当前位置:文档之家› 二轴倾转旋翼无人机的设计及实现

二轴倾转旋翼无人机的设计及实现

二轴倾转旋翼无人机的设计及实现
二轴倾转旋翼无人机的设计及实现

- 4 -

高 新 技 术

0 引言

倾转旋翼机作为一种新型旋翼飞行器,是将直升机及固定翼无人机相结合而产生的一种新概念航空器,该飞行器的起降是依靠飞行器的主轴倾转,带动飞行器的发动机一同发生倾转,实现飞行器由垂直起降向水平飞行阶段的过渡。其有效融合了直升机和固定翼无人机各自的优点,既拥有直升机垂直起降和空中悬停的能力,又拥有固定翼无人机高速巡航飞行的能力,航程比直升机更远,航速更高,以及具有比固定翼无人机更高的机动性和更小的起降区域。

1 二轴倾转旋翼无人机设计

倾转旋翼无人机主要向2个方面发展:一是依靠对称分布在翼尖两侧的发动机吊舱进行倾转改变姿态,二是将发动机固定在机翼上,旋转机翼进行姿态的转变。

如图1所示,该文设计的二轴倾转旋翼无人机动力系统将由2个无刷电机组成的吊舱分布在翼尖两侧,在机载飞控系统的控制下,通过采集多个传感器的实时信号,经过内部的

STM32处理器进行处理,改变两侧吊舱的旋转角度,从而实现飞机垂直起降、固定翼巡航。该文设计的二轴倾转旋翼无人机在垂直姿态下采用电机差速控制方向,相比于直升机的桨距控制,其有着结构简易可靠、后期维护方便、姿态转换过程稳定等优点。

图1 二轴倾转旋翼无人机

1.1 翼型选择

机翼作为飞机的重要组成部分,承担着为飞机提供升力的任务。机翼主要由翼肋构成,不同的翼肋有着不同的翼型,不同的翼型其作用也有所不同。为了满足该文设计的无人机在进行姿态转换时不掉高度且机体稳定不抖动的要求,需选择一种具有适中升阻比且飞行性能稳定的翼型,并对攻角对翼型气动特性的影响进行研究。

1.2 攻角对翼型气动特性的影响

该文通过在Profili 翼型库中对多种翼型进行选择,最终选取5种不同类型的翼型进行比较。由图2可知,5种翼型的升阻比总趋势为先增后减,在攻角为4.5°左右时,Clark V 翼型升阻比最高,在此状态下提供的升力最大,飞行性能更佳,但随着攻角的变化,Clark V 翼型升阻比变化趋势偏大,从稳定性而言,升阻比的急剧变化不利于飞机的飞行稳定。Aquila 翼型升阻比变化趋势较缓,飞行性能更稳定,并且升阻比较高,能提供可观的升力,因此选取Aquila 翼型为该文设计的无人机的翼型。

1.3 倾转机构与机翼设计

该文设计的倾转旋翼无人机的倾转机构以发动机吊舱对称分布在翼尖两侧,通过改变吊舱旋转角度实现垂直飞行和水平飞行。在垂直飞行过程中,无人机竖直向上的推重比需大于1,在水平飞行过程中,无人机的推重比需维持在0.4左右,因此无人机在过渡飞行时,推力的急剧变化对倾转机构结构强度与机翼的连接结构有着很大的挑战。

利用榫卯结构对吊舱及连接结构进行设计,吊舱与机翼采用外径12 mm、内径8 mm 的3K 碳纤维圆管连接。图3为吊舱与左侧机翼的三维建模,机翼翼展977 mm,弦长240 mm,吊舱长205 mm,宽47 mm,高43 mm。在保持吊舱转换时飞机飞行姿态稳定的情况下,最大程度地增加机翼翼展,使飞机发挥出更优的性能。

1.4 驱动模块 

倾转旋翼无人机在进行姿态转换时,对电机及控制发动机吊舱角度的舵机的响应速度有着很高的要求。通过测试,测得无刷电机Sunnysky X2814型的响应速度优于其他无刷电机,使用11.1 V-5 200 mAh-35C 的锂聚合物电池,并搭配13×8E 桨,单个电机的最大拉力可达1 700 g 左右,可在飞机垂直飞行时为其提供足够的推力。数字舵机在测试时响应速

二轴倾转旋翼无人机的设计及实现

洪智杰 钟小华 李广湖 谢江涛 彭振根(广东白云学院,广东 广州 510450)

摘 要:该文结合多旋翼无人机和固定翼无人机的优点设计了二轴倾转旋翼无人机,这是一款摒弃传统设计观念的新型无人机。采用碳纤维复合材料以及巴尔沙木材,在最大程度减重的同时又保证了机体的强度。通过机载STM32处理器引导输出不同宽度的PWM 波脉控制舵机带动发动机吊舱实现倾转。在垂直飞行姿态下,其最大推重比可达2,在水平飞行姿态下,其续航时间为52 min。其凭借着大推重比和高续航时间,可在山区、灾区等复杂环境中进行勘察、巡航等作业。关键词:飞行器;倾转旋翼无人机;垂直起降中图分类号:V279 文献标志码:A

基金项目:大学生创新创业项目(201810822011)。

四旋翼无人机毕业设计

渤海大学本科毕业论文(设计)四旋翼无人机设计与制作 The Manufacture and Design of Quad Rotor Unmanned Aerial Vehicle 学院(系): 专业: 学号: 学生姓名: 入学年度: 指导教师: 完成日期:

摘要 四旋翼无人机飞行器因为它的结构简单,而且控制起来也很方便,因此它成为了近几年来发展起来的热门产业。在这里本文详细的介绍了四旋翼飞行器的设计和制作的过程,其中包括了四旋翼无人机飞行器的飞行原理,硬件的介绍和选型,姿态参考算法的推导和实现,系统软件的具体实现。该四旋翼飞行器控制系统以STM32f103zet 单片机为核心,根据各个传感器的特点,采用不同的校正方法对各个传感器数据进行校正以及低通数字滤波处理,之后设计了互补滤波器对姿态进行最优估计,实现精确的姿态测量。最后结合GPS控制与姿态控制叠加进行PID控制四旋翼飞行器的四个电机,来达到实现各种飞行动作的目的。在制作四旋翼飞行器的过程中,进行了大量的调试并且与现有优秀算法做对比验证,最终设计出能够稳定飞行的四旋翼无人机飞行器。 关键词:姿态传感器;四元数姿态解算;STM32微型处理器;数据融合;PID

The Manufacture and Design of Quad Rotor Unmanned Aerial Vehicle Abstract Quad-rotor unmanned aerial vehicle aircraft have a simple structure, and it is very easy to control, so it has become popular in recent years. Here article describes in detail the design and the process of making the four-rotor aircraft, including Quad-rotor UAV aircraft flight principle, hardware introduction and selection, implementation and realization of derivation attitude reference algorithm, the system software . The Quad-rotor aircraft control system STM32f103zet microcontroller core, and the advantages and disadvantages based on the accelerometer sensor, a gyro sensor and electronic compass sensors using different correction methods for correcting various sensor data and low-pass digital filter processing, after design complementary filter to estimate the optimal posture, precise attitude measurement. Finally, GPS control and attitude control PID control is superimposed four-rotor aircraft four motors to achieve a variety of flight maneuvers to achieve the purpose. Four-rotor aircraft in the production process, a lot of debugging and do comparison with the existing excellent algorithm validation, the final design to stabilize the Quad-rotor UAV flying aircraft. Key Words:MEMS Sensor; Quaternion; STM32 Processor; Data Fusion; PID

倾转旋翼机模态转换的鲁棒H∞增益调度控制

倾转旋翼机模态转换的鲁棒H∞增益调度控制 蔡系海,付荣,曾建平* (厦门大学航空航天学院,福建厦门 361005) 摘要:本文研究了某小型倾转旋翼无人机模态转换阶段的飞行控制问题。基于鲁棒H∞控制,给出了一种模态转换飞行的增益调度方法,其设计条件具有线性矩阵不等式(LMI)的形式。针对模态转换飞行阶段存在的操纵冗余问题,给出了一套实用的舵效分配策略。最后,对该飞行器转换模态纵向动力学系统进行仿真研究。仿真结果表明,文中方法可以确保飞行器能准确地按照预定轨迹完成模态转换飞行,并对模型中存在的气动参数摄动具有较好的鲁棒性,且能够有效的抑制阵风等外部扰动。 关键词:倾转旋翼无人机;控制分配;增益调度;鲁棒H∞控制 中图分类号:V249.1文献标识码:A 1 引言 倾转旋翼机是一种独特的飞行器,它在常规固定翼飞机的基础上安装了可倾转的旋翼。因此,它既具有像直升机一样垂直起降、悬停和低空低速飞行的能力,又具有像固定翼飞机一样的高速、远距离巡航能力[1]。鉴于这些优势,该机型引起了国内外研究人员的广泛兴趣,并取得了一系列成果。美国军方早在上世纪50年代开始大力研制倾转旋翼机,由贝尔直升机公司设计的XV-3验证了倾转旋翼机的原理[2]。在XV-3的基础上,1973年贝尔公司设计了方案验证机XV-15,该机型验证了倾转旋翼机方案的可行性和任务的适应性[3]。基于美国军方提出的“多军种先进垂直起落飞机”要求,贝尔公司和波音公司于1983年开始研制军用型V-22“鱼鹰”[4]倾转旋翼机。为进一步探索倾转旋翼技术,土耳其学者Ertugrul Cetinsoy设计了一架油电混合动力的具有变形机翼的倾转四旋翼无人机,在综合考虑旋翼倾转受力、油量变化和机翼变形的影响后,建立其非线性动力学模型,分析了该机的控制策略[5]。Farid Kendoul等学者针对拥有一对能够纵向和横向偏转旋翼的倾转旋翼无人机,验证了使用双旋翼进行悬停的可行性,并使用back-stepping方法设计了无人机的增稳和轨迹跟踪控制器[6]。相比西方发达国家,我国在倾转旋翼机方面的研究时间较短。近十年来,我国十分重视倾转旋翼机的研究,尤其是一些高校和研究所正在积极进行相关理论的探索,并在旋翼/机翼气动干扰[7-8]、旋翼/短舱/机翼耦合气弹稳定性[9-10]、倾转过程飞行控制方法[11]等方面取得了阶段性成果。 倾转旋翼机因其独特的构造使其气动特性和稳定性会随着倾转角的改变发生显著的变化,其变化过程不仅是时变的,还是强非线性、强耦合的,整个模态转换飞行阶段存在严重的操纵冗余问题。国外虽已有这些方面的研究,并取得了大量的实验数据[3],但因涉及过多的倾转旋翼飞行器核心技术机密,并没有太多资料可查阅。 收稿日期:2015-10-21录用日期:2015-11-20 基金项目:国家自然科学基金资助(61374037);中央高校基本科研业务费专项资金资助(20720150177) *通信作者:jpzeng@https://www.doczj.com/doc/f314273722.html,

多旋翼无人机的结构和原理

多旋翼无人机的结构和原理 翼型的升力: 升力的来龙去脉这是空气动力学中的知识,研究的内容十分广泛,本文只关注通识理论,阐述对翼型升力和旋翼升力的原理。 根据流体力学的基本原理,流动慢的大气压强较大,而流动快的大气压强较小。由于机翼一般是不对称的,上表面比较凸,而下表面比较平(翼型),流过机翼上表面的气流就类似于较窄地方的流水,流速较快,而流过机翼下表面的气流正好相反,类似于较宽地方的流水,流速较上表面的气流慢。大气施加与机翼下表面的压力(方向向上)比施加于机翼上表面的压力(方向向下)大,二者的压力差便形成了升力。[摘自升力是怎样产生的]。所以对于通常所说的飞机,都是需要助跑,当飞机的速度达到一定大小时,飞机两翼所产生的升力才能抵消重力,从而实现飞行。 旋翼的升力飞机,直升机和旋翼机三种起飞原理是不同的。飞机依靠助跑来提供速度以达到足够的升力,而直升机依靠旋翼的控制旋转在不进行助跑的条件下实现垂直升降,直升机的旋转是动力系统提供的,而旋翼旋转会产生向上的升力和空气给旋翼的反作用力矩,在设计中需要提供平衡旋翼反作用扭矩的方法,通常有单旋翼加尾桨式(尾桨通常是垂直安装)、双旋翼纵列式(旋转方向相反以抵消反作用扭矩)等;而旋翼机则介于飞机和直升机之间,旋翼机的旋翼不与动力系统相连,由飞行过程中的前方气流吹动旋翼旋转产生升力(像大风车一样),即旋翼为自转式,传递到机身上的扭矩很小,无需专门抵消。 而待设计的四旋翼飞行器实质上是属于直升机的范畴,需要由动力系统提供四个旋翼的旋转动力,同时旋翼旋转产生的扭矩需要进行抵消,因此本着结构简单控制方便,选择类似双旋翼纵列式加横列式的直升机模型,两个旋翼旋转方向与另外两个旋翼旋转方向必须相反以抵消陀螺效应和空机动力扭矩。

小型四旋翼无人机组机方案

一、小型四旋翼无人机总体架构 典型的小型四旋翼无人机,一般由机械部分(机架),动力部分(包括电机、电子调速器、电调连接板、桨叶、电池),电子部分(包括飞控板、通信模块、遥控器接收机、PPM编码板)组成。 (一)机械部分 机架 考虑到编队飞行对实验室空间的要求,希望机架能够尽量的小。根据与蔡国伟老师对电机与桨叶(后文提到)的搭配进行讨论后,决定将机架的大小设定为轴距255mm,边距180mm(由6寸桨的大小决定)。 1,底板 2,中间机架板 3,顶板 整个机体由底板、中间机架板、顶板连接而成(通过尼龙螺柱和螺丝);底板安置电池、xbee模块、遥控器接收机、电调连接板,中间机架板安置4个电调、pixhawk飞控板,顶板用于安置定位系统标记点(同时起到保护、隐藏pixhawk 飞控板及走线的作用);为便于安装,所有开孔、镂空均根据拟选器件匹配设计;拟采用碳2mm厚3K纤维板加工。 另设计四个保护罩如下(可用于避免桨叶受损或伤人):

4,保护罩 (二)动力部分 (1)电机 一般而言,小型四旋翼无人机(轴距250mm左右)选用KV2000左右(配5-6寸桨)的电机。经过对比讨论后,拟选用飓风D2206 KV1900无刷直流电机(配6寸桨)。之所以选用这款电机是因为这款电机能够提供较大的拉力,同时该电机的工作电流处在一个比较小的区间,单个电机重量仅为。

飓风D2206 KV1900参数表 飓风D2206 KV1900实物图 (2)电子调速器 电子调速器用于驱动无刷直流电机,比较重要的参数是工作电流,刷新频率,重量。一般而言,市面上可售的大部分电子调速器的刷新频率都大于400hz,符合要求。根据上文所选电机的工作电流,综合考虑重量要求,与蔡国伟老师沟通后,拟选用好盈XRotor-10A电子调速器。

倾转旋翼式无人机及应用

倾转旋翼式无人机 一.研究背景及发展现状: 无人机的起源并不算晚,早在1914 年,英国军事航空学会就批准了当时世界上第一个无人机计划,准备用于第一次世界大战。1935 年,DH.82B 蜂王号的诞生给无人机历史上留下了浓墨重彩的一笔,这种飞机采用导航技术,可以自主返回起飞点,使得无人机可以重复飞行,大大提高了无人机的实用价值。此后,一些高精密以及昂贵的设备开始在无人机设计中越来越多的应用,无人机的性能得到大幅度提高。随着航空技术的变革,无人机自主控制程度越来越高,也越来越智能。不仅如此,无人机的结构也不再局限于早期的固定翼结构,随着人们对无人机的应用需求日益增多,许多新型无人机应运而生。 由于倾转旋翼无人机机既有旋翼又有机翼,在旋翼倾转过程中气动特性比较复杂,存在着动力学分析、旋翼/机翼耦合动载荷和稳定性等技术难题,因此其研制周期较长、研制费用高等缺点。此外,由于倾转旋翼机采用双旋翼,其飞机设计结构上存在欠缺,在操纵与控制上存在一定困难。其过渡过程的稳定控制是目前最迫在眉睫的问题。 国外:目前美国贝尔直升机公司研制出鱼鹰系列的倾转旋翼式直升机并成功试飞,投入使用,但在使用期间也并不是一帆风顺,曾出现过重大事故,欧洲航空工业界也在积极研制倾转旋翼机。1987 年初,“尤洛法”(EuroFAR)的倾转旋翼运输机在欧洲委员会资助下进行了可行性方案论证。1999 年多家欧洲公司联合研究名为“尤洛泰特”(Eurotilt)的倾转旋翼机制造实验台,设计巡航速度556 千米/小时、航程1481 千米和使用升限7620 米。与此同时,意大利阿古斯塔公司宣布一款名为“尤利卡”(Erica)的倾转旋翼机。1999 年10 月欧洲委员会将“尤利卡”与“尤洛泰特”合并成“第二代欧洲高效倾转旋翼机”。 国内:倾转旋翼机在国内的发展起步较晚,而且主要是对于倾转双旋翼机理论技术方面

四旋翼无人机前沿报告

四旋翼无人机前沿报告 近些年来,各国的许多研究机构都对小型四旋翼无人机进行了一系列的研究,下面列出来一些比较有代表性的四旋翼无人机研究成果。 一、国内外技术发展现状 1.“蜻蜓”无人机 近期,约翰-霍普金斯大学的应用物理实验室的一个研究小组就开发出了一个叫做“蜻蜓(Dragonfly)”的概念无人机任务。该任务提出了一款利用放射性同位素驱动的双四旋翼飞行器,它将可以在土星最大的卫星Titan上执行太空任务。蜻蜓项目首席研究员Elizabeth Turtle指出,这种实验是他们在实验室无法进行的,因为涉及到时间尺度问题,而Titan富含有有机分子和液态水的表面却能维持很长一段时间的时间尺度。该项目就是为了研究Titan生命前化学而设计的。由于Titan表层厚重的云层使得那里的太阳能效率并不高,为此,研究人员改用了多任务放射性同位素热电机(MMRTG)为飞行器提供能源。据了解,MMRTG能让这架双四旋翼无人机在白天持续飞行一个小时的时间,夜晚它将接受充电。蜻蜓无人机的空气流动可以让它收集样本和测量的种类获得增加。在时长1个小时的飞行中,飞行器大概能飞10到20公里。这意味着蜻蜓可以在为期两年的任务中探测到的范围非常广。 2.“OS4”四旋翼无人机 OS4是EPFL自动化系统实验室开发的一种小型四旋翼飞行器,研究的重点是自主飞行控制算法和机构设计方法,目标是要实现室内和室外环境中的完全自主飞行。目前,该项目以及进行了两个阶段。OS4I最大长度约为73CM,质量为235g,它使用了Draganflyer3的十字框架和旋翼,电机型号为Faulhaber1724,微惯性测量单元为Xsens的MT9-B。研究

多旋翼无人机的发展以及应用

多旋翼无人机的发展以及应用 多旋翼无人机是一种能够垂直起降的无人直升机,其发展历史最早可以追溯到1907年,当时Breguet兄弟Louis和Jacque在法国科学家CharlesRichet的指导下,设计制造了世界上第一架有人驾驶的多旋翼飞机—“旋翼机一号”。 多旋翼无人机根据旋翼的数目可以分为四旋翼、六旋翼、八旋翼等类型,还有一些特殊造型的多旋翼无人机,其最大特点就是具有多对旋翼,并且每对旋翼的转向相反,用来抵消彼此反扭力矩。多旋翼无机人相较于其它无人机具有得天独厚的优势,与固定翼飞机相比,它具有可以垂直起降,可以定点盘旋的优点;与单旋翼直升机相比,它采用无刷电机作为动力,并且没有尾桨装置,因此具有机械结构简单、安全性高、使用成本低等优点。多旋翼无人机的诸多优点使它在以下领域获得了广泛的应用: 1.教育科研领域应用,多旋翼无人机的研究涉及到自动控制技术、MEMS传感器技术、计算机技术、导航技术等,是多科学领域融合研究的一个理想平台; 2.航拍领域应用,利用多旋翼无人机搭载相机设备(可见光相机/红外相机),并配备图像传输系统,被人们称为“可飞行的相机”已被广泛的应用于影视航拍。 3.军事领域应用,多旋翼无人机搭载侦查设备快速飞行到危险区域执行侦查任务,为作战人员提供战场信息,是单兵作战的理想装备; 4.警用安全领域应用,无人机可搭载高清晰度数码摄像机:实时图传系统和地面控制系统可有效协助工作人员锁定、凝视关注事物。无人机可搭载物质投递设备:通过集成探杆、线轮、物品仓、软梯等装备,并搭载相关投放设备,可执行物资横向运输、线路牵引、传单投递、物资投递等。警用安防无人机无人机能利用承载的高灵敏度照相机可以进行不间断的画面拍摄,获取影像资料,并将所获得信息和图像传送回地面。应用于反恐维稳,如遇到突发事件、灾难性暴力事件,可迅速达到实时现场视频画面传输,传供指挥者进行科学决策和判断;成为一种不可多得的重要工具。无人机能进一步提高公安干警的响应、决策、评估效率,推动公安的信息化建设进程。 5.农业领域应用,利用多旋翼无人机替代人进行喷洒农药,具有成本低、效率高,减少农药对人体伤害等优势;除了喷洒农药,无人机还可以用来检测水稻长势,这项研究已经开发出了成熟产品。无人机装载光谱传感器,在稻田上空飞一圈,就可以记录下水稻颜色深浅,人们可以此来判断水稻生长情况,对后续农药、肥料喷洒提供参考。无人机还能用来研究土地荒漠化变化历程、植被变迁、土壤盐渍化检测等方面,对农林植物进行病虫害监测和预警。 6.交通领域应用,交警在执法过程中用上了无人机,用于抓拍违法行为。无人机能对监控盲区的违法行为进行补充抓拍,在交通拥堵的情况下,无人机可以率先赶到现场勘察,通过图传功能将交通状况传回指挥中心,便于远程指挥疏导。 7.环保领域应用,无人机可用来观测空气、土壤、植被和水质状况,也可实时跟踪和监测突发环境污染事件的发展;监测企业工厂的废气与废水排放,寻找污染源。 8.救生医疗应用,当发生洪水时,无人机可携带救生绳或救生圈,将其投到需要者身边。当有人在登山过程中突发疾病,无人机可携带急救药品飞到患者身边。 9.电力行业应用,电力无人机应用优势具备防雨水功能的无人机可在大雨、中雪天气飞行,不受恶劣天气影响,可随时巡航,有利于加大重点区段的特巡力度,增加大负荷运行下设备检测次数。无人机机动灵活,机身轻巧可靠,结构紧凑、性能卓越,使用不受地理条件、环境条件限制,特别适合在复杂环境执行任务,可定期对线路通道内树木、违章建筑等情况进行重点排查、清理,确保输电通道安全。傻瓜式自主飞行。无人机系统具备全自动一

四旋翼飞行器实验报告

实验报告 课程名称:《机械原理课内实验》 学生姓名:徐学腾 学生学号:1416010122 所在学院:海洋信息工程学院 专业:机械设计制造及其自动化 报导教师:宫文峰 2016年6 月26 日

实验一四旋翼飞行器实验 一、实验目的 1.通过对四旋翼无人机结构的分析,了解四旋翼无人机的基本结构、工作的原理和传动控制系统; 2. 练习采用手机控制终端来控制无人机飞行,并了解无人机飞行大赛的相关内容,及程序开发变为智能飞行无人机。 二、实验设备和工具 1. Parrot公司AR.Drone 2.0四旋翼飞行器一架; 2. 苹果手机一部; 3. 蓝牙数据传输设备一套。 4. 自备铅笔、橡皮、草稿纸。 三、实验内容 1、了解四旋翼无人机的基本结构; 2、了解四旋翼无人机的传动控制路线; 3、掌握四旋翼无人机的飞行控制的基本操作; 4、了解四旋翼无人机翻转动作的机理; 5、能根据指令控制无人机完成特定操作。 四、实验步骤 1、学生自行用IPHONE手机下载并安装AR.FreeFlight四旋翼飞行器控制软件。 2、检查飞行器结构是否完好无损; 3、安装电沲并装好安全罩; 4、连接WIFI,打开手机AR.FreeFlight软件,进入控制界面; 5、软件启动,设备连通,即可飞行。 6、启动和停止由TAKE OFF 控制。 五、注意事项 1.飞行器在同一时间只能由一部手机终端进行控制; 2. 飞行之前,要检查螺旋浆处是否有障碍物干涉; 3. 飞行之后禁止用手去接飞行器,以免螺旋浆损伤手部; 4. 电量不足时,不可强制启动飞行; 5. 翻转特技飞行时,要注意飞行器距地面高度大于4米以上; 6. 飞行器不得触水; 7. 飞行器最大续航时间10分钟。

基于多旋翼无人机平台的便携式空中训练模拟器设计

基于多旋翼无人机平台的便携式空中训练模拟器设计 周一辉1,姚一伟1,周一强2 (1.中国电子科技集团公司第五十一研究所,上海201802;2.解放军32090部队,河北秦皇岛066100)摘要:舰载电子战装备存在因辐射源架设原因引起的反射二散射问题导致模拟作战训练困难的情况,难以对使用人员的技术水平和操作能力进行快速提升.设计了一款挂载在多旋翼无人机平台上的小型化训练模拟器,可在空中任意位置或任意轨迹遥控发射射频信号模拟训练目标,解决了模拟训练困难的问题.通过样机测试数据及相关试验效果验证了本设计的可行性,可有效提高使用人员的技术水平二操作能力. 关键词:电子战装备;训练模拟器;多旋翼无人机;技术水平 中图分类号:T N 97一一一一一一一一文献标识码:B 一一一一一一一文章编号:C N 32G1413(2019)03G0104G04 D O I :10.16426/j .c n k i .j c d z d k .2019.03.023D e s i g no fP o r t a b l eA i rT r a i n i n g S i m u l a t o rB a s e do n M u l t i Gr o t o rU A VP l a t f o r m Z HO U H u i 1,Y A O W e i 1,Z HO U Q i a n g 2(1.T h e 51s tR e s e a r c h I n s t i t u t e o fC E T C ,S h a n g h a i 201802,C h i n a ;2.U n i t 32090o fP L A ,Q i n h u a n g d a o 066100,C h i n a )A b s t r a c t :T h e p r o b l e m s o f r e f l e c t i o n a n d s c a t t e r i n g c a u s e d b y t h e e x e r t i o n o f r a d i a t i o n s o u r c e s e x i s t i n s h i p Gb o r n e e l e c t r o n i cw a r f a r ee q u i p m e n t ,w h i c h m a k e s i td i f f i c u l t t os i m u l a t ec o m b a t t r a i n i n g ,a n d i t i s d i f f i c u l t t o r a p i d l y i m p r o v e t h e t e c h n i c a l l e v e l a n d o p e r a t i o n a b i l i t y o f t h e u s e r s .T h i s p a p e r d e s i g n s am i n i a t u r i z e d t r a i n i n g s i m u l a t o rm o u n t e do nm u l t i Gr o t o r u n m a n n e da e r i a l v e h i c l e (U A V )p l a t f o r m ,w h i c hc a nr e m o t e l y c o n t r o l st h er a d i of r e q u e n c y s i g n a l st r a n s m i s s i o nt os i m u l a t et h e t r a i n i n g t a r g e t s a t a n yp o s i t i o no r t r a j e c t o r y i n t h e s k y ,s oa s t os o l v e s t h ed i f f i c u l t y o f s i m u l a t i o n t r a i n i n g .T h r o u g h t h e t e s t d a t a o f t h e p r o t o t y p e a n d t h e r e l a t i v e t e s t r e s u l t s ,t h e f e a s i b i l i t y o f t h e d e s i g n i s v e r i f i e d ,a n d t h e t e c h n i c a l l e v e l a n do p e r a t i o n a b i l i t y o f u s e r s c a nb e i m p r o v e d e f f e c t i v e l y .K e y w o r d s :e l e c t r o n i cw a r f a r ee q u i p m e n t ;t r a i n i n g s i m u l a t o r ;m u l t i Gr o t o ru n m a n n e da e r i a l v e h i c l e ;t e c h n i c a l l e v e l 收稿日期:201905070一引一言电子战装备在战争中发挥着越来越重要的作 用,电子信息装备数量日趋庞大,运用复杂,种类繁 多[1],特别是雷达侦察设备的应用最为广泛[ 2].随着电子战装备的高频率使用,如何提高使用人员技 术能力二操作水平,保障电子战装备性能完好,充分 发挥装备的战斗力,是现下亟需解决的问题. 本文根据舰载电子战装备训练存在困难的情 况,提出基于多旋翼无人机平台的便携式空中模拟 训练器设计方案,可适用于舰载电子战装备的日常 训练二试验验证等,达到提升使用人员的技术水平二 充分发挥电子战装备战斗力的作用.1一需求分析1 1一电子战装备训练情况舰载电子战装备进行训练一是依靠装备本身设计进行自检判断设备工作状态是否正常,二是使用射频注入法测试来检验装备的接收机二信号处理系2019年6月 舰船电子对抗J u n .2019第42卷第3期S H I P B O A R DE L E C T R O N I CC O U N T E R M E A S U R E V o l .42N o .3

旋翼式无人机的发展和趋势

Artificial Intelligence and Robotics Research 人工智能与机器人研究, 2013, 2, 16-23 https://www.doczj.com/doc/f314273722.html,/10.12677/airr.2013.21003 Published Online February 2013 (https://www.doczj.com/doc/f314273722.html,/journal/airr.html) Development and Trend of Unmanned Rotorcraft Tianhang Zhang, Jinping Bai School of Aeronautics & Astronautics, University of Electronic Science and Technology of China, Chengdu Email: simayichen@https://www.doczj.com/doc/f314273722.html, Received: Nov. 1st, 2012; revised: Dec. 2nd, 2012; accepted: Dec. 13th, 2012 Abstract: With the rapid development of the unmanned rotorcraft, more and more attention has been paid on it in many field. In this paper, the general classification, technical composition, applications and development situation of un-manned rotorcraft is introduced. And the development trend of unmanned rotorcraft in the future is also predicted. Keywords: Unmanned Rotorcraft; Ground Control Station; Task Load; Development 旋翼式无人机的发展和趋势 张天航,白金平 电子科技大学航空航天学院,成都 Email: simayichen@https://www.doczj.com/doc/f314273722.html, 收稿日期:2012年11月1日;修回日期:2012年12月2日;录用日期:2012年12月13日 摘要:旋翼式无人机的高速发展已经受到了各个领域的高度重视,本文介绍了旋翼式无人机的大体分类、技术组成、应用领域、发展现状,并预测了旋翼式无人机未来的发展趋势。 关键词:旋翼式无人机;地面站;任务载荷;发展 1. 引言 无人机是指可重复使用的无人驾驶飞行器(UA V, Unmanned Aerial Vehicle),有相应的航电系统、传感器系统、通信系统、飞行控制系统等,具有自主飞行和独立完成某项任务的功能,也有人称之为空中机器人。相对于有人驾驶飞行器,无人机具有造价低廉,适用于多种复杂任务环境、可降低人员伤亡等优点。英国早在1917年就研制成功了世界上第一架无人机,到20世纪80年代左右,无人机的发展逐渐得到重视。随着无人机在几次局部战争中大放异彩,其在各个领域中的应用价值也体现出来。目前,世界上很多国家都展开了无人机的研究和制造。 旋翼式无人机是无人机的一个主要分类,依靠一个或者多个旋翼提供机体的升力和动力。美国在20世纪50年代就开始了无人直升机的研制工作。随着无人机在各个领域中的深入发展,旋翼式无人机以其独特的空中悬停能力、较固定翼式无人机更优良的低空低速特性、对起降场地的低要求、极佳的机动灵活性以及高可靠性得到了越来越多的青睐,被广泛运用于军民各个行业。 整个旋翼式无人机系统是一个综合了空气动力学、导航制导、无线通信、电子信息、智能控制、系统软件等多项技术的复杂系统。 2. 旋翼式无人机系统 2.1. 旋翼式无人机的发展 世界上第一架具有实用性的直升机是俄籍美国人埃格·西科斯基制造的“VS-300”,它于1939年9月14日完成首飞,确立了旋翼式飞机的主流布局——单旋翼带尾桨。

四旋翼无人机毕业设计

四旋翼无人机毕业设计 目录 摘要 ............................................................................................. 错误!未定义书签。Abstract ................................................................................................ 错误!未定义书签。1绪论 .. (1) 1.1研究背景及意义 (1) 1.2 国内外四旋翼飞行器的研究现状 (1) 1.2.1国外四旋翼飞行器的研究现状 (1) 1.2.2国内四旋翼飞行器的研究现状 (3) 1.3 本文研究内容和方法 (4) 2 四旋翼飞行器工作原理 (5) 2.1 四旋翼飞行器的飞行原理 (5) 2.2 四旋翼飞行器系统结构 (5) 3 四旋翼飞行器硬件系统设计 (7) 3.1 微惯性组合系统传感器组成 (7) 3.1.1 MEMS陀螺仪传感器 (7) 3.1.2 MEMS加速度计传感器 (7) 3.1.3 三轴数字罗盘传感器 (8) 3.2 姿态测量系统传感器选型 (8) 3.3 电源系统设计 (10) 3.4 其它硬件模块 (10) 3.4.1 无线通信模块 (10) 3.4.2 电机和电机驱动模块 (11) 3.4.3 机架和螺旋桨的选型 (12) 3.4.4 遥控控制模块 (13) 4 四旋翼飞行器姿态参考系统设计 (15) 4.1 姿态参考系统原理 (15) 4.2 传感器信号处理 (16) 4.2.1 加速度传感器信号处理 (16) 4.2.2 陀螺仪信号处理 (16) 4.2.3 电子罗盘信号处理 (17) 4.3 坐标系 (17) 4.4 姿态角定义 (18) 4.5 四元数姿态解算算法 (19) 4.6 校准载体航向角 (27) 5 四旋翼飞行器系统软件设计 (29) 5.1 系统程序设计 (29) 5.1.1 姿态参考系统软件设计 (29) 5.1.2 PID控制算法设计 (30)

【CN109946971A】一种倾转旋翼无人机过渡段的光滑切换控制方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910270627.1 (22)申请日 2019.04.04 (71)申请人 南京航空航天大学 地址 211106 江苏省南京市秦淮区御道街 29号 (72)发明人 邹怡茹 刘春生  (74)专利代理机构 南京苏高专利商标事务所 (普通合伙) 32204 代理人 王安琪 (51)Int.Cl. G05B 13/04(2006.01) (54)发明名称 一种倾转旋翼无人机过渡段的光滑切换控 制方法 (57)摘要 本发明公开了一种倾转旋翼无人机过渡段 的光滑切换控制方法,在所建立倾转旋翼飞行器 纵向非线性模型的基础上,选取飞行速度和短舱 倾角作为特征参数,对配平工作点拟合得到飞行 转换路径;根据所选取工作点进行全局状态空间 划分,从而建立起倾转旋翼机切换控制模型;根 据所述切换模型设计切换律,得到各子控制器及 子系统切换条件;进一步以切换参数作为输入对 实际飞行模态进行模糊推理,根据模糊推理结果 对各个子系统控制律进行加权,得到光滑切换控 制律。本发明针对倾转旋翼机在飞行模态转换过 程中系统参数变化大的特点,设计多模态切换控 制律,减小控制系统负担,同时减小了切换过程 中控制信号跳变给系统带来的恶劣影响。权利要求书3页 说明书8页 附图5页CN 109946971 A 2019.06.28 C N 109946971 A

1.一种倾转旋翼无人机过渡段的光滑切换控制方法,其特征在于,包括如下步骤: (1)对倾转旋翼机进行各部件进行气动建模,并通过平动动力学方程和转动动力学方程得到倾转旋翼无人机纵向非线性模型; (2)选取短舱倾角作为特征参数,对倾转旋翼机进行不同工作点处的配平,根据定高飞行的控制要求选择过渡段的工作点,对不同短舱倾角处的工作点进行拟合,得到倾转旋翼机飞行转换路径,根据飞行转换路径上的工作点建立起以短舱倾角和飞行速度为切换参数的切换模型; (3)通过寻找各模态下的Lyapunov矩阵设计切换子系统的切换频率,从而求解得到使得切换过程稳定的各子系统平均驻留时间,通过求解线性矩阵不等式得到使得各闭环子系统有限时间稳定的控制器增益K,通过设计切换条件和各子控制器增益得到基于时间依赖的切换系统稳定条件; (4)根据模糊加权思想,对各模态下子控制增益进行模糊加权;以短舱倾角和飞行速度作为输入,对系统进行模糊推理,模糊推理判断出实际飞行器所处的飞行模态,从而计算出步骤三中所求得子控制器的权重,根据该权重对子控制器进行加权,所得实际控制器取决于对飞行对象模型和各个工作点模型的匹配程度。 2.如权利要求1所述的倾转旋翼无人机过渡段的光滑切换控制方法,其特征在于,步骤 (1)中,对倾转旋翼机进行各部件进行气动建模,并通过平动动力学方程和转动动力学方程得到倾转旋翼无人机纵向非线性模型具体为:在计算力和力矩时,对左右旋翼、左右机翼、垂尾、平尾、机身每一部分进行气动力建模,在倾转旋翼飞行器中,根据分体建模法得到倾转旋翼机气动力关系,再通过平动动力学方程和转动动力学方程得到倾转旋翼无人机纵向非线性模型f。 3.如权利要求1所述的倾转旋翼无人机过渡段的光滑切换控制方法,其特征在于,步骤 (2)中,为实现倾转旋翼无人机飞行转换过程中的定高控制,在不同工作点配平时垂向速度应为0;选取过渡段短舱倾角为45°,55°,65°的工作点代表倾转旋翼的过渡过程;根据此要求用MATLAB中的trim函数对非线性模型进行配平,得到不同短舱倾角下配平时对应的状态量和输入量;在配平的基础上,用linmod函数将模型进行线性化,得到不同配平点附近的线性模型;将所得到的工作点用以下Gaussian函数进行拟合, 全模式飞行转换路径为: 其中,a 1、a 2、a 3、a 4、a 5、a 6、b 1、b 2、b 3、b 4、b 5、b 6、c 1、c 2、c 3、c 4、c 5、c 6为拟合飞行转换路径的高斯函数系数; 沿着全模式飞行路径,以倾转旋翼机短舱倾角βM 和飞行速度V作为切换参数 ρ(βM ,V),选取状态向量x=[V x V y ωz θ]T ,输入向量u=[δc δlong δe ]T , 建立起倾转旋 翼机线性切换模型如下: 权 利 要 求 书1/3页2CN 109946971 A

四旋翼无人机建模及其PID控制律设计

四旋翼无人机建模及其PID控制律设计 时间:2012-10-27 来源:现代电子技术作者:吴成富,刘小齐,袁旭 关键字:PID无人机建模 摘要:文中对四旋翼无人机进行建模与控制。在建模时采用机理建模和实验测试相结合的方法,尤其是对电机和螺旋桨进行了详细的建模。首先对所建的模型应用PID进行了姿态角的控制。在此基础上又对各个方向上的速度进行了PlD 控制。然后在四旋翼飞机重心进行偏移的情况下进行PID控制,仿真结果表明PID控制律能有效的控制四旋翼无人机在重心偏移情况下的姿态角和速度。最后为了方便控制加入了控制逻辑。 关键词:四旋翼;建模;PID;控制;重心偏移;控制逻辑 四旋翼无人机是一种具有4个旋翼的飞行器,有X型分布和十字型分布2种。文中采用的是X型分布的四旋翼,四旋翼无人机只能通过改变旋翼的转速来实现各种运动。国外对四旋翼无人直升机的研究非常活跃。加拿大雷克海德大学的Tavebi和McGilvrav证明了使用四旋翼设计可以实现稳定的飞行。澳大利亚卧龙岗大学的McKerrow对Dragantlyer进行了精确的建模。目前国外四旋翼无人直升机的研究工作主要集中在以下3个方面:基于惯导的自主飞行、基于视觉的自主飞行和自主飞行器系统。而国内对四旋翼的研究主要有:西北工业大学、国防科技大学、南京航天航空大学、中国空空导弹研究院第27所、吉林大学、北京科技大学和哈工大等。大多数的研究方式是理论分析和计算机仿真,提出了很多控制算法。例如,针对无人机模型的不确定性和非线性设计的 DI/QFT(动态逆/定量反馈理论)控制器,国防科技大学提出的自抗扰控制器可以对小型四旋翼直升机实现姿态增稳控制,还有一些经典的方法比如PID控制等,但是都不能很好地控制四旋翼速度较大的情况。本文对四旋翼无人机设计了另外一种不同的控制方法即四旋翼的四元数控制律设计,仿真结果表明这种控制方法是一种有效的方法。尤其是对飞机的飞行速度较大的情况,其能稳定地控制四旋翼达到预期的效果。 1 四旋翼的模型 文中所研究的四旋翼结构属于X型分布,即螺旋桨M1和M4与M2和M3关于X轴对称,螺旋桨M1和M2与M3和M4关于Y轴对称,如图1所示。对于四旋翼的模型本文主要根据四旋翼的物理机理进行物理建模,并做以下2条假设。

倾转旋翼无人机介绍及应用现状分析

倾转旋翼无人机介绍及应用现状分析无人直升机可以垂直起降不受场地限制,但是续航时间和速度却相对受限。固定翼无人机续航时间长、速度高但却需要起飞跑道。自上个世纪,技术人员就开始在二者之间不断探索,旨在寻找一种既可以垂直起降又能保障高航速和长航时的整合型技术。上世纪末,倾转旋翼无人机技术应运而生。 倾转旋翼无人机结合了直升机机和固定翼的优点,既有旋翼又有固定机翼,而且旋翼可以从垂直位置转向水平位或者从水平位置转到垂直位置,因此这种无人机兼具垂直/短距离起降和高速巡航的特点。目前从世界范围来看,倾转旋翼技术还处于起步阶段,只有少数国家技术相对成熟。 领跑全球:美国和以色列倾旋翼无人机技术世界领先 最具代表性的倾转旋翼无人机当属美国的“鹰眼”无人机。该无人机由美国贝尔公司研制,于2006年进入海军现役,主要用于执行侦察、监视、搜索、战损评估、通信中继和电子对抗等操作。 “鹰眼”由复合材料制造,机身结构紧凑,整体呈扁豆型,具有防腐蚀、防霉菌和防盐雾的能力。机体由前机身、中机身、尾机身、机翼襟副翼和短舱组成,而且机体大部分可以拆卸,便于运输和维护。该无人机最为显著的特点就是其旋翼可以倾转。无人机起飞和着陆时,旋翼轴处于垂直状态,因此可以保障无人机的垂直起降。成功飞机后,旋翼轴会转变为水平状态,使无人机由直升机模式成功过渡到飞行模式。

“鹰眼”无人机长18英尺3英寸(约5.56米)、翼展24英尺2英寸(约7.37米)、高6英尺2英寸(约1.88米)。空机质量为590千克,整机总重2250千克。该无人机最大航行速度达到225英里/小时(约360千米/小时),续航时间6小时,最高可飞至6096米。与固定翼无人机相比,“鹰眼”可垂直起降、空中悬停、操作灵活。与无人直升机相比,“鹰眼”巡航速度快、航时长、飞行包线大。 以色列无人机在全球一直处于领先地位,在倾转旋翼技术领域亦不逊色。在2010年,以色列航空工业公司(IAI)研发的“黑豹”(panther)正式亮相。 “黑豹”具备倾转旋翼推进系统,能够自由起飞和降落,无需专门的起降地点。而且采用了自动飞行控制系统,可以确保飞机在垂直起降和水平飞行两种状态之间正常转换。此外,该无人机还搭载了IAI公司自主研发的迷你光电/红外传感器。 “黑豹”的动力装置为3台“超静音”电动机。飞机重约为65千克,续航时间6小时,操作半径超过60千米,飞行高度为10000英尺(约3千米)。在研发该无人机的同时,以色列还设计了迷你版“黑豹”,迷你版重12千克,续航时间约为2小时。 后起之秀:韩国推出“TR-60”无人机 韩国于今年四月推出了一款倾转旋翼无人机样机TR-60。这款无人机采用了类似美国V-22“鱼鹰”(美国的一款有人倾转旋翼飞机)的倾转旋翼技术,

四旋翼无人机带机械臂的设计与研究

四旋翼无人机带机械臂的设计与研究 发表时间:2018-06-06T15:23:16.953Z 来源:《科技新时代》2018年3期作者:鲍佳松[导读] 摘要:四旋翼无人机已经进入了众多的应用领域,在国家建设以及工程中扮演着越来越重要的角色。目前研究四旋翼无人机姿态及机身设计的文章较多,但是很少有带机械手臂的无人机。因此,本文采用了以往常见的无人机模型,摘要:四旋翼无人机已经进入了众多的应用领域,在国家建设以及工程中扮演着越来越重要的角色。目前研究四旋翼无人机姿态及机身设计的文章较多,但是很少有带机械手臂的无人机。因此,本文采用了以往常见的无人机模型,设计出机械手臂,既能保证无人机飞行过程的平稳性,而且保证抓取东西的快速、准确性。本文不仅设计了无人机的整体形态,而且选择了适合无人机飞行的硬件设施,为工程 应用打下了基础。 关键字:四旋翼飞行器;机械手臂;抓取;硬件设施 一、前言 目前,国内外研究无人机的人员越来越多,先进的无人机也层出不穷。但是大多数研究者只是关注于飞行姿态、飞行稳定性,而带有机械手的无人机则研究较少。在近年来,无人机不管是在飞行姿态、操纵系统、稳定性设计等都有长足发展,但是带有机械手的无人机动态操作等问题还比较突出。 在设计研究当中,无人机加上先进的操纵手臂之后,不仅改变了飞行器的整体重量,而且对于飞行中的控制提出了较大问题。在无人机飞行过程中,抓取动作的准确性、稳定性是考虑的重要问题。比如说,无人机在告诉的飞行中,对于其飞行速度与飞行的时间要求比较高,这就要要求无人机能够快速、及时地抓住物体,而且有时还需要对目标进行监视,这样就会避免因为噪音而引起的注意。除此之外,无人机动态抓握功能可以扩展到实时栖息,这可以用来快速地躲避大风、通过减少悬停时间来提高续航时间。 华北电力大学张虎[1]等在众多无人机研究的基础上,利用四旋翼飞行器作为基本结构,进行改进与创新,研究了一种飞滑式输电线巡检机器人,这种无人机结合了现有的四旋翼飞行器与巡线机器人优点的具有飞行与线上滑行巡检功能的机器人。Justin Thomas团队[2]在多年观察仿生机械的基础上设计研究了一种采用被动机制的机械手爪,这种手爪在抓取中能够不受外界环境的干扰,同时在垂直起飞和着陆系统中启用被动栖息的设计上采用了优化分析;Courtney E. Doyle团队[3]在多年针对放生机械研究的基础上,在无人机上加入了受到控制的附属物,使其能够高速地锁定对象并进行抓取。 本文以无人机整体设计为核心,分别对无人机的控制系统、工作原理及控制做出介绍,合理选择适合无人机的硬件,对工程应用具有较大的指导价值。 二、无人机总体设计 1.无人机控制系统组成 在整个的无人机系统当中,系统通过无线电与地面实现通信。在四旋翼无人机下方设置机械手,通过舵机控制其运动[4-6]。操作人员可以在地面输入指令,进而控制飞行器的飞行状态。同时,控制器还可以控制机械手的动作,实现抓举、松开等动作 2.无人机飞行器工作原理 四旋翼飞行器由四个螺旋桨驱动,螺旋桨分别有独立电机带动。在控制系统当中,旋转的力矩与平移动作实现了耦合。如果排除外界扰动,旋翼就能够产生与重力相等的升力,飞行器便处于悬停状态[7]。同时另外一组螺旋桨一个速度增大,一个速度减小就会产生俯仰和滚动的姿态;两组螺旋桨阻力矩的差异产生偏航姿态。 3.机械手控制 机械手的控制是此次设计的关键。手爪的设计要顾及到飞行器的相对移动速度,这样就能够获得相应的载荷;同时要考虑到其栖息能力,适应不同的环境,能够在广泛的区域停留。 4.无人机整体效果图

相关主题
文本预览
相关文档 最新文档