当前位置:文档之家› 注塑模具的流道与浇口设计

注塑模具的流道与浇口设计

注塑模具的流道与浇口设计
注塑模具的流道与浇口设计

注塑模具的流道与浇口设计

塑料熔体从注射成型机的喷嘴经主流道、流道、浇口进人模腔。模腔的人口被称为浇口。为了防止喷嘴末端的固化冷料进人模腔,在流道的末端应该设计冷料井。

01流道

流道是从主流道到浇口间的重要通道,是注塑机喷嘴射出的熔融塑料的流动通道。流道应被设计成低阻力和防止冷却。通常,流道被设计成梯形或圆形。

常见流道的形状

对于多腔模具,为了得到好的尺寸精度,流道的设计十分重要,下图典型的多腔模具的流道设计。

多腔模具流道

02浇口

浇口系统设计,如位置、数目、几何形状和尺寸对生产效率和尺寸精度是十分重要的,浇口的作用总结如下:

1.控制流入模腔的塑料熔体的体积和方向

2.固化前,在模腔内封闭熔料并阻止熔体回流到流道

3.由于黏性耗散引起的热而生成

4.易于切下流道,简化制品的后处理

分类:

非限制性浇口称为直浇口,如下图所示,这种浇口形式的模具设计简单,操作容易,成型容易并减小收缩。但这种浇口成型周期变长,并易出现如裂纹、翘曲和残余应力等成型缺陷。

直浇口

注塑模具验收标准

塑料注塑模具验收标准 目的:为确保模具能生产出合格的产品,正常投入生产,保证模具生产使用寿命,满足产品设计的生产使用要求。规范从产品质量、模具结构、注塑成型工艺要求等方面认可模具的标准,据此对模具质量进行评估; 参照标准: GB/T 12554—2006塑料注射模技术条件 GB/T 4169.1~4169.23—2006注射模零件 GB/T 12556—2006塑料注射模模架技术条件 GB/T 14486—2008塑料模塑件尺寸公差 一、成型产品外观、尺寸、配合 1.产品表面不允许缺陷:缺料、烧焦、顶白、白线、披峰、起泡、拉白(或拉裂、拉断)、烘印、 皱纹。 2.熔接痕:一般圆形穿孔熔接痕长度不大于5mm,异形穿孔熔接痕长度小于15mm,熔接痕强度并能通 过功能安全测试。 3.收缩:外观面明显处不允许有收缩,不明显处允许有轻微缩水(手感不到凹痕)。 4.变型:一般小型产品平面不平度小于0.3mm,有装配要求的需保证装配要求。 5.外观明显处不能有气纹、料花,产品一般不能有气泡。 6.产品的几何形状,尺寸大小精度应符合正式有效的开模图纸(或3D文件)要求,产品公差需根据公 差原则,轴类尺寸公差为负公差,孔类尺寸公差为正公差,顾客有要求的按要求。 7.产品壁厚:产品壁厚一般要求做到平均壁厚,非平均壁厚应符合图纸要求,公差根据模具特性应做到 -0.1mm。 8.产品配合:面壳底壳配合:表面错位小于0.1mm,不能有刮手现象,有配合要求的孔、轴、面要保证 配合间隔和使用要求。 二、模具外观 1.模具铭牌内容完整,字符清晰,排列整齐。 2.铭牌应固定在模脚上靠近模板和基准角的地方。铭牌固定可靠、不易剥落。 3.冷却水嘴应选用塑料块插水嘴,顾客另有要求的按要求。 4.冷却水嘴不应伸出模架表面。 5.冷却水嘴需加工沉孔,沉孔直径为25mm、30mm、35mm三种规格,孔口倒角,倒角应一致。 6.冷却水嘴应有进出标记。 7.标记英文字符和数字应大于5/6,位置在水嘴正下方10mm处,字迹应清晰、美观、整齐、间距均匀。

压铸流道设计探讨

压铸流道设计探讨 ⑤ 横浇道长度一般取30-50mm 左右 3、压铸模具内浇口的尺寸设计 Ag = G/(Vg*t*1000) Ag 内浇口的截面面积(mm2) G 通过内浇口的金属液体积(产品+冷料井)(mm3)Vg 内浇口处金属液的流动速度(m/s ) t 型腔的充填时间(s ) 铝合金一般浇口速度可参考下表设定 T 内浇口的厚度(mm )D 横浇道深度(mm ) D = (5-8)T(卧式冷室压铸机) D = (8-10)T(热室压铸机) ④ 横浇道深度的尺寸设计 1、压铸模流道设计方法,常用“逆向流量法”。压铸模流道,有如下主要部位,直浇道、横浇道、分支横浇道和内浇口,他们之间截面积关系要满足如下比例,可以保证减少卷入空气。直浇道:横浇道:∑分支横浇道:∑内浇口=1.15(1.15(1.15X)):1.15(1.15X):1.15X :1X 。所谓“逆向流量法”,就是首先确定内浇口截面积,其他部位的截面积就可以确定了。内浇口截面积如下确定:根据铸件的壁厚,查压铸手册,可以得到一个t 填充时间,根据填充时间的参数,用公式:内浇口截面积(长*宽)=铸件带冷料井总体积/(内浇口合金速度*填充时间)就可以获得内浇口截面积的数据。 2、对于横浇道的要求 ① 冷室卧式机压铸模具横浇道的入口处一般应位于压室上部内径2/3以上部位,以免压室中金属液在重力作用下过早进入横浇道,提前开始凝固。 ② 横浇道的截面积从直浇道起至内浇口应逐渐减小,如果出现截面扩大,则金属液流经时会出现负压,易吸入分型面上的气体,增加金属液流动中的涡流裹气。一般出口处截面比进口处小10-30%。 ③ 横浇道应有一定的长度和深度。保持一定长度的目的是起稳流和导向的作用。若深度不够,则金属液降温快,深度过深,则因冷凝过慢,压铸件不良率高,既影响生产率又增加回炉料用量。 注意:当铸件的壁厚很薄却表面质量要求较高是,选用较大的值,对力学性能,如抗拉强度和致密度要求较高时用较小 值

GATE-浇口设计分析

技术专栏 : 塑料射出成型模具的浇口设计 浇口(Gate)在射出成型模具的浇注系统(Feed System)中是连接流道(Runner)和型腔(Cavity)的熔胶通道。浇口设计和塑件质量有着密不可分的关系。 1. 浇口的位置和数目 1.1. 浇口位置与喷流(Jetting)的关系 浇口若能布置成冲击型浇口 -- 也就是使得进浇后的塑料熔体立刻冲击到一阻挡物(如型腔壁、芯型销等),让塑流稳定下来,就可以减少喷流的机率。 1.2. 浇口的位置和数目与熔接线(Weld Line)的关系 熔接线是两股熔胶的波前(Melt Front)相遇后所形成的线条。就塑件的外观或是强度而言,熔接线都是负面的。 每增加一个浇口,至少要增加一条熔接线,同时还要增加一个浇口痕(Gate Mark)、较多的积风(Air Trap)以及流道的体积。所以在型腔能够如期充填的前提下,浇口的数目是愈少愈好。为了减少浇口的数目,每一浇口应在塑流力所能及的流动比之内(Flow Length to Thickness Ratio),找出可以涵盖最大塑件面积的进浇位置。 更改浇口位置以后,能够将熔接线自敏感处移除为上策。如果熔接线无法移除,那么增加波前的熔胶温度(Melt Temperature);或是减少两相遇波前的熔胶温度差(Melt Temperature Difference);或是增加两波前相遇后的熔胶压力(Melt Pressure);或是增加熔胶波前相遇时的遇合角(Meeting Angle),都可以改善熔接线的质量。 1.3. 浇口的位置和数目与积风(Air Trap)的关系 积风是型腔内的空气和熔胶释出的气体被熔胶包围后的缺陷。积风的存在,重则导致短射(Short Shot)或焦痕(Burn Mark),轻亦影响外观和强度。 每增加一个浇口,就会增加积风发生的机率。当塑件厚薄差异大时,如果浇口位置设置不当,就会因为跑道现象(Race Track Effect)而导致积风。 1.4. 浇口位置与迟滞效应(Hesitation Effect)的关系 迟滞效应是熔胶流到厚薄交接处的时候,由于薄处的流阻较大,而在该处阻滞不前的效应。这种效应重则产生短射,轻亦形成迟滞痕(亦即高残余应力带)。 浇口应置于距离可能发生迟滞效应的最远处,以消除或减轻迟滞。 1.5. 浇口位置与缩痕(Sink Mark)和缩孔(Void)的关系 浇口应置于厚壁处以确保补缩的塑流(Compensation Flow)能够维持得最久,厚壁处才不会因为较大的收缩,而使得缩痕和缩孔更容易发生。 1.6. 浇口位置与溢料(Flash)的关系 型腔布置和浇口开设部位应立求对称,防止模具承受偏载而产生溢料现象。如(图一)所示,b) 的布置较之a)为合理。 1.7. 浇口位置与流动平衡(Flow Balance)的关系 就单型腔模具而言,熔胶波前于同一时间抵达型腔各末端,就叫做流动平衡。流动平衡的设计使得熔胶的压力、温度以及体积收缩率的分布比较均匀,塑件的质量较好。所以浇口位置的选择以是否达成流动平衡为准。 流动平衡与否,可以模拟充模的CAE进行确认。对浇口数目相同但是浇口位置不同的设计而言,能以最小的射压 (Injection Pressure)和锁模力(Clamp Force)充模的设计是流动最平衡的设计。

两板式注塑模浇口和流道的优化设计

两板式注塑模浇口和流道的优化设计作者:M.A.阿姆兰,M. 哈德斯雷,S.阿姆里,R. 艾木莎,A.哈桑,S.斯姆西,和K.沙希尔 马来西亚Teknikal大学制造工程学院 邮箱:mohdamran@https://www.doczj.com/doc/f312041876.html,.my 摘要 本文主要介绍了两板式注塑模浇口和流道的大小。此次研究以ECR 塑料产品中的上壳,下壳,支架三个产品作为研究对象,目的是找出浇口,流道的最佳尺寸和型腔的合理布局,并以最优布局消除因浇口和流道不合理产生的缺陷。这项研究使用了三种类型的软件:使用UG软件作为计算机辅助设计工具用来3D建模;使用犀牛软件后期处理工具设计浇口和流道;使用Moldex软件作为仿真工具来分析塑性流动。最终修改了一些两板式注塑模中浇注系统的大小和位置,来消除填充时缺料产生的空腔和熔接痕等问题。 关键词:计算机建模;流体分析;优化 PACS: 07.05Tp 1.介绍 注塑通常包括注射,补缩和冷却三个阶段。随着计算机在工程设计中的大量使用,仿真软件在模具制造行业中产生了重要的影响。目前,市场上这方面商用软件也越来越多地涌现出来[1]。ECR塑料产品的三部分使用相同的材料和颜色,但形状大小却各不相同。原本每一部分都需要独自的模具,此项研究中只需要一个一模多腔的模具便可完成。其难点在于型腔的位置、浇注系统的位置尺寸、以及冷却水道的位置[2]、[6]、[7]。Moldex软件就是用于分析塑性流动的仿真软件。 2.方法 本研究从设计通过UG软件对ECR产品进行3D建模,然后将建好的模型转移到犀牛软件上进行文件处理。在犀牛软件中对浇注系统如浇口,主流道,分流道,以及冷却水道和模架的设计。最后,使用从犀牛软件导出文件到Moldex软件。通过对注射、补缩、冷却、翘曲的分析 1

包胶模具设计及制作要求

包胶模具设计及制作要 求 文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

包胶(二次注塑)模具设计及加工要求 包胶模具是否合格,模具结构设计及制作加工时的FIT模过程非常重要,所有参与设计及制作加工工序的人员必须记住,包胶后的产品效果最佳状态就应该像双色模具注塑出来的效果完全一样,所以,我们的包胶模具FIT模效果,就应该是当成制作双色模具完全一样,每一道加工工序都可能影响最后的FIT模,任何的加工结果都会与模具进度及产品质量息息相关。 (一)设计要求 1)由于包胶模具分型面接触位置比较小,模胚上面必须加平衡块。 2)包胶模具设计时一般采用标准小水口模胚,二次注塑时一射胶件尽量摆 放在前模。 3)包胶模具的软胶胶位厚度最好在至之间(最好左右),否则需要检察产品 图纸时建议客户修改配合,胶位薄过,走胶会比较困难,胶位厚过,生 产时软胶容易缩水。 4)包胶模具入水非常重要,入水点必须充分考虑走胶的平衡,入水点大小 必须可以调节,大块区域软胶入水点不能大过ф,小块区域软胶位置入 水点不能大过ф,为了保障走水平衡,建议制作入水点全部先做到小于 ф,便于第一次试模时在注塑机上面调整,包胶模具二次注塑胶料是软 胶的产品,模具唧嘴小端不可大于ф,否则生产时容易唧嘴粘模,大端 不能大于ф6mm,否则唧嘴由于冷却不够容易短水口,为了防止流道粘

模,流道设计尽量采用U型,流道单边斜度用15゜接顺R,流道及小水口大端不能大于6mm,水口扣针必须按公司的标准加工。 5)包胶模具顶出结构必须考虑顶出的平衡,否则软胶顶出之后容易变形, 不能直接平衡顶出的产品,设计结构的时候需要考虑缩呵来改善顶出平衡问题。 6)为了保障包胶注塑后顶出的胶件外观合格,设计的顶出装置必须是镶 ABS或者亚加力的硬胶块。 包胶(二次注塑)模具设计及加工要求 7)如果包胶模具结构有行位封胶,行位尽量设计在前模,原因是前模行位 方便FIT模。 8)为了保障封胶止口的强度,二次注塑材料是软胶的产品,封胶止口宽度 尽量不能小于,二次注塑材料是硬胶的产品,封胶止口宽度尽量不要小于至,否则,需要建议客户修改产品来配合。 9)包胶模具通常二次注塑的射胶量比较小,很多时候二次注塑材料是软 胶,为了保障包胶产品的外观合格,因此模具设计时必须尽量选择型号小的注塑机。为了尽量配合小型号的注塑机,模具设计时必须尽量考虑

压铸模设计要点及工艺解析

压铸模设计要点及工艺解析 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 压铸模设计要点及压铸工艺 金属液在通过浇口时,其填充方式可分为层流式填充、喷射流填充、雾化流填充三种方式。当浇口速度较低时,填充方式显层流的状态;当速度增加,金属液不再是连续流出,而是呈粗颗粒状喷出;当速度更高时,水则会呈雾状的细微颗粒喷出。采用层流填充或雾状流填充均可产生令人满意的铸件,粗颗粒流填充因在填充过程中热量损失多而填充不好。一般而言,浇口愈薄,浇口速度愈高才能达到雾化流的状态 金属液进入型腔的流动状态是由流道和内浇口的形式决定的。目前使用较多的流道形式有扇形流道和锥形流道两种。浇注系统由直浇道,横浇道和内浇道等三部份组成。扇形流道较适合于内浇口长度较短的产品,锥形流道适合于内浇口长度较长的产品。不管是扇形流道还是锥形流道,从流道开始到内浇口其截面积应该逐渐缩小,才能保证控制合金液的流态,并防止气体卷入浇注系统;横浇道应具有一定的长度,可对金属液起到稳流和导向作用压铸模设计要点: 一、模架 1.外表面要求光亮平整,前后模框加2个打出孔,注意要加在没有镶件的位置,防止零件掉出来。 2.为了防止模板变形,起码做2个支撑柱,一个放在分流锥,一个放在分流锥的上面,

注意不要与其他零件干涉。 3.模具底板要做通,便于散热。 4.定位圈内孔表面要求内圆磨后氮化,并沿出模方向抛光。 5.定位圈表面的冷却环底部到分流锥表面的长度一般等于料饼厚度。固定此冷却环的方式有2种:烧焊和加热压入。 6.分流锥一定要做运水来冷却,且离分流锥表面25-30mm. 7.模架四个导柱孔要做撬模槽,深度8-10mm。 8.模架一定要调质处理的,最好是锻打的模架。 二、内模,镶件 1.加工后热处理前做去应力处理。一般铝合金淬火HRC45+/-1°C,锌合金淬火HRC46+/-1-1°C 2.内模的配合公差:一般做到小于模框0.05-0.08mm左右,可以用吊环轻松取出放入模框。顶针配合公差:大于等于8mm的顶针间隙0.05mm,小于等于6mm的顶针间隙0.025mm。 3.3.凡是内模上面直角和锐角的地方一定要包R0.5mm以上。 4.内模表面多余眼孔用一字螺丝堵死。 三、流道及排渣系统设计 1.分流锥上面料饼的主流道要做到圆表面积的1/3以内。这样防止冷料快速进入型腔前就封闭了分型面。 2.分流锥上面主流道要做成“W”形状,料饼厚度做到15-20mm. 3.一般主流道的长度做到30-35mm,且单边做5-10°的出模。 4.一般横流道最好是拐弯,且做成2个台阶以上,防止冷料通过横流道进入型腔,导致产品表面冷隔纹。

设计流道的基本原则

149863 CAE小百科系列~连载十六 一:设计流道的基本原则 基本原理 普通的流道系统(Runner System)也称作浇道系统或是浇注系统,是熔融塑料自射出机射嘴(Nozzle)到模穴的必经通道。流道系统包括主流道(Primary Runner)、分流道(Sub-Runner)以及浇口(Gate)。下图显示了典型的流道系统组成。

●主流道:也称作主浇道、注道(Sprue)或竖浇道,是指自射出机射嘴与模具主流道衬套接触的部 分起算,至分流道为止的流道。此部分是熔融塑料进入模具后最先流经的部分。 ●分流道:也称作分浇道或次浇道,随模具设计可再区分为第一分流道(First Runner)以及第二分流 道(Secondary Runner)。分流道是主流道及浇口间的过渡区域,能使熔融塑料的流向获得 平缓转换;对于多模穴模具同时具有均匀分配塑料到各模穴的功能。 ●浇口:也称为进料口。是分流道和模穴间的狭小通口,也是

最为短小肉薄的部分。作用在于 利用紧缩流动面而使塑料达到加速的效果,高剪切率可使塑料流动性良好(由于塑料的 切变致稀特性);黏滞加热的升温效果也有提升料温降低黏度的作用。在成型完毕后浇口 最先固化封口,有防止塑料回流以及避免模穴压力下降过快使成型品产生收缩凹陷的 功能。成型后则方便剪除以分离流道系统及塑件。●冷料井:也称作冷料穴。目的在于储存补集充填初始阶段较冷的塑料波前,防止冷料直接进入 模穴影响充填质量或堵塞浇口,冷料井通常设置在主流道末端,当分流道长度较长 时,在末端也应开设冷料井。 设计基本原则 模穴布置(Cavity Layout)的考虑 ●尽量采用平衡式布置(Balances Layout )。 ●模穴布置与浇口开设力求对称,以防止模具受力不均产生偏载

压铸模设计与制造中应注意的问题

压铸模设计与制造中应注意的问题 发表时间:2018-03-20T17:07:31.863Z 来源:《基层建设》2017年第34期作者:李聪[导读] 摘要:压铸模设计的正确与否,直接关系到铸件的产量和质量,而且还应考虑到制造与生产中的工艺因素。 内江职业技术学院四川省内江市 641000 摘要:压铸模设计的正确与否,直接关系到铸件的产量和质量,而且还应考虑到制造与生产中的工艺因素。本文详细介绍了从压铸产品设计到压铸模制造全过程中应注意的问题。 关键词:压铸模设计;压铸模制造 1 压铸模设计的重要性 压铸模是压铸生产三大要素之一,结构正确合理的模具是压铸生产能否顺利进行的先决条件,并在保证铸件质量方面(下机合格率)起着重要的作用。由于压铸工艺的特点,正确选用各工艺参数是获得优质铸件的决定因素,而模具又是能够正确选择和调整各工艺参数的前提,模具设计实质上就是对压铸生产中可能出现的各种因素预计的综合反映。如若模具设计合理,则在实际生产中遇到的问题少,铸件下机合格率高。反之,模具设计不合理,例一铸件设计时动定模的包裹力基本相同,而浇注系统大多在定模,且放在压射后冲头不能送料的灌南压铸机上生产,无法正常生产,铸件一直粘在定模上。尽管定模型腔的光洁度打得很光,因型腔较深,仍出现粘在定模上的现象。所以在模具设计时,必须全面分析铸件的结构,熟悉压铸机的操作过程,要了解压铸机及工艺参数得以调整的可能性,掌握在不同情况下的充填特性,并考虑模具加工的方法、钻眼和固定的形式后,才能设计出切合实际、满足生产要求的模具。 2 压铸模设计应注意的问题 压铸模的设计主要根据压铸件的形状而定。但是模具设计和尺寸会对模具寿命产生影响。 (1)型腔。高强度钢材对死角和缺口相当敏感。因此,在设计时模腔壁厚及肋的变化要均匀和缓,尽可能采用较大的内圆角半径。为了降低金属侵蚀及热疲劳发生于浇口附近的可能性,腔壁、型芯或镶件应尽量远离浇口。 (2)冷却水道。冷却水道应处于使整个模腔表面温度尽可能均匀的位置。从冷却和力学角度看,管道表面需光滑。 (3)流道、浇口及溢流。要得到最佳的压铸效果,冷却系统必须和“热区”(流道、浇口、溢流和型腔)有一定的热平衡。因此,流道、浇口和溢流设计相当重要。在型腔内很难填满的部位,应设溢流,以使压铸金属流到这些部位。在具有相同尺寸的一模多腔模具中,所有的流道必须具有相同的流道长度和横截面积,浇口和溢流也必须完全相同。浇口的位置和流道的厚度及宽度对金属注入速度相当关键。流道的设计应使金属流畅地进入型腔各个部分,而不是喷射状地注入。流注金属过快流动会引起模具侵蚀。 3 压铸模制造中应注意的问题 (1)机械加工性。马氏体系的热作工具钢的机械加工性主要受像硫化锰等非金属夹杂物及钢材硬度的影响。因为压铸模的性能可以通过降低钢材中杂质含量而得到改善如硫和氧。切削加工的最佳组织是球化退火的铁素体基体上均匀分布着球化状的良好碳化物,这样使钢材具有较低的硬度。均质化处理使金属具有均匀的机械加工性。 (2)电火花加工。电火花加工的基本原理是在石墨或铜电极(阳极)和钢材(阴极)之间的不导电介质中放电。模具的侵蚀通过放电来控制。操作过程中,负电极进入钢材中获得所需形状。电火花加工中钢材的表面温度非常高,从而使其熔化和蒸发。在表面产生了一层熔化后再凝固的较脆层,紧接着这层的是再淬硬层和回火层。电火花加工对模具表面性能产生了不利的影响,破坏了钢材的加工性能。由于这个原因,作为一种预防措施,使用淬火和回火后钢材的电火花加工和钢材退火后的电火花加工。 (3)热处理。在机械加工后,为了得到最佳的高温屈服强度、抗回火性、韧性和延展性,必须进行热处理。钢材的性能受淬火温度和时间、冷却速度和回火温度控制。淬火时太慢的冷却速度能降低钢材的破坏韧性。快的冷却速度如盥浴淬火能产生最好组织,因而得到最高的模具寿命。在大多数情况下,优先考虑模具的使用寿命而采取较快的淬火冷却速度。脱碳可以引起早期热疲劳。模具应冷却至50℃~70℃后回火。要得到满意的组织,第二次回火是必不可少的。第二次回火温度应根据模具所需的最终使用硬度而决定。 (4)尺寸稳定性。压铸模淬火和回火时,通常会出现变形或扭曲。温度越高变形越大。在淬火前通常预留一定加工量以便淬火及回火后通过研磨等工序来调整模具到最后要求的尺寸。机械加工应力、热应力、组织变形应力都会对尺寸稳定性造成影响,所以在压铸模过程中,应注意加热及淬火的温度和速度,以便把尺寸的比变形范围控制在可调整的范围内。 4 合理的压铸模设计与制造有助于延长模具寿命 压铸模寿命会随压铸模的设计和尺寸、压铸合金类型、模具的维修和保养而发生很大变化。模具可以通过压铸前后适当的处理来延长寿命。延长模具寿命的方法有以下几种: (1)适当的预热。模具表面和熔融金属间的温差不能太大。由于这一原因,通常推荐预热。预热温度随压铸合金类型而定,通常在150℃~350℃。材料预热温度不能太高,否则会在压铸时由于模具温度太高而引起模具再回火,特别是模具较薄的肋部分升温非常快。逐步而均匀地预热很重要。最好是恒温的加热控制系统。 (2)正确的冷却。模具温度受冷水道和模具表面脱模剂的控制。为了减少热疲劳的危险,冷却水可预热至大约50℃。也推荐恒温控制的冷却系统,并不推荐使用低于20℃的冷却水。停机时间超过几分钟时,应调节冷水流量,以便模具不至于冷却的太快。 (3)消除应力。压铸时,模具表面由于温差而产生热应变,这种反复的应变会导致模具局部表面的残留应力产生。在大多数情况下,这种残留应力是拉应力,因此促使热疲劳的发生。消除应力处理会使模具残留拉应力下降,因此能提高模具寿命。所以我们建议在试模一段时间后进行消除应力处理,然后在压铸1000~2000模次,5000~10000模次后分别进行消除应力处理。这种处理可以在以后每隔10000~20000模次重复一次,一直到模具出现少量热疲劳。 结束语: 进一步提高模具的经济效益,必须规范热处理。除通过热处理产生最佳的硬度和韧性的配合外,还应尽量避免过大的尺寸变化和变形。热处理时最关键的因素是淬火温度和冷却速度。像正确的预热、适当的应力消除这类预防措施会更进一步提高模具使用寿命。这些生产的每一步中,品质都有大的变化。只有在每一个生产过程中追求最佳的质量,才能取得最好的效果。 参考文献: [1]刘文川.复杂铸型模具设计中的几个问题[J].模具工业,2014,(02)

注塑模具的设计过程

注塑模具的设计过程 注塑模具的设计过程 注塑模具是一种生产塑胶制品的工具;也是赋予塑胶制品完整结构和精确尺寸的工具。下面yjbys为大家分享的是注塑模具的设计过程,仅供参考! 一.浇注系统的组成 普通的流道系统(Runner System),也称作浇道系统,或是浇注系统,是熔融塑料自射出机射嘴(Nozzle)到模穴的必经通道。流道系统包括主流道(Primary Runner)、分流道(Sub-Runner)以及浇口(Gate)等。 1.主流道 也称作主浇道、注道(Sprue)或竖浇道,是指自射出机射嘴与模具主流道衬套接触的部分起算,至分流道为止的流道。此部分是熔融塑料进入模具后最先流经的部分。 2.分流道 也称作分浇道或次浇道。随模具设计,可再区分为第一分流道(First Runner)以及第二分流道(Secondary Runner)。分流道是主流道至浇口间的过渡区域,能使熔融塑料的流向获得平缓转换;对于多模穴模具,同时具有均匀分配塑料到各模穴的功能。 3.浇口 也称为进料口,是分流道和模穴间的狭小通口,也是最为短小肉薄的部分。其作用在于利用紧缩流动面而使塑料达到加速的效果,高剪切率可使塑料流动性良好(由于塑料的切变致稀特性);黏滞加热的升温效果也有提升料温、降低黏度的作用。 在成型完毕后,浇口最先固化封口,有防止塑料回流,以及避免模穴压力下降过快,使成型品产生收缩凹陷的功能。成型后,则方便剪除,以分离流道系统及塑件。 4.冷料井

也称作冷料穴。目的'在于储存补集充填初始阶段较冷的塑料波前,防止冷料直接进入模穴,影响充填品质或堵塞浇口。冷料井通常设置在主流道末端,当分流道长度较长时,在末端也应开设冷料井。 二.浇注系统设计的基本原则 1.模穴布置(Cavity Layout)的考虑 1)尽量采用平衡式布置(Balances Layout); 2)模穴布置与浇口开设力求对称,以防止模具受力不均产生偏载,而发生撑模溢料的问题; 3)模穴布置尽可能紧凑,以缩小模具尺寸。 2.流动导引的考虑 1)能顺利地引导熔融塑料填满模穴,不产生涡流,且能顺利排气; 2)尽量避免塑料熔胶正面冲击直径较小的型芯和金属嵌件,以防止型芯位移(Core Shift)或变形。 3.热量散失及压力降的考虑 1)热量损耗及压力降越小越好; 2)流程要短; 3)流道截面积要够大;

压铸模资料

压铸模浇道的设计是整个压铸模成功与否的关键,流道分为直浇道、横浇道、内浇口等几个部分。以冷室压铸机的铝合金压铸模具为例,直浇道的选择与生产的铸造压力选择有关、与压室的充满度有关,充满度通常选择在30%~70%之间,而冲头的直径则要看铸件的总的投影面积及现有压铸机的锁模力大小而定,直浇道的厚度经验选1/3~1/2冲头直径,当然也有例外的时候,根据铸件的不同而形式也不同。横浇道的截面积设计原则是根据从直浇道至内浇口逐步缩小的原则,也就是通常所说的增速浇道设计原则。对于特殊壁厚零件,也有选择减速浇道设计原则的,但这是特例。计算经验公式为A1=(3~4)A2;D=(5~8)T; W=A1/D+tg@D;其中A1为横浇道面积;A2为内浇口面积;D为横浇道厚度;T为内浇口厚度;W为内浇口宽度;@取10~15°;内浇口的面积设计公式有很多,较常用的是A2=Q/ρvt;其中Q为通过内浇口的金属液的质量(g);ρ为金属液的密度(g/cm3);v为内浇口处金属液的速度(m/s);t为型腔的充填时间(s);内浇口的速度选择原则为:铝合金20~60;锌合金30~50;镁合金40~90;铜合金20~50;充填时间的选择是根据压铸件的平均壁厚来选择,这个要靠经验,一般在0.01~0.3s不等。由于充填速度及充填时间都要根据铸件的特性及经验去选择,往往设计选择不准确,这样的话很多场合就会用到另一个经验公式,即日本的尾关公式:A2=(3~5)倍×√总重量(g);这里的总重量为通过内浇口的金属液的总质量。为了保证模具不会因为内浇口因过大而要烧焊处理,一般情况都会采用可修原则,及内浇口先小后大。总之浇道的设计不是一成不变的,需要理论及实际经验相结合才能设计好,当然现在有很多模拟软件,可以在设计好之后进行模拟充填以判断浇道设计的合理性。 追问 我看过有些横浇道的截面积的和X0.8左右才是直浇道截面积,这样做岂不是将溶汤减速并且吸气了吗,但是我看铸件表面质量还是可以的,这是为什么呢?如果按照截面积逐级增加的话,到后来直浇道截面积会变得很大。 回答 我们在设定压铸工艺参数时,其中有一个是快压射位置,理论上快压射位置的起始点应该是在冲头在慢压射状态下将压室里的合金液缓慢的的推到内浇口,现在先进的压铸机可以设定为抛物线压射然后才转换成快压射。通过合理的慢压射速度的设定,有的先进的压铸机可以设定为抛物线压射来实现将压室中的气体排出而不是卷到液体内。上文说的也都是一些理论上的计算,实际生产过程中还是要理论结合实际的,除非有多套模拟软件模拟参考。 追问 但是客户一般使用的是力劲或TOYO设备,并不是特别先进的设备啊,还是不太明白“横浇道的截面积的和X0.8左右才是直浇道截面积”是为什么?

多腔注塑模具设计

一.拟定模具结构形式 A. 确定型腔数量及排列方式 型腔的数量是由厂方给定,为“一出四”即一模四腔,他们已考虑了本产品的生产批量(大批量生产)和自己的注射机型号。因此我们设计的模具为多型腔的模具。 考虑到模具成型零件和抽芯结构以及出模方式的设计,模具的型腔排列方式如下图所示: 图 (1) B. 模具结构形式的确定 由于塑件外观质量要求高,尺寸精度要求一般,且装配精度要求高,因此我们设计的模具采用多型腔多分型面。根据本塑件电动机绝缘胶架的结构,模具将会采用三个分模面,三个分型面。 二.注射机型号的确定 一般工厂的塑胶部都拥有从小到大各种型号的注射机。中等型号的占大部分,小型和大型的只占一小部分。所以我们不必过多的考虑注射机型号。具体到这套模具,厂方提供的注射机型号和规格以及各参数如下: 注射量:95g 锁模力:120T

模板大小:400×550 开模距离: 推出形式:推出位置:推出行程: 三.分型面位置的确定 如何确定分型面,需要考虑的因素比较复杂。由于分型面受到塑件在模具中的成型位置、浇注系统设计、塑件的结构工艺性及精度、嵌件位置形状以及推出方法、模具的制造、排气、操作工艺等多种因素的影响,因此在选择分型面时应综合分析比较,从几种方案中优选出较为合理的方案。选择分型面时一般应遵循以下几项原则: 1)分型面应选在塑件外形最大轮廓处。 2)便于塑件顺利脱模,尽量使塑件开模时留在动模一边。 3)保证塑件的精度要求。 4)满足塑件的外观质量要求。 5)便于模具加工制造。 6)对成型面积的影响。 7)对排气效果的影响。 8)对侧向抽芯的影响。 其中最重要的是第5)和第2)、第8)点。为了便于模具加工制造,应尽是选择平直分型面工易于加工的分型面。如下图所示,采用A-A这样一个平直的分型面,前模(即定模)做成平的就行了,胶位全部做在后模(即动模),大简化了前模的加工。A-A分型面也是整个模具的主分模面。下图中虚线所示的B-B和C-C分型面是行位(即滑块)的分型面。这样选择行位分型面,有利于线切割行位以及后模仁和后模镶件这些成型零件。分型面的选择应尽可能使塑件在开模后留在后模一边,这样有助于后模设置的推出机构动作,在下图中,从A-A分型,了B-B处的行位向左移开,C-C处的行位向右移开后,由于塑件收缩会包在后模仁和后模镶件上,依靠注射机的顶出装置和模具的推出机构推出塑件。

注塑模具验收标准之欧阳家百创编

塑料注塑模具验收标准 欧阳家百(2021.03.07) 目的:为确保模具能生产出合格的产品,正常投入生产,保证模具生产使用寿命,满足产品设计的生产使用要求。规范从产品质量、模具结构、注塑成型工艺要求等方面认可模具的标准,据此对模具质量进行评估; 参照标准: GB/T 12554—2006塑料注射模技术条件 GB/T 4169.1~4169.23—2006注射模零件 GB/T 12556—2006塑料注射模模架技术条件 GB/T 14486—2008塑料模塑件尺寸公差 一、成型产品外观、尺寸、配合 1.产品表面不允许缺陷:缺料、烧焦、顶白、白线、披峰、起 泡、拉白(或拉裂、拉断)、烘印、皱纹。 2.熔接痕:一般圆形穿孔熔接痕长度不大于5mm,异形穿孔熔接 痕长度小于15mm,熔接痕强度并能通过功能安全测试。 3.收缩:外观面明显处不允许有收缩,不明显处允许有轻微缩水 (手感不到凹痕)。 4.变型:一般小型产品平面不平度小于0.3mm,有装配要求的需 保证装配要求。 5.外观明显处不能有气纹、料花,产品一般不能有气泡。

6.产品的几何形状,尺寸大小精度应符合正式有效的开模图纸 (或3D文件)要求,产品公差需根据公差原则,轴类尺寸公差为负公差,孔类尺寸公差为正公差,顾客有要求的按要求。 7.产品壁厚:产品壁厚一般要求做到平均壁厚,非平均壁厚应符 合图纸要求,公差根据模具特性应做到-0.1mm。 8.产品配合:面壳底壳配合:表面错位小于0.1mm,不能有刮手 现象,有配合要求的孔、轴、面要保证配合间隔和使用要求。 二、模具外观 1.模具铭牌内容完整,字符清晰,排列整齐。 2.铭牌应固定在模脚上靠近模板和基准角的地方。铭牌固定可 靠、不易剥落。 3.冷却水嘴应选用塑料块插水嘴,顾客另有要求的按要求。 4.冷却水嘴不应伸出模架表面。 5.冷却水嘴需加工沉孔,沉孔直径为25mm、30mm、35mm三种 规格,孔口倒角,倒角应一致。 6.冷却水嘴应有进出标记。 7.标记英文字符和数字应大于5/6,位置在水嘴正下方10mm处, 字迹应清晰、美观、整齐、间距均匀。 8.模具配件应不影响模具的吊装和存放。安装时下方有外露的油 缸、水嘴,预复位机构等,应有支撑腿保护。 9.支撑腿的安装应用螺钉穿过支撑腿固定在模架上,过长的支撑 腿可用车加工外螺纹柱子紧固在模架上。

压铸模设计与制造中应注意的问题

压铸模设计与制造中应注意的问题 【摘要】详细介绍了从压铸产品设计到压铸模制造全过程中应注意的问题。【关键词】压铸模;成本;影响因素;注意问题 1 压铸产品及模具成本 压铸产品的发展趋势是:①更大的零件;②更薄的壁厚;③更复杂的形状; ④更精确的尺寸。考虑以上因素,使用高压铸造比使用低压铸造的重力铸造法更有利。 影响单一零件和顾客最后产品的成本的因素有很多。这些因素的90%是在设计阶段决定的,而不是在选定的制造过程中提高效率可以奏效的。有些因素比较容易辨别,例如原材料和加工成本,但这些很难大幅度降低。其它因素虽然不太明显,却能对降低成本具有很多的影响。结合几个零件来降低装配成本,因为现有几个零件的装配已被一个压铸件代替了。改变另一个制程需要重新设计,如此才能从压铸制程得到最经济的解决办法。重新设计零件,考虑压铸制程、模具制造,影响模具寿命的特点的设计,以及修整和结合要求,经常是有益的。 重量减轻降低了原材料直接成本,而且还提高了生产效率。重量节省降低了总材料用量,经常透过消除潜在的收缩孔隙区域改进零件的设计和品质。应小心避免可能会导致模具过早失效或大量维修的较小的构件。采用均匀一致的壁厚,因为不同的厚度会由于金属在充填时变化的速度和产生的湍流对压铸件产生负面影响。在较大的结构零件中考虑肋条的设计能减少总材料用量,同时保持零件结构的完整性。 避免倒钩。倒钩会使零件和相关模具加工成本相对地增加。 避免尖角。因为它对模具寿命有害并会使零件成本增加。 不必要过紧的公差会相对地增加压铸件的成本。要获得压铸件适用公差决定于整个制程,而不只是模腔。必须避免使用零件不必要的几何公差。应当着重在完全分析后,再对功能性的特征加注几何公差,以确保不使用过紧的公差。 拔模斜度是压铸件的一个重要要求,它能确保零件从模具中取出而不会受损。压铸件中不垂直于分模线的地方经常会导致成本相对地增加,因为需要使用侧面滑块或进行另外的机械加工。 避免机械加工可消除产生废品率增加外表缺陷的可能性。 允许的浇口残迹和分模线,以及它们的位置,会影响到成本。要求越高,修整加工作业和费用的程度也越高。 使用自攻螺丝或螺纹成形螺钉能消除所需的攻牙作业以及固定的必要性,从而相对地降低修整加工零件的成本。适用于自攻螺丝或螺纹成形螺钉的型芯孔能被铸造出来,因此减少了钻孔作业的必要性。 压铸合金的成本会有变动,无法完整地说明修整加工零件的相关成本。压铸制程的经济性在重大程度上是生产效率的一个因子,是由诸如材料、机器规模、零件重量、周期时间、模腔数、模具寿命和废品率这些独立的因素决定的。 在确定产品功能之后,必须制定出一个与压铸制程相配的构造,并选定合金。选择合金主要根据所需的机械、物理和化学性能。在可以选择一种以上的压铸合金时,相对经济性一般都会比较好。

塑胶材料对模具设计要求

PBT模具设计与注塑成型的基本要点 PBT为乳白色半透明到不透明、结晶型热塑性聚酯。具有高耐热性、韧性、耐疲劳性,自润滑、低摩擦系数,耐候性、吸水率低,仅为0.1%,在高温下对水分比较敏感,加工前必须干燥。加工温度范围窄,冷却速度快,结晶速度也快。成型周期短,容易脱模,不需要脱模剂。制品容易翘曲、变形,在设计模具和选择加工工艺条件是时要注意。在潮湿环境中仍保持各种物性(包括电性能),电绝缘性,但体积电阻、介电损耗大。耐热水、碱类、酸类、油类、但易受卤化烃侵蚀,耐水解性差,低温下可迅速结晶,成型性良好。缺点是缺口冲击强度低,成型收缩率大。故大部分采用玻璃纤维增强或无机填充改性,其拉伸强度、弯曲强度可提高一倍以上,热变形温度也大幅提高。可以在140℃下长期工作,玻纤增强后制品纵、横向收缩率不一致,易使制品发生翘曲。 PBT也是最坚韧的工程热塑材料之一,它是熔点明显的结晶性聚合物,密度为1.31-1.55g/cm^3,有非常好的化学稳定性、机械强度、电绝缘特性和热稳定性。这些材料在很广的环境条件下都有很好的稳定性。 PBT吸湿特性很弱。非增强型PBT的张力强度为50MPa,玻璃添加剂型的PBT张力强度为170MPa。玻璃添加剂过多将导致材料变脆。PBT的;结晶很迅速,这将导致因冷却不均匀而造成弯曲变形。对于有玻璃添加剂类型的材料,流程方向的收缩率可以减小,但与流程垂直方向的收缩率基本上和普通材料没有区别。一般材料收缩率在1.5%~2.8%之间。含30%玻璃添加剂的材料收缩0.3%~1.6%之间。熔点(225℃)和高温变形温度都比PET材料要低。维卡软化温度大约为170℃。玻璃化转换温度(glass trasitio temperature)在22℃到43℃之间。由于PBT的结晶速度很高,因此它的粘性很低,塑件加工的周期时间一般也较低。 典型应用范围: 家用器具(食品加工刀片、真空吸尘器元件、电风扇、头发干燥机壳体、咖啡器皿等),电器元件(开关、电机壳、保险丝盒、计算机键盘按键等),汽车工业(散热器格窗、车身嵌板、车轮盖、门窗部件等)。 模具设计要点: PBT及其玻璃纤维增强物都有很良好的流动性,适宜于薄壁制品。制品最好壁厚均匀,以防制品因冷却或收缩不均而产生内应力,出现翘曲和变形现象。 PBT对缺口比敏感,制品中尽可能避免尖角,所有拐角应以圆弧过渡,且半径必须大于1.0MM。流道以短而粗为佳,浇口的口径以偏大为好,过小则压力损失大。模具中必须开排气槽或孔,避免因排气不良而造成充模不佳、熔接痕明显、烧焦等不良现象。 模具的冷却很重要。要很好地设计模具的冷却腔道以减小塑件的弯曲。热量的散失一定要快而均匀。建议模具冷却腔道的直径最小为10mm。

常见注塑模具失效

一.设计失效 1.模具尺寸不符合输入机台要求 2.机构设计出错 3.顶出系统设计失效 4.排气系统设计失效 5.模具水路设计失效 6.模具浇注系统设计失效 7.零件分割不符合加工原则 8.放错失效 9.滑块反锁设计失效 10.嵌件模具让位失效 11.标准件使用不合理 12.热流道选用不合理 13.零件数量出错 二.加工失效 1.尺寸超差 2.外观异常 3.表面处理不符合技术要求 4.材料及热处理不符合设计要求三.采购失效 1.尺寸超差 2.外观异常 3.表面处理不符合技术要求 4.材料及热处理不符合设计要求 5.标准件不符合设计要求 四.检验失效 1.免检及漏检 2.检测结果出错 3.零件状态标识出错 4.检测设备不合理 5.检测设备异常或未按期检定或校准五.零件保管失效 1.零件损坏 2.零件丢失 3.零件生锈 六.装配失效 1.零件倒角让位不到位 2.零件未退磁处理 3.机构配合不顺畅 4.私自零件加工 5.零件装错或漏装 6.零件损坏或丢失 7.零件配合不符合要求 8.零件标识未作

9.嵌件未实配 10.热流道装配异常 11.模具水路未试验 12.模具辅助装置装配错误 七.试模失效 1.材料不符合要求 2.机台出错 3.机台不具备试模具条件 4.工艺参数不合理或未参考模流分析结果 5.未按试模单要求试模 6.模具水路连接出错 7.模具漏水 8.模具温度设置不合理 9.零件损坏 10.嵌件装配出错 11.模具辅助装置异常 12.模具顶出异常 13.产品粘模 14.流道粘模具 15.产品缺胶 16.产品飞边 17.产品变形 18.产品尺寸不稳定 19.缩水严重 20.银丝 21.产品分层脱皮 22.熔接痕 23.气泡 24.表面流纹 25.表面波纹 26.表面浮纤 27.产品发白 28.产品顶变形 29.产品杂色 30.产品污染 31.产品裂纹 32.产品发脆 33.产品颜色不均 34.浇口粘模 35.透明度不符 36.产品内部异物 37.产品拉伤 八.检测失效 1.未按测量作业指导书操作

压铸模内浇口设计

压铸模设计总结 一.内浇口的尺寸设计 Ag = G/ρVgt Ag 内浇口的截面面积(mm2) G 通过内浇口的金属液质量(g) ρ液态金属的密度(cm3) Vg 内浇口处金属液的流动数度(m/s) t 型腔的充填时间(s) 注意:当铸件的壁厚很薄却表面质量要求较高是,选用较大的值,对力学性能,如卡拉强度和致密度要求较高时学用较小值 注意:型腔的充填时间铝合金取较大值,锌合金取中间值,镁合金取较小值 注意:内浇口的长短一般取2-3mm. 二.内浇口的设计原则 1. 进入型腔的金属液应先充填深腔难以排气的部位,后充填其他部位,并注意不要过早的封闭分形面,排气槽,便于内腔里的气体顺利排出。 2. 进入型腔的液体不要直接冲击型芯和型壁,减少动能的消耗,避免应冲击受腐蚀发生粘膜致使过早损坏。

3. 尽可能的采用单个浇口, 4. 形状复杂的薄壁零件应采用较薄的浇口,保证足够的充填速度,一般形状铸件,为保证静压力的传递作用,应采用较厚的内浇口,并设在铸件的厚处。 5. 内交口设置位置应使金属液充填压铸型腔各部分尺寸时,流程最短,流向改变少,减少充填过程中能量温度的降低 三.横浇道的尺寸设计 Ar = (3-4)Ag(冷室压铸机) Ar = (2-3)Ag(热室压铸机) D = (5-8)T(卧式冷室压铸机) D = (8-10)T(立式冷室压铸机) D = (8-10)T(热室压铸机) W = Dtana + Ar/D Ag 内浇口的截面面积(mm2) Ar 横浇道的截面面积(mm2) a 拖模斜度(10-15) T 内浇口的厚度(mm) D 横浇道深度(mm) r 圆角半径(2-3) W 横浇道的宽度(mm) 在确定横浇道的截面面积后,可根据下面的公式计算其的深度和宽度 D = C1 log(Ar) 1 W = C2 log(Ar) D 横浇道的深度或直径 W 横浇道的宽度 Ar 横浇道的截面面积 C1 C2 系数 (A) (B) (C) (D) (E) (F) A). C1 = 1.128 B). C1 = 0.922 C2 = 1.247 C). C1 = 0.678 C2 = 1.595 D). C1 = 0.561 C2 = 1.881 E). C1 = 0.794 C2 = 1.727

(完整版)注塑中的进胶的方式及设计要点

进胶的方式及设计要点 浇口可以理解成熔融塑料通过浇注系统进入型腔的最后一道“门”,是连接分流道和型腔的进料通道。它具有两个功能:第一,对塑料熔体流入型腔起着控制作用;第二,当注塑压力撤销后,封锁型腔,使型腔中尚未冷却固化的塑料不会倒流。浇口类型的选择取决于制品外观的要求、尺寸和形状的制约以及所使用的塑料种类等因素。浇口形状和尺寸对塑件质量影响很大,浇口在多数情况下是流道中截面尺寸最小的部分(除主流道型的浇口外),其截面积与分流道的截面积之比约为0.03-0.09,截面形状多为矩形或圆形,浇口台阶长1-1.5mm左右。一般采用小浇口,因为它有以下优点: 第一,小浇口可以增加物料通过时的流速。小浇口两端有较大的压差,这样可以降低熔融塑料的表观粘度,使充模容易。 第二,小浇口可以提高熔融塑料的温度,增加流动性。小浇口处的摩擦阻力大,熔融塑料通过浇口时,一部分能量转变为摩擦热而升温,这对提高薄壁塑件或带有精细花纹的塑件质量很有好处。 第三,小浇口可以控制和缩短补料的时间,降低塑件的内应力,缩短模塑周期。在注射中,保压阶段一直要延续到浇口处凝结为止,小浇口凝结快,补料时间短,减小了大分子的凝结取向和凝结应变,大大减小了补料内应力。小浇口的适应封闭也能正确地控制补料时间,提高塑件的质量。 第四,小浇口可以平衡各型腔的进料速度。小浇口出阻力大得多,只有流道充满并具有足够的压力后,各型腔才能以相近的时间充模,这样可以改善各型腔进料速度的不平衡性。 第五,便于塑件修整。小浇口可以用手工快速切除。小浇口切除后的痕迹小,减少了修磨时间。但是,过小的浇口会大大增加流动阻力,延长充模时间,高黏度的熔融塑料和剪切速率对表观黏度影响小的熔融塑料,不宜采用小浇口 浇口又称进料口,它是分流道与型腔之间的狭小通口,也是最短小部分,其作用使熔融塑料在进型腔时产生加速度,有利于迅速充满型腔,成型后浇口塑料先冷凝,以封闭型腔,防止熔融塑料倒流,避免型腔压力下降过快,以至在制品上产生缩孔或凹陷,成型后便于使浇注凝料与制品分离. 浇口种类 1、盘形浇口: 沿产品外圆周而扩展进料,其进料点对称,充模均匀,能消除结合线.有利于排气.水口常用冲切方式去除,设计时注意冲切工艺.

相关主题
文本预览
相关文档 最新文档