当前位置:文档之家› 浅析红外线检测技术在电力设备故障中的应用 石风旗

浅析红外线检测技术在电力设备故障中的应用 石风旗

浅析红外线检测技术在电力设备故障中的应用 石风旗
浅析红外线检测技术在电力设备故障中的应用 石风旗

浅析红外线检测技术在电力设备故障中的应用石风旗

发表时间:2018-05-14T09:23:57.407Z 来源:《电力设备》2017年第35期作者:石风旗[导读] 摘要:现今红外检测技术在我国电力系统中已得到比较广泛的应用,是一种诊断线路热缺陷的高科技技术,且为设备的在线检测和故障诊断提供了依据。

(国网山东省电力公司高唐县供电公司山东聊城 252800)摘要:现今红外检测技术在我国电力系统中已得到比较广泛的应用,是一种诊断线路热缺陷的高科技技术,且为设备的在线检测和故障诊断提供了依据。红外测温诊断技术能及时发现、处理、预防重大事故的发生并提高了设备运行的可靠性。红外检测技术具有非接触、实时快速、形象直观、准确度高、适用面广等优点,给输配电线路运行状态监测提供了一种先进手段。红外检测技术在电力行业的应用,

对提高电气设备的可靠性及有效性,提商运行经济效益,降低维修成本都具有非常意义。文章就目前供电部门线路检修过程中应用红外测温技术作了红外监测基础理论、红外检测特点、测温应用实例的介绍。

关键词:红外检测;电力设备;故障诊断

1 红外检测技术

1.1 红外基础概念

红外线是电磁波的一种,本身具备和无线电波与可见光一样的性质,红外线又称红外辐射,在电磁波中属于一种和微波波长相比较短,比可见光波长相比较长的电磁波,波长一般保持在0.76-100um间,红外线可以根据不同的波长分为四种,即近红外、中红外、远红外和极远红外。

通常红外线都处于电磁波连续频谱中无线电波和可见光之间。红外线辐射是任何物体在正常情况下都能够产生的无规则分子和原子的运动,而且能辐射出热红外能量,分子和原子在这其中会非常强烈的运动,这就表示辐射出的红外能量越强,相反,原子和分子活动弱辐射出的能力就小。

只要是存在与自然界的物体温度高于绝对零度以上,物体本身的分子在运动期间就会向周边空间辐射出红外线,而且物体红外辐射能量的大小直接取决去波长的分布和其表面的温度。红外线辐射的探测器通常是把物体辐射的功率信号转变成为电信号的通道,是对物体自身辐射红外线能量的大小进行测量,以此确定表面的温度,也可能是通过成像装置输出信号可以对物体表面温度空间分布情况进行可模拟扫描,再由电子系统处理并传输到显示屏中,从而得到和物体表面热分布相对应的热像图。采用这种方式不但可以对观察对象进行远距离的热状态图像成像和测温进行准确分析,同时还能够进行对红外辐射的检测。

1.2 红外检测基本规律

所谓的红外热像仪,就是把被检测对象的红外辐射能量具体分布图像传递给相关的光敏元件,这样才能获取相应的红外热像图。这一过程主要依靠红外探测器以及光学成像物镜来完成,得到的热像图对应着物体表面的热分布状况。简单来说,红外热像仪其实就是把肉眼看不到的红外图像转变成具体可见的热图像。并且根据热图像上不同的颜色判断被测对象不同位置的温度。通过红外探测器与光学成像物镜将被检测物体的红外辐射能量分布图形传输到红外探测器的光敏元件上,以此获得红外热像图则是红外热像仪,红外热像仪的热像图要和物体表面的热分布场相互符合。红外热像仪简单来讲就是物体发出的不可见红外能量转变成可见热图像。在热图像表面出现的各种颜色则代表了被测把目标不同的温度。光学系统和红外探测器中必须包含光机扫描机构焦平面热像仪机构,以此对检测对象的红外热像进行扫描,同时将红外热像聚焦在单元或者分光探测器上,再由探测器把红外辐射能量转变成电信号,最后则经过处理、转换或标准视频信号后通过视频将被测物体的红外热像图显示出来。

2 红外检测技术特质

电气设备红外检测和诊断工作本身具备了不会出现停电、停运、取样、接触、解体现象而且准确度、灵敏度高且直观、应用范围广等众多的特殊性质。

2.1 响应迅速

一般传统的检测技术响应所需时间为几秒,热像仪检测响应所需时间则在毫秒或者微妙范围内,所以热像仪能够准确迅速的将目标温度的变化测取。

2.2 无需接触测量

通常被测取的都是物体表面的红外辐射能量,必须在不接触被测物体的情况下进行,而红外热像技术在测量运动物体或高压线缆等危险物体时,可以不用接近物体进行测量,得到广泛使用。

2.3 直观形象的测量结果

和单点测温相比,红外热像仪一般是采用彩色或黑白色图像将被测物体表面的温度场表达出来,这样获取的信息就会更加全面、完善,且直观形象。

3 在电力设备故障诊断中的应用红外检测技术

一般装置避雷器是为了更好的防御雷电侵入人波、线路过电压以及内部过电压中造成的电气设备损害,同时还能够将电压局限在电气设备绝缘的能承受电压冲击水平范围内。

3.1 FS型普通阀式避雷器

FS型号避雷器的阀片非线性系数一般保持在0.2-0.5之间,除了在微安级溶性电流外,一般在串联间隙的阻隔下和正常运作情况下都没有传导电流经过避雷器。所以,在没有故障出现的情况下,FS型号避雷器自身不会出现功率损耗和发热,其本身的热像特质和环境温度下的参照体几乎没什么不同。

3.2 FCZ和FCD型磁吹避雷器

FCZ和FCD型磁吹避雷器通常在运作过程中所消耗的功率很低,而且不会发热。而磁吹避雷器由于间隙中安置了均压分路电阻,所以在正常运作中会出现电流泄露和耗损功率的想象。磁吹避雷器的正常热像特征一般是瓷套整体发热,而且热量通常聚集在上端,分布情况一般是上高下低。在组合元件中一般上节温度偏高。

红外测试技术培训试题教案资料

红外测试技术培训试 题

红外测试技术培训试题 一、 单选题 1. 红外成像仪的色标温度量程宜设置在环境温度加 左右的温升范围内。 ( ) (a ) (A )10K-20K (B )5K-10K (C )15K-25K (D )20K-30K 2. 下图中哪个成像图不符合“确保被测设备不被遮蔽”原则( ) (d ) 3. 在进行红外测试时,有以下步骤需要遵循,①重点、温度异常点精确测 温,②全面测温,③环境检测;应遵循的正确顺序为:( ) (c ) (A ) ③①② (B ) ②③① ℃ 51.5℃3540 4550AR01℃51.5℃ 35404550 AR01℃ 51.5℃ 35 40 4550 AR01℃51.5℃ 35 404550 AR01 (A ) (B ) (C ) (D )

(C)③②① (D)②①③ 4.对变压器进行红外诊断,应开变电站第种工作票。()(b) (A) 第一种工作票 (B) 第二种工作票 (C) 第三种工作票 5.在红外诊断对环境的要求中,下列说法不恰当的为()(b) (A) 环境温度一般不宜低于5℃、相对湿度一般不大于85% (B) 最好在阳光充足,天气晴朗的天气进行 (C) 检测电流致热型的设备,最好在高峰负荷下进行。否则,一般应在不低于30%的额定负荷下进行 (D) 在室内或晚上检测应避开灯光的直射,最好闭灯检测 6.在对红外热像仪拍摄的图像进行分析时,采用的是表面温度判别法,下列 解释准确的为( ) (d) (A) 同组三相设备、同相设备之间及同类设备之间对应部位的温差进行相比较 (B) 与红外测试的历史数据作相比较 (C) 在一段时间内使用红外热像仪连续检测某被测设备,观察设备温度随 负载、时间等因素变化的方法。 (D) 将所测得温度、与环境的温差,与设备运行规定值相比较 7.红外检测中,精确检测要求设备通电时间不小于()(c) (A) 2h (B) 4h (C) 6h (D) 8h

电力设备红外精确测温规范及图谱库的建立与 应用

Transmission and Distribution Engineering and Technology 输配电工程与技术, 2015, 4(4), 132-138 Published Online December 2015 in Hans. https://www.doczj.com/doc/f35903394.html,/journal/tdet https://www.doczj.com/doc/f35903394.html,/10.12677/tdet.2015.44014 文章引用: 李进扬, 刘国兴, 徐声龙, 袁修昉, 韩幸军, 付小华. 电力设备红外精确测温规范及图谱库的建立与应用 Standardization of Accurate Infrared Temperature Measurement for Electric Power Equipment and the Establishment and Application of Atlases Database Jinyang Li 1, Guoxing Liu 2, Shenglong Xu 2, Xiufang Yuan 2, Xingjun Han 3, Xiaohua Fu 4* 1 Hubei Electric Power Company, State Grid Corporation of China, Wuhan Hubei 2Hubei Electric Power Company Maintenance Company, Wuhan Hubei 3Zhoushan Power Supply Company, Zhejiang Electric Power Corporation, State Grid Corporation of China, Zhoushan Zhejiang 4Zhejiang Hannuo Photoelectric Technology Co. Ltd., Jiangshan Zhejiang Received: Dec. 12th , 2015; accepted: Dec. 27th , 2015; published: Dec. 31st , 2015 Copyright ? 2015 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.doczj.com/doc/f35903394.html,/licenses/by/4.0/ Abstract One of the very important features of the intelligent grid construction is the transition from sche-duling maintenance to condition-based maintenance, which places higher demands on the means and effect of grid equipment monitoring. Therefore, how to improve the skills of precise infrared temperature measuring and the informatization level of test data becomes a very urgent issue. This thesis demonstrates the methods of improving the acquisition quality and analysis efficiency by applying standardization and database of the infrared temperature measurement of power equipment. Keywords Smart Power Grid, Infrared Ray, Accurate Temperature Measurement, Database *通讯作者。

红外检测技术介绍-安徽电科院

电网设备状态检测技术培训 ---------红外检测技术
安徽省电力科学研究院 王庆军 2011年3月
输变电设备运维及故障诊断分析技术交流会

主讲人简介
王庆军,安徽省电力科学研究院高压所副所长,国网 公司技术专家 长期从事红外检测技术研究工作 公司技术专家,长期从事红外检测技术研究工作。
输变电设备运维及故障诊断分析技术交流会

? ? ? ? ?
一、红外检测基本知识及术语 红外 测基本 及术语 二、红外热像仪的操作使用 三、判断方法 判断 法 四、诊断依据及缺陷类型确定 、诊断依据及缺陷类型确定 五、电气设备红外缺陷典型图谱
输变电设备运维及故障诊断分析技术交流会

一、红外检测基本知识及术语 红外检测基本知识及术语
? 1 、红外线是 、红外线是一种电磁波(英国物理学家 种电磁波(英国物理学家 赫胥尔 1800 年发 现) (0.75  ̄1000 微米) ,位于可见光红色光带(0.38 ̄0.78 微米)之外,普通玻璃能透过可见光,但是却几乎不能透 过红外线。
输变电设备运维及故障诊断分析技术交流会

? 2 2、热传输的方式 热传输的方式 热传输有三种方式,分别是:传导、对流和辐射。对流通常只发生 在流体介质中。 介质中 ? 3、红外热像仪一般是由三部分组成: 红外探测头、图像处理、监视器。 ? 4、焦平面红外探测器的工作原理: 是依靠探测微型辐射热量的热探测器(Microbolometer)。探测器通过吸 收 射的红外辐射致使自身温度上升,从而引起探测器电阻变化,在 收入射的红外辐射致使自身温度上升,从而引起探测器电阻变化,在 外加电压的情况下进而产生信号电压。 ? 5、黑体: 任何情况下对一切波长的入射辐射的吸收率都等于1的物体。
输变电设备运维及故障诊断分析技术交流会

红外热成像技术在电力设备状态检修中的应用 江琦

红外热成像技术在电力设备状态检修中的应用江琦 发表时间:2018-08-07T09:53:33.040Z 来源:《电力设备》2018年第11期作者:江琦高方亮 [导读] 摘要:现在人们对于供电企业的供电安全稳定性提出了较高的要求,所以供电企业为了最大限度地满足人们生产生活的实际需求,尽可能地降低停电对大家生产生活造成的影响,所以经常会对电力设备进行带电检修的操作,在这一过程中,借助红外热成像技术就可以实现对电力设备的带电检修操作,借助该技术可以很好地检测出电力设备内部的绝缘介质温度高低,以及电力设备在实际运行中是否存在问题故障,或是设备缺陷等,对于发现的问题可以采 (国网山西省电力公司检修公司) 摘要:现在人们对于供电企业的供电安全稳定性提出了较高的要求,所以供电企业为了最大限度地满足人们生产生活的实际需求,尽可能地降低停电对大家生产生活造成的影响,所以经常会对电力设备进行带电检修的操作,在这一过程中,借助红外热成像技术就可以实现对电力设备的带电检修操作,借助该技术可以很好地检测出电力设备内部的绝缘介质温度高低,以及电力设备在实际运行中是否存在问题故障,或是设备缺陷等,对于发现的问题可以采取及时的修正措施,避免造成对电力设备运行稳定性的更大影响,维护设备的正常运转,为用户提供可靠安全的供电需求。 关键词:输变电设备;状态检修;红外热成像;故障检测与诊断 引言 电力设备的运行检修已逐步由基于时间周期的预防性检修向针对性更强的状态检修模式转变。实行状态检修的核心和基础是确定设备状态,然而影响电力设备状态运行的因素众多且关系复杂,只有合理有效地综合所能收集到的状态信息才能对设备状态做出科学准确的评价。 1红外热成像技术简介及测试目的 1.1红外热成像技术原理 任何物体由于自身分子的不规则运动,都会不停地向外辐射红外热能,从而在物体表面形成一定的温度场,俗称“热像”。红外热成像技术正是通过吸收这种红外辐射能量,测量出设备表面的温度及温度场的分布,从而判断设备发热情况,并将肉眼看不见的“热像”转变成可见光图像,使测试效果直观,灵敏度高,能检测出设备细微的热状态变化,准确反映设备内部、外部的发热情况,可靠性高,对发现设备隐患非常有效。 1.2红外热像仪简介 红外热像仪利用红外热成像技术探测目标物体的红外热辐射,并通过光电转换、电信号处理等手段,将目标物体的温度分布图像转换成可视图像,其核心器件和技术主要为焦平面探测器、后续电路、图像处理软件等三部分。焦平面探测器主要用于感知目标物体的温度分布,并转换为微弱的电信号;后续电路是将微弱的电信号进行电子学放大和逻辑处理,从而能够清晰地采集到目标物体的温度分布情况;图像处理软件则对上述放大后的输出电信号进行处理,呈现为目标物体温度分布的可见光图像。 1.3测试目的 红外热成像技术引入电力设备故障诊断后,为电力设备状态维护提供了有力的技术支持。它能在不影响电力设备正常运行的情况下,准确有效地检测运行设备的温度状况,从而判断设备运行是否正常。它有着高效、快捷、准确、不受外界干扰正常运行等诸多优点。 2输变电设备红外检测要求 2.1检测环境要求 2.1.1被检测的输变电设备应为带电运行设备,检测时环境温度一般不低于5℃,相对湿度一般不大于85%,风速一般不大于5m/s,天气以阴天、多云为宜,夜间图像质量为佳;不应在雷、雨、雪、雾等气象条件下进行。 2.1.2户外晴天要避开阳光直接照射或反射进入仪器镜头,在室内或晚上检测应避开灯光的直射,宜闭灯进行检测;检测时要避开强电磁场,防止强电磁场影响红外热像仪的正常工作;被检测设备周围应具有均衡的背景辐射,应尽量避开附近热辐射源的干扰。 2.2检测次数要求 2.2.1输变电设备的检测一般在大负荷时进行,对正常运行的110kV及以上输变电线路每季度至少应检测一次;新投产和大修后的线路,应在投运带负荷后不超过1个月内进行一次检测;对于负荷重、运行环境差及特别维护线路应适当缩短检测周期。 2.2.2重大政治事件、重要节假日、重要负荷以及设备负荷突然增加等特殊情况应增加检测次数。 2.3检测其他要求 2.3.1针对不同的检测对象选择不同的环境温度参照体。 2.3.2测量设备发热点、正常相的对应点及环境温度参照体的温度值时,应使用同一仪器相继测量。 2.3.3应从不同方位进行检测,测出最热点的温度值。 2.3.4记录异常设备的实际负荷电流和发热相、正常相及环境温度参照体的温度值。 3红外测温技术在生产实际中的应用 3.1进行外部电力设备故障检测 出现外部故障的电力设备主要是指暴露在设备外部的各部位产生的问题故障,这种问题故障可以借助红外检测仪器直接在视场范围之内就可以检测到,比较直观方便地获得电力设备外部的故障信息。 3.2进行内部电力设备故障检测 这是指封闭在固体绝缘、油绝缘以及设备壳体内部的电气回路故障和绝缘介质劣化引起的故障。根据各种电气设备的内部结构和运行状态,依据传热学理论,分析金属导电回路、绝缘油和气体等引起的传导、对流,从电力设备外部显现的温度分布热像图,可以判断出的各种内部故障。对于电力设备的发热情况,根据电力设备运行的过程中由于电压、电流等的作用,一般主要分为三种发热来源:其一,是由于电阻的损耗而产生的发热,这种发热的产生是电流实际通过电阻时而发生的热能,所以是由电流的效应而产生的发热,这种发热更多是发生在载流的电力设备中;其二,因介质的损耗而产生的发热,这种发热主要是由于电力绝缘的介质在交变电场的实际作用下,介质的极化方向不断地发生改变而引起的电能消耗,进而产生的发热,所以这种发热方式是由于电压的效应而产生的发热;最后,铁损的致热。这种发热方式是由于在励磁的回路上不断地进行工作电压的施加,由于铁心的磁滞以及涡流而发生的电能损耗而引起的发热。

《带电设备红外诊断技术应用导则》DLT

带电设备红外诊断技术应用导则 参照中华人民共和国 电力行业标准DL/T664-1999《带电设备红外诊断技术应用导则》 《华北电网有限公司红外技术管理制度》 1、从事红外检测与诊断工作的人员应具备以下素质: (1)从事红外检测与诊断工作的人员应熟悉红外检测与诊断技术的基本原理,掌握红外检测仪器的工作原理、主要性能、技术指标以及操作方法,并能熟练操作红外检测仪器。 (2)从事红外检测与诊断工作的人员应了解电气设备的性能、结构、运行状况。 (3)从事红外检测与诊断工作的人员应熟悉掌握中华人民共和国电力行业标准DL/T664-1999《带电设备红外诊断技术应用导则》和本管理制度,掌握《国家电网公司电力安全工作规程(变电站和发电厂电气部分、电力线路部分)(试行)》和现场试验的有关安全规定。 2、红外检测的范围:只要表面发出的红外辐射不受阻挡都属于红外诊断的有效监测设备。例如:旋转电机、变压器、断路器、互感器、电力电容器、避雷器、电力电缆、母线、导线、绝缘子串、组合电器、低压电器及二次回路等。 二、红外检测与诊断的基本要求 (一)对检测设备的要求 1、红外测温仪应操作简单,携带方便,测温精确度高,测量结果的重复性好,不受测量环境中高压电磁场的干扰,仪器应满足现场带电实测对距离的要求,并应能对表面放射率、大气环境参数、测量距离等进行修正以保证测量结果的真实性。 2、红外热电视应操作简单携带方便,有较好的测温精确度,测量结果的重复性好,不受测量环境中高压电磁场的干扰图像清晰,具有图像锁定、记录、输出和简单的分析功能。 3、红外热像仪应图象清晰、稳定,不受测量环境中高压电磁场的干扰,具有较强的图象分析功能,具有较高的热传感分辨率和图象分辨率,空间分辨率应满足实测距离的要求,具有较高的测量精确度和合适的测温范围。 (二)对被检测设备的要求 1、被检测设备应为带电设备。

电力设备在线监测

目录 摘要 (2) 前言 (2) 第一章高压断路器 (2) 第一节高压断路器的作用 (2) 第二节高压断路器的绝缘 (3) 第三节影响高压断路器绝缘性能 (3) 第四节断路器就其对地绝缘方式 (3) 第二章电力设备在线监测技术简介 (4) 第三章高压断路器的在线监测 (4) 第一节交流泄漏电流的在线监测 (5) 第二节高频接地电流的在线监测 (5) 第三节开关特性的在线监测 (5) 第四节温度特性的在线监测 (6) 第五节真空断路器真空度的在线监测 (6) 结论 (7)

高压断路器的在线监测方法 摘要:通过对断路器状态监测方法的介绍, 分析了在线监测方法的诸多特点, 指出其监测内容丰富, 信息处理速度快, 对提高断路器故障的识别、分析、诊断和处理有着极大的帮助作用, 提出为加强设备管理, 加强状态检修的需要, 应用在线监测技术已成为一种发展趋势。 关键词:高压断路器在线监测电力系统 前言:高压断路器是电力系统最重要的开关设备。它担负着控制和保护的功能,既根据电网的运行的需要用它来可靠地投入或切除相应线路或电气设备。当线路或电气设备发生故障时,将故障部分从电网中快速的切除,保证电网无故障部分正常的运行。如果断路器不能在电力系统发生故障是开断线路、消除故障,就会使事故扩大造成大面积的停电。因此,高压断路器性能的好坏、工作可靠程度是决定电力系统安全运行的重要因素。在电力系统中工作的高压断路器必须满足灭弧、绝缘、发热和电动力方面的一般要求。 第一章高压断路器 第一节高压断路器的作用 高压断路器(或称高压开关)它不仅以切断或闭合高压电路中的空载电流和负荷电流,而且当系统发生故障时通过继电器保护装置的作用,切断过负荷电流和短路电流,它具有相当完善的灭弧结构和足够的断流能力,可分为:油断路

传感器在电力设备检测中的应用

传感器在电力设备检测中的应用 电力设备在运行中经常受电的、热的、机械的负荷作用,以及自然环境(气温、气压、湿度以及污秽等)的影响,长期工作会引起老化、疲劳、磨损,以致性能逐渐下降,可靠性逐渐降低。为保证电力系统的安全运行,对系统的重要设备的运行状态进行的监视与检测。监测的目的在于及时发现设备的各种劣化过程的发展,以求在可能出现故障或性能下降到影响正常工作之前,及时维修、更换,避免发生危及安全的事故。 电力设备状态监测的传统方法是经常性的人工巡视与定期预防性检修、试验。设备在运行中由值班人员经常巡视,凭外观现象、指示仪表等进行判断,发现可能的异常,避免事故发生。传统方法效率低,成本高,且可能会给工作人员带来一定危险。随着传感技术与计算机技术的发展,电力设备的状态监测方法向着自动化、智能化的方向发展,设备的定期检修制度向着预警式检修制度发展。电力设备状态的监测涉及面广,大量的非电参量(热学、力学、化学参量等)需要各种相应的传感器,传感技术的发展为此提供了可能。 装备各种传感器的具有状态监测功能的新型电力设备是构成自动化的电力系统的基础,是状态监测和故障诊断的第一步,也是很重要的一步。本文以温度传感器为例,对传感器在实际生产生活中的应用做一简单介绍。 一、检测对象 电力系统中大量设备需要检测温度信息,从而确定电力设备的运行情况,以便运行调度人员及时采取措施,消除异常,避免设备的损坏和事故的发生。 电力设备过热的主要原因是过电流,单仅仅监视电流不能准确反映设备是否超温,因为温度是各种因素影响的综合反映。 主要检测的对象有:电力设备导电连接处、插接处,干式变压器的绕组,电力变压器油温,箱式变电站的出线端、低压开关和高压开关进出线端等等。 二、基本结构及工作原理 温度传感器品种繁多。按测量方式可分为接触式和非接触式两大类,按照传感器材料及电子元件特性分为热电阻和热电偶两类。 (1)热电偶:将两种不同材料的导体或半导体A和B焊接起来,构成一

红外检测技术介绍

红外探测技术 红外检测技术基本原理 红外技术的原理是基于自然界中一切温度高于绝对零度的物体,每时每刻都辐射出红外线,同时,这种红外线辐射都载有物体的特征信息,这就为利用红外技术探测和判别各种被测目标的温度高低与热分布场提供了客观的基础。 红外线是波长在0. 76?1000 U m之间的一种电磁波,按波长范围可分为近红外、中红外、远红外、极远红外四类,它在磁波连续频谱中的位置是处于无线电波与可见光之间的区域。 红外线辐射在真空中的传播速度 C=299792458m/s ?3xlO lu cm/s 红外辐射的波长 A = — co 式中:C:速度 2:波长 3 :频率 红外线辐射是自然界存在的一种最为广泛的电磁波辐射,它是基于任何物体在常规环境下都会产生自身的分子和原子无规则的运动,并不停的辐射出热红外能量,分子和原子的运动愈剧烈,辐射的能量愈大,反之,辐射的能量愈小。 温度在绝对零度以上的物体,都会因自身的分子运动而辐射出红外

线。其中黑体频谱辐射能流密度对红外辐射波长的关系,根据普郎克定律: D一GxL (瓦?厘米”"微米") 式中: P一波长%,热力r AT 学温度为T时,黑体的红外辐射功率。 C一光速度 (axiomcm/s) C—第一辐射常 数二3.7415X104(瓦厘米?微米2) 之一波长(微米),T热力学 温度(K)温度辐射的能量密 度峰值对应的 波长,随物体温度的升高波长变短。 根据维思定律:人理(urn) T 式中: A一峰值波长,单位:um T一物体的绝对温度单位K 物体的红外辐射功率与物体表面绝对温度的四次方成正比,与物体表面的发 射率成正比。物体红外辐射的总功率对温度的关系,根据斯蒂芬—波尔兹曼定 律:

电力设备带电检测技术规范20130530

电力设备带电检测技术规范 国家电网公司 2010年1月

目录 前言 .............................................................................................................................................. I 1范围 . (1) 2规范性引用文件 (1) 3定义 (1) 5变压器检测项目、周期和标准 (4) 6套管检测项目、周期和标准 (5) 7电流互感器检测项目、周期和标准 (6) 8电压互感器、耦合电容器检测项目、周期和标准 (8) 9避雷器检测项目、周期和标准 (9) 10 GIS本体检测项目、周期和标准 (10) 11开关柜检测项目、周期和标准 (12) 12敞开式SF6断路器检测项目、周期和标准 (12) 13高压电缆带电检测项目、周期和标准 (13) 附录A 高频局部放电检测标准 (17) 附录B 高频局部放电检测典型图谱 (18) 附录C GIS超高频局部放电检测典型图谱 (21) 附录D 高压电缆局部放电典型图谱 (29) 附录E 编制说明 (30)

Q/GDW ××××-2009 前言 电力设备带电检测是发现设备潜伏性运行隐患的有效手段,是电力设备安全、稳定运行的重要保障。为规范和有效开展电力设备带电检测工作,参考国内外有关标准,结合实际情况,制订本规范。 本标准附录A为规范性附录,附录B、附录C、附录D为资料性附录。 本标准由国家电网公司生产技术部提出。 本标准由国家电网公司科技部归口。 本标准主要起草单位:北京市电力公司、中国电力科学研究院、国网电力科学研究院 本标准参加起草单位:江苏省电力公司、福建省电力公司、湖北省电力公司 本标准的主要起草人:刘庆时、张国强、丁屹峰、韩晓昆、黄鹤鸣、杨清华、赵颖、闫春雨、毛光辉、彭江、牛进仓、孙白、王承玉 本标准由国家电网公司生产部负责解释。 本标准自发布之日起实施。

红外技术的发展现状与发展趋势

红外技术的发展现状与发展趋势 第一部分红外技术的发展及主要应用领域 红外技术的发展 1800年,英国天文学家F.W.赫歇耳利用水银温度计来研究太阳光的能量分布发现了红外辐射,从那时起,人们就致力于研究各种红外探测器以便更好地研究和探测红外辐射。在红外探测器发展中,以下事件具有重要意义: 上世纪70年代,热成像系统和电荷耦合器件被成功地应用。 上世纪末以焦面阵列(FPA)为代表的红外器件被成功地应用。 红外技术的核心是红外探测器。 红外探测器 单元红外探测器:如InSb(锑化铟)、HgCdTe(碲镉汞)、非本征硅,以及热电等探测器。 线列:以60元、120元、180元和256元等,可以拼接到1024元甚至更多元。 4N系列扫描型焦平面阵列:如211所的研制生产的4x288。 凝视型焦平面阵列(IRFPA): 致冷型256x256、320x240、384x288,更大规模的如640x512,1024×1024和1280×720 元阵列也已有了; 非致冷型160×120、320x240已广泛应用于各个行业中,384x288、640x480也已开始应用。 红外探测器按其特点可分为四代: 第一代(1970s-80s):主要是以单元、多元器件进行光机串/并扫描成像; 第二代(1990s-2000s):是以4x288为代表的扫描型焦平面; 第三代:凝视型焦平面; 第四代:目前正在发展的以大面阵、高分辨率、多波段、智能灵巧型为主要特点的系统芯片,具有高性能数字信号处理功能,甚至具备单片多波段探测与识别能力。 目前非制冷焦平面探测器的主流技术为热敏电阻式微辐射热计,根据使用的热敏电阻材料的不同可以分为氧化钒探测器和非晶硅探测器两种。 非制冷焦平面阵列探测器的发展,其性能可以满足部分的军事用途和几乎所有的民用领域,真正实现了小型化、低价格和高可靠性,成为红外探测成像领域中极具前途和市场潜力的发展方向。 氧化钒技术由美国的Honeywell公司在九十年代初研发成功,目前其专利授权BAE、L-3/IR、 FLIR-INDIGO、DRS、以及日本NEC、以色列SCD等几家公司生产。非晶硅技术主要由法国的 CEA/LETI/LIR实验室在九十年代末研发成功,目前主要由法国的SOFRADIR和ULIS公司生产。 目前世界上只有美国、法国、日本、以色列四个国家拥有非制冷焦平面探测器产业化生产的能力,其核心技术仅有美国和法国两个国家掌握,日本和以色列则由美国取得技术许可,在其国内生产和有限制地使用。对我国的出口则设置了更多严格的限制,如大家遇到的帧频限制。

红外测距传感器的工作原理及使用

光电检测技术与应用 论文 题目:红外测距传感器的工作原理及使用 院系:机电工程学院 班级:测控xxxx 完成日期:2017/5/6 小组:第x组 小组成员:xxxxxxxxxx 红外测距传感器的工作原理及使用 摘要: 利用光的反射性质,将光学系统与电路系统相结合可以制作避障传感器,通过单片机的控制,可以完成智能车在运行过程中,对障碍物的处理。避障传感器基本原理:利用物体的反射性质。在一定范围内,如果没有障碍物,发射出去的红外线,因为传播距离越远而逐渐减弱,最后消失。如果有障碍物,红外线遇到障碍物,被反射到达传感器接收头。传感器检测到这一信号,就可以确认正前方有障碍物,并送给单片机,单片机进行一系列的处理分析,协调车轮或者舵机工作,完成躲避障碍物的动作。 关键字:光电检测技术、智能车、测距、红外测距传感器、单片机 一、引言 光电检测作为光学与电子学相结合而产生的一门新兴检测技术,主要包括光信息获取、光电变换、光信息测量以及测量信息的智能化处理等,具有精度高、速度快、距离远、容量大、非接触、寿命长、易于自动化和智能化等优点,在国民经济各行业中得到了迅猛的发展和广泛的应用,如光扫描、光跟踪测量,光纤测量,激光测量,红外测量,图像测量,微光、弱光测量等,是当前最主要和最具有潜力的光电信息技术。

二、光电检测技术的概念 光电检测技术是光学与电子学相结合而产生的一门新兴检测技术。它主要利用电子技术对光学信号进行检测,并进一步传递、储存、控制、计算和显示。光电检测技术从原理上讲可以检测一切能够影响光量和光特性的非电量。它可通过光学系统把待检测的非电量信息变换成为便于接受的光学信息,然后用光电探测器件将光学信息量变换成电量,并进一步经过电路放大、处理,以达到电信号输出的目的。然后采用电子学、信息论、计算机及物理学等方法分析噪声产生的原因和规律,以便于进行相应的电路改进,更好地研究被噪声淹没的微弱有用信号的特点与相关性,从而了解非电量的状态。微弱信号检测的目的是从强噪声中提取有用信号,同时提高测系统输出信号的信噪比。 光电检测技术的系统机构比较简单,分为信号的处理器,受光器,光源。在实际检测过程中,受光器在获得感知信号后,就会被反映为不同形状、颜色的信号,同时根据这些器件所处在的不同位置,就能够将他分为反射型与透过型的两种比较的模式。光电检测的媒介光应当是自然的光,例如白炽灯或者萤光灯。特别是随着这些技术的发展,光电技术也取得的非常好发展。由于投光器在发出光后,会以不一样的方式触摸这些被检测物中,直到照射到检测系统中的受光器中,同时受光器在此刺激下,会产生一定量的电流,这就是我们常说的光敏性的原件,实际生活中应用比较广泛的有三极管、二极管。 三、光电检测技术的应用 智能车方面的应用、家庭扫地机器人方面的应用:利用光的反射性质,将光学系统与电路系统相结合可以制作避障传感器,通过单片机的控制,可以完成智能车在运行过程中,对障碍物的处理。避障传感器基本原理:利用物体的反射性质。在一定范围内,如果没有障碍物,发射出去的红外线,因为传播距离越远而逐渐减弱,最后消失。如果有障碍物,红外线遇到障碍物,被反射到达传感器接收头。传感器检测到这一信号,就可以确认正前方有障碍物,并送给单片机,单片机进行一系列的处理分析,协调车轮或者舵机工作,完成躲避障碍物的动作。 四、常用光电检测器件:红外测距传感器 原理:其输出为电压数值,通过公式L?=?(6762/(9-X))-4可计算出小车与障碍物之间的距离。

主要电力设备故障图像特征及识别方法研究改

摘要 摘要内容 伴随着我国电网规模的日益加大,各类变电设备的运作状态是促使其安全高效运行的最为主要的因素之一。对于各类变电设备的在线状态监测系统的推广越来越发普及。研究基于图像特征的电力设备自动故障识别具有重要意义。 本文对各类主要电力设备,研究各类变电设备故障识别分类及相应故障的图像特征,以及基于红外与紫外图像特征的故障识别方法。对于紫外放电成像技术图像的处理与特征提取,本文从紫外成像技术的基本原理出发,在讲解紫外放电图片特性的基础上,对紫外放电图像使用灰度化预处理,以及应用中值滤波等方法对图像进行降噪。并通过canny算子边缘检测计算紫外光斑面积判断是否发生放电故障。针对红外故障图像,本文在红外成像原理的基础上,对红外图像进行超像素分割及HSV空间颜色提取,对应用卷积神经网络对红外故障图像故障区域检测进行理论上的研究。 关键词:红外成像紫外成像图像处理

ABSTRACT With the increasing scale of China's power grid, the operation of various types of substation equipment is one of the most important factors to promote the safe and efficient operation. The popularization of the on-line condition monitoring system for all kinds of transformer equipment is becoming more and more popular. Research on image feature based automatic fault recognition of power equipment is of great significance. In this paper, various types of main power equipment, the study of various types of substation equipment fault identification and classification of image features, as well as infrared and ultraviolet image features based on fault identification method. For ultraviolet discharge imaging technique to image processing and feature extraction, this paper from the basic principle of UV imaging technology of on the explanation of the ultraviolet discharge picture characteristics based and discharge on the UV image using grayscale preprocessing and application of median filtering method of image in noise reduction. And through the Canny operator edge detection to determine whether the area of the UV spot to determine whether the discharge fault. Aiming at the

红外热成像检测技术的应用和展望

红外热成像检测技术的应用和展望 摘要:无损检测,是指在不会对材料或元件的有效性或可靠性造成损害的前提下,对其内部的异性结构(缺陷或损伤)进行探测、定位、识别及测量的一种实用性技术。红外热成像技术是在红外探测器、微电子和计算机技术的基础上发展起来的,属于综合性高新技术,该技术正朝着快速扫描、非致冷、焦平面阵列式接收、计算机图像处理的方向发展,利用便携式笔记本电脑控制的系统正日趋完善。 关键词:无损检测;热成像技术;应用;发展趋势

红外热成像无损检测技术(又称红外热波无损检测技术),是一门跨学科的技术,它的研究和应用,对提高航空航天器,多种军、民用工业设备的安全可靠性具有重要意义。1.红外热成像检测技术的原理 红外热成像无损检测技术的基本原理是利用被检物的不连续性缺陷对热传导性能的影响,使得物体表面温度不一致,即物体表面的局部区域产生温度梯度,导致物体表面红外辐射能力发生差异。借助红外热像仪探测被检物的辐射分布,通过形成的热像图序列就可推断出内部缺陷情况。 从理论上分析可知,材料或构件因内部缺陷将导致局部力学性能的强度改变,由于材料内部结构的不连续性,这种缺陷将引起材料或构件的热传导不连续,致使材料或构件的温度梯度不同,因而显现出的红外热图像也有所不同。通过研究被检测材料的内部缺陷及结构力学性能,找出其热传导特性与红外热图像之间的关系和机理,根据显示图像的温度梯度就可以确定缺陷的位置和范围,由温度梯度随时间变化的速率可以确定缺陷的深度。 采用红外热成像技术进行检测的特点是不受材料的几何结构及材质的限制,可以实现非接触、大面积的检测。 2.红外热成像检测技术的分类 根据探测方式不同,红外热成像检测技术可划分为透射式和反射式,其中反射式更便于使用;根据引起温差的方式不同,可划分为主动式和被动式。 主动式红外热成像检测技术可以对物体表面进行快速、准确的检测,并具有直观、非接触、单次检测面积大等特点。根据主动式激励源不同,主要划分脉冲红外热成像检测技术、锁相红外热成像检测技术和超声红外热成像检测技术等。 2.1脉冲红外热成像检测技术 脉冲红外热成像技术是一种集光、机、电为一体的非接触式无损检测方法,也是目前研究最多和最成熟的方法之一。工作原理如图1所示:以高能脉冲闪光灯作为激励热源,热流在被测构件内部传导过程中,若构件内部存在缺陷或损伤,则使得物体内部热分布将存在不连续性结构,从而导致其缺陷或损伤处的表面温度与无缺陷或损伤处有明显不同。 图1冲红外热成像检测技术的工作原理 脉冲红外热成像检测方式虽然简单实用,但是也存在着一些缺点:适于检测平板类构件,对于复杂结构构件检测存在困难;对热源的均匀性要求非常高;检测构件厚度有限,

电力设备在线监测系统概述

电力设备在线监测系统概述 宁波智电电力科技有限公司邓立林 电力设备在线监测系统由容性设备绝缘在线监测系统、避雷器绝缘在线监测系统、断路器在线监测系统组成,系统涵盖了变电站主要电气设备绝缘状态参数的监测,监测参量多、功能齐全。系统也可以灵活配置,由其中的一套或两套装置组成,必要时也可选配变压器油色谱监测系统。 1、系统集成: 通过工控机及系统集成软件,对各监控装置的动态参数进行 集成,建立变电站设备状态综合数据库,自动生成设备状态参数报表和变化趋势曲线,对设备状态的历史参数进行“横比”缺, 趋势分析和相对比较相结合,实现设备状态的初步诊断,为专家诊断系统提供开放性平台,通过网络,现设备的远程/现场状态 监测、诊断和评估。 2、系统特点 ◆配置灵活,扩展性好,功能齐全,性能优异 ◆测量准确,数据可靠,安装简便,维护简单 3、真空断路器在线监测系统 ZD-1000型断路器综合在线监测装置包括一套或多套断路器 安装单元、一个共同的服务器,通过现场总线与后台连接。断路器单元部分包括若干个传感器,一个或多个监测器,一个通信总

线转换器,支持多种标准通信协议。 系统能实时采集断路器运行数据,及时获得断路器的运行状态。 通过对断路器运行状态的分析,及时发现设备所存在的问题,有效排除故障,保证设备的正常运行,从而提高设备运行的可靠稳定性。 3.1、监测参数 1、分合闸波形、速度、时间、超程、开距、弹跳、同期; 2、线圈电流、电压、铁芯动作时间、功率; 3、电机电流、电压、功率; 4、触头温度; 5、参数的报警、警报功能; 6、监测参数统计、趋势分析。 4、容性设备绝缘在线监测系统 容性设备绝缘在线监测装置适用于110kV~500kV电压等级的 主变套管、电流互感器、电压互感器、耦合电容器的在线监测及故障诊断。 4.1、监测参数 介质损耗、泄漏电流、等值电容、母线电压、环境温度和湿度 4.2、系统功能

中国电力设备检测行业研究-行业基本情况及竞争格局

中国电力设备检测行业研究-行业基本情况及竞争格局 (一)行业基本情况 1、检测基本概念 检测是指检测机构接受产品生产商或产品用户的委托,综合运用科学方法及专业技术对某种产品的质量、安全、性能、环保等方面进行检测,出具检测报告,从而评定该种产品是否达到政府、行业和用户要求的质量、安全、性能及法规等方面的标准。 根据检测目的的不同,检测可以分为型式检测、认证检测、专业检测、入网检测、验收检测、监督检测、验证性检测、仲裁检测等。 根据检测对象的不同,检测可以分为工业品检测、日用消费品检测、食品检测、建筑建材检测、电子电气产品检测、电力设备检测等。

2、电力设备检测概述 (1)电力系统 电力系统是一个将生产、变换、输送、消费电能的各类设备联系在一起的有机整体,是一个由多种电力设备组成的复杂系统。电力系统示意图如下: 如上图所示,电力系统能量传递主要经过发电、输变电、配电、用电四大环节,主要电气设备可以划分为一次设备和二次设备两大类,具体如下: ①电力系统一次设备 电力系统一次设备将自然界的各种能源通过发电动力装置转化成电能,再

经输电、变电和配电环节将电能供应到各用户,包括发电机、变压器、母线、输电线路、断路器、隔离开关、电抗器、电动机等电气设备。 ②电力系统二次设备 电力系统二次设备对一次设备进行监测、控制、调节、保护,并为运行、维护人员提供运行工况或生产指挥信号,包括通信信息系统、调度和管理系统、继电保护设备/自动化监控设备、电能计量系统、电源及辅助系统、电动汽车充换电系统、微电网控制设备/工业电器等电气设备及系统。 (2)电力设备检测 电力设备检测对电力系统的稳定运行具有重要作用。中国国土面积跨度大、气候环境复杂,电力设备需要面对各类极端环境的考验。与此同时,中国电网向着高电压、长距离、大容量、交直流混联方向发展,电网运行特性更加复杂,安全稳定问题日益突出,对电力设备运行和控制技术也提出了更高的要求。电力设备是保障系统安全稳定运行的第一道防线,一旦发生故障,可能带来极大的停电损失,因此,必须对电力设备进行全方位检测,确保其投入使用后能够保障电力系统的安全稳定运行。

红外检测方法

红外检测方法 红外线的划分 1672年英国著名科学家牛顿首次用三棱镜将太阳光分解为红、橙、黄、绿、青、兰、紫七色,开始了可见光光谱学的研究.英国著名天文学家赫胥尔在研究太阳光谱中各单色光的热效应时,发现最大的热效应是出现在红色光谱以外,从而发现了红外线的存在。英国著名物理学家马克斯威尔在研究电磁理论时,证实了可见光及看不见的红外线,紫外线等均属于电磁波段的一部分,从而把人们的认识统一到电磁波理论中。从波长为数千米的无线电波, 到波长为10-8A ~10-10A(1A=10-4 μm )的宇宙射线均属于电磁波的范围,而可见光谱的波长从0.4~0.76μm 仅占电磁波中极窄的一部波段。红外光谱的波段为0.76~1000μm ,要比可见光波段宽得多。为了研究和应用的方便。根据红外辐射与物质作用时各波长的响应特性和在大气中传输吸收的特性,可把红外线按波长划分为四部分: ①近红外线——波长为0.76~3 μm ; ②中红外线——波长为3~6 μm ; ③远红外线——波长为6~15 μm ; ④超远红外线——波长为15~1000 μm 目前,600 ℃以上的高温红外线仪表多利用近红外波段。600℃以下的中、低温测温仪表面热成像系统多利用中、远红外线波段,而红外线加热装置则主要利用远红外线波段。超远红外线的利用尚在开发研究中。 红外线辐射的基本定理 ①辐射能 Q ——辐射源以电磁波形式所辐射的能量(J)。 ②辐射功率 P ——辐射源在单位时间内向整个半球空间所发射的能量 (w /s)。 ③辐射度M ——辐射源单位面积所发射的功率, ( W/m -2 )。一般,源的表面积A 越大,发射的功率也越多。因此辐射度M 是描述辐射功率P 沿源表面分布的特性。辐射度在某些文献上又称为辐出度或辐射出射度等。 ④光谱辐射度M λ——表示在波长λ处单位波长间隔内,辐射源单位面积所发射的功率。即 单位波长的辐射度, ( W/m 2·μm ),通常辐射源所发出的红外电磁波都是由多种波长成分所组成(全波辐射)。前述的辐射度M 是描述全波辐射的,因此又称为全辐射 度。而光谱辐射度则是描述某一特定波长成分的辐射度。而光谱辐射度则是描述某一特定波长成分的辐射度。 ⑤黑体的概念——黑体是为了研究方便而引入的一种理想物体。它定义为能在任何温度下将辐射到它表面上的任何波长的热辐射能全部吸收;并与其它任何物体相比,在相同温度和相同表面积的情况下其辐射功率为最大的一种物体。黑体辐射可用黑体炉来模拟。对 此,19世纪末叶的物理学家们曾做了大量实验工作,为非黑体辐射的研究奠定了基础。 ⑥比辐射率 ——定义为在相同温度及相同的条件下,实际物体(非黑体)与黑体的辐射度的比值,即: 黑体的辐射度实际物体的辐射度==b M M ε 有的文献还定义了光谱比辐射率 黑体的光谱辐射度实际物体的光谱辐射度== b λλεM M Q P t ?=?P M A ?=?M M λλ?=?

相关主题
文本预览
相关文档 最新文档