当前位置:文档之家› 第二章二次函数专题复习

第二章二次函数专题复习

第二章二次函数专题复习
第二章二次函数专题复习

§2.4二次函数与幂函数

1.二次函数

(1)二次函数解析式的三种形式

①一般式:f(x)=ax2+bx+c(a≠0).

②顶点式:f(x)=a(x-m)2+n(a≠0).

③零点式:f(x)=a(x-x1)(x-x2)(a≠0).

2.幂函数

(1)定义:形如y=xα(α∈R)的函数称为幂函数,其中x是自变量,α是常数.

(2)幂函数的图象比较

(3)

1.判断下面结论是否正确(请在括号中打“√”或“×”)

(1)二次函数y =ax 2+bx +c ,x ∈[a ,b ]的最值一定是4ac -b 2

4a .

( × ) (2)二次函数y =ax 2+bx +c ,x ∈R ,不可能是偶函数. ( × ) (3)幂函数的图象都经过点(1,1)和点(0,0).

( × ) (4)当n >0时,幂函数y =x n 是定义域上的增函数.

( × ) (5)若函数f (x )=(k 2-1)x 2+2x -3在(-∞,2)上单调递增,则k =±2

2.

( × ) (6)已知f (x )=x 2-4x +5,x ∈[0,3),则f (x )max =f (0)=5,f (x )min =f (3)=2. ( × ) 2.(2013·重庆)(3-a )(a +6)(-6≤a ≤3)的最大值为

( )

A .9 B.92 C .3 D.32

2

答案 B

解析 因为(3-a )(a +6)=18-3a -a 2 = -????a +322+814, 所以当a =-32时,(3-a )(a +6)的值最大,最大值为9

2

.

3.函数f (x )=(m -1)x 2+2mx +3为偶函数,则f (x )在区间(-5,-3)上 ( )

A .先减后增

B .先增后减

C .单调递减

D .单调递增

答案 D

解析 由f (x )为偶函数可得m =0,∴f (x )=-x 2+3, ∴f (x )在区间(-5,-3)上单调递增.

4.已知函数y =x 2-2x +3在闭区间[0,m ]上有最大值3,最小值2,则m 的取值范围为________. 答案 [1,2]

解析 y =x 2-2x +3的对称轴为x =1. 当m <1时,y =f (x )在[0,m ]上为减函数. ∴y max =f (0)=3,y min =f (m )=m 2-2m +3=2. ∴m =1,无解.

当1≤m ≤2时,y min =f (1)=12-2×1+3=2, y max =f (0)=3.

当m >2时,y max =f (m )=m 2-2m +3=3, ∴m =0或m =2,无解.∴1≤m ≤2. 5.若幂函数y =2

2

2)33(--+-m m x

m m 的图象不经过原点,则实数m 的值为________.

答案 1或2

解析 由?

????

m 2-3m +3=1

m 2-m -2≤0,解得m =1或2.

经检验m =1或2都适合.

题型一 二次函数的图象和性质

1已知函数f(x)=x2+2ax+3,x∈[-4,6].

(1)当a=-2时,求f(x)的最值;

(2)求实数a的取值范围,使y=f(x)在区间[-4,6]上是单调函数;

(3)当a=1时,求f(|x|)的单调区间.

思维启迪对于(1)和(2)可根据对称轴与区间的关系直接求解,对于(3),应先将函数化为分段函数,再求单调区间,注意函数定义域的限制作用.

解(1)当a=-2时,f(x)=x2-4x+3=(x-2)2-1,由于x∈[-4,6],

∴f(x)在[-4,2]上单调递减,在[2,6]上单调递增,

∴f(x)的最小值是f(2)=-1,又f(-4)=35,f(6)=15,故f(x)的最大值是35.

(2)由于函数f(x)的图象开口向上,对称轴是x=-a,所以要使f(x)在[-4,6]上是单调函数,

应有-a≤-4或-a≥6,即a≤-6或a≥4.

(3)当a=1时,f(x)=x2+2x+3,

∴f(|x|)=x2+2|x|+3,此时定义域为x∈[-6,6],

且f (x )=?

????

x 2+2x +3,x ∈(0,6]

x 2-2x +3,x ∈[-6,0],

∴f (|x |)的单调递增区间是(0,6], 单调递减区间是[-6,0].

思维升华 (1)二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴定区间动,不论哪种类型,解决的关键是考查对称轴与区间的关系,当含有参数时,要依据对称轴与区间的关系进行分类讨论;(2)二次函数的单调性问题则主要依据二次函数图象的对称轴进行分析讨论求解.

(1)二次函数的图象过点(0,1),对称轴为x

=2,最小值为-1,则它的解析式是________. 答案 y =1

2

(x -2)2-1

(2)若函数f (x )=2x 2+mx -1在区间[-1,+∞)上递增,则f (-1)的取值范围是_

___________. 答案 (-∞,-3]

解析 ∵抛物线开口向上,对称轴为x =-m

4

∴-m

4≤-1,∴m ≥4.

又f (-1)=1-m ≤-3,∴f (-1)∈(-∞,-3]. 题型二 二次函数的应用

2已知函数f(x)=ax2+bx+1(a,b∈R),x∈R.

(1)若函数f(x)的最小值为f(-1)=0,求f(x)的解析式,并写出单调区间;

(2)在(1)的条件下,f(x)>x+k在区间[-3,-1]上恒成立,试求k的范围.

思维启迪利用f(x)的最小值为f(-1)=0可列两个方程求出a、b;恒成立问题可以通过求函数最值解决.

解(1)由题意有f(-1)=a-b+1=0,

且-b

2a=-1,∴a=1,b=2.

∴f(x)=x2+2x+1,单调减区间为(-∞,-1],

单调增区间为[-1,+∞).

(2)f(x)>x+k在区间[-3,-1]上恒成立,

转化为x2+x+1>k在区间[-3,-1]上恒成立.

设g(x)=x2+x+1,x∈[-3,-1],则g(x)在[-3,-1]上递减.

∴g(x)min=g(-1)=1.

∴k<1,即k的取值范围为(-∞,1).

思维升华有关二次函数的问题,数形结合,密切联系图象是探求解题思路的有效方法.用函数思想研究方程、不等式(尤其是恒成立)问题是高考命题的热点.

已知函数f(x)=x2+2ax+2,x∈[-5,5].

(1)当a=-1时,求函数f(x)的最大值和最小值;

(2)求实数a的取值范围,使y=f(x)在区间[-5,5]上是单调函数.

解(1)当a=-1时,f(x)=x2-2x+2=(x-1)2+1,x∈[-5,5],

所以当x=1时,f(x)取得最小值1;

当x=-5时,f(x)取得最大值37.

(2)函数f(x)=(x+a)2+2-a2的图象的对称轴为直线x=-a,

因为y=f(x)在区间[-5,5]上是单调函数,

所以-a≤-5或-a≥5,即a≤-5或a≥5.

故a的取值范围是(-∞,-5]∪[5,+∞).

题型三幂函数的图象和性质

3

(1)已知幂函数f (x )=

n

n

x n n 322

)22(--+(n ∈Z )的图象关于y 轴对称,且在(0,+∞)上是减函数,则n 的值为

( )

A .-3

B .1

C .2

D .1或2

(2)若(2m +1)2

1 >(m 2+m -1) 2

1,则实数m 的取值范围是

( )

A.? ????-∞,-5-12

B.????

??5-12,+∞

C .(-1,2) D.????

?

?5-12,2

思维启迪 (1)由幂函数的定义可得n 2+2n -2=1,再利用f (x )的单调性、对称性求n ; (2)构造函数y =x 2

1,利用函数单调性求m 范围. 答案 (1)B (2)D

解析 (1)由于f (x )为幂函数,所以n 2+2n -2=1, 解得n =1或n =-3,经检验只有n =1适合题意,故选B.

(2)因为函数y =x 2

1的定义域为[0,+∞), 且在定义域内为增函数,

所以不等式等价于????

?

2m +1≥0,m 2+m -1≥0,

2m +1>m 2+m -1.

解2m +1≥0,得m ≥-1

2

解m 2+m -1≥0,得m ≤-5-12或m ≥5-1

2.

解2m +1>m 2+m -1,得-1

综上5-12

≤m <2.

思维升华 (1)幂函数解析式一定要设为y =x α (α为常数的形式);(2)可以借助幂函数的图象理解函数的对称性、单调性.

已知幂函数f (x )=1

2

)(-+m m

x

(m ∈N *)

(1)试确定该函数的定义域,并指明该函数在其定义域上的单调性;

(2)若该函数还经过点(2,2),试确定m 的值,并求满足条件f (2-a )>f (a -1)的实数a 的取值范围.

解 (1)m 2+m =m (m +1),m ∈N *, 而m 与m +1中必有一个为偶数, ∴m (m +1)为偶数.

∴函数f (x )= (m ∈N *)的定义域为[0,+∞),并且在定义域上为增函数. (2)∵函数f (x )经过点(2,2), ∴2=,即22

1=1

2)(2

-+m m .

∴m 2+m =2.解得m =1或m =-2. 又∵m ∈N *,∴m =1.∴f (x )=x 2

1.

由f (2-a )>f (a -1)得????

?

2-a ≥0,a -1≥0

2-a >a -1.

解得1≤a <32.∴a 的取值范围为[1,3

2

).

分类讨论思想在函数中的应用

典例:(12分)已知函数f (x )=ax 2-|x |+2a -1(a 为实常数). (1)若a =1,作出函数f (x )的图象;

(2)设f (x )在区间[1,2]上的最小值为g (a ),求g (a )的表达式.

思维启迪 (1)因f (x )的表达式中含|x |,故应分类讨论,将原表达式化为分段函数的形式,然后作图.

(2)因a ∈R ,而a 的取值决定f (x )的表现形式,或为直线或为抛物线,若为抛物线又分为开口向上和向下两种情况,故应分类讨论解决. 规范解答 解

(1)当a =1时,

f (x )=x 2-|x |+1 =?

????

x 2+x +1,x <0x 2-x +1,x ≥0.[3分] 作图(如右图所示)[5分]

(2)当x ∈[1,2]时,f (x )=ax 2-x +2a -1.[6分] 若a =0,则f (x )=-x -1在区间[1,2]上是减函数, g (a )=f (2)=-3.[7分] 若a ≠0,

则f (x )=a ????x -12a 2+2a -1

4a

-1, f (x )图象的对称轴是直线x =1

2a .

当a <0时,f (x )在区间[1,2]上是减函数,

g (a )=f (2)=6a -3.

当0<12a <1,即a >1

2时,f (x )在区间[1,2]上是增函数,

g (a )=f (1)=3a -2. 当1≤12a ≤2,即14≤a ≤1

2

时,

g (a )=f ????12a =2a -1

4a -1. 当12a >2,即0

4时,f (x )在区间[1,2]上是减函数, g (a )=f (2)=6a -3.[11分]

综上可得,g (a )=?????

6a -3, a <

1

4

2a -14a -1, 14≤a ≤1

2.

3a -2, a >12

[12分]

温馨提醒 本题解法充分体现了分类讨论的数学思想方法,在二次函数最值问题的讨论中,一是要对二次项系数进行讨论,二是要对对称轴进行讨论.在分类讨论时要遵循分类的原则:一是分类的标准要一致,二是分类时要做到不重不漏,三是能不分类的要尽量避免分类,绝不无原则的分类讨论.

方法与技巧

1.二次函数、二次方程、二次不等式间相互转化的一般规律:

(1)在研究一元二次方程根的分布问题时,常借助于二次函数的图象数形结合来解,一般从:①开口方向;②对称轴位置;③判别式;④端点函数值符号四个方面分析. (2)在研究一元二次不等式的有关问题时,一般需借助于二次函数的图象、性质求解. 2.幂函数y =x α(α∈R )图象的特征

α>0时,图象过原点和(1,1),在第一象限的图象上升;α<0时,图象不过原点,在第一象限的图象下降,反之也成立. 失误与防范

1.对于函数y =ax 2+bx +c ,要认为它是二次函数,就必须满足a ≠0,当题目条件中未说明a ≠0时,就要讨论a =0和a ≠0两种情况.

2.幂函数的图象一定会出现在第一象限内,一定不会出现在第四象限,至于是否出现在第二、三象限内,要看函数的奇偶性;幂函数的图象最多只能同时出现在两个象限内;如果幂函数图象与坐标轴相交,则交点一定是原点.

A组专项基础训练

一、选择题

1.若f(x)=x2-ax+1有负值,则实数a的取值范围是() A.a≤-2 B.-2

C.a>2或a<-2 D.1

答案 C

解析∵f(x)=x2-ax+1有负值,

∴Δ=a2-4>0,则a>2或a<-2.

2.一次函数y=ax+b与二次函数y=ax2+bx+c在同一坐标系中的图象大致是()

答案 C

解析 若a >0,则一次函数y =ax +b 为增函数,二次函数y =ax 2+bx +c 的开口向上,故可排除A ;

若a <0,一次函数y =ax +b 为减函数,二次函数y =ax 2+bx +c 开口向下,故可排除D ;

对于选项B ,看直线可知a >0,b >0,从而-b

2a <0,而二次函数的对称轴在y 轴的右侧,

故应排除B ,因此选C.

3.如果函数f (x )=x 2+bx +c 对任意的实数x ,都有f (1+x )=f (-x ),那么 ( )

A .f (-2)

B .f (0)

C .f (2)

D .f (0)

解析 由f (1+x )=f (-x )知f (x )的图象关于x =1

2对称,

又抛物线开口向上,结合图象(图略)可知f (0)

4.设二次函数f (x )=ax 2-2ax +c 在区间[0,1]上单调递减,且f (m )≤f (0),则实数m 的取值范围是

( ) A .(-∞,0]

B .[2,+∞)

C .(-∞,0]∪[2,+∞)

D .[0,2]

答案 D

解析 二次函数f (x )=ax 2-2ax +c 在区间[0,1]上单调递减,则a ≠0,f ′(x )=2a (x -1)<0,x ∈[0,1],

所以a >0,即函数图象的开口向上,对称轴是直线x =1. 所以f (0)=f (2),则当f (m )≤f (0)时,有0≤m ≤2.

5.已知f (x )=x 2

1,若0

( )

A .f (a )

b

)

B .f (1a )

b

)

C .f (a )

a

)

D .f (1a )

b )

答案 C

解析 因为函数f (x )=x 2

1在(0,+∞)上是增函数,

又0

a ,故选C.

二、填空题

6.若函数y =mx 2+x +5在[-2,+∞)上是增函数,则m 的取值范围是________.

答案 0≤m ≤1

4

解析 m =0时,函数在给定区间上是增函数;

m ≠0时,函数是二次函数,对称轴为x =-1

2m

≤-2,

由题意知m >0,∴0

4

.

7.若方程x 2-11x +30+a =0的两根均大于5,则实数a 的取值范围是________.

答案 0

4

解析 令f (x )=x 2-11x +30+a .

结合图象有?

????

Δ≥0f (5)>0,∴0

4.

8.当α∈?

???

??

-1,12,1,3时,幂函数y =x α的图象不可能经过第________象限.

答案 二、四

解析 当α=-1、1、3时,y =x α的图象经过第一、三象限;当α=1

2时,y =x α的图象经

过第一象限. 三、解答题

9.已知二次函数f (x )的二次项系数为a ,且不等式f (x )>-2x 的解集为(1,3).若方程f (x )+6a =0有两个相等的根,求f (x )的单调区间. 解 ∵f (x )+2x >0的解集为(1,3), 设f (x )+2x =a (x -1)(x -3),且a <0,

∴f (x )=a (x -1)(x -3)-2x =ax 2-(2+4a )x +3a .① 由方程f (x )+6a =0得ax 2-(2+4a )x +9a =0.② ∵方程②有两个相等的根,

∴Δ=[-(2+4a )]2-4a ·9a =0,

解得a =1或a =-1

5

.由于a <0,舍去a =1.

将a =-1

5代入①式得

f (x )=-15x 2-65x -35=-15(x +3)2+6

5,

∴函数f (x )的单调增区间是(-∞,-3], 单调减区间是[-3,+∞).

10.已知函数f (x )=-x 2+2ax +1-a 在x ∈[0,1]时有最大值2,求a 的值. 解 函数f (x )=-x 2+2ax +1-a =-(x -a )2+a 2-a +1, 对称轴方程为x =a .

(1)当a <0时,f (x )max =f (0)=1-a , ∴1-a =2,∴a =-1.

(2)当0≤a ≤1时,f (x )max =a 2-a +1, ∴a 2-a +1=2,∴a 2-a -1=0, ∴a =1±52(舍).

(3)当a >1时,f (x )max =f (1)=a ,∴a =2. 综上可知,a =-1或a =2.

B 组 专项能力提升

1.设函数f (x )=?????

(12)x -7,x <0,

x ,x ≥0,若f (a )<1,则实数a 的取值范围是

( )

A .(-∞,-3)

B .(1,+∞)

C .(-3,1)

D .(-∞,-3)∪(1,+∞)

答案 C

解析 当a <0时,(1

2)a -7<1,

即2-

a <23,∴a >-3,∴-3

2.已知函数f (x )=ax 2+bx +c ,且a >b >c ,a +b +c =0,集合A ={m |f (m )<0},则( ) A .?m ∈A ,都有f (m +3)>0 B .?m ∈A ,都有f (m +3)<0 C .?m 0∈A ,使得f (m 0+3)=0 D .?m 0∈A ,使得f (m 0+3)<0

答案 A

解析 由a >b >c ,a +b +c =0可知a >0,c <0, 且f (1)=0,f (0)=c <0,

即1是方程ax 2+bx +c =0的一个根, 当x >1时,f (x )>0.

由a >b ,得1>b

a

设方程ax 2+bx +c =0的另一个根为x 1,

则x 1+1=-b

a >-1,即x 1>-2,

由f (m )<0可得-2

由抛物线的图象可知,f (m +3)>0,选A.

3.已知函数f (x )=x 2-2ax +2a +4的定义域为R ,值域为[1,+∞),则a 的值域为________. 答案 -1或3

解析 由于函数f (x )的值域为[1,+∞), 所以f (x )min =1且Δ<0.∴-5+1

当x ∈R 时,f (x )min =f (a )=-a 2+2a +4=1, 即a 2-2a -3=0, 解得a =3或a =-1.

4.已知函数f (x )=3ax 2+2bx +c ,a +b +c =0,且f (0)·f (1)>0.

(1)求证:-2

a <-1;

(2)若x 1、x 2是方程f (x )=0的两个实根,求|x 1-x 2|的取值范围. (1)证明 当a =0时,f (0)=c ,f (1)=2b +c ,又b +c =0, 则f (0)·f (1)=c (2b +c )=-c 2<0与已知矛盾, 因而a ≠0,

则f (0)·f (1)=c (3a +2b +c )=-(a +b )(2a +b )>0 即(b a +1)(b a +2)<0,从而-2

a <-1. (2)解 x 1、x 2是方程f (x )=0的两个实根,

则x 1+x 2=-2b

3a ,x 1x 2=-a +b 3a ,

那么(x 1-x 2)2=(x 1+x 2)2-4x 1x 2 =(-2b

3a )2+4×a +b 3a =49·(b a )2+4b 3a +43

=49(b a +32)2+13

. ∵-2

9

33≤|x 1-x 2|<23

, 即|x 1-x 2|的取值范围是[

33,2

3

). 5.已知函数f (x )=ax 2+bx +c (a >0,b ∈R ,c ∈R ).

(1)若函数f (x )的最小值是f (-1)=0,且c =1,F (x )=????

?

f (x ),x >0,-f (x ),x <0,

求F (2)+F (-2)的值;

(2)若a =1,c =0,且|f (x )|≤1在区间(0,1]上恒成立,试求b 的取值范围.

解 (1)由已知c =1,a -b +c =0,且-b

2a =-1,

解得a =1,b =2.

∴f (x )=(x +1)2.

∴F (x )=?

???

?

(x +1)2,x >0,-(x +1)2,x <0. ∴F (2)+F (-2)=(2+1)2+[-(-2+1)2]=8.

(2)f (x )=x 2+bx ,原命题等价于-1≤x 2+bx ≤1在(0,1]上恒成立,

即b ≤1x -x 且b ≥-1

x -x 在(0,1]上恒成立.

又1x -x 的最小值为0,-1

x -x 的最大值为-2. ∴-2≤b ≤0.

故b 的取值范围是[-2,0].

二次函数的几何最值问题

二次函数与几何图形结合 ---探究面积最值问题 〖方法总结〗: 在解答面积最值存在性问题时,具体方法如下: ①根据题意,结合函数关系式设出所求点的坐标,用其表示出所求图形的线段长; ②观察所求图形的面积能不能直接利用面积公式求出,若能,根据几何图形面积公式得到点的坐标或线段长关于面积的二次函数关系式,若所求图形的面积不能直接利用面积公式求出时,则需将所求图形分割成几个可直接利用面积公式计算的图形,进行求解; ③结合已知条件和函数图象性质求出面积取最大值时的点坐标或字母范围。 (2014?达州)如图,在平面直角坐标系中,己知点O(0,0),A(5,0),B(4,4). (1)求过O、B、A三点的抛物线的解析式. (2)在第一象限的抛物线上存在点M,使以O、A、B、M为顶点的四边形面积最大,求点M的坐标. (3)作直线x=m交抛物线于点P,交线段OB于点Q,当△PQB为等腰三角形时,求m的值.

(2014自贡)如图,已知抛物线c x ax y +- =232与x 轴相交于A 、B 两点,并与直线221-=x y 交于B 、C 两点,其中点C 是直线22 1-=x y 与y 轴的交点,连接AC . (1)求抛物线的解析式; (2)证明:△ABC 为直角三角形; (3)△ABC 内部能否截出面积最大的矩形DEFG ?(顶点D 、E 、F 、G 在△ABC 各边上)若能,求出最大面积;若不能,请说明理由.

(2014黔西南州)(16分)如图所示,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(﹣3,0)、B(1,0)、C(0,3)三点,其顶点为D,连接AD,点P是线段AD上一个动点(不与A、D重合),过点P作y轴的垂线,垂足点为E,连接AE. (1)求抛物线的函数解析式,并写出顶点D的坐标; (2)如果P点的坐标为(x,y),△PAE的面积为S,求S与x之间的函数关系式,直接写出自变量x的取值范围,并求出S的最大值; (3)在(2)的条件下,当S取到最大值时,过点P作x轴的垂线,垂足为F,连接EF,把△PEF沿直线EF折叠,点P的对应点为点P′,求出P′的坐标,并判断P′是否在该抛物线上.

二次函数最值问题及解题技巧(个人整理)

一、二次函数线段最值问题 1、平行于x轴的线段最值问题 1)首先表示出线段两个端点的坐标 2)用右侧端点的横坐标减去左侧端点的横坐标 3)得到一个线段长关于自变量的二次函数 4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 2、平行于y轴的线段最值问题 1)首先表示出线段两个端点的坐标 2)用上面端点的纵坐标减去下面端点的纵坐标 3)得到一个线段长关于自变量的二次函数解析式 4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 3、既不平行于x轴,又不平行于y轴的线段最值问题 1)以此线段为斜边构造一个直角三角形,并使此直角三角形的两条直角边分别平行于x轴、y轴 2)根据线段两个端点的坐标表示出直角顶点坐标 3)根据“上减下,右减左”分别表示出两直角边长 4)根据勾股定理表示出斜边的平方(即两直角边的平方和) 5)得到一个斜边的平方关于自变量的二次函数 6)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 7)根据所求得的斜边平方的最值求出斜边的最值即可 二、二次函数周长最值问题 1、矩形周长最值问题 1)一般会给出一点落在抛物线上,从这点向两坐标轴引垂线构成一个矩形,求其周长最值 2)可先设此点坐标,点p到x轴、y轴的距离和再乘以2,即为周长 3)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 2、利用两点之间线段最短求三角形周长最值 1)首先判断图形中那些边是定值,哪些边是变量 2)利用二次函数轴对称性及两点之间线段最短找到两条变化的边,并求其和的最小值3)周长最小值即为两条变化的边的和最小值加上不变的边长 三、二次函数面积最值问题 1、规则图形面积最值问题(这里规则图形指三角形必有一边平行于坐标轴,四边形必有一组对边平行于坐标轴) 1)首先表示出所需的边长及高 2)利用求面积公式表示出面积 3)得到一个面积关于自变量的二次函数 4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 2、不规则图形面积最值问题 1)分割。将已有的不规则图形经过分割后得到几个规则图形 2)再分别表示出分割后的几个规则图形面积,求和 3)得到一个面积关于自变量的二次函数 4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 或1)利用大减小,不规则图形的面积可由规则的图形面积减去一个或几个规则小图形的面积来得到

二次函数最值问题解答题专项练习60题(有答案)

二次函数最值专项练习60题 1.画出抛物线y=4(x﹣3)2+2的大致图象,写出它的最值和增减性. 2.如图,二次函数y=ax2+bx+c的图象经过A(﹣1,0)、B(2,3)两点,求出此二次函数的解析式;并通过配方法求出此抛物线的对称轴和二次函数的最大值. 3.已知二次函数y=x2﹣x﹣2及实数a>﹣2,求 (1)函数在一2<x≤a的最小值; (2)函数在a≤x≤a+2的最小值. 4.已知函数y=x2+2ax+a2﹣1在0≤x≤3范围内有最大值24最小值3,求实数a的值. 5.我们知道任何实数的平方一定是一个非负数,即:(a+b)2≥0,且﹣(a+b)2≤0.据此,我们可以得到下面的推理: ∵x2+2x+3=(x2+2x+1)+2=(x+1)2+2,而(x+1)2≥0 ∴(x+1)2+2≥2,故x2+2x+3的最小值是2. 试根据以上方法判断代数式3y2﹣6y+11是否存在最大值或最小值?若有,请求出它的最大值或最小值.

6.如图所示,已知平行四边形ABCD的周长为8cm,∠B=30°,若边长AB=x(cm). (1)写出?ABCD的面积y(cm2)与x的函数关系式,并求自变量x的取值范围. (2)当x取什么值时,y的值最大?并求最大值. 7.求函数y=2x2﹣ax+1当0≤x≤1时的最小值. 8.已知m,n是关于x的方程x2﹣2ax+a+6=0的两实根,求y=(m﹣1)2+(n﹣1)2的最小值. 9.当﹣1≤x≤2时,求函数y=f(x)=2x2﹣4ax+a2+2a+2的最小值,并求最小值为﹣1时,a的所有可能的值.10.已知二次函数y=x2﹣6x+m的最小值为1,求m的值.

二次函数培优专项练习

学习必备 欢迎下载 1个单位,所得到的图象对应的二次函数关系式是 2)1(2-+=x y 则原二次函数的解析式为 2.二次函数的图象顶点坐标为(2,1),形状开品与 抛物线y= - 2x 2 相同,这个函数解析式为________。 3.如果函数1)3(2 32 ++-=+-kx x k y k k 是二次函数, 则k 的值是______ 4.已知点11()x y ,,22()x y ,均在抛物线2 1y x =-上,下列说法中正确的是( ) A .若12y y =,则12x x = B .若12x x =-,则12y y =- C .若120x x <<,则12y y > D .若120x x <<,则12y y > 5. 抛物线 c bx x y ++=2 图像向右平移2个单位再向下平移3个单位,所得图像的解析式为 322--=x x y ,则b 、c 的值为 A . b=2, c=2 B. b=2,c=0 C . b= -2,c=-1 D. b= -3, c=2 ★6.抛物线5)43()1(2 2+--++=x m m x m y 以Y 轴为对称轴则。M = 7.二次函数52 -+=a ax y 的图象顶点在Y 轴负半轴上。且函数值有最小值,则m 的取值范围是 8.函数245 (5)21a a y a x x ++=-+-, 当a =_______时, 它是一次函数; 当a =_______时, 它是二次函数. 9.抛物线2 )13(-=x y 当x 时,Y 随X 的增大而增 大 10.抛物线42 ++=ax x y 的顶点在X 轴上,则a 值为 ★11.已知二次函数2 )3(2--=x y ,当X 取1x 和2x 时函数值相等,当X 取1x +2x 时函数值为 12.若二次函数k ax y +=2 ,当X 取X1和X2(21x x ≠) 时函数值相等,则当X 取X1+X2时,函数值为 13.若函数2)3(-=x a y 过(2.9)点,则当X =4 时函数值Y = ★14.若函数k h x y ---=2 )(的顶点在第二象限则, h 0 ,k 0 15.已知二次函数当x=2时Y 有最大值是1.且过(3.0)点求解析式? 16.将121222--=x x y 变为n m x a y +-=2)(的 形式,则n m ?=_____。 ★17. 已知抛物线在X 轴上截得的线段长为6.且顶点 的顶点到x 轴的距离是3, 那么c 的值等于( ) (A )8 (B )14 (C )8或14 (D )-8或-14 19.二次函数y=x 2 -(12-k)x+12,当x>1时,y 随着x 的增大而增大,当x<1时,y 随着x 的增大而减小,则k 的值应取( ) (A )12 (B )11 (C )10 (D )9 20.若0 B.1a < C.1a ≥ D.1a ≤ 30.抛物线y= (k 2-2)x 2 +m-4kx 的对称轴是直线x=2,且它的最低点在直线y= - 2 1 +2上,求函数解析式。 31.已知二次函数图象与x 轴交点(2,0)(-1,0)与y 轴交点是(0,-1)求解析式及顶点坐标。 32.y= ax 2 +bx+c 图象与x 轴交于A 、B 与y 轴交于C ,OA=2,OB=1 ,OC=1,求函数解析式 32.抛物线562 -+-=x x y 与x 轴交点为A ,B ,(A 在B 左侧)顶点为C.与Y 轴交于点D (1)求△ABC 的面积。 (2)若在抛物线上有一点M ,使△ABM 的面积是△ABC 的面积的2倍。求M 点坐标(得分点的把握) (3)在该抛物线的对称轴上是否存在点Q ,使得 △QAC 的周长最小?若存在,求出Q 点的坐标;若不存在,请说明理由. 4)在抛物线上是否存在一点P ,使四边形PBAC 是等腰 梯形,若存在,求出P 点的坐标;若不存在,请说明理由

二次函数培优专题一(图像与性质)

二次函数培优专题一(图像和性质)姓名: 一:填空题: 1.若y =(2-m )2 3 m x -是二次函数,且开口向上,则m 的值为__________. 2.抛物线y =x 2+8x -4与直线x =4的交点坐标是__________. 3.若抛物线y =(k +2)x 2+(k -2)x +(k 2+k -2)经过原点,则k =________. 4.已知点P (a ,m )和Q (b ,m )是抛物线y =2x 2+4x -3上的两个不同点,则a +b =_____. 5.函数y =mx 2+x -2m (m 是常数),图象与x 轴的交点有_____个. 二、选择题: 6.如果反比例函数y =k x 的图象如图4所示,那么二次函数y =kx 2-k 2x -1的图象大致为( ) 7.函数在同一直角坐标系内的图象大致是 ( ) 8.二次函数y =x 2-(12-k )x +12,当x >1时,y 随着x 的增大而增大,当x <1时,y 随着x 的增大而减小,则k 的值应取( ).A .12 B .11 C .10 D .9 9.如果抛物线y =x 2-6x +c -2的顶点到x 轴的距离是3,那么c 的值等于( ). A .8 B .14 C .8或14 D .-8或-14 10.若0

二次函数最值知识点总结典型例题及习题

必修一二次函数在闭区间上的最值 一、 知识要点: 一元二次函数的区间最值问题,核心是函数对称轴与给定区间的相对位置关系的讨论。一般分为:对称轴在区间的左边,中间,右边三种情况. 设f x ax bx c a ()()=++≠2 0,求f x ()在x m n ∈[],上的最大值与最小值。 分析:将f x ()配方,得顶点为--?? ???b a ac b a 2442,、对称轴为x b a =-2 当a >0时,它的图象是开口向上的抛物线,数形结合可得在[m ,n]上f x ()的最值: (1)当[] -∈b a m n 2,时,f x ()的最小值是f b a ac b a f x -?? ???=-2442,()的最大值是f m f n ()()、中的较大者。 (2)当[]-?b a m n 2,时 若-

培优二次函数辅导专题训练及答案解析

一、二次函数真题与模拟题分类汇编(难题易错题) 1.已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(﹣2,0),点P是线段AB上方抛物线上的一个动点. (1)求抛物线的解析式; (2)当点P运动到什么位置时,△PAB的面积有最大值? (3)过点P作x轴的垂线,交线段AB于点D,再过点P做PE∥x轴交抛物线于点E,连结DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由. 【答案】(1)抛物线解析式为y=﹣1 2 x2+2x+6;(2)当t=3时,△PAB的面积有最大值; (3)点P(4,6). 【解析】 【分析】(1)利用待定系数法进行求解即可得; (2)作PM⊥OB与点M,交AB于点N,作AG⊥PM,先求出直线AB解析式为y=﹣x+6, 设P(t,﹣1 2 t2+2t+6),则N(t,﹣t+6),由 S△PAB=S△PAN+S△PBN=1 2 PN?AG+ 1 2 PN?BM= 1 2 PN?OB列出关于t的函数表达式,利用二次函数 的性质求解可得; (3)由PH⊥OB知DH∥AO,据此由OA=OB=6得∠BDH=∠BAO=45°,结合∠DPE=90°知若△PDE为等腰直角三角形,则∠EDP=45°,从而得出点E与点A重合,求出y=6时x的值即可得出答案. 【详解】(1)∵抛物线过点B(6,0)、C(﹣2,0), ∴设抛物线解析式为y=a(x﹣6)(x+2), 将点A(0,6)代入,得:﹣12a=6, 解得:a=﹣1 2 , 所以抛物线解析式为y=﹣1 2 (x﹣6)(x+2)=﹣ 1 2 x2+2x+6; (2)如图1,过点P作PM⊥OB与点M,交AB于点N,作AG⊥PM于点G,

(完整版)二次函数的最值问题

典型中考题(有关二次函数的最值) 屠园实验周前猛 一、选择题 1.已知二次函数y=a(x-1)2+b有最小值–1,则a与b之间的大小关( ) A. ab D不能确定 答案:C 2.当-2≤x≤l时,二次函数 y=-(x-m)2+m2+1有最大值4,则实数m的值为() A、- 7 4 B、3或-3 C、2或-3D2或-3或- 7 4 答案:C ∵当-2≤x≤l时,二次函数 y=-(x-m)2+m2+1有最大值4,∴二次函数在-2≤x≤l上可能的取值是x=-2或x=1或x=m. 当x=-2时,由y=-(x-m)2+m2+1解得m= - 7 4 , 2 765 y x 416 ?? =-++ ? ?? 此时,它 在-2≤x≤l的最大值是65 16 ,与题意不符. 当x=1时,由y=-(x-m)2+m2+1解得m=2 ,此时y=-(x-2)2+5 ,它在-2≤x≤l的最大值是4,与题意相符. 当x= m时,由4=-(x-m)2+m2+1解得m=3m=3y=-(x+3)2+4.它在-2≤x≤l的最大值是4,与题意相符;当3,y=-(x-3)2+4它在-2≤x≤l在x=1处取得,最大值小于4,与题意不符. 综上所述,实数m的值为2或-3. 故选C. 3.已知0≤x≤1 2 ,那么函数y=-2x2+8x-6的最大值是() A -10.5 B.2 C . -2.5 D. -6 答案:C

解:∵y=-2x2+8x-6=-2(x-2)2+2.∴该抛物线的对称轴是x=2,且在x<2上y随x的增大而 增大.又∵0≤x≤1 2 ,∴当x= 1 2 时,y取最大值,y最大=-2( 1 2 -2)2+2=-2.5.故选:C. 4、已知关于x的函数. 下列结论: ①存在函数,其图像经过(1,0)点; ②函数图像与坐标轴总有三个不同的交点; ③当时,不是y随x的增大而增大就是y随x的增大而减小; ④若函数有最大值,则最大值必为正数,若函数有最小值,则最小值必为负数。 真确的个数是() A,1个B、2个 C 3个D、4个 答案:B 分析:①将(1,0)点代入函数,解出k的值即可作出判断; ②首先考虑,函数为一次函数的情况,从而可判断为假; ③根据二次函数的增减性,即可作出判断; ④当k=0时,函数为一次函数,无最大之和最小值,当k≠0时,函数为抛物线,求 出顶点的纵坐标表达式,即可作出判断. 解:①真,将(1,0)代入可得:2k-(4k+1)-k+1=0, 解得:k=0.运用方程思想; ②假,反例:k=0时,只有两个交点.运用举反例的方法; ③假,如k=1, b5 -= 2a4 ,当x>1时,先减后增;运用举反例的方法; ④真,当k=0时,函数无最大、最小值; k≠0时,y最= 22 4ac-b24k+1 =- 4a8k , ∴当k>0时,有最小值,最小值为负; 当k<0时,有最大值,最大值为正.运用分类讨论思想. 二、填空题: 1、如图,已知;边长为4的正方形截去一角成为五边形ABCDE,其中AF=2,BF=l,在AB 上的一点P,使矩形PNDM有最大面积,则矩形PNDM的面积最大值是

最新中考数学专题培优:二次函数综合应用(含答案)

2020年中考数学专题培优 二次函数综合应用(含答案) 一、解答题(共有7道小题) 1.如图,直线1y x =+与x 轴教育点A ,切经过点B(4,m)。点C 在y 轴负半轴上,满足OA=OC ,抛物线 () 20y ax bx c a =++≠经过A 、B 、C 三点,且与x 轴的另一交点为D 。 (1)球抛物线的解析式。 (2)在抛物线的对称轴上找一点P ,使PA+ PC 的和最小。求出点P 的坐标。 2.如图,已知二次函数2 2y ax x c = + + 的图象经过点C(0,3),与x 轴分别交于点A ,点B(3, 0).点P 是直线BC 上方的抛物线上一动点. (1)求二次函数 2 2y ax x c = + + 的表达式; (2)连接PO ,PC ,并把△POC 沿y 轴翻折,得到四边形POP′C .若四边形POP′C 为菱形, 请求出此时点P 的坐标; (3)当点P 运动到什么位置时,四边形ACPB 的面积最大?求出此时P 点的坐标和四边形ACPB 的最大面积. 3.如图,已知二次函数 2 = + + y ax bx c 的图象与x 轴相交于A(-1,0),B(3,0)两点,与y 轴相交于点C(0,-3). y x C D B A O x y P B A C O

(1)求这个二次函数的表达式; (2)若P 是第四象限内这个二次函数的图象上任意一点,PH ⊥x 轴于点H ,与BC 交于点M ,连接PC . ①求线段PM 的最大值; ②当△PCM 是以PM 为一腰的等腰三角形时,求点P 的坐标. 4.如图,在平面直角坐标系中,二次函数265=- + - y x x 的图象与x 轴交于A 、B 两点,与 y 轴交于点C ,其顶点为P ,连接PA 、AC 、CP ,过点C 作y 轴的垂线l . (1)求点P ,C 的坐标; (2)直线l 上是否存在点Q ,使△PBQ 的面积等于△PAC 的面积的2倍?若存在,求出点Q 的坐标;若不存在,请说明理由. 5.如图,已知二次函数2 2y ax x c = + + 的图象经过点C(0,3),与x 轴分别交于点A ,点B(3, 0).点P 是直线BC 上方的抛物线上一动点. (1)求二次函数 2 2y ax x c = + + 的表达式; (2)连接PO ,PC ,并把△POC 沿y 轴翻折,得到四边形POP′C .若四边形POP′C 为菱形,请求出此时点P 的坐标; (3)当点P 运动到什么位置时,四边形ACPB 的面积最大?求出此时P 点的坐标和四边形ACPB 的最大面积. y x M C A O B P H y x D B A l C P O x y P B A C O

初中数学二次函数的最值问题专题复习

二次函数的最值问题 二次函数2 (0)y ax bx c a =++≠是初中函数的主要内容,也是高中学习的重要基础.在初中阶段大家已经知道:二次函数在自变量x 取任意实数时的最值情况(当0a >时,函数在2b x a =-处取得最小值244ac b a -,无最大值;当0a <时,函数在2b x a =-处取得最大值2 44ac b a -,无最小值. 本节我们将在这个基础上继续学习当自变量x 在某个范围内取值时,函数的最值问题.同时还将学习二次函数的最值问题在实际生活中的简单应用. 【例1】当22x -≤≤时,求函数2 23y x x =--的最大值和最小值. 分析:作出函数在所给范围的及其对称轴的草图,观察图象的最高点和最低点,由此得到函数的最大值、最小值及函数取到最值时相应自变量x 的值. 解:作出函数的图象.当1x =时,min 4y =-,当2x =-时,max 5y =. 【例2】当12x ≤≤时,求函数21y x x =--+的最大值和最小值. 解:作出函数的图象.当1x =时,min 1y =-,当2x =时,max 5y =-. 由上述两例可以看到,二次函数在自变量x 的给定范围内,对应的图象是抛物线上的一段.那么最高点的纵坐标即为函数的最大值,最低点的纵坐标即为函数的最小值. 根据二次函数对称轴的位置,函数在所给自变量x 的范围的图象形状各异.下面给出一些常见情况: 【例3】当0x ≥时,求函数(2)y x x =--的取值范围. 解:作出函数2(2)2y x x x x =--=-在0x ≥内的图象. 可以看出:当1x =时,min 1y =-,无最大值.

二次函数的最值问题(典型例题)

二次函数的最值问题 【例题精讲】 题面:当1≤x ≤2时,函数y =2x 24ax +a 2+2a +2有最小值2, 求a 的所有可能取值. 【拓展练习】 如图,在平面直角坐标系xOy 中,二次函数23y x bx c = ++的图象与x 轴交于A (1,0)、B (3,0)两点, 顶点为C . (1)求此二次函数解析式; (2)点D 为点C 关于x 轴的对称点,过点A 作直线l :3333 y x =+交BD 于点E ,过点B 作直线BK AD l K :在四边形ABKD 的内部是否存在点P ,使得它到四边形ABKD 四边的距离都相等,若存在,请求出点P 的坐标;若不存在,请说明理由; (3)在(2)的条件下,若M 、N 分别为直线AD 和直线l 上的两个动点,连结DN 、NM 、MK ,求DN NM MK ++和的最小值.

练习一 【例题精讲】 若函数y=4x24ax+a2+1(0≤x≤2)的最小值为3,求a的值. 【拓展练习】 题面:已知:y关于x的函数y=(k1)x22kx+k+2的图象与x轴有交点. (1)求k的取值范围; (2)若x1,x2是函数图象与x轴两个交点的横坐标,且满足(k1)x12+2kx2+k+2= 4x1x2. ①求k的值;②当k≤x≤k+2时,请结合函数图象确定y的最大值和最小值. 练习二 金题精讲 题面:已知函数y=x2+2ax+a21在0≤x≤3范围内有最大值24,最小值3,求实数a的值. 【拓展练习】 题面:当k分别取1,1,2时,函数y=(k1)x2 4x+5k都有最大值吗请写出你的判断,并说明理由;若有,请求出最大值.

二次函数培优经典题

112O x y 培优训练五(二次函数1) 1、如图,平面直角坐标系中,两条抛物线有相同的对称轴,则下列关系正确的是( ) A .m =n ,k >h B .m =n ,k <h C .m >n ,k =h D .m <n ,k =h 2、已知二次函数y =ax 2+bx +c 的图象如图所示,它与x 轴的两个交点分别为(﹣1,0),(3,0).对于下列命题:①b ﹣2a =0;②abc <0;③a ﹣2b +4c <0;④8a +c >0.其中正确的有( ) A . 3个 B . 2个 C . 1个 D . 0个 3、如图,二次函数2y ax bx c =++的图像与y 轴正半轴相交,其顶点坐标 为(1,12 ),下列结论:①0ac <;②0a b +=; ③244ac b a -=;④0a b c ++<.其中正确结论的个数是 A . 1 B . 2 C . 3 D . 4 4、若二次函数c x x y +-=62的图象经过A (-1,y 1)、B (2,y 2)、C (23+,y 3)三点,则关于y 1、y 2、y 3大小关系正确的是 A .y 1>y 2>y 3 B .y 1>y 3>y 2 C .y 2>y 1>y 3 D .y 3>y 1>y 2 5、如图,一次函数)0(1≠+=k n kx y 与二次函数 )0(22≠++=a c bx ax y 的图象相交于A (1-,5)、B (9,2)两点,则关 于x 的不等式c bx ax n kx ++≥+2 的解集为 A 、91≤≤-x B 、91<≤-x C 、91≤<-x D 、1-≤x 或9≥x 6.如图,已知:直线3+-=x y 交x 轴于点A ,交y 轴于点B ,抛物线y=ax 2+bx+c 经过A 、

二次函数与最值问题专题讲座

第四讲 二次函数与最值问题专题讲座 一、考点梳理 考点1:二次函数的解析式 一般式:y=ax 2+bx+c 顶点式:y=a(x+k)2+h 交点式:y=a(x-x 1)(x-x 2) 考点2:二次函数的图象:抛物线 考点3 二次函数的性质:二次函数图像的开口方向;顶点坐标;对称轴方程;最值. 二、题型透视 (一)、填空题 1、(2010 丽水)如图,四边形ABCD 中,∠BAD=∠ACB=90°, AB=AD,AC=4BC,设CD 的长为x ,四边形ABCD 的面积为y ,则y 与x 之间的函数关系式是( ) A 、2252x y = B 、2 25 4x y = C 、252x y = D 、254x y = 2(2010南充)抛物线)0)(3)(1(≠-+=a x x a y 的对称轴是( ) A 、x=1 B 、x=1- C 、x=3- D 、x=3 3、(2010 荆州)若把函数y=x 的图象用E (x ,x )记,函数y=2x+1的图象用E (x ,2x+1)记,……则E (x ,122 +-x x )可以由E (x ,2 x )怎样平移得到?( ) A .向上平移1个单位 B .向下平移1个单位 C .向左平移1个单位 D .向右平移1个单位 4、(2010 咸宁)已知抛物线2y ax bx c =++(a <0)过A (2-,0)、O (0,0)、 B (3-,1y )、C (3,2y )四点,则1y 与2y 的大小关系是 A .1y >2y B .1y 2y = C .1y <2y D .不能确定 5(2010 襄樊)若函数22(2)2x x y x ?+=?? ≤ (x>2) ,则当函数值y =8时,自变量x 的值是( ) A B .4 C 4 D .4 6、(2010 东营)二次函数c bx ax y ++=2 的图形如图所示,则一次函数ac bx y -=与 c b a y +-= 在同一坐标系内的图象大致为( ) 7、(2010 荆门)二次函数y =ax 2+bx +c 的图象如图所示,下列结论错误.. 的是( ) (A)ab <0 (B)ac <0 (C)当x <2时,y 随x 增大而增大;当x >2时,y 随x 增大而减小

培优 易错 难题二次函数辅导专题训练附答案

一、二次函数 真题与模拟题分类汇编(难题易错题) 1.已知抛物线26y x x c =-++. (1)若该抛物线与x 轴有公共点,求c 的取值范围; (Ⅱ)设该抛物线与直线21y x =+交于M ,N 两点,若MN =C 的值; (Ⅲ)点P ,点Q 是抛物线上位于第一象限的不同两点,,PA QB 都垂直于x 轴,垂足分别为A ,B ,若OPA OQB ???,求c 的取值范围. 【答案】(I )9c -;(Ⅱ)2c =-;(Ⅲ)c 的取值范围是21 74 c -<< 【解析】 【分析】 (1) 抛物线与x 轴有公共点,则判别式为非负数,列不等式求解即可; (2)求出二次函数与直线的交点,并根据勾股定理求出MN 的长度,列方程即可求解; (3)由OPA OQB ???可知,P ,Q 两点的坐标特点,设坐标得到设点P 的坐标为(, )m n ,则点Q 的坐标为(,)n m ,代入二次函数,得到n,m 的关系,则只需保证该方程有正根即可求解. 【详解】 解:(I )∵抛物线2 6y x x c =-++与x 轴有交点, ∴一元二次方程260x x c -++=有实根。 240b ac ∴?=-,即264(1)0c -?-?.解得9c - (Ⅱ)根据题意,设()()1122,21,,21M x x N x x ++ 由2621 y x x c y x ?=-++?=+?,消去y ,得2410x x c -+-= ①. 由2 (4)4(1)1240c c ?=---=+>,得3c >-. ∴方程①的解为1222x x == ()()()()2 2 2 21212122121520(3)MN x x x x x x c ∴=-++-+=-=+???? 20(3)20c ∴+=,解得2c =- (Ⅲ)设点P 的坐标为(, )m n ,则点Q 的坐标为(,)n m ,且0, 0,m n m n >>≠, 2266m m c n n n c m ?-++=∴?-++=?,两式相减,得227()0n m m n -+-=,即()(7)0m n m n -+-= 7m n ∴+=,即7n m =- 2770m m c ∴-+-=,其中07m << 由0?,即2 74(1)(7)0c -?-?-,得214 c - .

二次函数最值问题(含答案)

二次函数最值问题 一.选择题(共8小题) 1.如果多项式P=a2+4a+2014,则P的最小值是() A.2010 B.2011 C.2012 D.2013 2.已知二次函数y=x2﹣6x+m的最小值是﹣3,那么m的值等于()A.10 B.4 C.5 D.6 3.若二次函数y=ax2+bx+c的图象开口向下、顶点坐标为(2,﹣3),则此函数有() A.最小值2 B.最小值﹣3 C.最大值2 D.最大值﹣3 4.设x≥0,y≥0,2x+y=6,则u=4x2+3xy+y2﹣6x﹣3y的最大值是()A.B.18 C.20 D.不存在 5.二次函数的图象如图所示,当﹣1≤x≤0时,该函数的最大值是() A.3.125 B.4 C.2 D.0 6.已知二次函数y=(x﹣h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为5,则h的值为() A.1或﹣5 B.﹣1或5 C.1或﹣3 D.1或3 7.二次函数y=﹣(x﹣1)2+5,当m≤x≤n且mn<0时,y的最小值为2m,最大值为2n,则m+n的值为() A.B.2 C.D. 8.如图,抛物线经过A(1,0),B(4,0),C(0,﹣4)三点,点D是直线BC 上方的抛物线上的一个动点,连结DC,DB,则△BCD的面积的最大值是()

A.7 B.7.5 C.8 D.9 二.填空题(共2小题) 9.已知二次函数y=2(x+1)2+1,﹣2≤x≤1,则函数y的最小值是,最大值是. 10.如图,在直角坐标系中,点A(0,a2﹣a)和点B(0,﹣3a﹣5)在y轴上, =6.当线段OM最长时,点M的坐标为. 点M在x轴负半轴上,S △ABM 三.解答题(共3小题) 11.在平面直角坐标系中,O为原点,直线l:x=1,点A(2,0),点E,点F,点M都在直线l上,且点E和点F关于点M对称,直线EA与直线OF交于点P.(Ⅰ)若点M的坐标为(1,﹣1), ①当点F的坐标为(1,1)时,如图,求点P的坐标; ②当点F为直线l上的动点时,记点P(x,y),求y关于x的函数解析式.(Ⅱ)若点M(1,m),点F(1,t),其中t≠0,过点P作PQ⊥l于点Q,当OQ=PQ时,试用含t的式子表示m.

专题五--二次函数的最值问题

专题五 二次函数的最值问题 【要点回顾】 1.二次函数2 (0)y ax bx c a =++≠的最值. 二次函数在自变量x 取任意实数时的最值情况(当0a >时,函数在2b x a =-处取得最小值244ac b a -,无最大值;当0a <时,函数在2b x a =-处取得最大值244ac b a -,无最小值. 2.二次函数最大值或最小值的求法. 第一步确定a 的符号,a >0有最小值,a <0有最大值; 第二步配方求顶点,顶点的纵坐标即为对应的最大值或最小值. 3.求二次函数在某一范围内的最值. 如:2 y ax bx c =++在m x n ≤≤(其中m n <)的最值. 第一步:先通过配方,求出函数图象的对称轴:0x x =; 第二步:讨论: (1)若0a >时求最小值或0a <时求最大值,需分三种情况讨论: ①对称轴小于m 即0x m <,即对称轴在m x n ≤≤的左侧; ②对称轴0m x n ≤≤,即对称轴在m x n ≤≤的内部; ③对称轴大于n 即0x n >,即对称轴在m x n ≤≤的右侧。 (2) 若0a >时求最大值或0a <时求最小值,需分两种情况讨论: ①对称轴02 m n x +≤ ,即对称轴在m x n ≤≤的中点的左侧; ②对称轴02m n x +>,即对称轴在m x n ≤≤的中点的右侧; 说明:求二次函数在某一范围内的最值,要注意对称轴与自变量的取值范围相应位置,具体情况,参考例4。 【例题选讲】 例1求下列函数的最大值或最小值. (1)5322--=x x y ; (2)432 +--=x x y .

同步练习:已知函数1x 2x 2 1y 2++= (1)写出抛物线的开口方向,顶点坐标、对称轴及最值; (2)求抛物线与x 轴、y 轴的交点; (3)观察图象:x 为何值时,y 随x 的增大而增大; (4)观察图象:当x 为何值时,y>0时,当x 为何值时,y=0;当x 为何值时,y<0。 例2 已知函数2 ,2y x x a =-≤≤,其中2a ≥-,求该函数的最大值与最小值,并求出函数取最大值和最小值时所对应的自变量x 的值. 同步练习:当12x ≤≤时,求函数21y x x =--+的最大值和最小值. 例3当0x ≥时,求函数(2)y x x =--的取值范围. 同步练习:已知二次函数,322--=x x y (1)x 为何值时0=y ? (2)x 为何值时0>y ? (3)x 为何值时0

二次函数专题培优(含答案)

二次函数专题复习 一、二次函数概念: 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。 2. 2y ax c =+的性质: 上加下减。 3. ()2 y a x h =-的性质: 左加右减。

4. ()2 y a x h k =-+的性质: 三、二次函数图象的平移 1. 平移步骤: 方法一:⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k , 处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二: ⑴c bx ax y ++=2 沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2 变成 m c bx ax y +++=2(或m c bx ax y -++=2) ⑵c bx ax y ++=2 沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2 变成 c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 四、二次函数()2 y a x h k =-+与2y ax bx c =++的比较 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即2 2424b ac b y a x a a -? ?=++ ??? ,其中2424b ac b h k a a -=-= ,.

二次函数解析式最值问题专题总结

二次函数解析式最值问题1.线段最值 例1:二次函数y=? 2 x+mx+n的图象经过点A(?1,4),B(1,0),y=?2 1 x+b经过点B,且与二次函数y=? 2 x+mx+n 交于点D. (1)求二次函数的表达式; (2)点N是二次函数图象上一点(点N在BD上方),过N作NP⊥x轴,垂足为点P,交BD于点M,求MN 的最大值。 考点:[待定系数法求二次函数解析式, 一次函数的性质, 一次函数图象上点的坐标特征 例2:二次函数y=? 2 x+b x+c的图象与x轴交于A(1,0),且当x=0和x=?2时所对应的函数值相等。(1) 求此二次函数的表达式; (2)设抛物线与x轴的另一交点为点B,与y轴交于点C,在这条抛物线的对称轴上是否存在点D,使得△DAC 的周长最小?如果存在,求出D点的坐标;如果不存在,请说明理由。 (3)设点M在第二象限,且在抛物线上,如果△MBC的面积最大,求此时点M的坐标及△MBC的面积。考点:[抛物线与x轴的交点, 二次函数的最值, 待定系数法求二次函数解析式, 轴对称-最短路线问题]

ax+3ax+c(a>0)与y轴交于C点,与x轴交于A.B两点,A点在B点左侧。点B 例3:已知:如图,抛物线y=2 的坐标为(1,0),OC=3BO. (1)求抛物线的解析式; (2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值。

例5:如图,在平面直角坐标系中,抛物线y=25 4x +bx+c 与y 轴交于点A ,与x 轴交于B(1,0),C(5,0)两点,其对称轴与x 轴交于点M. (1)求抛物线的解析式和对称轴; (2)在抛物线的对称轴上是否存在一点P ,使ΔPAB 的周长最小?若存在,请求出点P 的坐标;若不存在,请说明理由; (3)连接AC ,在直线AC 的下方的抛物线上,是否存在一点N ,使ΔACN 的面积最大?若存在,请求出点N 的坐标;若不存在,请说明理由. 例6:如图,已知抛物线y=2 ax ?3x+c 与y 轴交于点A(0,?4),与x 轴交于点B(4,0),点P 是线段AB 下方抛物线上的一个动点。 (1)求这条抛物线的表达式及其顶点的坐标; (2)当点P 移动到抛物线的什么位置时,∠PAB=90°求出此时点P 的坐标; (3)当点P 从点A 出发,沿线段AB 下方的抛物线向终点B 移动,在移动中,设点P 的横坐标为t ,△PAB 的面积为S ,求S 关于t 的函数表达式,并求t 为何值时S 有最大值,最大值是多少?

二次函数培优专题训练

二次函数培优专题训练 一、实际应用专题 例题1某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,如何定价才能使利润最大? 例题2 小华的爸爸在国际商贸城开专卖店专销某种品牌的计算器,进价12元∕只,售价20元∕只.为了促销,专卖店决定凡是买10只以上的,每多买一只,售价就降低0.10元(例如:某人买20只计算器,于是每只降价0.10×(20-10)=1元,就可以按19元∕只的价格购买),但是最低价为16元∕只.(1)顾客一次至少买多少只,才能以最低价购买? (2)写出当一次购买x只时(x>10),利润y(元)与购买量x(只)之间的函数关系式. (3)星期天,小华来到专卖店勤工俭学,上午做成了两笔生意,一是向顾客甲卖了46只,二是向顾客乙卖了50只,记账时小华发现卖50只反而比卖46只赚的钱少.为了使每次卖得越多赚钱越多,在其他促销条件不变的情况下,最低价16元∕只至少要提高到多少?为什么? 例题3(2010?恩施州)恩施州绿色、富硒产品和特色农产品在国际市场上颇具竞争力,其中香菇远销日本和韩国等地.上市时,外商李经理按市场价格10元/千克在我州收购了2000千克香菇存放入冷库中.据预测,香菇的市场价格每天每千克将上涨0.5元,但冷库存放这批香菇时每天需要支出各种费用合计340元,而且香菇在冷库中最多保存110天,同时,平均每天有6千克的香菇损坏不能出售. (1)若存放x天后,将这批香菇一次性出售,设这批香菇的销售总金额为y元,试写出y与x之间的函数关系式. (2)李经理想获得利润22500元,需将这批香菇存放多少天后出售?(利润=销售总金额-收购成本-各种费用) (3)李经理将这批香菇存放多少天后出售可获得最大利润?最大利润是多少?

文本预览
相关文档 最新文档