concrete lined 0.0040Shotcrete

0.0055Unlined with minor irregularities only 0.0090Girders on masonry or concrete walls

0.0095Unlined,typical conditions no major irregularities 0.0120Unlined,irregular sides

0.0140Unlined,rough or irregular conditions 0.0160Girders on side props

0.0190Drift with rough sides,stepped ?oor,handrails 0.0400Steel arched airways

Smooth concrete all round

0.0040Bricked between arches all round

0.0060Concrete slabs or timber lagging between ?anges all round

0.0075Slabs or timber lagging between ?anges to spring 0.0090Lagged behind arches

0.0120Arches poorly aligned,rough conditions

0.0160Metal mines

Arch-shaped level drifts,rock bolts and mesh 0.0100Arch-shaped ramps,rock bolts and mesh

0.0140Rectangular raise,untimbered,rock bolts and mesh 0.0130Bored raise 0.0050Beltway 0.0140TBM drift

0.0045Coal mines:rectangular entries,roof-bolted Intakes,clean conditions

0.0090Returns,some irregularities/sloughing 0.0100Shafts

Smooth lined,unobstructed 0.0030Brick lined,unobstructed

0.0040Concrete lined,rope guides,pipe ?ttings 0.0065Brick lined,rope guides,pipe ?ttings 0.0075Unlined,well trimmed surface

0.0100Unlined,major irregularities removed 0.0120Unlined,mesh bolted 0.0140

Tubbing lined,no ?ttings

0.007–0.014Brick lined,two sides buntons

0.0180Two side buntons,each with a tie girder

0.0220

Table 3

Lambda coef?cients in underground works.Support Lambda Unlined rock

Wall well ?nished

0.058Wall,major irregularities removed

0.084Irregular wall 0.108Rock with bolts

Wall well ?nished 0.058Wall,major irregularities removed

0.084Irregular wall

0.108Wall with wire mesh

0.13Lined rock

Smooth concrete 0.022Brick lined

Good condition 0.025Medium condition 0.03Irregular

0.04

I.Diego et al./Tunnelling and Underground Space Technology xxx (2010)xxx–xxx

7

running times are as low as 26min.As this workstation is not the cutting-edge in the current hardware evolution,and as the running times are very low,there can be inferred that there is still a lot of room for much more complex models,as the ones shown in Fig.3.The maximum values of the residuals,which show the possible error in the simulation,are in all cases below 10à5values,which is the convergence criteria applied to this study.Fig.5shows an im-age of the CFX-solver where it can be seen how all the residuals are below that value after iteration 62.

The residual that spent more time in achieving that value is the momentum component in the adventional direction,correspond-ing to the line named ‘‘MAX W-Mom”in Fig.5.As can be seen the RMS value of the residuals all over the domain is constantly one order of magnitude below the maximum values.

From now on a comparison of both calculation methods will be done with the objective of verifying the applicability of the CFD method.Fig.6shows a dispersion graphic of theoretical values against the CFD calculated ones in case of a circular tunnel of 10m of diameter and at air velocity of 8m/s.It can be observed how in case of losses values over 11m,corresponding to high roughness simulations,the results tend to move away from the optimum y =x .Our understanding is that,in case of very high roughness values,the mathematical method used to approximate the velocity pro?le near the wall does not behaviors well,probably as the height of wall irregularities interfere directly in the tetrahe-drons volume,leaving behind the prisms.

In order to check this supposition,it can be analyzed the CFD losses versus roughness.Fig.7shows this comparison,appearing two alignments of points,the upper one corresponding to a veloc-ity of 8m/s,the maximum of this study,and the lower one corre-sponding to velocity of 0.2m/s.As the losses of the 0.2m/s curves are much lower than the 8m/s ones,losses vary with the square of the velocity,a logarithmic scale is applied in the vertical axis.In both point series it can be observed an increase in losses with the roughness increase,up to a level between 400and 600mm;after these values the losses do not vary although roughness in-crease.This result is incongruous and must be rejected.

Hence,eliminating the results whose roughness are over 500mm,it is obtained Fig.8.Results are much better than the ones of Fig.6,with a perfect alignment of points that can be ?tted with a

Table 4

Calculation of the absolute roughness from the data of Table 2(10m diameter tunnel and velocity of 0.2m/s).Tunnel support

k f 4?f =f Moody e /D Colebrook e (mm)Smooth lined,unobstructed 0.0030.0050.020.00098.9Brick lined,unobstructed

0.0040.00670.02680.003029.6Concrete lined,rope guides,pipe ?ttings 0.00650.01080.04320.0137136.9Brick lined,rope guides,pipe ?ttings 0.00750.01250.050.0203203.4Unlined,well trimmed surface

0.010.01670.06680.0411410.9Unlined,major irregularities removed 0.0120.020.080.0606605.9Unlined,mesh bolted

0.0140.0230.0920.0800799.9Tubbing lined,no ?ttings,MAX 0.0140.0230.0920.0800799.9Tubbing lined,no ?ttings,MIN 0.0070.0120.0480.0183182.7Brick lined,two sides buntons

0.0180.030.120.12891289.1Two side buntons,each with a tie girder

0.022

0.037

0.148

0.1801

1800.7

Table 5

Calculation of the absolute roughness from the data of Table 4.Tunnel support Lambda f e /D e (mm)Unlined rock

Wall well ?nished

0.0580.0580.029543295.4Wall,major irregularities removed 0.0840.0840.066909669.1Irregular wall

0.1080.1080.1074931074.9Rock with bolts

Wall well ?nished

0.0580.0580.029543295.4Wall,major irregularities removed 0.0840.0840.066909669.1Irregular wall

0.1080.1080.1074931074.9Wall with wire mesh 0.130.130.1470561470.6Lined rock

Smooth concrete 0.0220.0220.00136013.6Brick lined

Good condition 0.0250.0250.00227722.8Medium condition 0.030.030.00441144.1Irregular

0.04

0.04

0.010975

109.7

Table 6

Calculation results in case of Table 4data (10m of diameter and 8m/s of velocity).Case Roughness (mm)Friction factor Theoretical losses (m)D H (Pa)E 1(m)E 2(m)CFD losses (m)D H CFD (Pa)18.920.0192 3.1336.40 6.50 4.16 2.3427.23229.560.0261 4.2549.487.67 4.35 3.3138.563136.880.0423 6.8980.2010.05 4.65 5.3962.764182.670.057.6689.1110.70 4.71 5.9969.695203.430.0497.9992.9010.97 4.73 6.2472.566410.900.065510.68124.1812.80 4.788.0193.147605.920.078412.78148.6413.37 4.708.67100.858799.890.090214.71171.0213.39 4.578.82102.54UQR 1074.920.10617.28200.9713.22 4.428.79102.239

1289.05

0.118

19.24

223.73

13.11

4.34

8.77

101.96

8I.Diego et al./Tunnelling and Underground Space Technology xxx (2010)

xxx–xxx

line with a regression factor almost the unity,value over 0.99,but with a slope that deviates from the optimum a 23%.The results are similar for all diameters,roughness and air velocities.

If all the calculations are grouped together in the same analysis,there can be obtained Fig.9.The graphic shows all the results of the simulations done in circular sections with diameters 5,10and 15m,length of tunnel 500m,air velocities of 0.2and 8m/s and all the roughness included in Tables 1,4and 5,adequately ?l-tered below 500mm level.

Fig.9shows how the lineal correlation is almost perfect (regres-sion factor almost 1)but again with regression line slope moved away from the optimum unity,a 17%below that value.This is,

Fig.5.Calculation residuals in case ‘‘CircularD5-1”.Maximum values (left)and RMS values (right).

05

10

15

20

5

10

15

20

Theoretical losses (m)

C F

D l o s s e s (m )

https://www.doczj.com/doc/f04365155.html,parison of the 10m diameter model at velocity of 8m/s.

the losses that are obtained when calculating an installation with the CFD method will get losses values slightly lower than if the cal-culation is done by any of the theoretical methods.

To ?nish the paper we would like to point out that during the research several tests were done with partial symmetrical meshes.This is,instead considering the full circular section,the calculations were done in a 90°sector,assuming that the pressure and velocity ?elds will be distributed in a symmetrical manner both in the ver-tical and horizontal alignments.This approach guides to a great saving in meshing elements and therefore in calculation times.Nevertheless this procedure will be applicable only in very limited situations as in the vast majority of the cases the simulation do-mains will not be symmetrical.

Fig.10shows,left image,the mesh obtained.The number of tet-rahedrons in the radius of the sector will be 7or 8,obviously the half value of the used in the complete circular

section.

10I.Diego et al./Tunnelling and Underground Space Technology xxx (2010)

xxx–xxx

The results of the comparisons among traditional calculations and the CFD ones are similar as the obtained in case of the com-plete section,as can be seen in the right side of Fig.10.6.Conclusions

The CFD is an acceptable method to calculate air losses of the ventilation systems of underground works.This paper has shown that similar results are obtained when using the traditional formu-lations or the computational ?uid mechanics method,but with the invaluable advantage that the CFD is a three dimensions method.This is,the calculations can be made in the three dimensions of the space.

CFD is the perfect companion for the traditional methods when complex situations appear.Simple geometries can be calculated in a traditional manner,whereas complex details as turbulent reverse ?ows or complex geometries not covered in the tables of friction factors can be checked with CFD.

Some of these complex geometries,which guide to complex meshing strategies,have been also developed and are shown.The computing power needed to develop the geometries,the meshing and the CFD calculations is not high.Typical desk top computers as the ones detailed in the paper can deal with simulations involving detailed models including the machinery moving in the under-ground works.

The CFD method can be also easily applied as a time dependent procedure,a 4D calculation method.This feature opens path for fu-ture research where complicated geometries of underground works or time events,as contaminant releases,can be simulated and calculated.

The limitations of the method come with the need to de?ne a high resolution mesh in the vicinity of the walls in order to ade-quately simulate the high velocity gradients present there.This pa-per has shown how there is no need to include in the 3D design surface details below 500mm;it will be enough to de?ne a repre-sentative super?cial absolute roughness.Bigger obstacles to the air ?ow will need a 3D design and associated meshing.

It must be noticed that this 500mm limitation covers the big-gest part of situations that can be encountered in the state of the walls of underground works,except certain situations where there is no support used in tunnel advances using non adequately sized blasts,which guides to enormous rock irregularities in the walls.In order to create an adequate mesh of the simulation domain,there will be needed to create 10prismatic elements in the bound-ary layer of each wall,and between 12and 14tetrahedral elements in the diameter of the tunnel.

The results of the CFD method compare correctly to the results of the traditional calculation methods with an error of 17%.The turbulence model chosen is k–epsilon,which allows the use of standard work stations.

I.Diego et al./Tunnelling and Underground Space Technology xxx (2010)xxx–xxx 11

Acknowledgements

We want to acknowledge the public funds that granted these studies,as these they have been done in the framework of the Re-search Project CTM2005-00187/TECNO,‘‘Prediction models and prevention systems in the particle atmospheric contamination in an industrial environment”of the Spanish National R+D Plan of the Ministry of Education and Science,2004–2007period.

We also want to thank the work of the reviewers that have checked the paper prior to its publication.

References

Ansys CFX-Solver,2008.Release 10.0.Modelling,p.129.

Ballesteros-Tajadura,R.,Santolaria-Moros,C.,Blanco-Marigorta,E.,2006.In?uence

of the slope in the ventilation semi-transversal system of an urban tunnel.Tunnelling and Underground Space Technology 21,21–28.

Beard,A.N.,2009.HGV ?res in tunnels:?re size and spread.In:Proceedings of the

2nd International Tunnel Safety Forum for Road and Rail,Lyon.

Blazek,J.,https://www.doczj.com/doc/f04365155.html,putational Fluid Dynamics:Principles and applications.

Elsevier Science Ltd.,United Kingdom.p.225.

Diego,I.,Torno,S.,Tora?o,J.,2008.CFD simulation of aerodynamic resistance in

underground spaces ventilation.WIT Transactions on the Built Environment 102,12–23.

Yuan,Feng-Dong,You,Shi-Jun,2007.CFD simulation and optimization of the

ventilation for subway side-platform.Tunnelling and Underground Space Technology 22,474–482.

Hacar Rodríguez,Fernando,https://www.doczj.com/doc/f04365155.html, rugosidad en túneles sin revestimiento en

relación con la ventilación.Ingeotúneles Tomo 3,Madrid,p.463.

Galdo Vega,Mónica,Argüelles Díaz,Katia María,Fernández Oro,Jesús Manuel,

Ballesteros Tajadura,Rafael,Santolaria Morros,Carlos,2008.Numerical 3D simulation of a longitudinal ventilation system:memorial tunnel case.Tunnelling and Underground Space Technology 23,539–551.

Gimbun,Jolius.,Chuah,T.G.,Fakhru’l-Razi,A.,Thomas,S.Y.,Choong,2005.The

in?uence of temperature and inlet velocity on cyclone pressure drop:a CFD study.Chemical Engineering and Processing 44,7–12.

Gribble,Don.,2009.Natural ventilation,harnessed by New Kingdom Egyptian tomb

builders,may explain the changed ?oor levels in the Valley of the Kings tomb KV5.Tunnelling and Underground Space Technology 24,62–65.

Hargreaves, D.M.,Lowndes,I.S.,2007.The computational modeling of the

ventilation ?ows within a rapid development drivage.Tunnelling and Underground Space Technology 22,150–160.

Lacroix,D.,1998.The new PIARC report on ?re and smoke control in road tunnels.

In:Third International Conference on Safety in Road and Rail Tunnels.ITC,Nice,pp.205–209.

Launder,B.E.,Sharma,B.I.,1974.Application of the energy dissipation model of

turbulence to the calculation of ?ow near a spinning disc.Letters in Heat and Mass Transfer 1(2),131–138.

Li,J.S.M.,Chow,W.K.,2000.Illegal carriage of dangerous goods and their effects on

tunnel safety.Tunnelling and Underground Space Technology 15(2),167–173.López Jimeno,Carlos,1996.Manual de túneles.Madrid,p.738.

Luque Cabal,Vicente,1988.Manual de ventilación de minas.PEDECA Madrid.

McPherson,M.J.,2007.Subsurface Ventilation and Environmental Engineering.

Springer.

Norton,Tomas.,Sun,Da.-Wen.,Grant,Jim.,Richard,Fallon.,Vincent,Dodd.,2007.

Applications of computational ?uid dynamics (CFD)in the modelling and design of ventilation systems in the agricultural industry:a review.Bioresource Technology 98,2386–2414.

Numpy 1.1.0.(accessed 14.07.08).

Potter,Merle C.,Wiggert,David C.,2002.Mecánica de ?uidos.Thomson,México,p.

277.

Prosser,B.S.,Stinnette,J.D.,Paredes,J.,2002.Ventilation optimization at the La

Camorra mine.In:Proceedings of 9th US Mine Ventilation Symposium,Queens University,Kingston,Ontario,pp.150–154.

RGNBSM:Spanish standard.Reglamento General Normas Básicas de Seguridad

Minera,ITC 04.7.1,apartados 1y 3.

Santolaria-Morros,Carlos.,Ballesteros-Tajadura,Rafael.,Blanco,Eduardo.,2006.

In?uence of the slope in the ventilation semi-transversal system of an urban tunnel.Tunnelling and Underground Space Technology 21,21–28.ScyPy 0.6.0.(accessed 14.07.08).

Song,Hyun-Seob,Han,Sang Phil,2005.A general correlation for pressure drop in a

Kenics static mixer.Chemical Engineering Science 60,5696–5704.

Sorensen,D.N.,Nielsen,P.V.,2003.Quality control of computational ?uid dynamics

in indoor environments.Indoor Air 13,2–17.

Stefopoulos,E.K.,Damigos,D.G.,2007.Design of emergency ventilation system for

an underground storage facility EK.Tunnelling and Underground Space Technology 22,293–302.

Tapsoba,Mitoubkieta,Jean,Moureh,Denis,Flick,2007.Air?ow patterns inside

slotted obstacles in a ventilated https://www.doczj.com/doc/f04365155.html,puters and Fluids 36,935–948.Vauquelin,Olivier,2008.Experimental simulations of ?re-induced smoke control in

tunnels using an ‘air–helium reduced scale model:Principle,limitations,results and future.Tunnelling and Underground Space Technology 23,171–178.

Versteeg,H.K.,Malalsekeera,W.,1995.An Introduction to Computational Fluid

Dynamics.Longman Group Ltd.,Harlow,UK.

VENTSIM (accessed 14.07.08).

VENPRI.(accessed 14.07.08).

VNET-PC.(accessed

14.07.08).

Wu,Y.,Bakar,M.Z.A.,2000.Control of smoke ?ow in tunnel ?res using longitudinal

ventilation systems -a study of the critical velocity.Fire Safety Journal 35,363–390.

Zhang,Z.,Chen,Q.,2006.Experimental measurements and numerical simulations of

particle transport and distribution in ventilated rooms.Atmospheric Environment 40,3396–3408.

12I.Diego et al./Tunnelling and Underground Space Technology xxx (2010)

xxx–xxx

医药工业洁净厂房设计要求规范

医药工业洁净厂房设计规范 第一章总则 第1.0.1条为了贯彻执行国家《药品生产质量管理规范》(以下简称GMP),提出符合GMP要求的生产厂房、设施及设备的设计要求,特制订本规范。 第1.0.2条本规范适用于新建、改建和扩建的医药制剂、原料药和药用辅料的精制、干燥、包装工序,直接接触药品的药用包装材料、无菌医疗器械等医药工业洁净厂房的设计。 第1.0.3条医药工业洁净厂房诉设计必须贯彻国家有关方针、政策。做到技术先进、确保质量、安全实用、经济合理,符合节约能源和保护环境的要求。 第1.0.4条医药工业洁净厂房的设计,既要满足当前产品生产的工艺要求,也应适当考虑今后生产发展和工艺改进的需要。 第1.0.5条在利用原有建筑和设施进行洁净技术改造时,可根据生产工艺要求,从实际出发,充分利用现有的技术设施,符合因地制宜的原则。 第1.0.6条医药工业洁净厂房的设计应为施工安装、维护、管理、检修、测试和安全运行创造必要的条件。 第1.0.7条医药工业洁净厂房的设计除应执行本规范外,还应符合现行的国家标准、规范和规定的有关要求。 第二章生产区域的环境参数 第一节一般规定 第2.1.1条为了保证医药产品生产质量,防止生产环境对产品的污染,生产区域必须满足规定的环境参数标准。

注2:空气洁净度的测试以静态条件为依据,测试方法应符合国家医药管理工业洁净室和洁净区悬浮粒子的测试方法》中有关规定; 注3:对于空气洁净度为100级的洁净室,室内大于等于5μm尘粒的计数,应进行多次采样,当其多次出现时,方可认为该测试数值是可靠的。 第2.2.2条药品生产有关工序和环境区域的空气洁净度等级按国家CMP等有关规定确定。 第2.2.3条洁净室内的温度和湿度应符合下列规定: 一、生产工艺对温度和湿度无特殊要求时,以穿着洁净工作服不产生不舒服感为宜。空气洁净度100级、10000级区域一般控制温度为20~24℃,相对湿度为45~60%。100000级区域一般控制温度为18~28℃,相对湿度为50~65%。 二、生产工艺对温度和湿度有特殊要求时,应根据工艺要求确定。 第2.2.4条洁净室内应保持一定的新鲜空气量,其数值应取下列风量中的最大值: 一、非单向流洁净室总送风量的10~30%,单向流洁净室总送风量的2~4%; 二、补偿室内排风和保持室内正压值所需的新鲜空气量; 三、保证室内每人每小时的新鲜空气量不小于40m3。 第2.2.5条洁净室必须维持一定的正压。不同空气洁净度的洁净区之间以及洁净区与非洁净区之间的静压差不应小于5Pa,洁净区与室外的静压差不应小于10Pa。 青霉素等特殊药物生产洁净区,固体口服制剂配料、制粒、压片等工序洁净区的气压控制,应符合第8.5.1条要求。 第2.2.6条洁净室和洁净区应根据生产要求提供足够的照度。主要工作室一般照明的照度值不宜低于300LX;辅助工作室、走廊、气闸室、人员净化和物料净化用室可低于300LX,但不宜低于150LX。对照度要求高的部位可增加局部照明。

基于openGL的三维地形场景的生成

基于openGL的三维地形场景的生成

1、背景介绍 (3) 2、openGL中地形动态显示 (3) 3、程序的主要功能 (4) 3.1 三维地形的生成 (4) 3.2 天空盒的生成 (8) 3.3 树的生成 (9) 3.4 3DS模型的读入 (11) 3.5 键盘交互实现漫游 (11) 3.6汉字的显示 (12) 4、总结 (13) 4.1 项目总结 (13) 4.2 小组成员分工 (14) 参考文献 (15)

1、背景介绍 地形是自然界最复杂的景物之一,对其三维显示和漫游一直是计算机图形学、地理信息系统、数字摄影测量和遥感研究的热点之一。但由于受地形结构复杂,数据量大等条件的制约,要实时模拟具有真实感的大范围三维地形,最大的难点是,如何精简并有效地组织地形数据,以达到高速度、高精确度的可视化目的。 openGL是开放式图形工业标准,是绘制高度真实感三维图形,实现交互式视景仿真和虚拟现实的高性能开发软件包。 利用openGL进行地形动态显示的基本框架如图1所示: 图1 openGL地形现实基本框架 2、openGL中地形动态显示 利用openGL进行地形的三维可视化,包含以下几个步骤: (1)openG L模型映射:利用openGL 制作三维立体地形图,就要将数字地面模型格网用openGL提供的点,线,多边形等建模原语描述为openGL图形函数所识别。 (2)遥感图像与地形融合:openGL提供两类纹理:一类纹理图像的大小必须是几何级数;另一类Mipmaps 纹理可为任意大小。在Mipmaps纹理映射的基础上,可将遥感图像与地形融合。在遥感影像与数字地形相套合时,地形与遥感影像的配准是关键。为了获取更好的视觉效果,配准方案可采取数字地形向遥感图像配准,通过控制点,建立匹配方程,将数字地形由大地坐标系转到影像坐标系中。 (3)观察路线设置与视点计算:为了达到三维交互控制的目的,可在正射的遥感数字影像上任意选择观察路线,对路线上的采样点记录其平面坐标,根据采样点的平面位置从DEM 中采用一定的插值方法,确定观察路线上采样点的高程和平面坐标,当采用Fly-through方式观察时,观察路线上每个视点的高度可由观察点地面高程加上飞行高 度确定当采用walk-through方式观察时观察 路线上每个视点的高度可由观察点地面高程加上

4 项目建设技术路线与三维建模方案

4 项目建设技术路线与三维建模方案

朝阳区数字化三维仿真模拟城市管理系统 建设方案

版本控制 修改记录说明

1.概述 1.1.项目建设背景 “数字城市”是城市信息化发展的方向,是数字地球的一部分,三维地理信息是“数字城市”的重要基础空间信息。三维城市的建立能够全方位地、直观地给人们提供有关城市的各种具有真实感的场景信息,并可以以第一人称的身份进入城市,感受到与实地观察相似的体验感。 随着二十一世纪的互联网技术、计算机技术、3S(GIS/RS/GPS)技术、虚拟现实、航空与航天技术等的飞速发展,给地理信息技术手段带来前所未有的变革,利用高分辨率卫星影像以及航空像片,通过对影像的平面、高程、结构、色彩等的数字化处理,按照统一坐标无缝拼接而成可以迅速建立基于真实影象的“三维数字城市”,人们可以直观的从三维城市上判读处山川、河流、楼宇、道路。借助传统平面地图的概念,叠加空间矢量数据,地物兴趣点数据、以及三维模型数据形成可视化“三维数字”城市展示系统。 与传统二维地图相比,“三维数字城市”展示系统突破平面地图对空间描述二维化、三维空间尺度感差、没有要素结构与纹理信息等诸多限制,通过对真实地形、地物、建筑的数字化三维模拟和三维表达,提供给使用者一个与真实生活环境一样的三维城市环境。通过数字化三维仿真模拟城市的实现对城市的管理,把传统的限于二维的城市管理范围扩展到了三维甚至多维的管理范畴,为城市建设、政务管理、企业信息发布与公众查询提供多维的、可持续发展的信息化服务,将大大提高城市整体信息化管理和经营管理水平,并有利于提高公众参与城市管理的积极性和参与性。 1.2.项目建设目标 以先进的技术手段,在三维仿真模拟城市场景中实现朝阳辖区单位、人口、部件、事件、社区绿化等相关信息的管理,进一步提高朝阳区政府城市管理水平,提高居民参与城市管理的积极性。另一方面,能够很好的展现数字朝阳的建设成果。最终为建设和谐朝阳提供技术保障,为数字奥运做出贡献。

洁净厂房设计规范2019

1 总则 1.0.1为在医药工业洁浄厂房设计中贯彻执行国家有关方针政策,做到技术先进、安全可靠、确保质量、节能环保,制定本标准 1.0.2本标准适用于新建、扩建和改建的医药工业洁净厂房设计。生物制品、毒性药品、精神药品、麻醉药品以及放射性药品的生产和质量检验设施除应执行本标准外,尚应符合国家有关的监管规定。 1.0.3医药工业洁净厂房的设计应为施工安装、系统设施验证、维护管理、检修测试和安全运行创造必要的条件 1.0.4医药工业洁净厂房的设计除应符合本标准外,尚应符合国家现行有关标准规范的规定。 2术语 2.0.1医药洁净室pharmaceutical clean room 空气悬浮粒子和微生物浓度,以及温度、湿度、压力等参数受控的医药生产房间或限定的空间。

2.0.2医药工业洁净厂房pharmaceutical industry clean room 包含医药洁净室的用于药品生产及质量控制的建筑物 2.0.3人员净化用室room forcleaning personne 人员在进人医药洁净室之前按一定程序进行净化的房间 2.0.4物料净化用室room forcleaning materia 物料在进入医药洁净室之前按一定程序进行净化的房间 2.0.5受控环境controlled environment 以规定方法对污染源进行控制的特定区域 2.0.6悬浮粒子airborne particles 用于空气洁净度分级的空气悬浮粒子尺寸范围在0.1um~1000um 的固体和液体粒子。 2.0.7微生物microorganIsms 能够复制或传递基因物质的细菌或非细菌的微小生物实体 2.0.8含尘浓度particle concentration 单位体积空气中悬浮粒子的数量

三维地形建模技术标准

上海勘测设计研究院企业标准 Q/SIDRI1XX.XX-2014 三维地形建模技术标准 XXXX-XX-XX发布XXXX-XX-XX实施 发布

目录 前言 ......................................................................................................... I 1 总则 (1) 2 术语 (1) 3 工作环境 (1) 4 数学基础 (2) 5 原始地形图规定 (2) 6 建模规定 (3) 7 成果要求 (4) 8 交付与使用 (5)

前言 本标准是参照SL1—2002《水利技术标准编写规定》进行制订,是我院企业技术标准编写的依据。 本标准由上海勘测设计研究信息与数字工程中心提出。 本标准主编部门:信息与数字工程中心 本标准参与部门:勘测院 本标准主要起草人:方毅 本标准于2014年7月首次制定。

1 总则 1.0.1 目的 为了落实公司的发展规划,推动三维协同设计的应用,提升公司信息化水平,为了保障三维地形建模工作的顺利进行,规范其建模流程,方便后续专业进行三维设计工作,以提高整个团队的工作效率,特制定本标准。 1.0.2 适用范围 本标准适用于所有项目中三维地形模型的建立、应用和管理。 2 术语 2.0.1 DTM Digital Terrain Model,数字地面模型,本公司的三维地形建模就是指建立数字地面模型。 2.0.2 高程 从某一基准面起算的地面点的高度,我国采用的是水准高程,即基准面为似大地水准面。 2.0.3 等高线 指的是地形图上高程相等的各点所连成的闭合曲线。 3 工作环境 3.0.1 使用软件 三维地形建模使用的软件主要是Mircrostation、GeoPak以及AutoCAD。 3.0.2 专业环境 使用GeoPak建立DTM模型时,工作环境执行如下规定:

地形三维建模

实验三地形三维建模 实验内容: 1、以实测高程点为基础数据,在Cass中制作地形三维模型。 2、以实测等高线为基础数据,在ArcGIS中制作地形三维模型。 主要操作步骤: 1、获取实测高程点的坐标文件数据。(*.dat) 1)使用全站仪、棱镜等测量设备,在指定区域内实测若干高程点,并记录每个高程点的平面坐标及高程。注意:测量高程点时,每个点的间距在5米左右,均匀覆盖所测区域,测站时量测仪器高、棱镜高,输入测站点高程值。高程点数不少于60个。在测高程点的同时,兼顾地物的测量。线性地物数(道路、陡坎、沟渠)不少于5个。 2)实测结束后,将数据转换成Cass坐标文件(*.dat) 在这里以CQSJ.dat数据文件为例 2、在Cass软件将高程点进行展绘,绘制成等高线。将绘制完成的数据保存为DGX.dwg。(本讲义以CQSJ.dat数据为例) 1)打开Cass,导入CQSJ.dat中的高程点 选择“绘图处理—》展高程点”菜单,依次输入绘图比例尺“1:500”,高程点的间距“1”米,即可展绘文件中的高程点。

选择“等高线—》建立DTM”菜单,构建三角网。

再选择“等高线—》绘制等高线”菜单,生成等高线

再选择“等高线—》删三角网”,删去三角网。

3)修饰等高线 在图上标注相应等高线的高程值 4)绘制其他地物(道路、陡坎、沟渠等) 注意:线性地物穿过等高线时,等高线要断开。 5)完成后,保存为DGX.dwg文件。 3、在Cass中进行地形三维建模 使用“等高线—》三维模型—》绘制三维模型”菜单,选择高程点数据文件CQSJ.DAT。 依次输入高程乘系数(默认是1.0,此值是高程值的缩放比例,如果高程值的变化不大,可适当输入较大的系数,三维地形的起伏将比较明显,本例中输入5),输入网格间距(默认是8.0,绘制网格的大小,可根据需要进行调整),选择进行拟合。即可看到地形的三维模型,由于此处的高程乘系数为5,地形起伏得到放大,显得比较明显。

利用Smart3D建模软件生成三维地形过程精编版

利用Smart3D建模软件生成三维地形过程本篇经验将和大家介绍以一组无人机倾斜摄影照片为原始数据,通过Smart3D 建模软件,重建生成三维地形的过程,希望对大家的工作和学习有所帮助! 工具/原料 ?包括Smart3D建模软件 ?一组垂直拍摄而且多角度、重叠度满足重建要求的航片 ?航片对应的pos数据文件 概况 关于通过无人机航拍的照片,照片进行三维重建生产模型,一些情况下照片中是自带有GPS数据信息的,而另一些情况则是会导出一组无定位信息的照片和对应的pos数据文本。 前者我们直接新建区块,把照片直接导入给软件跑出结果就ok了。 那么,这次我们主要来谈论研究第二种情况,即照片和pos分开的情况。 END 区块导入表格的编辑 区别于第一种情况我们需要编辑下导入区块的表格,我们将照片的文件路径、参考坐标系、传感器的基本信息等信息嵌入到这个表格里,通过它来实现对照片和pos信息数据的导入。后面的操作处理是跟直接导入照片的方法是没有差别的。 首先,我们看到原始数据的文件夹如下图所示,包括一组照片和相应的pos 文件,如下图所示:

1. 2 可以看到,这个pos数据是以文本文档的形式存在,如下图所示: 3 而在导入区块的过程当中,我们需要导入Excel表格,那么,这时需要运用一定的办公软件的技巧将其转换为Excel表格,这个表格需要包含如下图的4个工作表,如下图所示: 4 结果如下图所示: 5 Photogroups工作表中,名称列需要与照片工作表的PhotogroupName一致,如下图所示:

6 Photos工作表的编辑结果,如下图所示: 2.7 控制点工作表中,由于无人机航拍的区域不是很大,且对于建模成果的精度没有设定范围,追求建成模型的速度,我们本次先不设控制点,很多朋友都是误把照片放到了这个工作表中,致使处理出现问题,需要注意一下。编辑结果,如下图所示: 8 Options工作表中,是坐标系和照片路径的信息,设置如下,如下图所示:

医药工业洁净厂房设计规范

医药工业洁净厂房设计规 范 Jenny was compiled in January 2021

医药工业洁净厂房设计规范 第一章总则 第条为了贯彻执行国家《药品生产质量管理规范》(以下简称GMP),提出符合GMP要求的生产厂房、设施及设备的设计要求,特制订本规范。 第条本规范适用于新建、改建和扩建的医药制剂、原料药和药用辅料的精制、干燥、包装工序,直接接触药品的药用包装材料、无菌医疗器械等医药工业洁净厂房的设计。 第条医药工业洁净厂房诉设计必须贯彻国家有关方针、政策。做到技术先进、确保质量、安全实用、经济合理,符合节约能源和保护环境的要求。 第条医药工业洁净厂房的设计,既要满足当前产品生产的工艺要求,也应适当考虑今后生产发展和工艺改进的需要。 第条在利用原有建筑和设施进行洁净技术改造时,可根据生产工艺要求,从实际出发,充分利用现有的技术设施,符合因地制宜的原则。 第条医药工业洁净厂房的设计应为施工安装、维护、管理、检修、测试和安全运行创造必要的条件。 第条医药工业洁净厂房的设计除应执行本规范外,还应符合现行的国家标准、规范和规定的有关要求。 第二章生产区域的环境参数 第一节一般规定 第条为了保证医药产品生产质量,防止生产环境对产品的污染,生产区

注3:对于空气洁净度为100级的洁净室,室内大于等于5μm尘粒的计数,应进行多次采样,当其多次出现时,方可认为该测试数值是可靠的。 第2.2.2条药品生产有关工序和环境区域的空气洁净度等级按国家CMP等有关规定确定。 第2.2.3条洁净室内的温度和湿度应符合下列规定: 一、生产工艺对温度和湿度无特殊要求时,以穿着洁净工作服不产生不舒服感为宜。空气洁净度100级、10000级区域一般控制温度为20~24℃,相对湿度为45~60%。100000级区域一般控制温度为18~28℃,相对湿度为50~65%。 二、生产工艺对温度和湿度有特殊要求时,应根据工艺要求确定。 第2.2.4条洁净室内应保持一定的新鲜空气量,其数值应取下列风量中的最大值: 一、非单向流洁净室总送风量的10~30%,单向流洁净室总送风量的2~4%; 二、补偿室内排风和保持室内正压值所需的新鲜空气量; 三、保证室内每人每小时的新鲜空气量不小于40m3。 第2.2.5条洁净室必须维持一定的正压。不同空气洁净度的洁净区之间以及洁净区与非洁净区之间的静压差不应小于5Pa,洁净区与室外的静压差不应小于10Pa。 青霉素等特殊药物生产洁净区,固体口服制剂配料、制粒、压片等工序洁净区的气压控制,应符合第条要求。

医药工业洁净厂房设计规范GMP-97

医药工业洁净厂房设计规范 GMP—97 目录 医药工业洁净厂房设计规范 (1) 第一章总则 (2) 第二章生产区域的环境参数 (2) 第一节一般规定 (2) 第二节环境参数的设计要求 (2) 第三章厂址选择和总平面布置 (3) 第一节厂址选择 (3) 第二节总平面布置 (4) 第四章工艺设计 (4) 第一节工艺布局 (4) 第二节人员净化 (5) 第三节物料净化 (6) 第五章设备 (6) 第六章工艺管道 (8) 第一节一般规定 (8) 第二节管道材料、阀门和附件 (8) 第三节管道的安装、保温 (8) 第四节安全 (9) 第七章建筑 (9) 第一节一般规定 (9) 第二节防火和疏散 (9) 第三节室内装修 (10) 第八章空气净化 (11) 第一节一般规定 (11) 第二节净化空气调节系统 (11) 第三节气流组织 (12) 第四节风管和附件 (13) 第五节青霉素等药物生产洁净室的特殊要求 (13) 第九章给水排水 (14) 第一节一般规定 (14) 第二节给水 (14) 第三节排水 (14) 第四节工艺用水 (14) 第五节消防设施 (15) 第十章电气 (16) 第一节配电 (16) 第二节照明 (16) 第三节其它电气 (17) 附录一名词解释 (18) 附录二本规范用词说明 (19)

第一章总则 第1.0.1条为了贯彻执行国家《药品生产质量管理规范》(以下简称GMP),提出符合GMP要求的生产厂房、设施及设备的设计要求,特制订本规范。 第1.0.2条本规范适用于新建、改建和扩建的医药制剂、原料药和药用辅料的精制、干燥、包装工序,直接接触药品的药用包装材料、无菌医疗器械等医药工业洁净厂房的设计。 第1.0.3条医药工业洁净厂房诉设计必须贯彻国家有关方针、政策。做到技术先进、确保质量、安全实用、经济合理,符合节约能源和保护环境的要求。 第1.0.4条医药工业洁净厂房的设计,既要满足当前产品生产的工艺要求,也应适当考虑今后生产发展和工艺改进的需要。 第1.0.5条在利用原有建筑和设施进行洁净技术改造时,可根据生产工艺要求,从实际出发,充分利用现有的技术设施,符合因地制宜的原则。 第1.0.6条医药工业洁净厂房的设计应为施工安装、维护、管理、检修、测试和安全运行创造必要的条件。 第1.0.7条医药工业洁净厂房的设计除应执行本规范外,还应符合现行的国家标准、规范和规定的有关要求。 第二章生产区域的环境参数 第一节一般规定 第2.1.1条为了保证医药产品生产质量,防止生产环境对产品的污染,生产区域必须满足规定的环境参数标准。 第2.1.2条医药工业洁净室和洁净区应以微粒和微生物为主要控制对象,同时还应对其环境的温度、湿度、新鲜空气量、状差、照度、噪场院等参数作出必要的规定。 第2.1.3条环境空气中不应有不愉快气味以及有碍药品质量和人体健康的气体。 第二节环境参数的设计要求 第2.2.1条医药工业洁净厂房空气洁净度按表2.2.1规定分为三个等级。 医药工业洁净厂房空气洁净度等级表2.2.1

倾斜摄影三维建模技术流程及案例分析

龙源期刊网 https://www.doczj.com/doc/f04365155.html, 倾斜摄影三维建模技术流程及案例分析 作者:刘森 来源:《科技资讯》2017年第30期 DOI:10.16661/https://www.doczj.com/doc/f04365155.html,ki.1672-3791.2017.30.001 摘要:本文介绍了倾斜摄影测量原理、实景三维建模技术流程及其技术优势,并探讨了 利用倾斜摄影自动三维建模的方法对输电线路走廊资源进行快速调查,尤其是在建筑物拥挤地区、林木密集覆盖区、恶劣地质区和交叉跨越设施复杂地区,可有效提高输电线路的设计质量,优化工程投资造价,具有创新性和先进性。 关键词:倾斜摄影真三维模型输电线路走廊资源快速调查 中图分类号:P231 文献标识码:A 文章编号:1672-3791(2017)10(c)-0001-02 随着城市建设的飞速发展,建设环境日益恶化,地质灾害频繁发生,输电线路走廊规划设计难度日益加大。采用传统的测量方式对输电线路走廊资源进行调查,工作量大、效率低,成本高,难以满足电网建设需求。针对上述问题,本文提出了利用倾斜摄影技术进行实景三维建模的方法对输电线路走廊资源进行快速调查,可有效提高输电线路的设计质量,优化工程建设投资造价,保护生态环境。 1 倾斜摄影工作原理及技术优势 1.1 倾斜摄影测量原理 倾斜摄影技术是国际测绘遥感领域新兴发展起来的一项高新技术,融合了传统的航空摄影和近景测量技术,颠覆了以往正射影像只能从垂直角度拍摄的局限,通过在同一飞行平台上搭载多台传感器,同时从垂直、前视、左视、右视与后视共5个不同的角度采集影像。其中,垂直摄影影像,可经过传统航空摄影测量技术处理,制作4D(DEM、DOM、DLG与DRG)产品;前视、左视、右视与后视4个倾斜摄影影像,倾斜角度在15°~45°之间,可用于获取地物侧面丰富的纹理信息。 通过高效自动化的三维建模技术,快速构建具有准确地物地理位置信息的真三维空间场景,直观地掌握目标区域内地形地貌与所有建筑物的细节特征,可为电力和水利工程建设、地质灾害应急指挥等提供现势、详尽、精确、逼真的空间基础地理信息数据支持和公共服务。 1.2 实景三维建模技术流程 目前,采用倾斜摄影技术进行三维建模的后处理软件以法国ASTRIUM公司的StreetFactory和Acute3D公司的Smart3DCapture软件为典型代表[2]。利用地物的垂直与倾斜影

CAD三维实体地形建模在建设工程中的运用

CAD三维实体地形建模在建设工程中的运用摘要:针对三维建模中的不精确、反坡部分不好建模及施工隧道无法建模的情况,采用CASS软件和ZDM软件在CAD平台上建立原始地貌的三维实体模型,使得建立的模型达到既“可视”又“可算”的目的。将其应用于双沟水电工程的大坝工程量计算中,证明了该法具有准确、快捷和合理等优点。 关键词:ZDM;CASS;三维实体建模 1、引言 在传统的工程量计算中做法是:对于带状的开挖,采用剖面法,对于封闭区域的开挖采用网格法,进行计算。一般采用断面法计算,断面计算法在实际的断面布设过程中可能由于地形的变化布置断面的间距也不同,数量也不同,而且好要考虑设计断面的变化才能合理的布置断面,这一过程工作量较大,容易出现布置断面不合理。在国外软件中,很多均采用构造三维地形面模型,开挖体面模型,求解地形面模与开挖体面模的交集进行开挖计算。在国内水利水电行业采用三维实体计算工程的专门软件很少,但是计算工程量的软件确实很多,各自有着自己的优势,也有各自的不足,如果把各个软件的优势相结合起来,那么对我们计算工程量有着很大帮助。特别是利用原始地貌的三维实体建模的方法来计算工程量不仅准确而且直观。 本文就以CASS和ZDM相结合在CAD平台上吉林省抚松县双沟水电站大坝进行三维实体建模证明了该法具有准确、快捷和合理等优点。 2、三维实体的建模过程 本文介绍三维实体地形制作的步骤:首先利用CASS建立地形图;其次利用ZDM 软件生成三维实体地形,然后在用布儿运算来计算开挖或者填筑等工程量,具体步骤如下:2.1地形图的构建 目前国内比较好的做地形图的软件是南方CASS软件,CASS软件做地形图比较灵活,特别是它利用地形线能很好的调整三角网与实际地形相符。在CASS中展点并处理所展的高程点,然后利用所展的高程点生成三角网,利用CASS的加入地形线的功能处理好三角网后生成地形图。如下图1: 图1

医药工业洁净厂房设计规范

国家医药管理局医药工业洁净厂房设计规范 默认分类 2008-07-13 12:25 阅读1075 评论3 字号: 大中小 主编部门:国家医药管理局上海医药设计院 批准部门:国家医药管理局 施行日期:1997年1月1日 编制说明 为在我国医药行业深入实施GMP,适应医药工业洁净厂房建设的需要,国家医药局推行GMP、GSP委员会设计规范专业组决定组织编写《医药工业洁净厂房设计规范》。 本规范由上海医药设计院主编,缪德华同志执笔,武汉医药设计院、重庆医药设计院等单位参与。在编写过程中广泛眚注医药行业内有关方面意见,并先后数次组织医药设计单位与大中型骨干企业的专家进行了认真的讲座修改,由局推行GMP、GSP委员会寓言并原则通过。之后,局综合经济司(原局计划)就规范主要内容向卫生部药政局、药品监督办公室的领导、专家征询了意见并得到了她们的理解与支持。在此基础上,局GMP设计规范专业组对本规范作了修改定稿。 本规范编制工作结合国内外GMP的进展与医药工业洁净厂房建设、使用的实践经验,提出了我国医药工业洁净厂房设计的基本要求。各单位在新建、改建与扩建的工程设计中遵照执行。并认真总结经验,提出修改意见,以使本规范日臻完善。 国家医药管理局 第一章总则 第1、0、1条为了贯彻执行国家《药品生产质量管理规范》(以下简称GMP),提出符合GMP要求的生产厂房、设施及设备的设计要求,特制订本规范。 第1、0、2条本规范适用于新建、改建与扩建的医药制剂、原料药与药用辅料的精制、干燥、包装工序,直接接触药品的药用包装材料、无菌医疗器械等医药工业洁净厂房的设计。 第1、0、3条医药工业洁净厂房诉设计必须贯彻国家有关方针、政策。做到技术先进、确保质量、安全实用、经济合理,符合节约能源与保护环境的要求。 第1、0、4条医药工业洁净厂房的设计,既要满足当前产品生产的工艺要求,也应适当考虑今后生产发展与工艺改进的需要。 第1、0、5条在利用原有建筑与设施进行洁净技术改造时,可根据生产工艺要求,从实际出

医药行业洁净车间设计规范

医药工业洁净厂房设计规范 GB/T14294-1993 主编部门:国家医药管理局上海医药设计院 批准部门:国家医药管理局 施行日期:1997年1月1日

编制说明 为在我国医药行业深入实施GMP,适应医药工业洁净厂房建设的需要,国家医药局推行GMP.GSP委员会设计规范专业组决定组织编写《医药工业洁净厂房设计规范》。 本规范由上海医药设计院主编,缪德华同志执笔,武汉医药设计院、重庆医药设计院等单位参与。在编写过程中广泛眚注医药行业内有关方面意见,并先后数次组织医药设计单位和大中型骨干企业的专家进行了认真的讲座修改,由局推行GMP.GSP委员会寓言并原则通过。之后,局综合经济司(原局计划)就规范主要内容向卫生部药政局、药品监督办公室的领导、专家征询了意见并得到了他们的理解和支持。在此基础上,局GMP设计规范专业组对本规范作了修改定稿。 本规范编制工作结合国内外GMP的进展和医药工业洁净厂房建设、使用的实践经验,提出了我国医药工业洁净厂房设计的基本要求。各单位在新建、改建和扩建的工程设计中遵照执行。并认真总结经验,提出修改意见,以使本规范日臻完善。 国家医药管理局 第一章总则 第1.0.1条为了贯彻执行国家《药品生产质量管理规范》(以下简称GMP),提出符合GMP要求的生产厂房、设施及设备的设计要求,特制订本规范。 第1.0.2条本规范适用于新建、改建和扩建的医药制剂、原料药和药用辅料的精制、干燥、包装工序,直接接触药品的药用包装材料、无菌医疗器械等医药工业洁净厂房的设计。 第1.0.3条医药工业洁净厂房诉设计必须贯彻国家有关方针、政策。做到技术先进、确保质量、安全实用、经济合理,符合节约能源和保护环境的要求。 第1.0.4条医药工业洁净厂房的设计,既要满足当前产品生产的工艺要求,也应适当考虑今后生产发展和工艺改进的需要。 第1.0.5条在利用原有建筑和设施进行洁净技术改造时,可根据生产工艺要求,从实际出发,充分利用现有的技术设施,符合因地制宜的原则。 第1.0.6条医药工业洁净厂房的设计应为施工安装、维护、管理、检修、测试和安全运行创造必要的条件。 第1.0.7条医药工业洁净厂房的设计除应执行本规范外,还应符合现行的国家标准、规范和规定的有关要求。 第二章生产区域的环境参数 第一节一般规定 第2.1.1条为了保证医药产品生产质量,防止生产环境对产品的污染,生产区域必须满足规定的环境参数标准。 第2.1.2条医药工业洁净室和洁净区应以微粒和微生物为主要控制对象,同时还应对其环境的温度、湿度、新鲜空气量、状差、照度、噪场院等参数作出必要的规定。 第2.1.3条环境空气中不应有不愉快气味以及有碍药品质量和人体健康的气体。

医药厂房建筑要求

药厂的建筑要求 主编部门:国家医药管理局上海医药设计院 批准部门:国家医药管理局 施行日期:1997年1月1日 编制说明 为在我国医药行业深入实施GMP,适应医药工业洁净厂房建设的需要,国家医药局推行GMP.GSP委员会设计规范专业组决定组织编写《医药工业洁净厂房设计规范》。 本规范由上海医药设计院主编,缪德华同志执笔,武汉医药设计院、重庆医药设计院等单位参与。在编写过程中广泛眚注医药行业内有关方面意见,并先后数次组织医药设计单位和大中型骨干企业的专家进行了认真的讲座修改,由局推行GMP.GSP委员会寓言并原则通过。之后,局综合经济司(原局计划)就规范主要内容向卫生部药政局、药品监督办公室的领导、专家征询了意见并得到了他们的理解和支持。在此基础上,局GMP设计规范专业组对本规范作了修改定稿。 本规范编制工作结合国内外GMP的进展和医药工业洁净厂房建设、使用的实践经验,提出了我国医药工业洁净厂房设计的基本要求。各单位在新建、改建和扩建的工程设计中遵照执行。并认真总结经验,提出修改意见,以使本规范日臻完善。 ?国家医药管理局 ?1996北京 目录 第一章总则 第二章生产区域的环境参数 第一节一般规定 第二节环境参数的设计要求 第三章厂址选择和总平面布置 第一节厂址选择 第二节总平面布置 第四章工艺设计 第一节工艺布局 第二节人员净化 第三节物料净化 第五章设备 第六章工艺管道 第一节一般规定 第二节管道材料、阀门和附件 第三节管道的安装、保温 第四节安全 第六章建筑 第一节一般规定 第二节防火和疏散 第三节室内装修 第七章建筑 1. 一般规定 2. 防火和疏散 第三节室内装修 第八章空气净化 第一节一般规定 第二节净化空气调节系统 第三节气流组织 第四节风管和附件 第五节青霉素等药物生产洁净室的特殊要求 第九章给水排水 第一节一般规定 第二节给水 第三节排水 第四节工艺用水 第五节消防设施 第十章电气 第一节配电 第二节照明 第三节其它电气 附录一名词解释 附录二本规范用词说明 第一章总则 第1.0.1条为了贯彻执行国家《药品生产质量管理规范》(以下简称GMP),提出符合GMP要求的生产厂房、设施及设备的设计要

GIS三维场景教程

上机练习6 目标::利用ArcGIS的三维空间分析和ArcScene组件,在ArcGIS中建立场景的三维模型。 目标 数据: 高程点(点状,heightP.shp),用于生成三维地形环境。 建筑(面状,Building.shp),用于建立三维建筑模型。 水域(面状,Water.shp),用于建立三维环境中的场景要素——河湖水面。 道路(线状,Roadline.shp),用于建立三维环境中的场景要素——道路。 树(点状,Trees.shp),用于建立三维环境中的场景要素——树。 路灯(点状,StreetLamp.shp),用于建立三维环境中的场景要素——路灯。 建筑模型(B_EW.3D、B_SN.3DS、B_Pub.3DS),作为典型建筑模型的三维符号。一、创建三维地形环境 1.运行ArcMap,创建空地图,加载3D Analyst工具条。使用标准工具条中的按钮添加存放在文件夹F:\Spatial Analysis\Exercises\ex06中的heightP、Building和Water三个数据层。 2.为地图设置距离单位和显示单位。在“Data Frame Properties”对话框中,把地图的距离单位和显示单位设置为Meters。保存当前的地图文档为ex06_1。 3.点击3D Analyst工具条的下拉箭头,打开Options对话框,在General选项卡中设置默认工作路径为:“F:\Spatial Analysis\Exercises\ex06\”。 4.从高程点建立场地初始的不规则三角网(TIN)。点击3D Analyst工具条最左侧的有下拉箭头的按钮,选择Create/Modify TIN—> Create TIN From Features…,打开Create TIN From Features对话框。勾选“heightP”数据层,设置高程源字段(Height Source)为HGT,保持Triangulate as的缺省选择mass points,最后指定输出TIN文件的路径和文件名,如F:\Spatial Analysis\Exercises\ex06\tin(如图1)。输出的TIN格式的文件自动加载到当前的数据组中。5.把二维的建筑和水域层转换为三维地物层。选择3D Analyst工具条的Convert—>Features to 3D…(二维要素转换为三维)命令。在Convert Features to 3D对话框中,将输入要素选择为“Building”,高程源使用第一种:栅格或TIN表明模型(Raster or TIN surface),并选择上一步生成的tin。指定输出三维要素文件的路径和名称,如F:\Spatial Analysis\Exercises\ex06\ Building_3D。点击OK,执行转换。同样地,将输入要素选择为“Water”,产生三维要素文件Water_3D。输出的两个文件也都自动加载到图层目录中。 6.利用三维地物层“整平”初始的三维场地模型tin。选择3D Analyst工具条的Create/Modify TIN—> Add Features to TIN…。在打开的对话框中,选择tin作为输入TIN。勾选“Building_3D”数据层,保持高程源字段为缺省值,选择Triangulate as的方式为hard replace。再勾选“Water_3D”数据层,Triangulate as也选为hard replace。最后选择Save changes into the input TIN specified above之前的单选钮,这样将保持模型的文件名称不变,但模型中将被更新。(如果需要,替代地,可以选择Save changes into a new output TIN之前的单选钮,指定输出TIN文件的路径和文件名,从而产生一个新的TIN,输入TIN将保持不变。)点击OK,执行命令。参数设置如图2所示。

基于Unity3D的三维海底地形建模

基于Unity3D的 三维海底地形建模 马龚丽1,杨敏2,支雄飞1,3, 周鹏1,马修水1 1浙江大学宁波理工学院3安徽大学 2国家海洋局北海海洋技术保障中心 【摘要】本文运用虚拟现实技术,以Unity3D为建模工具,介绍了三维海底地形地貌建模的建模步骤以及最终的建模效果,实现了三维海底地形地貌建模,为三维可视化海底管道集成系统的建立创造条件。 【关键词】海底地形;输油管;风险评估;三维模型;Un ity3D 0引言 海底管道是海洋油气开发的重要设施,近年来全球海底管道泄漏事件时有发生,造成了巨大的经济损失与生态环保破坏,世界各国对于海底管道的检测和风险评估日益重视。海底管道三维动态信息系统集成,旨在建立适合集成数据支持体系和基于该体系的网络三维可视化集成系统。 郝燕铃和路辉提出了基于OpenGL的具有真实感的三维海底地形显示的方法⑴。申浩、田峰敏和赵玉新提出了一种利用电子海图已有的水深数据生成三维数字高程模型的方法⑵。邱秋香提出了将IFS分形插值曲面算法应用于海底离散的水深高程数据插值过程,在Creator建模工具中使用Delaunay转换算法生成三维海底地形模型[3]。作为一个三维虚拟现实的开发平台,Unity3D具有兼容操作系统可跨平台发布并部署、开发效率高、人机交互功能强大、三维效果逼真、内置网络功能的特点,被广泛地运用于游戏开发和虚拟现实。Unity3D支持所有主要文件格式的资源,并能和大部分相关应用程序协同工作,其内置的地形引擎可以实现广阔复杂的地形场景在低端硬件上流畅运行。 本文以Unity3D为建模工具,结合Photoshop图像处理技术,构建一个基于Unity3D的三维海底地形地貌模型。模型具有真实的三维立体感,以虚拟海底环境为目标,用于作为三维可视化海底管道集成系统建立的基础。 1总体地形建模方案

洁净厂房洁净区设计规范

洁净厂房洁净区设计规 范 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

国家医药管理局医药工业洁净厂房设计规范主编部门:国家医药管理局上海医药设计院 批准部门:国家医药管理局 施行日期:1997年1月1日 编制说明: 为在我国医药行业深入实施GMP,适应医药工业洁净厂房建设的需要,国家医药局推行GMP.GSP委员会设计规范专业组决定组织编写《医药工业洁净厂房设计规范》。 本规范由上海医药设计院主编,缪德华同志执笔,武汉医药设计院、重庆医药设计院等单位参与。在编写过程中广泛眚注医药行业内有关方面意见,并先后数次组织医药设计单位和大中型骨干企业的专家进行了认真的讲座修改,由局推行GMP.GSP委员会寓言并原则通过。之后,局综合经济司(原局计划)就规范主要内容向卫生部药政局、药品监督办公室的领导、专家征询了意见并得到了他们的理解和支持。在此基础上,局GMP设计规范专业组对本规范作了修改定稿。 本规范编制工作结合国内外GMP的进展和医药工业洁净厂房建设、使用的实践经验,提出了我国医药工业洁净厂房设计的基本要求。各单位在新建、改建和扩建的工程设计中遵照执行。并认真总结经验,提出修改意见,以使本规范日臻完善。 国家医药管理局 第一章总则 为了贯彻执行国家《药品生产质量管理规范》(以下简称GMP),提出符合GMP要求的生产厂房、设施及设备的设计要求,特制订本规范。 本规范适用于新建、改建和扩建的医药制剂、原料药和药用辅料的精制、干燥、包装工序,直接接触药品的药用包装材料、无菌医疗器械等医药工业洁净厂房的设计。 医药工业洁净厂房诉设计必须贯彻国家有关方针、政策。做到技术先进、确保质量、安全实用、经济合理,符合节约能源和保护环境的要求。

虚拟场景的三维建模与可视化V1

山西省基础研究计划 项目申报书 项目类别: □自然科学基金□青年科技研究基金项目名称: 三维数字化综采仿真平台 项目申报单位:(盖章) 项目组织单位:(盖章) 申请人: 填报日期: 山西省科学技术厅制

基本信息 项目基本信息项目名称 研究属性 A基础研究 B使用基础研究 指南领域 所属国家或省级重点学科名称 所属国家或省级重点实验室名称 报审学科 学科1 代码1 学科2 代码2 起止年限年月- 年月申请经费 申请者信息姓名性别民族出生年月年月学历学位身份证号码 毕业校名专业 毕业年份学术职务行政职务 通讯地址曾在何国留学或进修 技术职称现主要研究领域 联系电话手机E-mail 申请者所在博士点或硕士点名称 申报单位信息名称单位属性 通讯地址邮编法人代表电话法人代码 联系人电话传真E-mail 开户银行帐号 合作单位1.2.

摘要项目研究内容和意义简介(限400字内) 是针对现代化煤矿开采建立起来的数字化仿真平台,适用于综采的生产作业仿真。为煤矿管理人员提供了可靠的决策支持。实现了矿区布局展示、矿区内部地质构造展示、模拟矿井开采、开采过程实时仿真、机械设备作业实时仿真、安全预警、危险源分析等功能。 在山西整合煤矿大规模开工建设的推动下,煤炭行业固定资产投资增速将从2010年低点20%回升至2011年25%以上,拉动煤机设备行业超预期增长。 机械化率提升空间很大。2015年我国煤炭行业机械化率的目标为75%,相比2010年将提升20%,且不排除机械化率超预期的可能。十二五期间,煤炭机械化开采量CAGR达到12.8%,远超原煤产量CAGR的5.8%,对煤机设备需求形成重要支撑。 而在整个综合采煤过程中每个设备无法实时和准确的表达采煤现实场景,在以往的设计过程中,绝大部分煤机设备都采用二维平面设计,这样容易使产品结构等信息表达有误,不能及时反映采煤面实际采煤状态,同时,由于没有相关联的产品三维装配模型可供分析,给干涉分析及空间设计带来困难。而后续所有的分析,动态仿真等方面都是以三维实体模型为基础,另外还实现了动态交互的设计的设计功能,实现煤机设备的三维可视化和虚拟现实进而提高对采煤设备和实际工况分析,具有很大的实用性于必要性。 关键词(用分号分开,最多4个)山西整合煤矿虚拟现实三维可视化

三维地形模型.

三维地形模型 Autodesk Civil 3D为测绘和土地开发行业提供了强大的三维地形模型。可以使用多种源数据(测量点、等高线、特征线等)生成地形模型,并且从模型完成多种常见的分析任务,包括分析场地的坡度、高程分布、流域划分等等。如果您的原始数据改变,整个模型可以自动更新来反映最新的状况——例如修改了测量点的高程,模型的等高线图形就会自动更新。(1_surface.avi) 道路设计 Autodesk Civil 3D具有强大的三维道路设计功能。使用参数化的布局工具生成平面路线,从地形模型生成地形剖面,并完成纵曲线设计。从丰富的预定义路面部件库中选择合适的部件,组装出标准的路面结构,然后构建整个道路的三维模型。从道路模型可产生各种输出结果,包括截面图形和土方计算报告。 (2_Corridor.avi) 土方工程 在土木工程项目中,经常需要进行土方工程,例如开挖水池、砌筑大坝,或者是场地平整。土方计算是通常是一项困难的任务,而计算的准确性对工程造价有着相当大的影响。Civil 3D 提供了强大的三维参数化放坡功能,能帮助您进行土方工程的设计。您可以从放坡对象中计算土方量,或者根据目标土方量自动调整放坡高程,进行土方平衡。 (3_Grading.avi) 地块规划 在Civil 3D中的地块是智能的拓扑对象,例如当您在地块中间添加一条路线,该地块会自动分成两个新的地块,而移动界线位置会同时修改相邻的两个地块。Civil 3D会自动计算地块的面积与周长等几何属性,您也可以为地块增加自定义属性。可以根据自定义样式生成地块的标签、表格和报表。当地块布局发生改变时,相关的表格和标签都将自动更新。 (4_Parcel.avi)

相关主题
文本预览
相关文档 最新文档