当前位置:文档之家› 【CN109678118A】一种金属氧化物纳米颗粒及金属纳米颗粒的制备方法【专利】

【CN109678118A】一种金属氧化物纳米颗粒及金属纳米颗粒的制备方法【专利】

【CN109678118A】一种金属氧化物纳米颗粒及金属纳米颗粒的制备方法【专利】
【CN109678118A】一种金属氧化物纳米颗粒及金属纳米颗粒的制备方法【专利】

(19)中华人民共和国国家知识产权局

(12)发明专利申请

(10)申请公布号 (43)申请公布日 (21)申请号 201910104160.3

(22)申请日 2019.02.01

(71)申请人 东南大学

地址 211100 江苏省南京市江宁区东南大

学路2号

(72)发明人 董岩 唐振明 杨凯成 邵起越 

蒋建清 

(74)专利代理机构 南京苏高专利商标事务所

(普通合伙) 32204

代理人 柏尚春

(51)Int.Cl.

C01B 13/18(2006.01)

B82Y 40/00(2011.01)

C01G 49/08(2006.01)

B22F 9/24(2006.01)

(54)发明名称

一种金属氧化物纳米颗粒及金属纳米颗粒

的制备方法

(57)摘要

本发明公开了一种金属氧化物纳米颗粒及

金属纳米颗粒的制备方法,将金属乙酰丙酮盐溶

于有机溶剂作为浸渍液,浸渍水溶性无机盐,干

燥后高温煅烧或还原,水洗后得到分散的金属氧

化物纳米颗粒或金属纳米颗粒。将煅烧产物在还

原气氛中二次煅烧,水洗后可得分散的纳米金属

粉。本发明可以快速批量制备出分散性好、结晶

完善的金属氧化物纳米颗粒或金属纳米颗粒。权利要求书1页 说明书6页 附图1页CN 109678118 A 2019.04.26

C N 109678118

A

权 利 要 求 书1/1页CN 109678118 A

1.一种金属氧化物纳米颗粒的制备方法,其特征在于,该方法包括以下步骤:

1)将要制备的金属氧化物所对应的乙酰丙酮盐溶于有机溶剂,作为浸渍液;

2)用所述浸渍液浸渍水溶性盐粉末,去除多余浸渍液后,将有机溶剂蒸干;

3)将浸渍后的水溶性盐粉末高温煅烧;

4)将煅烧后的粉末水洗、干燥,得到金属氧化物纳米颗粒。

2.根据权利要求1所述的一种金属氧化物纳米颗粒的制备方法,其特征在于,所述步骤1)中的水溶性盐是氯化钠、氯化钾或硫酸钾。

3.根据权利要求1所述的一种金属氧化物纳米颗粒的制备方法,其特征在于,所述金属氧化物为氧化铝、氧化铁、氧化镁、氧化锆、氧化铜、氧化镍、氧化钴、氧化钇或氧化铈。

4.根据权利要求1、2或3所述的一种金属氧化物纳米颗粒的制备方法,其特征在于,所述步骤1)中的有机溶剂为乙醇、丙酮或三氯甲烷。

5.根据权利要求1、2或3所述的一种金属氧化物纳米颗粒的制备方法,其特征在于,所述步骤1)中得到的浸渍液的浓度为0.001mol/L~饱和浓度。

6.一种金属纳米颗粒的制备方法,其特征在于,该方法包括以下步骤:

1)将要制备的金属氧化物所对应的乙酰丙酮盐溶于有机溶剂,作为浸渍液;

2)用所述浸渍液浸渍水溶性盐粉末,去除多余浸渍液后,将有机溶剂蒸干;

3)将浸渍后的水溶性盐粉末还原;

4)将还原后的粉末水洗、干燥,得到金属纳米颗粒。

7.根据权利要求1所述的一种金属纳米颗粒的制备方法,其特征在于,所述步骤1)中的水溶性盐是氯化钠、氯化钾或硫酸钾。

8.根据权利要求1所述的一种金属纳米颗粒的制备方法,其特征在于,所述金属为镍或钴。

9.根据权利要求6、7或8所述的一种金属纳米颗粒的制备方法,其特征在于,所述步骤1)中的有机溶剂为乙醇、丙酮或三氯甲烷。

10.根据权利要求6、7或8所述的一种金属纳米颗粒的制备方法,其特征在于,所述步骤1)中得到的浸渍液的浓度为0.001mol/L~饱和浓度。

2

(完整版)金属纳米颗粒制备中的还原剂与修饰剂の总结,推荐文档

《金属纳米颗粒制备中的还原剂与修饰剂》总结 一:金属纳米材料具有表面效应(比表面积大,表面原子多,表面原子可与其他原子结合稳定下来,使材料化学活性提高。)和量子尺寸效应,因而有不同于体相材料的光学、电磁学、化学特性。 目前制备方法为液相合成(操作简便、成本低、产量高、颗粒单分散性好)。——以金属盐或金属化合物为原料将其还原得到金属原子后聚集成金属纳米粒子。而金属纳米粒子比表面积大、物化活性高、易氧化、易团聚,所以需要引入修饰剂来控制形貌、稳定或分散纳米颗粒。 液相还原法按照溶剂不同可分为有机溶剂合成法(结晶性好、单分散性好、形貌易控、不能直接用于生物体系、环境不友好)和水溶液合成法(水溶性、制备方法简单环保、成本低、颗粒大小不均一)。按照还原手段不同可分为化学试剂还原法、辐射还原法、电化学还原法。 二:化学试剂还原法中常用的还原剂及其还原机理 还原能力不同:1)强还原剂(硼氢化物、水合肼、氢气、四丁基硼氢化物),还原能力强、反应速率快、纳米颗粒多为球形或类球形、尺寸小。2)弱还原剂(柠檬酸钠、酒石酸钾、胺类化合物、葡萄糖、抗坏血酸、次亚磷酸钠、亚磷酸钠、醇类化合物、醛类化合物、双氧水、DMF),反应体系一般需要加热。例如多元羟基类化合物可做溶剂和还原剂,通过控制反应条件可制备多种形貌的材料。柠檬酸钠、抗坏血酸做还原剂的同时可做保护剂。(一)无机类还原剂 1,硼氢化物(硼氢化钠钾、硼氢化四丁基铵TBAB),硼氢化钠化学性质活波与水反应放出 氢气,与金属盐反应时所需浓度低。 2,氢化铝锂,还原性极强,应用不及硼氢化钠。 3,水合肼N2H4·H2O,应用广泛。在碱性介质中为强还原剂。 4,双氧水。 5,有机金属化合物,二茂铁还原制备银纳米线。 6,氢气,(可以合成相当稳定无保护的可进一步修饰的银纳米颗粒。),控制反应时间可以得到相当大尺寸跨度的纳米颗粒,进一步处理如过滤离心可以得到尺寸分布窄的颗粒。 7,次亚磷酸盐,弱还原剂,因为容易与氧气反应所以一般用3-4倍。酸性条件下反应速度加快,认为酸性条件下利于次亚磷酸像活泼型转变。

金属纳米材料研究进展

高等物理化学 学生姓名:聂荣健 学号:…………….. 学院:化工学院 专业:应用化学 指导教师:………….

金属氧化物纳米材料研究进展 应用化学专业聂荣健学号:……指导老师:…… 摘要:综述了近年来金属氧化物纳米材料水热合成方法的研究进展,简要阐述了金属氧化物纳米材料的应用,对其今后的研究发展方向进行了展望。 关键词: 纳米材料水热合成金属氧化物

Research progress of metal oxide nanomaterials Name Rongjian Nie Abstract: This article reviews the recent progress in hydrothermal synthesis of metal oxide nanomaterials. The application progress of metal oxide nanomaterials is briefly describrd.The future research directions are prospected. Keywords: nanomaterials; hydrothermal; metal oxides ;

引言 纳米材料是纳米科学中的一个重要的研究发展方向,近年来已在许多科学领域引起了广泛的重视,成为材料科学研究的热点。作为纳米材料的一个方面,金属氧化物纳米材料在现代工业、国防和高技术发展中充当着重要的角色。 1.纳米材料简介 1.1 纳米材料概述 纳米是长度的度量单位,1纳米=10-9米,1纳米大约为10个氢原子并排起来的长度,仅仅相当于一根头发丝直径的0.1%。纳米材料则是在纳米量级(lnm-100nm)内调控物质结构所制成的具有特殊功能的新材料,其三维尺寸中至少有一维小于100nm,且性质不同于一般的块体材料。 纳米材料是指在三维尺度上至少存在一维处于纳米量级或者由它们作为基本单元所构成的材料,一般将纳米材料分为零维、一维以及二维纳米材料: (1)零维纳米材料,是指在空间三维尺度上都处于纳米量级的纳米材料,如纳米球,纳米颗粒等; (2)一维纳米材料,是指在空间三维尺度上只有两维处于纳米量级,而第三维处于宏观量级的纳米材料,比如纳米棒、纳米管、纳米线/丝等; (3)二维纳米材料,是指在空间三维尺度上只有一维处于纳米量级,而其他两维处于宏观量级的纳米材料,比如纳米片,纳米薄膜等。 1.2纳米粒子基本效应的研究 纳米粒子是尺寸为1-100nm的超细粒子。纳米粒子的表面原子与总原子数之比随着粒径的减小而急剧增大,显示出强烈的体积效应(即小尺寸效应)、量子尺寸效应、表面效应和宏观量子隧道效应。 1.2.1 量子尺寸效应[1] 当粒子尺寸达到纳米量级时,金属费米能级附近的电子能级由准连续变为分立能级的现象称为量子尺寸效应。能带理论表明:金属纳米粒子所包含的原子数有限,能级间距发生分裂。当此能级间隔大于热能、磁能、静电能、静磁能、光子能量或超导态的凝聚能时,纳米粒子的磁、光、声、热、电及超导电性与宏观物体有显著的不同。 1.2.2 体积效应[2] 由于粒子尺寸变小所引起的宏观物理性质的变化称为体积效应。当纳米粒子的尺寸与德布罗意波长以及超导态的相干长度或透射深度等物理特征尺寸相当或更小时,晶体周期性的边界条件将被破坏;非晶态纳米粒子的表面层附近原子密度减小,导致声、光、电、磁、热力学等特性呈现新的体积效应。例如:磁有序态向磁无序态、超导相向正常相的转变;光吸收显著增加;声子谱发生改变;强磁性纳米粒子(Fe-Co合金,氧化铁等)尺寸为单磁畴临界尺寸时具有很高的矫顽力;纳米粒子的熔点远远低于块状金属;等离子体共振频率随颗粒尺寸改变[3]。 1.2.3 表面效应[4] 表面效应是指纳米粒子的表面原子数与总原子数之比随着粒径减小而急剧增大后引起的性质上改变。随着粒径减小,表面原子数迅速增加,粒子的表面张力和表面能增加。原子配位不足以及高的表面能使原子表面有很高的化学活性,极不稳定,很容易与其他原子结合,这就是活性的原因。表面原子的活性引起了纳米粒子表面输运和构型的变化,也引起了表面原子自旋构象和电子能谱的变化。

硅涂层纳米金属颗粒

硅涂覆的金属纳米颗粒 刘淑华1韩明勇2 (1新加坡国际大学2吉林大学) 摘要:优质的稠密多孔硅涂层纳米颗粒的合成因其重要的特性和多样化的运用满足了日益增长的科学研究的需求,尤其是在催化反应中,长效释放,比色诊断,光电治疗,SERS探测等等。在这个简短的摘要中,我们总结了最新的合成方法,提高硅涂覆金属纳米颗粒的性能及其运用。特别是在硅涂覆金属纳米颗粒的大规模的合成和中空硅涂层金属纳米颗粒的最新研究中,运用硅溶解法是一种新的实际可操作的方法。 关键词:中空材料;纳米颗粒;聚合物;硅涂层;表面工程 1996年由Liz-Marzn, Mulvaney及其同事率先开展硅涂层金属纳米颗粒(M@SiO2)这方面工作以来,最近几十年来在许多富有前景的催化和生物医药方面,硅涂层金属纳米颗粒(M@SiO2)的作用越来越重要,在因为硅在金属纳米颗粒其中包括了富表面化学,高的生物兼容性,可控的多空材料,好的透明度等方面运用的良好特性使得其蓬勃发展的利益受到了大大的刺激,并在近一千多个出版物中详尽阐述。 在近几十年中,人们致力于固态/稠密金属纳米材料的硅涂层从而对研究他们的光学特性,光电自我组装,或者是进行表面高级拉曼散射,光线治疗,比色探测的表面功能化和配合。最近,硅溶解和雕刻技术被用于制备金属纳米颗粒周围高密度的硅层多孔结构,从而取得新的中空的纳米结构,新的缓释释放,并且证明了催化活性。与此同时,介孔硅涂层金属纳米颗粒已经得到了研究,最近,大规模的纳米M@SiO2的制得使得纳米金属颗粒的商品化面临了巨大的挑战 在这个聚焦的回顾中,我们总结了最新的合成策略,提升的性能和在近五年内新出现的纳米M@SiO2的应用,作为先前技术,读者们更希望一些综合全面的早期文章。

金属氧化物纳米材料的制备新进展

摘要:综述了近5年来金属氧化物纳米材料的制备方法、研究现状;讨论了这些方法的优缺点。指出液相法,尤其是溶胶-凝胶法、沉淀法、水解法、微乳液法、水热溶剂热法等是目前制备纳米金属氧化物材料最广泛应用的方法。而超声技术、微波辐射技术、交流电沉积技术、超临界流体干燥技术、非水溶剂水热技术等新技术与传统液相法的有机结合,是制备高纯度、小粒径、均匀分散的金属氧化物纳米粉体的最有前途的方法。最后对金属氧化物纳米材料研究的发展方向提出了展望。 关键词:金属氧化物;纳米;制备;进展 金属氧化物纳米材料广泛应用于制作催化剂、精细陶瓷、复合材料、磁性材料、荧光材料、湿敏性传感器及红外吸收材料等[1]。例如:纳米氧化锌在磁、光、电敏感材料方面呈现常规材料所不具备的特殊功能,使得高品质的氧化锌的应用前景广阔;纳米氧化铝作为重要的陶瓷材料,具有非常高的应用价值;高纯纳米级SnO2可用来制作气敏及湿敏元件;纳米氧化钛由于在精细陶瓷、半导体、催化材料方面的广泛应用,也越来越引起人们的关注。多年来,科技工作者们已经研制出多种制备金属氧化物纳米材料的方法,如:溶胶-凝胶法、醇盐水解法、强制水解法、溶液的气相分解法、湿化学合成法、微乳液法等。近年来材料科学家和化学家又将激光技术、微波辐射技术、超声技术、交流电沉积技术、超临界流体干燥技术、非水溶剂水热技术等方法引入了金属氧化物纳米材料的传统制备方法中,使金属氧化物纳米材料的制备方法得到了较大的完善和发展。关于金属氧化物纳米材料,邓红梅[2]综述了化学法制备及EXAFS特征研究,汪信[3]对复合金属氧化物的制备进行了评述。本文着重评述近5年来单分散性金属氧化物纳米材料的制备方法、研究现状和发展方向。 1 金属氧化物纳米微粒的制备 根据原料状态的不同,制备金属氧化物纳米微粒的方法大致可分为3类:固相法、液相法和气相法。 1.1固相法 传统的固相法是将金属盐和金属氢氧化物按一定的比例充分混合,发生复分解反应生成前驱物,多次洗涤后充分研磨进行煅烧,然后再研磨得到纳米粒子。此法设备和工艺简单,反应条件容易控制,产率高,成本低,环境污染少,但产品粒度分布不均,易团聚。刘长久等[4]采用固相反应法制备了粒径为30nm的NiO纳米粉体,并对其电化学性能进行了研究。HengLi等[5]在环境温度下用固相反应成功地合成了纳米氧化物SiO2、CeO2、SnO2,并初步探讨了环境温度下纳米材料的形成机理。贾殿赠等[6]对此法进行了改进,在固相配位化学反应的基础上,将室温固相配位化学反应引入金属氧化物纳米粒子的合成中,提出一种室温固相化学反应合成纳米材料的新方法,即用室温固相化学反应首先制得前驱物,进而前驱物经热分解得纳米金属氧化物。此法不仅是无溶剂反应,而且许多反应可在室温或低温条件下发生。因此从原料的使用、合成条件及合成工艺等方面考虑,固相配位化学反应法在合成新颖纳米材料方面具有其潜在的优点。目前采用此新方法已制得纳米CuO[7]、ZnO、NiO等。 1 2液相法 液相法因其相关的工业过程控制与设备的放大技术较为成熟,具有更强的技术竞争优势。该法比较容易控制成核,从而容易控制颗粒的化学组成、形状及大小,而且该方法添加的微量成分和组成较均匀,即使是对于很复杂的材料也可以获得化学均匀性很高的粉体。不过,该法极易引入杂质(如部分阴离子等),造成所得粉体纯度不够。近年来,超声、微波辐射、电弧放电、共沸蒸馏等物理技术的引入,使普通液相法制备纳米粉体得到了新的发展。液相法大致可分为以下几种方法。 1.2.1溶胶-凝胶法(Sol-Gel) 溶胶-凝胶法是近期发展起来的,能代替高温固相合成反应制备陶瓷、玻璃和许多固体材料的新方法。作为低温或温和条件下合成无机化合物或无机材料的重要方法,在软化学合成中已

金属纳米颗粒论文:金属纳米颗粒的性质研究及其应用

金属纳米颗粒论文:金属纳米颗粒的性质研究及其应用 【中文摘要】纳米材料的合成和应用证明了其在物理、化学、材料科学等领域的巨大发展潜力,尤其是纳米材料所具有表面效应、体积效应、量子尺寸效应、宏观量子隧道效应,使其产生了独特的光学、电学、化学性质以及催化性质。金属纳米颗粒的性质在近十几年受到了广泛关注。纳米尺度的金属纳米材料具备许多块体材料没有的优越性质,其中,金属纳米颗粒所具备的独特光学性质——表面等离子体 共振性质已经成为研究热点之一。金属纳米颗粒中的表面等离子体共振是描述其导带电子在电磁场作用下集体振荡的一个物理概念,共振性质受尺寸、形状以及周围介质影响非常显著。对纳米颗粒尺寸及其形貌的有效控制一直都是大家关注的。近几年来,随金、银金属纳米颗粒表面增强拉曼散射效应、荧光效应的广泛应用,金属纳米颗粒已经广泛应用于催化、光催化、信息存储、表面增强拉曼、太阳能电池、生物传感器、化学传感器、非线性光学、光电子学等领域。本论文的工作主要致力于金、银纳米颗粒的合成、性质及应用:通过油相中无机金属盐的热分解,合成不同粒径的银纳米颗粒;在水相中利用柠檬酸盐 【英文摘要】The synthesis and applications of metal nanomaterials suggests their great potential foreground in the physical science, chemical science and materials science, especially for unique properties, such as surface effect,

金属铂纳米颗粒的形貌控制合成

金属铂纳米颗粒的形貌控制合成 Shape-controlled Synthesis of Metal Platinum Nanoparticles 【摘要】金属纳米颗粒的形貌控制合成是金属纳米材料研究领域倍受关注的难题。铂黑是化工领域重要的催化剂。铂纳米颗粒的催化性能优于铂黑,其性质与形貌、粒径和结构密切相关。近年来,铂纳米颗粒的形貌控制合成虽然取得了一定进展,但所得到的多数铂纳米颗粒形貌不单一,大小不均匀。 为此,本论文采用多醇还原法制备形貌、粒径及二级结构可控的铂纳米颗粒,探索了不同反应条件对铂纳米颗粒形貌粒径的影响,并对纳米颗粒形成机理进行了初步探讨,采用多种分析手段对产物进行了表征。采用晶种两步生长法制得具有链状二级结构的铂纳米颗粒。 以六水合氯铂酸为前驱体,以乙二醇和三缩四乙二醇为混合溶剂及还原剂,以聚乙烯吡咯烷酮(PVP)为稳定剂,微波加热制备铂纳米晶种,然后在油浴中进一步生长成链状二级结构的铂纳米颗粒,并用紫外-可见光谱(UV-vis)、透射电子显微镜(TEM)、粉末X-射线衍射(XRD)以及X-射线光电子能谱(XPS)对产物进行了表征。对链状结构形成机理进行了初步探讨,认为颗粒呈链状分布是由于PVP的支架剂功能。 采用微波辐照加热法,以六水合氯铂酸为前驱体,以乙二醇和三缩四乙二醇混合溶液为溶剂及还原剂,利用聚乙烯吡咯烷酮(PVP)和十六烷基三甲基溴化铵(CTAB)作为协同稳定剂,在适量KOH存在下微波加热100秒,制备出“爆米花”状的铂纳米颗粒; 考察了反应参数对“爆米花”状的铂纳米颗粒控制合成的影响;以γ-Al2O3为载体,初步探讨了γ-Al2O3负载的“爆米花”状的铂纳米颗粒的催化活性。以氯铂酸钾(K2PtCl6)作为前驱体,利用PVP和CTAB作为形貌控制剂,以乙二醇作为溶剂及还原剂,在一定量NaNO3存在下制备出分布较均匀的自组装铂纳米颗粒。探讨了铂纳米颗粒自组装体的形成机理,认为PVP长链包围在CTAB的一端,形成链-球状软模板,将氯铂酸钾包围其中,当Pt(IV)被还原后因PVP链的桥联作用使得分散的铂纳米颗粒相互靠近,有序聚集成自组装体。 【Abstract】Much attention has been paid to the shape-controlled synthesis of metal nanoparticles in the field of metallic nanomaterials. Platinum black is an important catalyst for chemical industry. The catalytic property of platinum nanoparticles is much higher than the platinum black, but its intrinsic properties are strongly dependent on its size, morphology and structure. In recent yeas, though the shape-controlled synthesis of platinum nanoparticles has made a much progress, few of uniform platinum 。。。。 【关键词】铂;纳米颗粒;形貌;微波;自组装体;乙二醇;三缩四乙二醇;聚乙烯吡咯烷酮;十六烷基三甲基溴化铵;透射电子显微镜; 【Key words】Platinum;Nanoparticles;Morphology;Microwave;Self-assembly;Ethylene glycol;Teraethylene glycol;Cetyltrimethylammonium bromide;Polyvinylpyrrolidone;Transmission electron microscopy; 【网络出版投稿人】中南民族大学【网络出版年期】2011年S2期 【DOI】CNKI:CDMD:2.2009.226793

纳米技术知识材料

纳米技术知识材料 一、纳米(nano meter,nm): 一种长度单位,一纳米等于十亿分之一米,千分之一微米。大约是三、四个原子的宽度。 二、纳米科学技术(nanotechnology): 纳米科学技术是用单个原子、分子制造物质的科学技术。纳米科学技术是以许多现代科学技术为基础的科学技术,它是现代科学(混沌物理、量子力学、介观物理、分子生物学)和现代技术(计算机技术、微电子和扫描隧道显微技术、核分析技术)结合的产物,纳米科学技术又将引发一系列新的科学技术,例如纳米电子学、纳米材料学、纳米机械学等。纳米科学技术被认为是世纪之交出现的一项高科技。 三、纳米材料(nano material)与纳米粒子(nano particle): 纳米材料又称为超微颗粒材料,由纳米粒子组成。纳米粒子也叫超微颗粒,一般是指尺寸在1~100nm间的粒子,是处在原子簇和宏观物体交界的过渡区域,从通常的关于微观和宏观的观点看,这样的系统既非典型的微观系统亦非典型的宏观系统,它具有表面效应、小尺寸效应和宏观量子隧道效应。当人们将宏观物体细分成超微颗粒(纳米级)后,它将显示出许多奇异的特性,即它的光学、热学、电学、磁学、力学以及化学方面的性质和大块固体时相比将会有显著的不同。 四、几种典型的纳米材料: a) 纳米颗粒型材料: 应用时直接使用纳米颗粒的形态称为纳米颗粒材料。被称为第四代催化剂的超微颗粒催化剂,利用甚高的比表面与活性可以显著得提高催化效率,例如,以微径小于微米的镍和钢-锌合金的超微颗粒为主要成分制成的催化剂可使有机物氯化的效率达到传统镍催化剂的10倍;超细的铁微粒作为催化剂可以在低温将二氧化碳分解为碳和水,超细铁粉可在苯气相热分解中起成核作用,从而生成碳纤维。 录音带、录像带和磁盘等都是采用磁性粒子作为磁记录介质。随着社会的信息化,要求信息储存量大、信息处理速度高,推动着磁记录密度日益提高,促使磁记录用的磁性颗粒尺寸趋于超微化。目前用金属磁粉(20)纳米左右的超微磁性颗粒)制成的金属磁带、磁盘,国外已经商品化,其记录密度可达4’106~4’107位/厘米(107~108位/英寸),即每厘米可记录4百万至4千万的信息单元,与普通磁带相比,它具有高密度、低噪音和高信噪比等优点。

金属氧化物纳米材料的电化学合成与形貌调控研究进展

[Review] https://www.doczj.com/doc/f33786139.html, doi:10.3866/PKU.WHXB 201209145 物理化学学报(Wuli Huaxue Xuebao ) Acta Phys.-Chim.Sin.2012,28(10),2436-2446 October Received:August 30,2012;Revised:September 10,2012;Published on Web:September 14,2012.? Corresponding author.Email:dsxu@https://www.doczj.com/doc/f33786139.html,;Tel:+86-10-62760360. The project was supported by the National Natural Science Foundation of China (51121091,21133001,61176004),National Key Basic Research Program of China (973)(2007CB936201,2011CB808702),and Science and Technology on Electro-optical Information Security Control Laboratory,China (9140C150304110C1502). 国家自然科学基金(51121091,21133001,61176004),国家重点基础研究发展规划项目(973)(2007CB936201,2011CB808702)和国家光电信息控制和安全技术重点实验室基金(9140C150304110C1502)资助 ?Editorial office of Acta Physico-Chimica Sinica 金属氧化物纳米材料的电化学合成与形貌调控研究进展 焦淑红1 徐东升1,2,*许荔芬1张晓光2 (1北京大学化学与分子工程学院,分子动态与稳态结构国家重点实验室,北京分子科学国家实验室,北京100871; 2 光电信息控制和安全技术重点实验室,河北三河065201) 摘要:金属氧化物纳米材料因其丰富的形貌、独特的性能、广泛的应用成为材料合成领域研究的热点.调控金 属氧化物纳米材料的形貌对于调变其性能、拓展其应用空间具有重要意义.电化学方法由于操作简单易控、方法灵活多变,因此成为调控金属氧化物形貌的常用方法.本文综述了近年来我们在金属氧化物纳米材料的电化学合成与形貌调控方面已取得的研究结果;总结了不同金属氧化物在电化学过程中晶体生长机制和形貌调控的规律,为实现功能材料的定向合成奠定了基础.关键词: ZnO;金属氧化物;形貌调控;电沉积;纳米管;多级结构 中图分类号: O646 Recent Progress in Electrochemical Synthesis and Morphological Control of Metal Oxide Nanostructures JIAO Shu-Hong 1 XU Dong-Sheng 1,2,* XU Li-Fen 1 ZHANG Xiao-Guang 2 (1Beijing National Laboratory for Molecular Sciences,State Key Laboratory for Structural Chemistry of Unstable and Stable Species,College of Chemistry and Molecular Engineering,Peking University,Beijing 100871,P .R.China ;2Science and Technology on Electro-optical Information Security Control Laboratory,Sanhe 065201,Hebei Province,P .R.China ) Abstract:There has been considerable focus on the synthesis of metal oxide nanostructures because of their extensive structures,unique properties,and wide applications.The morphological control of metal oxide nanostructures is of interest for tuning their performance and expanding their range of applications.Electrochemical methods have become a common way of controlling the morphologies of metal oxides,owing to their simple operation,ease of control,and flexible modes.This paper presents a brief overview of our research in the electrochemical synthesis and morphological control of metal oxide nanostructures.We will also discuss the crystal growth mechanism and the morphology control of different metal oxides during the electrochemical deposition process,which lays the foundation for orientation design and fabrication of functional materials. Key Words:ZnO;Metal oxide;Morphological control; Electrodeposition; Nanotube; Hierarchical structure 2436

纳米金属氧化物的制备及应用研究的若干进展

纳米金属氧化物的制备及应用研究的若干进展 汪信陆路德 综述了氧化物及复合氧化物纳米晶的各种制备方法及特点,重点介绍了有机配合物前驱体法-聚乙二醇法、明胶法和硬脂酸法制备氧化物纳米晶的原理、特点以及在磁性材料、电磁波吸收材料、催化剂和塑料改性方面的若干应用。 关键词:纳米材料氧化物软化学 分类号:O611.12 Progress of Preparation and Applications of Metal Oxide Nanocrystallines WANG Xin LU Lu-De (Materials Chemistry Laboratory, Nanjing University of Science and Technology,Nanjing 210094) The preparative methods of nanostructured metal oxides are reviewed. Particularly the principles and features of the organic coordination precursor methods, including polyethylene glycol, gelatin and stearic acid methods, are discussed. The oxide nanocrystals has been used as magnetic and microwave-absorbing materials, catalysts and strengthening fillers for modification of plastics. Keywords: nanostructured material oxide soft chemistry 一九七八年十月我们有幸作为文革后第一批研究生来到南京大学配位化学研究所学习。开学不久,戴安邦教授为全体研究生作了题为“无机化学的进展”的学术报告,把我们带入了内容极为丰富的科学领域。虽然我们离开南京大学已有多年,虽然戴先生今年已离我们而去,但他的学术思想、治学态度和为人品格无时无刻都在影响着我们,是我们进步的一种动力。十多年来我们一直把从南京大学学到的知识和理工科大学的教学、科研结合起来,取得了一些成果,下面主要介绍一些无机纳米材料的研究工作。 1 复合氧化物纳米晶的制备方法 传统的复合氧化物的制备通常是以固态的氧化物或金属碳酸盐为原料,球磨后经高温固相反应,再粉碎得到复合氧化物的粉体。由于是高温反应,不仅制备的产物粒径大、分布宽,而且某些组分易于挥发或发生偏析,这种方法一般不宜用来制备纳米氧化物。纳米复合氧化物的制备通常是采用软化学法,即通过反应原料的液相混合使各金属元素高度分散,从而可以在较低的反应温度和较温和的化学环境下制备纳米材料。采用的方法主要有共沉淀法、溶胶-凝胶法、有机配合物前驱体法等。 1.1 共沉淀法 共沉淀法是液相化学反应合成金属氧化物纳米颗粒最早采用的方法。沉淀法成本较低,但有如下问题:沉淀物通常为胶状物,水洗、过滤较困难;沉淀剂作为杂质易混入;沉淀过程中各种成分可能发生偏析,水洗时部分沉淀物发生溶解。此外由于大量金属不容易发生沉淀反应,因此

内嵌金属纳米颗粒的MOFs材料理论研究综述

Advances in Material Chemistry 材料化学前沿, 2019, 7(2), 9-18 Published Online April 2019 in Hans. https://www.doczj.com/doc/f33786139.html,/journal/amc https://https://www.doczj.com/doc/f33786139.html,/10.12677/amc.2019.72002 A Review of Theoretical Studies on Metal Nanoparticle Confined MOFs Ting He*, Yunyi Zhang, Jie Cen, Deli Chen* Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, Jinhua Zhejiang Received: Mar. 7th, 2019; accepted: Mar. 22nd, 2019; published: Mar. 29th, 2019 Abstract Metal-organic frameworks (MOFs) are highly ordered crystalline porous material composed of metal ions and organic connectors. Because of its high porosity, large specific surface area, ad-justable pore size and shape, it has a broad application prospect in many fields including catalysis. One of the most promising methods for the catalysis of MOFs materials is to coat metal nanopar-ticles in the pores, which makes the metal clusters supported by MOFs as a potential catalyst. Great progress has been made in the synthesis and application of metal nanoparticles (MNPs) con-fined MOFs. However, the formation mechanism, electronic properties, and geometric structures of the metal clusters in the MOFs are still unclear. Moreover, comprehensive understanding of the micro-properties of the catalytic reactions is lacking. Therefore, the theoretical methods, catalyst models, and reaction mechanisms for the MNPs@MOFs materials are reviewed in this paper, which provides us with important information in structures and properties, thus providing refer-ence and guidance for the design of catalysts with better performance. Keywords MOFs, Metal Nanoparticle, Reaction Mechanism, Density Functional Theory 内嵌金属纳米颗粒的MOFs材料理论研究综述 贺亭*,张云奕,岑洁,陈德利* 浙江师范大学含氟新材料研究所,浙江金华 收稿日期:2019年3月7日;录用日期:2019年3月22日;发布日期:2019年3月29日 *通讯作者。

纳米金属材料的发展与应用综述

纳米金属材料的发展与应用 摘要:纳米技术的诞生将对人类社会产生深远的影响,可能许多问题的发展都与纳米材料的发展息息相关。在纳米金属材料的研究中,它的制备、特性、性能和应用是比较重要的方面。本文概要的论述了纳米材料的发现发展过程,并结合当今纳米金属材料研究领域最前沿的技术和成果,简述了纳米材料在各方面的应用及其未来的发展前景。 关键词:纳米金属材料、纳米技术、应用 一、前言 纳米级结构材料简称为纳米材料(nanomater material),是指其结构单元的尺寸介于1纳米~100纳米范围之间。由于它的尺寸已经接近电子的相干长度,它的性质因为强相干所带来的自组织使得性质发生很大变化。并且,其尺度已接近光的波长,加上其具有大表面的特殊效应,因此其所表现的特性,例如熔点、磁性、光学、导热、导电特性等等,往往不同于该物质在整体状态时所表现的性质。 纳米粒子异于大块物质的理由是在其表面积相对增大,也就是超微粒子的表面布满了阶梯状结构,此结构代表具有高表能的不安定原子。这类原子极易与外来原子吸附键结,同时因粒径缩小而提供了大表面的活性原子。 纳米技术在世界各国尚处于萌芽阶段,美、日、德等少数国家,虽然已经初具基础,但是尚在研究之中,新理论和技术的出现仍然方兴未艾。我国已努力赶上先进国家水平,研究队伍也在日渐壮大。 二、纳米材料的发现和发展 1861年,随着胶体化学的建立,科学家们开始了对直径为1~100nm的粒子体系的研究工作。1990年7月在美国召开了第一届国际纳米科技技术会议(International Conference on Nanoscience &Technology),正式宣布纳米材料科学为材料科学的一个新分支。自20世纪70年代纳米颗粒材料问世以来,从研究内涵和特点大致可划分为三个阶段: 第一阶段(1990年以前):主要是在实验室探索用各种方法制备各种材料的纳米颗粒粉体或合成块体,研究评估表征的方法,探索纳米材料不同于普通材料的特殊性能;研究对象一般局限在单一材料和单相材料,国际上通常把这种材料称为纳米晶或纳米相材料。 第二阶段(1990~1994年):人们关注的热点是如何利用纳米材料已发掘的物理和化学特性,设计纳米复合材料,复合材料的合成和物性探索一度成为纳米材料研究的主导方向。 第三阶段(1994年至今):纳米组装体系、人工组装合成的纳米结构材料体系正在成为纳米材料研究的新热点。国际上把这类材料称为纳米组装材料体系或者纳米尺度的图案材料。它的基本内涵是以纳米颗粒以及它们组成的纳米丝、管为基本单元在一维、二维和三维空间组装排列成具有纳米结构的体系。 三、纳米材料的应用 1、纳米磁性材料 在实际中应用的纳米材料大多数都是人工制造的。纳米磁性材料具有十分特别的磁学性质,纳米粒子尺寸小,具有单磁畴结构和矫顽力很高的特性,用它制成的磁记录材料不仅音质、图像和信噪比好,而且记录密度比γ-Fe2O3高几十

金属纳米材料研究进展

金属纳米材料研究进展 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

高等物理化学 学生姓名:聂荣健 学号:…………….. 学院:化工学院 专业:应用化学 指导教师:…………. 金属氧化物纳米材料研究进展 应用化学专业聂荣健学号:……指导老师:…… 摘要:综述了近年来金属氧化物纳米材料水热合成方法的研究进展,简要阐述了金属氧化物纳米材料的应用,对其今后的研究发展方向进行了展望。 关键词:纳米材料水热合成金属氧化物 Research progress of metal oxide nanomaterials Name Rongjian Nie Abstract: This article reviews the recent progress in hydrothermal synthesis of metal oxide nanomaterials. The application progress of metal oxide nanomaterials is briefly describrd.The future research directions are prospected. Keywords: nanomaterials; hydrothermal; metal oxides ; 引言 纳米材料是纳米科学中的一个重要的研究发展方向,近年来已在许多科学领域引起了广泛的重视,成为材料科学研究的热点。作为纳米材料的一个方面,金属氧化物纳米材料在现代工业、国防和高技术发展中充当着重要的角色。 1.纳米材料简介 纳米材料概述

最新Nature文章:10nm以下金属纳米颗粒的等离子共振研究

最新Nature文章:10nm以下金属纳米颗粒的等离子共振研究 金属纳米颗粒的等离子体共振由于在纳米光子学、生物学、传感器、光谱学以及太阳能捕集等方面的应用而广受关注。尽管10nm以上的颗粒的等离子属性已经研究的很充分了,但量子尺寸(10nm以下)的纳米颗粒由于光散射弱、金属-配体作用影响、整体测量不能均一等问题,给研究带来很大困难,使我们在很多自然和工程过程中(尤其在催化领域)不能检测与控制其等离子体属性。 本文使用像差校正透射电子显微镜成像与单色扫描透射电子显微镜的电子能量损失谱技术研究了无配体的10nm以下的单个银纳米粒子的等离子共振现象。研究发现当银纳米粒子从20nm降至2nm以下的时候,等离子共振向高能方向移动了0.5ev,这明显不符合经典理论的预测。我们提出了一个量子力学模型并推测原因可能在于颗粒介电常数的变化。本文的研究成果对于小纳米颗粒在催化与生物领域的理解与应用有很大的意义。现发小木虫,与微纳版的虫友们分享 金属纳米颗粒的等离子体共振由于在纳米光子学、生物学、传感器、光谱学以及太阳能捕集等方面的应用而广受关注。尽管10nm以上的颗粒的等离子属性已经研究的很充分了,但量子尺寸(10nm以下)的纳米颗粒由于光散射弱、金属-配体作用影响、整体测量不能均一等问题,给研究带来很大困难,使我们在很多自然和工程过程中(尤其在催化领域)不能检测与控制其等离子体属性。 本文使用像差校正透射电子显微镜成像与单色扫描透射电子显微镜的电子能量损失谱技术研究了无配体的10nm以下的单个银纳米粒子的等离子共振现象。研究发现当银纳米粒子从20nm降至2nm以下的时候,等离子共振向高能方向移动了0.5ev,这明显不符合经典理论的预测。我们提出了一个量子力学模型并推测原因可能在于颗粒介电常数的变化。本文的研究成果对于小纳米颗粒在催化与生物领域的理解与应用有很大的意义。现发小木虫,与微纳版的虫友们分享!

【CN109678118A】一种金属氧化物纳米颗粒及金属纳米颗粒的制备方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910104160.3 (22)申请日 2019.02.01 (71)申请人 东南大学 地址 211100 江苏省南京市江宁区东南大 学路2号 (72)发明人 董岩 唐振明 杨凯成 邵起越  蒋建清  (74)专利代理机构 南京苏高专利商标事务所 (普通合伙) 32204 代理人 柏尚春 (51)Int.Cl. C01B 13/18(2006.01) B82Y 40/00(2011.01) C01G 49/08(2006.01) B22F 9/24(2006.01) (54)发明名称 一种金属氧化物纳米颗粒及金属纳米颗粒 的制备方法 (57)摘要 本发明公开了一种金属氧化物纳米颗粒及 金属纳米颗粒的制备方法,将金属乙酰丙酮盐溶 于有机溶剂作为浸渍液,浸渍水溶性无机盐,干 燥后高温煅烧或还原,水洗后得到分散的金属氧 化物纳米颗粒或金属纳米颗粒。将煅烧产物在还 原气氛中二次煅烧,水洗后可得分散的纳米金属 粉。本发明可以快速批量制备出分散性好、结晶 完善的金属氧化物纳米颗粒或金属纳米颗粒。权利要求书1页 说明书6页 附图1页CN 109678118 A 2019.04.26 C N 109678118 A

权 利 要 求 书1/1页CN 109678118 A 1.一种金属氧化物纳米颗粒的制备方法,其特征在于,该方法包括以下步骤: 1)将要制备的金属氧化物所对应的乙酰丙酮盐溶于有机溶剂,作为浸渍液; 2)用所述浸渍液浸渍水溶性盐粉末,去除多余浸渍液后,将有机溶剂蒸干; 3)将浸渍后的水溶性盐粉末高温煅烧; 4)将煅烧后的粉末水洗、干燥,得到金属氧化物纳米颗粒。 2.根据权利要求1所述的一种金属氧化物纳米颗粒的制备方法,其特征在于,所述步骤1)中的水溶性盐是氯化钠、氯化钾或硫酸钾。 3.根据权利要求1所述的一种金属氧化物纳米颗粒的制备方法,其特征在于,所述金属氧化物为氧化铝、氧化铁、氧化镁、氧化锆、氧化铜、氧化镍、氧化钴、氧化钇或氧化铈。 4.根据权利要求1、2或3所述的一种金属氧化物纳米颗粒的制备方法,其特征在于,所述步骤1)中的有机溶剂为乙醇、丙酮或三氯甲烷。 5.根据权利要求1、2或3所述的一种金属氧化物纳米颗粒的制备方法,其特征在于,所述步骤1)中得到的浸渍液的浓度为0.001mol/L~饱和浓度。 6.一种金属纳米颗粒的制备方法,其特征在于,该方法包括以下步骤: 1)将要制备的金属氧化物所对应的乙酰丙酮盐溶于有机溶剂,作为浸渍液; 2)用所述浸渍液浸渍水溶性盐粉末,去除多余浸渍液后,将有机溶剂蒸干; 3)将浸渍后的水溶性盐粉末还原; 4)将还原后的粉末水洗、干燥,得到金属纳米颗粒。 7.根据权利要求1所述的一种金属纳米颗粒的制备方法,其特征在于,所述步骤1)中的水溶性盐是氯化钠、氯化钾或硫酸钾。 8.根据权利要求1所述的一种金属纳米颗粒的制备方法,其特征在于,所述金属为镍或钴。 9.根据权利要求6、7或8所述的一种金属纳米颗粒的制备方法,其特征在于,所述步骤1)中的有机溶剂为乙醇、丙酮或三氯甲烷。 10.根据权利要求6、7或8所述的一种金属纳米颗粒的制备方法,其特征在于,所述步骤1)中得到的浸渍液的浓度为0.001mol/L~饱和浓度。 2

相关主题
文本预览
相关文档 最新文档