当前位置:文档之家› 第五章 硅酸盐水泥熟料的煅烧

第五章 硅酸盐水泥熟料的煅烧

第五章  硅酸盐水泥熟料的煅烧
第五章  硅酸盐水泥熟料的煅烧

第五章硅酸盐水泥熟料的煅烧

§5-1 生料在煅烧过程中的物理化学变化

§5-2 熟料形成的热化学

§5-3 矿化剂、晶种对熟料煅烧和质量的影响

§5-4 挥发性组分及其他微量元素的作用

§5-5 水泥熟料的煅烧方法及设备

【掌握内容】

1、硅酸盐水泥熟料的形成过程:名称、反应特点、影响反应速度的因素;

2、熟料的形成热、热耗的定义、一般数值、影响因素

3、挥发性组分对新型干法水泥生产的影响

4、悬浮预热器窑及预分解窑的组成、工作过程

5、影响窑产、质量及消耗的因素

【理解内容】

1、C3S的形成机理,形成条件;

2、影响熟料形成热的因素,形成热与实际热耗的区别,降低热耗的措施;

3、回转窑的结构、组成、及工作过程;

4、回转窑内“带”的划分方法,预分解窑内“带”的划分。

【了解内容】

1、水泥熟料的煅烧方法及设备类型;

2、矿化剂、晶种:定义、类型、作用、使用;

3、湿法窑的组成,工作过程

合格生料在水泥窑内经过连续加热,高温煅烧至部分熔融,经过一系列的物理化学反应,得以硅酸钙为主要成分的硅酸盐水泥熟料的工艺过程叫硅酸盐水泥熟料的煅烧,简称煅烧。

结合目前生产现状及学生的就业去向,主要介绍与回转窑尤其是新型干法回转窑有关的知识,立窑有关知识留给学生自学。

第一节生料在煅烧过程中的物理化学变化生料在加热过程中,依次进行如下物理化学变化:

一、干燥与脱水

(一)干燥

入窑物料当温度升高到100~150℃时,生料中的自由水全部被排除,特别是湿法生产,料浆中含水量为32~40%,此过程较为重要。而干法生产中生料的含水率一般不超过1.0%。

(二)脱水

当入窑物料的温度升高到450℃,粘土中的主要组成高岭土(Al2O3·2SiO2·2H2O)发

生脱水反应,脱去其中的化学结合水。此过程是吸热过程。

Al2O3·2SiO2·2H2O Al2O3 + 2SiO2 + 2H2O

(无定形)(无定形)

脱水后变成无定形的三氧化三铝和二氧化硅,这些无定形物具有较高的活性。

二、碳酸盐分解

当物料温度升高到600℃时,石灰石中的碳酸钙和原料中夹杂的碳酸镁进行分解(见下式),在CO2分压为一个大气压下,碳酸镁和碳酸钙的剧烈分解温度分别是750℃和900℃。

MgCO3 MgO+CO2CaCO3CaO+CO2(一)碳酸钙分解反应的特点

碳酸钙的分解过程是一个可逆反应,所以受系统温度、周围介质中CO2的分压影响较大;该过程是一个强吸热过程,每1kg纯碳酸钙在890℃时分解吸收热量为1645kJ/kg,是熟料形成过程中消耗热量最多的一个工艺过程,而碳酸钙在水泥生料中所占比例约为80%左右,因此,它是水泥熟料煅烧过程中重要的一个环节;该过程的烧失量大,在分解过程中放出大量的CO2气体,使CaO疏松多孔,强化固相反应。

(二)碳酸钙的分解过程

碳酸钙颗粒的分解过程有以下五个过程:

1、通过颗粒边界层由周围介质传进行分解所需的热量Q i;

2、热量Q i继续以传导方式,由表面传至反应面,并积聚达到一定的分解温度;

3、反应面在一定温度下,继续分解、吸收热量并放出CO2;

4、放出的CO2从分解面通过CaO层,向四周进行内部扩散;

5、扩散到颗粒边缘的CO2,通过边界层向介质扩散。

以上五个过程四个是物理过程,一个是化学反应过程,每个过程各有阻力,情况较为复杂,各个过程都会影响碳酸钙的分解,哪个过程最慢,哪个过程便是主控过程。

在悬浮态的反应器里,碳酸钙分解所需的时间主要取决于化学反应速率,即主要取决于化学分解分步过程:

1、在碳酸钙粒径较大时,以传热传质过程为主;在碳酸钙的粒径d=0.2cm时,物理、化学过程占同样重要的地位。如立窑、立波尔窑、回转窑内均属于传热、传质控制过程。

2、粒径较小时,如d≤0.003cm,在悬浮状态分解时,决定于化学过程。

值得提出的是:在窑内分解带,颗粒虽细,但处于堆积状态,仍为传热传质控制过程。

(三)影响碳酸钙分解速度的因素

1、石灰质原料的特性:结构致密、结晶粗大的石灰石分解较慢;

2、生料细度及颗粒级配:生料较细,且颗粒均匀、粗粒少,生料比表面积增加,有利于反应进行;

3、生料的悬浮分散程度:分散度愈高,接触面积愈大,愈有利于反应进行;

4、分解温度:温度愈高,分解速度愈快:

5、窑系统的CO2分压:当温度一定时,分压愈低,愈易分解;

6、生料中粘土质组分的性质:活性高,则能直接与碳酸钙发生反应,可以促进碳酸钙的分解过程。

三、固相反应

(一)反应过程

水泥熟料的主要矿物是硅酸三钙(C3S)、硅酸二钙(C2S)、铝酸三钙(C3A)、铁铝酸四钙(C4AF),它们是由固态物质相互反应生成的。从原料分解开始,物料中便出现了性质活泼的游离氧化钙,它与生料中的SiO2、Al2O3、Fe2O3进行固相反应,形成熟料矿物:800~900℃时

CaO+ Al2O3 CaO·Al2O3 (CA)

CaO+ Fe2O3 CaO·Fe2O3 (CF)

900~1100℃时

2 CaO+ SiO2 2 CaO·SiO2 (C2S)

7 CaO·Al2O3+5 CaO 12 CaO·7Al2O3(C12A7)

CaO·Fe2O3+ CaO 2CaO·Fe2O3(C2F)

1100~1300℃时

12 CaO·7Al2O3+9 CaO 7(3CaO·Al2O3)(C3A)

7(2CaO·Fe2O3)+2 CaO+12 CaO·7Al2O3

7(4CaO·Al2O3·Fe2O3)(C4AF)

以上反应在进行时放出一定的热量,故称为“放热反应”阶段。

(二)影响固相反应的主要因素

1、生料细度及其均匀程度;

2、原料物理性质对固相反应的影响;

3、温度对固相反应的影响;

4、其他因素。

四、熟料烧结

(一)熟料烧结过程

水泥熟料中的主要的矿物是硅酸三钙,而它的形成需在液相中进行,当温度达到1300℃时,C3A、C4AF及R2O熔剂矿物变成液相,C2S及CaO很快被高温熔融的液相所溶解并进行化学反应,形成C3S:

2 CaO·SiO2 + CaO

3 CaO·SiO2 (C3S)

该反应称为烧结反应,它是在1300~1450~1300℃范围进行,故称该温度范围为烧成温度范围;在1450℃时反应迅速,故称该温度为烧成温度。为使反应完全,还需有一定的时间,一般为10~20分钟。

由于反应不完全,没有参与反应的CaO就随着温度降低,凝固于凝固体中,这些CaO 称为游离氧化钙(fCaO)(为了便于下面的区别,称其为一次游离氧化钙,其对水泥安定性有重要影响)。

(二)影响熟料烧结过程的因素

1、最低共熔温度;

2、液相量:一般为20~30%;

3、液相粘度:粘度愈小,愈有利于C3S的形成;

4、液相的表面张力:表面张力愈小,愈易润湿固相物质或熟料颗粒,有利于固液反应,促进C3S的形成;

5、CaO和C2S溶于液相的速率:其速率愈大,C3S的成核与发育愈快。

五、熟料冷却

熟料冷却时需急速冷却,其目的和作用是:

1、为了防止C3S在1250℃时分解,出现二次游离氧化钙(对水泥安定性没有大的影响),降低熟料的强度;

2、为了防止C2S在500℃时发生晶型转变,使其密度由3.28g/cm3变为2.97 g/cm3,从面使熟料体积膨胀,变成粉末,产生“粉化”现象;

3、防止C3S晶体长大而强度降低且难以粉磨;

4、减少MgO晶体析出,使其凝结于玻璃体中,避免造成水泥安定性不良;

5、减少C3A晶体析出,不使水泥出现快凝现象,并提高水泥的抗硫酸盐性能;

6、使熟料产生应力,增大熟料的易磨性。

此外,急冷还可以收回热量,提高热的利用率。

第二节熟料形成的热化学

一、熟料的形成热

1、定义:在一定生产条件下,用某一基准温度(一般是0℃或20℃)的干燥物料,在没有任何物料损失和热量损失的条件下,制成1kg同温度的熟料所需要的热量称为熟料的形成热(熟料形成热效应)。

2、影响因素:熟料的形成热是熟料形成在理论上消耗的热,它仅与原、燃料的品种、性质及熟料的化学成分与矿物组成、生产条件有关。

3、计算原理:理论热耗=吸收的总热量—放出的总热量,一般为1630~1800kJ/kg-ck。

二、熟料形成热的计算方法

以普通原料配料、以煤为燃料为例说明:

计算基准:1kg熟料,温度为0℃

已知数据:⑴熟料的化学成分;⑵煤的工业分析及煤灰的化学成分;⑶熟料的单位煤耗。

㈠生成1kg熟料干物料消耗量的计算;

㈡生成1kg熟料吸收热量的计算;

㈢生成1kg熟料放出热量的计算;

㈣熟料的形成热。

三、熟料热耗

(一)、定义:每煅烧1kg熟料窑内实际消耗的热量称为熟料实际热耗,简称熟料热耗,也叫熟料单位热耗。

热耗>熟料形成热,因为有各种热损失,要降低热耗,实际上就是要降低各种热损失。

(二)、影响熟料热耗的因素

1、生产方法与窑型;

2、废气余热和利用;

3、生料组成、细度及生料易烧性;

4、燃料的燃烧情况;

5、窑体的散热损失;

6、矿体剂及微量元素的作用。

第三节矿化剂、晶种对熟料煅烧和质量的影响

一、矿化剂

1、定义:在熟料煅烧过程中,为降低液相出现温度,加速熟料矿物的形成,提高熟料质量,降低能耗,加入的物质,统称为矿化剂。

单独用一种,称矿化剂;

两种或两种以上的矿化剂同时使用时,称为复合矿化剂。

2、可以作矿化剂的物质:

(1)含氟化合物:常用萤石(CaF2)

(2)硫化物:常用石膏(包括天然石膏、工业副产石膏)

(3)氯化物:CaCl2

(4)其他:铜矿渣、磷矿渣等

常用的复合矿化剂:石膏—萤石、重晶石—萤石、磷石膏-萤石等,最常用的是石膏—萤石复合矿化剂。

3、矿化剂的作用:

(1)加速碳酸盐的分解;

(2)促进固相反应

(3)降低液相出现的温度和粘度,促进C3S的形成。

4、使用矿化剂易引起的问题:凝结时间不正常,快凝或慢凝。

二、晶种技术

1、晶种:是晶体结晶过程的晶核,,或称为晶核剂、核化剂。水泥工业中的晶种指通过水泥窑煅烧而成的硅酸盐水泥熟料。

2、晶种技术:在入磨原材料中掺入少量的硅酸盐水泥熟料共同磨制出生料,业已存在的硅酸盐水泥熟料矿物在煅烧过程中作为晶核剂诱导水泥窑中物料迅速烧结,从而达到提高熟料产量,降低煤耗目的的技术。

三、使用矿化剂、晶种时的注意事项:

使用矿化剂、晶种有积极的一面,也有消极的一面,如增加成本,有副作用等,使用时应注意:

1、根据实际情况考虑是否采用;

2、选择合适的品种;

3、掺量要合适,计量要精确;

4、掺入要均匀;

5、相应调整配料方案及操作措施;

6、矿化剂、晶种可以同时使用。

第四节挥发性组分及其他微量元素的作用

挥发性组分及其他微量元素是由原、燃料带入的伴生组分。数量虽然不多,但往往对熟料煅烧和质量有不同程度的影响。有正作用也有副作用,如能合理利用,可以化害为利。

一、挥发性组分的影响

挥发性组分主要指:碱、氯、硫。

主要来源:原料、燃煤

特点:(1)低温下呈固态,高温下挥发成气体;

(2)当其含量大时,可降低最低共熔温度,增加液相量,降低液相粘度,起助熔作用。

挥发性组分对新型干法水泥生产的影响:

1、挥发性组分的挥发凝聚循环

碱、氯、硫化合物在煅烧过程中,随生料进入窑系统,随温度的不断升高,先后分解、气化和挥发,并随窑内气流向低温区窑尾系统。当温度降低到一定限度时挥发组分中的一部分凝聚、聚集、粘附于生料颗粒表面并随生料再返回高温区,然后再挥发、凝聚,如此循环,在循环过程中富集。

2、危害:

(1)结皮、堵塞:

结皮:物料在设备或气体管道内壁上逐步分层粘挂,形成疏松多孔的层状覆盖物;

堵塞:窑后通风系统或料流系统被结皮物料堵塞。(不一定是堵死)

(2)结大块、结圈

3、防止措施:

(1)限制原燃料中碱、氯、硫的含量;

新型干法水泥生产:生料中:K2O+Na2O<1.0%

Cl-<0.015%~0.020%

生料和燃料的硫碱比:

(2)严格控制系统各处的温度

(3)旁路放风

(4)及时清理:如定期用高压风吹扫结皮、空气炮清除等

二、非挥发性组分

主要指:氧化镁、氧化磷、氧化钛、氧化钒;

作用:总体说,这些微量成分,少量存在时,对水泥生产有好处,多了有副作用。

第五节水泥熟料的煅烧方法及设备

一、回转窑内熟料的煅烧

(一)回转窑的煅烧工艺流程

回转窑是一个斜置在数对托轮上的回转钢筒体,筒体内壁镶砌耐火材料,它是一种以化学反应、燃料煅烧及传热为主要功能的水泥烹生产设备。回转窑分干法、湿法回转窑两类,这两类的共同特点是:生料的整个煅烧过程都在回转窑窑筒内和冷却机内完成。通常,回转窑与冷却机、煤粉燃烧装置、鼓风机、排风机及收尘设备等组成完整的熟料烧成系统。

(二)回转窑内熟料的煅烧过程

生料进入回转窑后,在窑内气体温度控制下,依次发生干燥、粘土矿物脱水分解、碳酸盐分解、固相反应、熟料烧结以及冷却过程,最终由生料变成熟料。根据其形成过程,回转窑相应划分为六个带:即干燥带、预热带、分解带、放热反应带、烧成带、冷却带。这些带的划分是人为的,各带的位置及长度不是不变的,而且分界不是明确的,有的相互交错。

干燥带:物料入窑后首先进行水分蒸发,这一过程所占的空间称为“干燥带”,其任务就是蒸发自由水。该带物料温度为20~200℃。

预热带:物料升温至450℃时,粘土开始脱水,该过程所占据的空间为“预热带”,该带的主要任务是粘土脱水,即脱去化学结合水而成为无定形氧化物。该带物料的温度为200~750℃。

分解带:物料在该带进行剧烈的分解反应,生成大量的CO2气体,由于大量气体存在,物料流动的速度较快,使该带较长,约占全窑的50%左右,碳酸盐分解需要大量的热,约占熟料热耗的40%左右。该带物料的温度为750~1000℃。

放热反应带:物料在该带进行固相反应,形成熟料中的三种矿物,包括熔剂矿物,该带进行的是放热反应,其温度与分解带的温差较大,在该带的物料发光性强,从窑头看过去,在相界处出现“黑影”,看火工由此判断窑内的煅烧情况。该带物料的温度为1000~1300℃。

烧成带:该带也称为“烧结带”或“石灰吸收带”,物料在此带内进行烧结反应,形成主要矿物硅酸三钙,物料在该带的温度为1300~1450~1300℃,是全窑内温度最高的地方。

冷却带:物料在该带内开始进行冷却,而且需要急冷,防止硅酸三钙的分解,该带物料的温度为1300~1000℃,为了加强熟料的冷却,需要使熟料尽快地进入冷却机。

二、带悬浮预热器回转窑内熟料的煅烧

带悬浮预热器回转窑是由一组悬浮预热器和一台回转窑组合而成,根据悬浮预热器的形式不同,可分为旋风预热器窑、立筒预热器窑和组合预热器窑。现以旋风预热器窑为例说明如下。

(一)旋风预热器窑生产工艺流程

(二)熟料煅烧特点

其特点:

1、使物料与气体间的传热面积大大增加(1kg生料在窑内的传热面积是0.157㎝2,在悬浮预热器里是1250㎝2,后者是前者的8000倍);

2、传热效率提高,传热速率增大(以生料的升温速率比较,在窑内仅为5.8℃/min,立波尔窑的加热机,其速率也只有50℃/min,而悬浮预热器内的速率可达1000℃/min);

3、总体上看物料与气流是逆向运动,而在管道和旋风筒内则是顺流运动。传热主要是在管道中进行(约占80%),旋风筒主要起气固相分离作用,传热较少(约占20%)。这是因为在筒内中部物料稀少,而边部料粉浓度大,传热面积减少;而在管道内,相对速度很大,传热速度较高;

4、入窑物料碳酸钙分解率达30~40%,从而减轻了回转窑的负荷,使窑的长度缩短。

5、窑内没有干燥带、预热带,只有其余四个带

三、预分解窑内熟料的煅烧

预分解窑是20世纪70年代发展起来的一种煅烧工艺设备。它是在悬浮预热器和回转窑之间,增设一个分解炉或利用窑尾烟室管道,在其中加入30~60%的燃料,使燃料的燃烧放热过程与生料的吸热分解过程同时在悬浮态或流化态下极其迅速地进行,使生料在入回转窑接受基本上完成碳酸盐的分解反应,因而窑系统的煅烧效率在幅度提高。这种将碳酸盐分解过程从窑内移到窑外的煅烧技术称窑外分解技术,这种窑外分解系统简称预分解窑。

(一)预分解窑的工艺流程

(二)预分解窑煅烧熟料的特点

1、在一般分解炉中,当分解温度为820~900℃时,入窑物料的分解率可达85~95%,需要分解时间平均仅为4~10s,而在窑内分解时约需30多分钟,效率之高可想而知。

2、由于碳酸钙的分解从窑内移到窑外进行,所以窑的长度可以大大缩短,降低占地面积。

3、由于在分解炉内物料呈悬浮状态,传热面积增大,传热速率提高,从而使熟料单位热耗大大降低。

4、由于减轻了回转窑的热负荷,延长耐火材料的使用寿命,提高窑的运转率,同时提高了窑的容积产量。

但由于对物料的适应性较差,容易引起结皮和睹塞,同时系统的动力消耗较大。

5、窑内分三个带:过渡带(主要是少量分解反应、固相反应)、烧成带、冷却带。

硅酸盐水泥、普通硅酸盐水泥(GB175-92)

硅酸盐水泥、普通硅酸盐水泥(GB175-92) 来源:发布日期:2006-01-10 标准名称:硅酸盐水泥、普通硅酸盐水泥 标准类型:中华人民共和国国家标准 标准号:GB175-92 标准发布单位:国家技术监督局发布 标准正文: 1 主题内容与适用范围 本标准规定了硅酸盐水泥和普通硅酸盐水泥的定义、组分材料、技术要求、试验方法、检验规则等。 本标准适用于硅酸盐水泥和普通硅酸盐水泥的的生产和检验。 2 引用标准 GB 176 水泥化学分析方法 GB 177 水泥胶砂强度检验方法 GB 203 用于水泥中的粒化高炉矿渣 GB 750 水泥压蒸安定性试验方法 GB 1345 水泥细度检验方法(80μm筛筛析法) GB 1346 水泥标准稠度用水量、凝结时间、安定性检验方法 GB 1596 用于水泥和混凝土中的粉煤灰 GB 2847 用于水泥中的火山灰质混合材料 GB 5483 用于水泥中的石膏和硬石膏 GB 8074 水泥比表面积测定方法(勃氏法) GB 9774 水泥包装用袋 GB 12573 水泥取样方法 ZB Q12 001 掺入水泥中的回转窑窑灰 3 定义与代号

3.1 硅酸盐水泥 凡由硅酸盐水泥熟料、0 ̄5%石灰石或粒化高炉矿渣、适量石膏磨细制成的水硬性胶凝材料,称为硅酸盐水泥(即国外通称的波特兰水泥)。硅酸盐水泥分两种类型,不掺加混合材料的称Ⅰ型硅酸盐水泥,代号P·Ⅰ。在硅酸盐水泥熟料粉磨时掺加不超过水泥重量5%石灰石或粒化高炉矿渣混合材料的称Ⅱ型硅酸盐水泥,代号P·Ⅱ。 3.2 普通硅酸盐水泥 凡由硅酸盐水泥熟料、6%--15%混合材料、适量石膏磨细制成的水硬性胶凝材料,称为普通硅酸盐水泥(简称普通水泥),代号P·0。 掺活性混合材料时,最大掺量不得超过15%,其中允许用不超过水泥重量5%的窑灰或不超过水泥重量10%的非活性混合材料来代替。 掺非活性混合材料时最大掺量不得超过水泥重量10%。 4 材料要求 4.1 石膏 天然石膏:应符合GB5483的规定。 工业副产石膏:工业生产中以硫酸钙为主要成分的副产品。采用工业副产石膏时,应经过试验,证明对水泥性能无害。 4.2 活性混合材料 符合GB1596的粉煤灰,符合GB2847的火山灰质混合材料和符合GB203的粒化高炉矿渣。 4.3 非活性混合材料 活性指标低于GB1596、GB2847和GB203标准要求的粉煤灰,火山灰质混合材料和粒化高炉矿渣以及石灰石和砂岩。石灰石中的三氧化二铝含量不得超过2.5%。 4.4 窑灰 应符合ZBQ12001的规定。

水泥生产中硅酸盐水泥熟料成份说明

水泥生产中硅酸盐水泥熟料成份说明 硅酸盐水泥熟料是以适当成分的生料烧到部分熔融,所得以硅酸钙为主要成分的烧结块。碳酸盐水泥生产主要使用水泥成套设备完成最重要的设备是回转窑设备。因此,在硅酸盐水泥熟料中CaO,SiO2,A1203,Fe2O3 不是以单独的氧化物存在,而是以两种或两种以上的氧化物经高温化学反应而生成的多种矿物的集合体。其结晶细小,一般为30^-60Icm 。因此可见,水泥熟料是一种多矿物组成的结晶细小的人工岩石。它主要有以下四种矿物:硅酸三钙一~3Ca0 .'3i02 ,可简写为C3S ; 硅酸二钙2Ca0 ?Si02 ,可简写为C2S ; 铝酸三钙3Ca0 ?A1203 ,可简写为C 3 A ; 铁相固溶体通常以铁铝酸四钙4Ca0 . A1203 . Fe203 作为代表式,可简写成 C 4 AF, 此外,还有少量游离氧化钙(.f-Ca0 ) 、方镁石(结晶氧化镁)、含碱矿物及玻璃体。通常熟料中C3S 和C2S 含量约占75 %左右,称为硅酸盐矿物。C3-ft 和C,AF 的理论含量约占22 %左右。在水泥熟料锻烧过程中,C 3 A 和C,AF 以及氧化镁、碱等在1250 ^ - 12800C 会逐渐熔融形成液相,促进硅酸三钙的形成,故称熔剂矿物。 一、硅酸三钙 C3S 是硅酸盐水泥熟料的主要矿物。其含量通常为50 %左右,有时甚至高达60 %以上。纯C3S 只有在2065^ 12500C 温度范围内才稳定。在2065℃以上不一致熔融为Ca0 和液相;在1250℃以下分解为CZS 和Ca0 ,但反应很慢,故纯C,S 在室温可呈介稳状态存在。C,S 有三种晶系七种变型: 1070 0 C 1060 0 C 990 0 C 960 0 C 920 0 C 520 0 C R ←――→M Ⅲ←――→M Ⅱ←――→M Ⅰ←――→~T Ⅲ←――→T Ⅱ←――→T Ⅰ R 型为三方晶系,M 型为单斜晶系,T 型为三斜晶系,这些变型的晶体结构相近。但有人认为,R 型和M ,型的强度比T 型的高。 在硅酸盐水泥熟料中, C3S 并不以纯的形式存在,总含有少量氧化镁、氧化铝、氧化铁等形成固溶液,称为阿利特(Alite )或A 矿。 纯C3S 在常温下,通常只能为三斜晶系(T 型),如含有少量Mg0, A1203 , Fe2O3 ,

硅酸盐水泥熟料的煅烧:什么是硅酸盐水泥

硅酸盐水泥熟料的煅烧 §5-1 生料在煅烧过程中的物理化学变化 §5-2 熟料形成的热化学 §5-3 矿化剂、晶种对熟料煅烧和质量的影响 §5-4 挥发性组分及其他微量元素的作用 §5-5 水泥熟料的煅烧方法及设备 【掌握内容】 1、硅酸盐水泥熟料的形成过程名称、反应特点、影响反应速度的因素; 2、熟料的形成热、热耗的定义、一般数值、影响因素 3、挥发性组分对新型干法水泥生产的影响 4、悬浮预热器窑及预分解窑的组成、工作过程

5、影响窑产、质量及消耗的因素 【理解内容】 1、C3S的形成机理,形成条件; 2、影响熟料形成热的因素,形成热与实际热耗的区别,降低热耗的措施; 3、回转窑的结构、组成、及工作过程; 4、回转窑内“带”的划分方法,预分解窑内“带”的划分。 【了解内容】 1、水泥熟料的煅烧方法及设备类型; 2、矿化剂、晶种定义、类型、作用、使用; 3、湿法窑的组成,工作过程 合格生料在水泥窑内经过连续加热,高温煅烧至部分熔融,经过一系列的物理化学反应,得以硅酸钙为主要成分的硅酸盐水泥熟料的工艺过程叫硅酸盐水泥

熟料的煅烧,简称煅烧。结合目前生产现状及学生的就业去向,主要介绍与回转窑尤其是新型干法回转窑有关的知识,立窑有关知识留给学生自学。 第一节生料在煅烧过程中的物理化学变化 生料在加热过程中,依次进行如下物理化学变化 一、干燥与脱水 (一)干燥 入窑物料当温度升高到100~150℃时,生料中的自由水全部被排除,特别是湿法生产,料浆中含水量为32~40%,此过程较为重要。而干法生产中生料的含水率一般不超过0%。 (二)脱水 当入窑物料的温度升高到450℃,粘土中的主要组成高岭土 (Al2O3·2SiO2·2H2O)发 生脱水反应,脱去其中的化学结合水。此过程是吸热过程。 Al2O3·2SiO2·2H2 Al2O3 + 2SiO2 + 2H2 (无定形)(无定形)

通用硅酸盐水泥的标准

前言 本标准第、、条为强制性条款,其余为推荐性条款。 本标准参照欧洲水泥试行标准ENV 197-1:2000《通用波特兰水泥》修订。 本标准代替GB175-1999《硅酸盐水泥、普通硅酸盐水泥》、GB1344-1999《矿渣硅酸盐水泥、火山灰质硅酸盐水泥、粉煤灰硅酸盐水泥》、GB12958-1999《复合硅酸盐水泥》三个标准。与GB175-1999、GB1344-1999、GB12958-1999相比,主要变化如下: ——全文强制改为条文强制(本版前言); ——增加通用硅酸盐水泥的定义(本版第条); ——将各品种水泥的定义取消(原版GB175-1999、GB1344-1999、GB12958-1999第3章);——将组成与材料合并为一章,材料中增加了硅酸盐水泥熟料(原版GB175-1999、GB1344-1999、GB12958-1999第4章,本版第4章); ——普通硅酸盐水泥中“掺活性混合材料时,最大掺量不超过15%,其中允许用不超过水泥质量5%的窑灰或不超过水泥质量10%的非活性混合材料来代替”改为“活性混合材料掺加量为>5%,≤20%,其中允许用不超过水泥质量5%符合本标准第条的窑灰或不超过水泥质量8%符合本标准第条的非活性混合材料代替”。(原版GB175-1999中第条,本版第条); ——将矿渣硅酸盐水泥中矿渣掺加量由“20%~70%”改为“>20%,≤70%”(原版GB1344-1999中第条,本版第条、条); ——将火山灰质硅酸盐水泥中火山灰质混合材料掺量由“20%~50%”改为“>20%,≤40%”(原版GB1344-1999中第条,本版第条); ——将粉煤灰硅酸盐水泥中粉煤灰掺量由“20%~40%”改为“>20%,≤40%”(原版GB1344-1999中第条,本版第条); ——将复合硅酸盐水泥中混合材料总掺加量由“应大于15%,但不超过50%”改为“>20%,≤50%”(原版GB12958-1999中第3章,本版第条); ——材料中增加了粒化高炉矿渣粉(本版第、条); ——取消了粒化精铬铁渣、粒化增钙液态渣、粒化碳素铬铁渣、粒化高炉钛矿渣等混合材料以及符合附录A新开辟的混合材料,并将附录A取消(原版GB12958-1999中第条、第条和附录A) ——增加了M类混合石膏(原版GB175-1999、GB1344-1999和GB12958-1999中第3章,本版第条); ——助磨剂允许掺量由“不超过水泥质量的1%”改为“不超过水泥质量的%”(原版GB175-1999、GB1344-1999和GB12958-1999中第条,本版第条); ——普通水泥强度等级中取消和(原版GB175-1999中第5章,本版第5章); ——增加了氯离子含量的要求,即水泥中氯离子含量不大于%(本版第条); ——取消了细度指标要求,但要求在试验报告中给出结果(原版GB175-1999第条、GB1344-1999、GB12958-1999中第条,本版条); ——将复合硅酸盐水泥的强度等级改为和矿渣硅酸盐水泥、火山灰硅酸盐水泥、粉煤灰硅酸盐水泥一致(原版GB12958-1999中第条,本版第条) ——增加了水泥组分的试验方法(本版第条); ——强度试验方法中增加了“掺火山灰混合材料的普通硅酸盐水泥、粉煤灰硅酸盐水泥和复合硅酸盐水泥在进行胶砂强度检验时,其用水量按水灰比和胶砂流动度不小于180mm来确定。当流动度小于180mm时,须以的整倍数递增的方法将水灰比调整至胶砂流动度不小于180mm”(原版GB1344-1999第条,本版第条); ——将“水泥出厂编号按水泥厂年生产能力规定”改为“水泥出厂编号按单线年生产能力规定”(原版GB175-1999、GB1344-1999、GB12958-1999中第条,本版第条);

白色硅酸盐水泥标准

白色硅酸盐水泥标准 1 主题内容与适用范围 本标准规定了白色硅酸盐水泥的组成、技术要求、试验方法、检验规则、包装与标志、贮存与运输等。 本标准适用于白色和彩色灰浆、砂浆及混凝土用白色硅酸盐水泥。 2 引用标准 GB 176 水泥化学分析方法 GB 177 水泥胶砂强度检验方法 GB 1345 水泥细度检验方法(80μm筛筛析法) GB 1346 水泥标准稠度用水量、凝结时间、安定性检验方法 GB 5483 用于水泥中的石膏和硬石膏 GB 5950 建筑材料与非金属矿产品白度试验方法通则 GB 9774 水泥包装用袋 GSBA 67001 氯化镁粉末状物质白度实物标准 ZB Q12 001 掺入水泥中的回转窑窑灰 3 定义 由白色硅酸盐水泥熟料加入适量石膏,磨细制成的水硬性胶凝材料称为白色硅酸盐水泥(简称白水泥)。 磨制水泥时,允许加入不超过水泥重量5%的石灰石或窑灰作为外加物。 水泥粉磨时允许加入不损害水泥性能的助磨剂,加入量不得超过水泥重量的1%。 4 组分材料 4.1 白色硅酸盐水泥熟料 以适当成分的生料烧至部分熔融,所得以硅酸钙为主要成分,氧化铁含量少的熟料。 4.2 石膏 天然二水石膏应符合GB5483的规定。 4.3 石灰石 作为外加物的石灰石中的三氧化二铝含量不得超过2.5%。 4.4 窑灰 窑灰应符合ZBQ12001的规定,且白度不得低于70%。 5 技术要求 5.1 氧化镁熟料中氧化镁的含量不得超过4.5%。 5.2 三氧化硫水泥中三氧化硫的含量不得超过3.5%。 5.3 细度0.080mm方孔筛筛余不得超过10%。 5.4 凝结时间初凝不得早于45min,终凝不得迟于12h。 5.5 安定性用沸煮法检验必须合格。 5.6 强度各标号各龄期强度不得低于表1的数值。

通用硅酸盐水泥规范标准

前言 本标准第7.1、7.3.1、7.3.2、7.3.3、8.4为强制性条款,其余为推荐性条款。 本标准与欧洲水泥标准ENV197-1:2000《通用波特兰水泥》的一致性程度为非等效。 本标准自实施之日起代替GB175-1999《硅酸盐水泥、普通硅酸盐水泥》、 GB1344-1999《矿渣硅酸盐水泥、火山灰质硅酸盐水泥、粉煤灰硅酸盐水泥》、 GB12958-1999《复合硅酸盐水泥》三个标准。 与GB175-1999、GB1344-1999、GB12958-1999相比,本标准主要变化如下:全文强制改为条文强制;增加了通用硅酸盐水泥的定义;将各品种水泥的定义取消(原版GB175-1999、GB1344-1999、GB12958-1999第3章;将组分与材料合并为一章(原版GB175-1999、GB1344-1999、GB12958-1999第4章,本版第5章);普通硅酸盐水泥中“掺活性混合材料时,最大掺量不超过15%,其中允许用不超过水泥质量5%的窑灰或不超过水泥质量10%的非活性混合材料来代替”改为“活性混合材料掺加量为>5%且≤20%,其中允许用不超过水泥质量8%且符合本标准第5.2.4条的非活性混合材料或不超过水泥质量5%且符合本标准第5.2.5条的窑灰代替”(原版GB175-1999中第3.2条,本版第5.1条); ——将矿渣硅酸盐水泥中矿渣掺加量由“20%~70%”改为“>20%且≤70%”,并分为A型和B型。A型矿渣掺量>20%且≤50%,代号P.S.A;B型矿渣掺量>50%且≤70%,代号P.S.B(原版GB1344-1999中第3.1条,本版第5.1条); ——将火山灰质硅酸盐水泥中火山灰质混合材料掺量由“20%~50%”改为“>20%且≤40%”(原版GB1344-1999中第3.2条,本版第5.1条);

GB175~2007通用硅酸盐水泥标准

GB 175-2007 通用硅酸盐水泥 前言 本标准与欧洲水泥标准ENV197-1:2000《通用波特兰水泥》的一致性程度为非等效。本标准自实施之日起代替GB175-1999《硅酸盐水泥、普通硅酸盐水泥》、GB1344-1999《矿渣硅酸盐水泥、火山灰质硅酸盐水泥、粉煤灰硅酸盐水泥》、GB12958-1999《复合硅酸盐水泥》三个标准。 ——将火山灰质硅酸盐水泥中火山灰质混合材料掺量由“20%~50%”改为“>20%且≤40%”(原版GB1344-1999中第3.2条,本版第5.1条); ——将复合硅酸盐水泥中混合材料总掺加量由“应大于15%,但不超过50%”改为“>20%且≤50%”(原版GB12958-1999中第3章,本版第5.1条); ——取消了复合硅酸盐水泥中允许掺加粒化精炼铬铁渣、粒化增钙液态渣、粒化碳素铬铁渣、粒化高炉钛矿渣等混合材料以及符合附录A新开辟的混合材料,并将附录A取消(原版GB12958-1999中第4.2、4.3条和附录A); ——普通水泥强度等级中取消了32.5和32.5R(原版GB175-1999中第5章,本版第6章); ——增加了氯离子限量的要求,即水泥中氯离子含量不大于0.06%(本版第7.1条); ——增加了选择水泥组分试验方法的原则和定期校核要求(本版第8.1条); ——将“按0.50水灰比和胶砂流动度不小于180mm来确定用水量”的规定的适用水泥品种扩大为火山灰质硅酸盐水泥、粉煤灰硅酸盐水泥、复合硅酸盐水泥和掺火山灰质混合材料的普通硅酸盐水泥(原版GB1344-1999第7.5条,本版第8.5条);

——编号与取样中增加了年生产能力“200×104t以上”的级别,即:200×104t以上,不超过4000t为一个编号;将“120万吨以上,不超过1200吨为一个编号”改为“120×104t~200×104t,不超过2400t为一个编号”(原版GB175-1999、GB1344-1999、GB12958-1999中第8.1条,本版第9.1条); ——将“出厂水泥应保证出厂强度等级,其余技术要求应符合本标准有关要求”改为“经确认水泥各项技术指标及包装质量符合要求时方可出厂”(原版GB175-1999、GB1344-1999、GB12958-1999中第8.2条,本版第9.2条); ——增加了出厂检验项目(本版第9.3条); ——取消了废品判定(原版GB175-1999、GB1344-1999、GB12958-1999中第9.3条); ——检验报告中增加了“合同约定的其他技术要求”(原版GB175-1999、GB1344-1999、GB12958-1999中第8.4条,本版第9.5条); ——包装标志中将“且应不少于标志质量的98%”改为“且应不少于标志质量的99%”(原版GB175-1999、GB1344-1999、GB12958-1999中第9.1条,本版第10.1条); ——包装标志中将“火山灰质硅酸盐水泥、粉煤灰硅酸盐水泥和复合硅酸盐水泥包装袋的两侧印刷采用黑色”改为“火山灰质硅酸盐水泥、粉煤灰硅酸盐水泥和复合硅酸盐水泥包装袋的两侧印刷采用黑色或蓝色”(原版GB1344-1999、GB12958-1999中第9.2条,本版第10.2条)。 本标准由中国建筑材料工业协会提出。 本标准由全国水泥标准化技术委员会(SAC/TC184)归口。

GB-175-92硅酸盐水泥

GB-175-92硅酸盐水泥

标准名称硅酸盐水泥、普通硅酸盐水泥 标准类型中华人民共和国国家标准 标准名称(英)Portland cement and ordinary portland cement 标准号GB175-92 代替标准号代替GB175-85 GBn227-84 标准发布单位国家技术监督局发布 标准发布日期1992-09-28批准 标准实施日期1993-06-01实施 标准正文 1 主题内容与适用范围 本标准规定了硅酸盐水泥和普通硅酸盐水泥的定义、组分材料、技术要求、试验方法、 检验规则等。 本标准适用于硅酸盐水泥和普通硅酸盐水泥的的生产和检验。 2 引用标准 GB 176 水泥化学分析方法 GB 177 水泥胶砂强度检验方法 GB 203 用水泥中的粒化高炉矿渣 GB 750 水泥压蒸安定性试验方法 GB 1345 水泥细度检验方法(80μm筛筛析法) GB 1346 水泥标准稠度用水量、凝结时间、安定性检验方法 GB 1596 用于水泥和混凝土中的粉煤灰 GB 2847 用于水泥中的火山灰质混合材料 GB 5483 用于水泥中的石膏和硬石膏 GB 8074 水泥比表面积测定方法(勃氏法) GB 9774 水泥包装用袋 GB 12573 水泥取样方法

ZB Q12 001 掺入水泥中的回转窑窑灰 3 定义与代号 3.1 硅酸盐水泥 凡由硅酸盐水泥熟料、0 ̄5%石灰石或粒化高炉矿渣、适量石膏磨细制成的水硬性胶凝 材料,称为硅酸盐水泥(即国外通称的波特兰水泥)。硅酸盐水泥分两种类型,不掺加 混合材料的称Ⅰ型硅酸盐水泥,代号P·Ⅰ。在硅酸盐水泥熟料粉磨时掺加不超过水泥重 量5%石灰石或粒化高炉矿渣混合材料的称Ⅱ型硅酸盐水泥,代号P·Ⅱ。 3.2 普通硅酸盐水泥 凡由硅酸盐水泥熟料、6% ̄15%混合材料、适量石膏磨细制成的水硬性胶凝材料,称 为普通硅酸盐水泥(简称普通水泥),代号P·0。 掺活性混合材料时,最大掺量不得超过15%,其中允许用不超过水泥重量5%的窑灰或 不超过水泥重量10%的非活性混合材料来代替。 掺非活性混合材料时最大掺量不得超过水泥重量10%。 4 材料要求 4.1 石膏 天然石膏:应符合GB5483的规定。 工业副产石膏:工业生产中以硫酸钙为主要成分的副产品。采用工业副产石膏时,应经过 试验,证明对水泥性能无害。 4.2 活性混合材料

硅酸盐水泥___论文

河南大学土木建筑学院课题:硅酸盐水泥

硅酸盐水泥 胶凝材料是指在物理、化学作用下,从具有可塑性的浆体逐渐变成坚固石状体的过程,能将其他物料胶结为整体并具有一定机械强度的物质。因其具有原料丰富、生产成本低、耐久性好、适应性强、耐火性好等众多优点而广泛应用于工业、民用建筑、水利工程等建设之中,成为在国民经济及人民生活中不可缺少的重要材料。 胶凝材料一般可分为有机和无机两类。有机胶凝材料是指各种树脂和沥青等;无机胶凝材料又可分为水硬性和非水硬性。水硬性胶凝材料在拌水后技能在空气中硬化一,又能在水中硬化并具有强度,通常称为水泥,如硅酸盐水泥、铝酸盐水泥、硫酸盐水泥等;非水硬性胶凝材料是指不能在水中硬化,但能在空气中或其他条件下硬化,如石灰、石膏、镁质胶凝材料等等。 在众多的胶凝材料中,水泥占有尤为突出的,它是基本建设的主要原料之一,广泛应用于工业、农业、国防、交通、城市建设、水利及海洋开发等工程建设。水泥工业的发展对保证国家建设和提高生活水平具有十分重要的意义。水泥按其主要矿物组成可分为硅酸盐水泥、铝酸盐水泥、铁铝酸盐水泥、氟铝酸盐水泥、少熟料或无熟料水泥。水泥的主要技术特征是:水硬性(分为快硬和特快硬两类);水化热(分为中热和低热两类);抗硫酸盐性(分中抗硫酸盐腐蚀和高抗硫酸盐腐蚀);膨胀性(分为膨胀和自应力);耐高温性(铝酸盐水泥的耐高温性以水泥中氧化铝含量分级)。 在水泥诸多品种中,硅酸盐水泥是应用最广泛和研究最多的。在此从硅酸盐水泥的分类、生产、技术要求、性能及应用等方面对硅酸盐水泥进行简单的研究分析。 所谓硅酸盐水泥是指从黏土和石灰石为原料,经高温煅烧得到以硅酸盐钙为主要成分的熟料,加入0—5%的混合材料和适量石膏磨细制成的水硬性胶凝材料,国际上统称为波特兰水泥。 硅酸盐水泥的分类 硅酸盐水泥包括纯熟料硅酸盐水泥和掺混合材料硅酸盐水泥两类,我国按其混合材料的掺加情况,共分为如下五类:纯熟料硅酸盐水泥、普通硅酸盐水泥、矿渣硅酸盐水泥、火山灰质硅酸盐水泥粉煤灰硅酸盐水泥。 纯熟料硅酸盐水泥在硅酸盐水泥熟料中加入适量石膏,磨细而成的水泥,分425、525、625、725四个标号。其早期强度比其他几种硅酸盐水泥高5~10%,抗冻性和耐磨性较好,适用于配制高标号混凝土,用于较为重要的土木建筑工程。 普通硅酸盐水泥简称普通水泥。由硅酸盐水泥熟料掺加少量混合材料和适量石膏磨细而成。混合材料的加入量根据其具有的活性大小而定。普通水泥分为275、325、425、525、625和725六个标号,广泛用于制做各种砂浆和混凝土。 矿渣硅酸盐水泥简称矿渣水泥。由硅酸盐水泥熟料和粒化高炉矿渣,加

结构混凝土用硅酸盐水泥规范

结构混凝土用硅酸盐水泥 1范围 本标准规定了结构混凝土用硅酸盐水泥的术语和定义、代号、一般要求、技术要求、试验方法、检验规则、包装、标识、运输与贮存。 本标准适用于常见环境作用下工业与民用建构筑物、桥梁、隧道、水利水电工程、核电工程等普通混凝土结构及其构件用的硅酸盐水泥,不适用于轻骨料混凝土、防辐射混凝土及其他特种混凝土结构。2规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件,凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB 175 通用硅酸盐水泥 GB/T 176 水泥化学分析方法 GB/T 208 水泥密度测定方法 GB/T 1346 水泥标准稠度用水量、凝结时间、安定性检验方法 GB/T 2419 水泥胶砂流动度试验标准 GB 6566 建筑材料放射性核素限量 GB/T 8074 水泥比表面积测定方法勃氏法 GB/T 8077 混凝土外加剂匀质性试验方法 GB/T 12573 水泥取样方法 GB/T 12959 水泥水化热测定方法 GB/T 12960 水泥组分的定量测定 GB/T 17671 水泥胶砂强度检验方法(ISO法) GB/T 21372 硅酸盐水泥熟料 GB 31893 水泥中水溶性铬(Ⅵ)的限量及测定方法 GB 50204 混凝土结构工程施工质量验收规范 GB/T 50476 混凝土结构耐久性设计标准 JC/T 603 水泥胶砂干缩试验方法 JC/T 681 行星式水泥胶砂搅拌机 JC/T 727 水泥净浆标准稠度与凝结时间测定仪 JC/T 959 水泥胶砂试体养护箱 3术语和定义 下列术语和定义适用于本文件。 3.1

海螺牌硅酸盐水泥熟料

海螺牌硅酸盐水泥熟料 Q/HL-j04.04-2011 代替Q/NG-j04.04-2000 1范围 本标准规定了硅酸盐水泥熟料的定义和分类、技术要求、试验方法和验收规则等。 本标准适用于贸易的硅酸盐水泥熟料。 2 引用标准 下列文件中的条款通过本标准的引用而称为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可以使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB 175 通用硅酸盐水泥 GB/T 21372 硅酸盐水泥熟料 GB/T 176 水泥化学分析方法 GB/T 750 水泥压蒸安定性检测方法 GB/T 1345 水泥细度检验方法(筛析法) GB/T 1346 水泥标准稠度用水量、凝结时间、安定性检验方法(GB/T 1346-2001,eqv ISO 9597:1989) GB/T 8074 水泥比表面积测定方法(勃氏法) GB/T 17671 水泥胶砂强度检验方法(ISO法)(GB/T 17671-1999,idt ISO 679:1989)3 术语和定义、分类 3.1 术语和定义 硅酸盐水泥熟料(简称水泥熟料)portland cement clinker 是一种由主要含CaO、SiO2、Al2O3、Fe2O3的原料按适当配比,磨成细粉,烧至部分熔融,所得以硅酸钙为主要矿物成分的产物。 3.2 分类 水泥熟料按用途和特性分为:通用水泥熟料、低碱水泥熟料、中抗硫酸盐水泥熟料、高抗硫酸盐水泥熟料、中热水泥熟料和低热水泥熟料。 4 要求

4.1 化学性能 本标准规定的各类水泥熟料应符合表1的基本化学性能。 低碱、中抗硫酸盐、高抗硫酸盐、中热和低热水泥熟料还应符合表2中相应的特性化学性能。 4.2 物理性能 水泥熟料的物理性能按制成GB175中的I型硅酸盐水泥的性能来表达。 4.2.1 凝结时间 初凝不得早于60min,终凝不得迟于300min。 4.2.2 安定性 沸煮法合格。 表 1 基本化学性能 f-CaO (质量分数)/% MgO a (质量分数)/% 烧失量 (质量分数)/% 不溶物 (质量分数)/% SO3b (质量分数)/% 3CaO·SiO2+2CaO·SiO2c (质量分数)/% CaO/SiO2 质量比 ≤1.5 ≤4.5 ≤1.5 ≤0.75 ≤1.2 ≥72 ≥2.2 a 当制成I型硅酸盐水泥的压蒸安定性合格时,允许放宽到5.5%。 b 也可以由买卖双方商定。 C 3CaO·SiO2和2CaO·SiO2按下式计算: 3CaO·SiO2=4.07CaO -7.60SiO2-6.72Al2O3-1.43Fe2O3- 2.85SO3-4.07f-CaO 2CaO·SiO2=2.87SiO2-0.75×3CaO·SiO2 表 2 特殊化学性能 类型 (Na2O+0.658K2O)a (质量分数)/% 3CaO·Al2O3b (质量分数)/% f-CaO (质量分数)/% 3CaO·SiO2 (质量分数)/% 2CaO·SiO2 (质量分数)/% 低碱水泥熟料≤0.60 ≤8.0 ≤1.0 --中抗硫酸盐水泥熟料-≤5.0 ≤1.0 <57.0 -高抗硫酸盐水泥熟料-≤3.0 -<52.0 -中热水泥熟料≤0.60 ≤6.0 ≤1.0 <55.0 -低热水泥熟料≤0.60 ≤6.0 ≤1.0 -≥40 a 或由买卖双方协商确定。 b 3CaO·Al2O3按下式计算: 3CaO·Al2O3=2.65Al2O3-1.69Fe2O3

硅酸盐水泥熟料的形成

第七章硅酸盐水泥的水化和硬化 第一节硅酸盐水泥熟料的形成 一、硅酸盐水泥熟料的形成 水泥熟料矿物为什么能与水发生反应?主要原因是: 1. 硅酸盐水泥熟料矿物结构的不稳定性,可以通过与水反应,形成水化产物而达到稳定性。造成熟料矿物结构不稳定的原因是:<1) 熟料烧成后的快速冷却,使其保留了介稳状态的高温型晶体结构;<2) 工业熟料中的矿物不是纯的C3S,C2S等,而是 A lite 和Belite 等有限固溶体;(3) 微量元素的掺杂使晶格排列的规律性受到某种程度的影响。 2. 熟料矿物中钙离子的氧离子配位不规则,晶体结构有“空洞”,因而易于起水化反 应。例如,C3S 的结构中钙离子的配位数为 6 ,但配位不规则,有 5 个氧离子集中在一侧而另一侧只有 1 个氧离子,在氧离子少的一侧形成“空洞”,使水容易进入与它反应。户C2S 中钙离子的配位数有一半是 6 ,一半是8 ,其中每个氧离子与钙离 子的距离不等,配位不规则,因而也不稳定,可以水化,但速度较慢。 C 3A的晶体结构中,铝的配位数为 4 与6, 而钙离子的配位数为 6 与9 ,配位数为9 的钙离子周围的氧离子排列极不规则,距离不等,结构有巨大的“空洞”,故水化很快。C4A F 中钙的配位数为10 与 6 ,结构也有“空洞”,故也易水化。有些矿物如Y-C2S和 CZ A S 几乎是惰性的,主要是钙离子的配位有规则的缘故.例如: Y-CZS 中钙离子的氧配位为 6 , 6 个氧离子等距离地排列在钙离子的周围,形成八面体,结构没有“空洞”,因此不易与水反应。这里要特别指出,水化作用快的矿物,其最终强度不一定高。例如,C3A水化快,但强度绝对值并不高,而户C2S 虽然水化慢,但最终强度却很高,因为水化速度只与矿物水化快慢有关,而强度则与浆体结构 形成有关。 二、熟料单矿物的水化 (一)硅酸三钙的水化 硅酸三钙在水泥熟料中的含量约占50 %,有时高达60 %,因此它的水化作 用、产物及其所形成的结构对硬化水泥浆体的性能有很重要的影响硅酸三钙在常温下

《通用硅酸盐水泥》的标准

前言 本标准第6.1、6.3、8.3条为强制性条款,其余为推荐性条款。 本标准参照欧洲水泥试行标准ENV 197-1:2000《通用波特兰水泥》修订。 本标准代替GB175-1999《硅酸盐水泥、普通硅酸盐水泥》、GB1344-1999《矿渣硅酸盐水泥、火山灰质硅酸盐水泥、粉煤灰硅酸盐水泥》、GB12958-1999《复合硅酸盐水泥》三个标准。与GB175-1999、GB1344-1999、GB12958-1999相比,主要变化如下: ——全文强制改为条文强制(本版前言); ——增加通用硅酸盐水泥的定义(本版第3.1条); ——将各品种水泥的定义取消(原版GB175-1999、GB1344-1999、GB12958-1999第3章);——将组成与材料合并为一章,材料中增加了硅酸盐水泥熟料(原版GB175-1999、GB1344-1999、GB12958-1999第4章,本版第4章); ——普通硅酸盐水泥中“掺活性混合材料时,最大掺量不超过15%,其中允许用不超过水泥质量5%的窑灰或不超过水泥质量10%的非活性混合材料来代替”改为“活性混合材料掺加量为>5%,≤20%,其中允许用不超过水泥质量5%符合本标准第4.2.5条的窑灰或不超过水泥质量8%符合本标准第4.2.4条的非活性混合材料代替”。(原版GB175-1999中第3.2条,本版第4.1条); ——将矿渣硅酸盐水泥中矿渣掺加量由“20%~70%”改为“>20%,≤70%”(原版GB1344-1999中第3.1条,本版第3.4条、4.1条); ——将火山灰质硅酸盐水泥中火山灰质混合材料掺量由“20%~50%”改为“>20%,≤40%”(原版GB1344-1999中第3.2条,本版第4.1条); ——将粉煤灰硅酸盐水泥中粉煤灰掺量由“20%~40%”改为“>20%,≤40%”(原版GB1344-1999中第3.3条,本版第4.1条); ——将复合硅酸盐水泥中混合材料总掺加量由“应大于15%,但不超过50%”改为“>20%,≤50%”(原版GB12958-1999中第3章,本版第4.1条); ——材料中增加了粒化高炉矿渣粉(本版第4.2.2、4.2.3条); ——取消了粒化精铬铁渣、粒化增钙液态渣、粒化碳素铬铁渣、粒化高炉钛矿渣等混合材料以及符合附录A新开辟的混合材料,并将附录A取消(原版GB12958-1999中第4.2条、第4.3条和附录A) ——增加了M类混合石膏(原版GB175-1999、GB1344-1999和GB12958-1999中第3章,本版第4.2.2.1条); ——助磨剂允许掺量由“不超过水泥质量的1%”改为“不超过水泥质量的0.5%”(原版GB175-1999、GB1344-1999和GB12958-1999中第4.5条,本版第4.2.6条); ——普通水泥强度等级中取消32.5和32.5R(原版GB175-1999中第5章,本版第5章);——增加了氯离子含量的要求,即水泥中氯离子含量不大于0.06%(本版第6.1条);——取消了细度指标要求,但要求在试验报告中给出结果(原版GB175-1999第 6.5条、GB1344-1999、GB12958-1999中第6.3条,本版8.4条); ——将复合硅酸盐水泥的强度等级改为和矿渣硅酸盐水泥、火山灰硅酸盐水泥、粉煤灰硅酸盐水泥一致(原版GB12958-1999中第6.6条,本版第6.3.3条) ——增加了水泥组分的试验方法(本版第7.1条); ——强度试验方法中增加了“掺火山灰混合材料的普通硅酸盐水泥、粉煤灰硅酸盐水泥和复合硅酸盐水泥在进行胶砂强度检验时,其用水量按0.50水灰比和胶砂流动度不小于180mm 来确定。当流动度小于180mm时,须以0.01的整倍数递增的方法将水灰比调整至胶砂流动度不小于180mm”(原版GB1344-1999第7.5条,本版第7.5条); ——将“水泥出厂编号按水泥厂年生产能力规定”改为“水泥出厂编号按单线年生产能力规

第五章 硅酸盐水泥熟料的煅烧

第五章硅酸盐水泥熟料的煅烧 §5-1 生料在煅烧过程中的物理化学变化 §5-2 熟料形成的热化学 §5-3 矿化剂、晶种对熟料煅烧和质量的影响 §5-4 挥发性组分及其他微量元素的作用 §5-5 水泥熟料的煅烧方法及设备 【掌握内容】 1、硅酸盐水泥熟料的形成过程:名称、反应特点、影响反应速度的因素; 2、熟料的形成热、热耗的定义、一般数值、影响因素 3、挥发性组分对新型干法水泥生产的影响 4、悬浮预热器窑及预分解窑的组成、工作过程 5、影响窑产、质量及消耗的因素 【理解内容】 1、C3S的形成机理,形成条件; 2、影响熟料形成热的因素,形成热与实际热耗的区别,降低热耗的措施; 3、回转窑的结构、组成、及工作过程; 4、回转窑内“带”的划分方法,预分解窑内“带”的划分。 【了解内容】 1、水泥熟料的煅烧方法及设备类型; 2、矿化剂、晶种:定义、类型、作用、使用; 3、湿法窑的组成,工作过程 合格生料在水泥窑内经过连续加热,高温煅烧至部分熔融,经过一系列的物理化学反应,得以硅酸钙为主要成分的硅酸盐水泥熟料的工艺过程叫硅酸盐水泥熟料的煅烧,简称煅烧。 结合目前生产现状及学生的就业去向,主要介绍与回转窑尤其是新型干法回转窑有关的知识,立窑有关知识留给学生自学。 第一节生料在煅烧过程中的物理化学变化生料在加热过程中,依次进行如下物理化学变化: 一、干燥与脱水 (一)干燥 入窑物料当温度升高到100~150℃时,生料中的自由水全部被排除,特别是湿法生产,料浆中含水量为32~40%,此过程较为重要。而干法生产中生料的含水率一般不超过1.0%。 (二)脱水 当入窑物料的温度升高到450℃,粘土中的主要组成高岭土(Al2O3·2SiO2·2H2O)发

硅酸盐水泥熟料

硅酸盐水泥熟料 [标准编号]JC/T 853-1999 [实施日期]2000-01-01; 1 范围 本标准规定了硅酸盐水泥熟料的定义、分类、要求、试验方法和验收规则等。 本标准适用于贸易时对硅酸盐水泥熟料的质量验收和指定采用本标准的文件。 2 引用标准 下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。本标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。 GB 175-1999 硅酸盐水泥、普通硅酸盐水泥 GB/T 176-96 水泥化学分析方法 GB/T 750-92 水泥压蒸安定性试验方法 GB/T 1346-89 水泥标准稠度用水量、凝结时间、安全性检验方法 GB/T 17671-1999 水泥胶砂强度检验方法(ISO法) 3 定义和分类 3.1 定义 硅酸盐水泥熟料,即国际上的波特兰水泥熟料(简称水泥熟料),是一种由主要含CaO、 SiO 2、Al 2 O 3 、Fe 2 3 的原料按适当配比磨成细粉烧至部分熔融,所得以硅酸钙为主要矿物成 分的水硬性胶凝物质。 3.2 分类 按照硅酸盐水泥熟料的主要特性与用途可分为:通用、中等抗硫酸盐或中等水化热和高抗硫酸盐等类型。 4 要求 4.1 化学要求 各类硅酸盐水泥熟料应符合表1和表2的相应化学要求。 表1 基本化学要求% f-CaO 立窑旋窑 MgO1)烧失量不溶物2)S032)CaS+C2S3)CaO/SiO2 ≤2.5≤1.5≤5.0≤1.5≤0.75≤1.0≥66≥2.0 1)当制成P.I型硅酸盐水泥样品的压蒸安定性合格时,允许到6.0%。 2)也可以由买卖双方商定。 3)C3S,C2S按下式计算: C3S=4.07C-7.60S-6.72A-1.43F-2.85SO3-4.07f-CaO C2S=2.87S-0.75C3S 式中C、S、A、F分别代表熟料中CaO、SiO2、Al203、Fe203的质量百分比。

gb175-2007通用硅酸盐水泥标准

前言 本标准第、、、、为强制性条款,其余为推荐性条款。 本标准与欧洲水泥标准ENV197-1:2000 《通用波特兰水泥》的一致性程度为非等效。 本标准自实施之日起代替GB175-1999《硅酸盐水泥、普通硅酸盐水泥》、GB1344-1999《矿渣硅酸盐水泥、火山灰质硅酸盐水泥、粉煤灰硅酸盐水泥》、GB12958-1999《复合硅酸盐水 泥》三个标准。 与GB175-1999、GB1344-1999、GB12958-1999相比,本标准主要变化如下:全文强制改为条文强制;增加了通用硅酸盐水泥的定义;将各品种水泥的定义取消(原版GB175-1999、 GB1344-1999、GB12958-1999第3章;将组分与材料合并为一章(原版GB175-1999、GB1344-1999、GB12958-1999第4章,本版第5章);普通硅酸盐水泥中“掺活性混合材料时,最大掺量不超过15%,其中允许用不超过水泥质量5%的窑灰或不超过水泥质量10%的非活性混合材料来代替”改为“活性混合材料掺加量为>5%且≤20%,其中允许用不超过水泥质量8% 且符合本标准第条的非活性混合材料或不超过水泥质量5%且符合本标准第条的窑灰代替” (原版GB175-1999中第条, 本版第条); ——将矿渣硅酸盐水泥中矿渣掺加量由“ 20%~70%”改为“ >20%且≤70%”,并分为A 型和B 型。A 型矿渣掺量>20%且≤50%,代号;B 型矿渣掺量>50%且≤70%,代号(原版GB1344-1999中第条, 本版第条); ——将火山灰质硅酸盐水泥中火山灰质混合材料掺量由“ 20%~50%”改为“ >20%且≤40%”(原版GB1344-1999中第条,本版第条); ——将复合硅酸盐水泥中混合材料总掺加量由“应大于15%,但不超过50%”改为“ >20% 且≤50%”(原版GB12958-1999中第3章,本版第条); ——材料中增加了粒化高炉矿渣粉(本版第、条);

波特兰水泥标准规范

波特兰水泥标准规范 本标准基于之前C150标准框架下发布的;在采用原来的指定标准数量上,以及在涵盖之前的基础上修订的,同时也是今年的最后修订。这个标准发行指定的规范名称后面的编码指的是原采用的规范或正在修改的。 这个标准已经被美国国防部的机构批准。 1. 范围 本规范包括八种类型的波特兰水泥,如下(见注2) 类型 I-用于不需其它特殊性能的水泥。 类型IA-除具有引气功能外不需其它特殊性能的水泥。 类型II-一般用途,更多的尤其是当中抗硫酸盐水泥水化热或中等水化热所需的。 类型IIA-带有引气型的中抗硫型的通用水泥。 类型III-高早强型水泥。 类型IIIA-具有引气功能的III型水泥。 类型IV-为低水化热型水泥。 类型V-为高抗硫型水泥。 注1—一些水泥与复合式分类指定,如I / II型,表明水泥符合指定类型的要求,所提供的必需是其他任何类型都适合用的。 当同时有SI和英制单位时,SI是标准使用单位。英寸-磅单位近似的提供仅有的信息。 本标准参考注释和脚注文本提供解释性材料。作为标准所要求时,注释和脚注(不包括那些表和图)不予考虑。

2. 引用文件 ASTM标准: C 33混凝土骨料 C 109 / C 109M 抗压强度试验方法水泥砂浆(使用2至50立方毫米的试体) C 114 水泥化学分析的试验方法 C 115 水泥细度的波特兰浊度计试验方法 C 151 用于水硬性水泥压蒸膨胀试验方法 C 183 水硬性水泥的取样方法和测试数量 C 185 用于水硬性水泥空气含量砂浆试验方法 C 186 水硬性水泥水化热试验方法 C 191 为水硬性水泥凝结时间试验方法—用维卡针技术 C 204 水泥细度透气性的装置试验方法 C 219 有关水硬性水泥的术语 C 226 规范中使用引气的补充加气水泥的制造 C 266 为水硬性水泥凝结时间试验方法—Gillmore针 C 451 用于水硬性水泥早期硬化试验方法—管理(粘贴法) C 452 波特兰的扩张潜力试验方法—硫酸盐接触水泥砂浆 C 465 规范中使用的添加剂制造水硬性水泥 C 563 在水硬性水泥中使用24小时抗压强度优化SO3的测试方法 C 1038 用于存储在水砂浆的水硬性水泥膨胀试验方法

硅酸盐水泥熟料定义

硅酸盐水泥熟料定义:以硅酸盐水泥熟料和适量石膏及规定的混合材料制成的水硬性胶凝材料 泥定义:加水拌合成塑性浆体,能胶结砂.石等适当材料并能在空气和水中硬化的粉状水硬性胶凝材料 水泥安定性不良原因:熟料中所含游离氧化钙、方镁石或掺入过量的石膏 熟料三滤值得含义:KH:它表示水泥熟料中的氧化钙总量减去饱和酸性氧化物所需的氧化钙后,剩下的与二氧化硅化合的氧化钙的含量与理论上二氧化硅与氧化钙化合全部生成硅酸三钙所需要的氧化钙含量的比值 n:是水泥熟料中二氧化硅与Al2O3+Fe2O3之间的比值,夜代表熟料中的硅酸盐矿物和溶剂矿物之间的比值 P;是水泥熟料中Al2O3和Fo2O3的比值,也反映了熟料中的C3A和C4AF的相对含量 率值高低与煅烧的关系:KH值高,熟料中的C3S量多,虽对熟料质量有利,但物料难以煅烧,需要较高的煅烧温度和一定的煅烧时间;否则,导致fCaO增加,反而使质量下降。当KH偏低时,C3S少、C2S多,熟料早强低,且熟料易粉化;n过高,液相量太少,煅烧困难;n太低,液相量过多,如意使窑粘边、结圈、结大块,且熟料强度不高;p过高时,熟料液相粘度大,C3S形成困难,且会因C3A太多而使水泥急凝;p过低时,虽然液相量粘度较小,对C3S形成有利,但烧结范围变窄,窑内易结大块,不利窑的操作。 4、生料细度过粗 5、煅烧温度不够高或物料在窑内停留时间太短,是硅酸二钙吸收f-Ca的化学反应不充分。 6、熟料冷却速度太慢 7、原料易烧性不好 8、窑系统的结构性原因或煅烧操作不当 普通水及技术指标MgOso3 烧失量小于等于5.0so3小于等于3.5 MgO小于等于5.0 大于6.0时需进行水泥压蒸安定性试验并合格,安定性沸煮法合格,细度80的不大于10%或45的不大于30% C3A是水化最快的矿物 28天强度最高的矿物:C3S 化验室组织机构设置设置符合《水泥企业质量管理规程.内设:四个:精密仪器实验室、化学分析实验室、物理性能检验实验室、辅助室(办公室、储藏室、钢瓶室) 化验室检验员要取得哪签发的岗位资格证书:省级以上颁发的上岗证书 水泥单袋净重?20袋? 每袋净含量为50kg,且应不少于标志质量的99%,随机抽取20袋总质量(含包装袋)应不少于1000kg 衡量数据分散程度的度量值叫标准偏差。它表示数据中各值偏离平均值的趋势的大小。在实际计算中,如果标准偏差比较小,表明这群数据大多集中在它的平均值附近;如果标准偏差较大,则表明数据偏离平均值的程度大。对于控制产品质量来说,标准偏差大的产品其质量波动大,工艺因素不稳定。因此,在生产控制中,通过标准偏差计算,可以有效地控制和评价产品质量,评定工艺情况。 初凝不小于45min,终凝不大于390min

相关主题
文本预览
相关文档 最新文档