当前位置:文档之家› 全等三角形常用辅助线模型,常见的全等三角形的模型归纳

全等三角形常用辅助线模型,常见的全等三角形的模型归纳

全等三角形常用辅助线模型,常见的全等三角形的模型归纳
全等三角形常用辅助线模型,常见的全等三角形的模型归纳

2017中考全等三角形专题(8种辅助线的作法)

全等三角形问题中常见得辅助线得作法【三角形辅助线做法】 图中有角平分线,可向两边作垂线。也可将图对折瞧,对称以后关系现。 角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试瞧。 线段垂直平分线,常向两端把线连。要证线段倍与半,延长缩短可试验。 三角形中两中点,连接则成中位线。三角形中有中线,延长中线等中线。 1、等腰三角形“三线合一”法:遇到等腰三角形,可作底边上得高,利用“三线合一”得性质解题 2、倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形 3、角平分线在三种添辅助线 4、垂直平分线联结线段两端 5、用“截长法”或“补短法”: 遇到有二条线段长之与等于第三条线段得长, 6、图形补全法:有一个角为60度或120度得把该角添线后构成等边三角形 7、角度数为30、60度得作垂线法:遇到三角形中得一个角为30度或60度,可以从角一边上一点向角得另一边作垂线,目得就是构成30-60-90得特殊直角三角形,然后计算边得长度与角得度数,这样可以得到在数值上相等得二条边或二个角。从而为证明全等三角形创造边、角之间得相等条件。 8、计算数值法:遇到等腰直角三角形,正方形时,或30-60-90得特殊直角三角形,或40-60-80得特殊直角三角形,常计算边得长度与角得度数,这样可以得到在数值上相等得二条边或二个角,从而为证明全等三角形创造边、角之间得相等条件。 常见辅助线得作法有以下几种:最主要得就是构造全等三角形,构造二条边之间得相等,二个角之间得相等。 1)遇到等腰三角形,可作底边上得高,利用“三线合一”得性质解题,思维模式就是全等变 换中得“对折”法构造全等三角形. 2)遇到三角形得中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用得思 维模式就是全等变换中得“旋转”法构造全等三角形. 3)遇到角平分线在三种添辅助线得方法,(1)可以自角平分线上得某一点向角得两边作垂

专题:全等三角形常见辅助线做法及典型例题

《全等三角形》辅助线做法总结 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。要证线段倍与半,延长缩短可试验。 三角形中两中点,连接则成中位线。三角形中有中线,延长中线等中线。 一、截长补短法(和,差,倍,分) 截长法:在长线段上截取与两条线段中的一条相等的一段,证明剩余的线段与另一段相等(截取----全等----等量代换) 补短法:延长其中一短线段使之与长线段相等,再证明延长段与另一短线段相等(延长----全等----等量代换) 例如:1,已知,如图,在△ABC中,∠C=2∠B,∠1=∠2。求证:AB=AC+CD。 2,已知:如图,AC∥BD,AE和BE分别平分∠CAB和∠DBA,CD过点E.求证:(1)AE⊥BE;(2)AB=AC+BD. 二、图中含有已知线段的两个图形显然不全等(或图形不完整)时,添加公共边(或一其中 一个图形为基础,添加线段)构建图形。(公共边,公共角,对顶角,延长,平行)例如:已知:如图,AC、BD相交于O点,且AB=DC,AC=BD,求证:∠A=∠D。 三、延长已知边构造三角形 例如:如图6:已知AC=BD,AD⊥AC于A ,BC⊥BD于B,求证:AD=BC D C B A 1 10 图 O A B C D E O

四、遇到角平分线,可自角平分线上的某个点向角的两边作垂线(“对折”全等) 例如:已知,如图,AC 平分∠BAD ,CD=CB ,AB>AD 。求证:∠B+∠ADC=180。 五、遇到中线,延长中线,使延长段与原中线等长(“旋转”全等) 例如:1如图,AD 为 △ABC 的中线,求证:AB +AC >2AD 。(三角形一边上的中线小 于其他两边之和的一半) 2,已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 。 3,如图,已知:AD 是△ABC 的中线,且CD=AB ,AE 是△ABD 的中线,求证:AC=2AE. E C B D A 六、遇到垂直平分线,常作垂直平分线上一点到线段两端的连线(可逆 :遇到两组线段相等, 可试着连接垂直平分线上的点) 例如:在△ABC 中,∠ACB=90,AC=BC,D 为△ABC 外一点,且AD=BD,DE ⊥AC 交AC 的延长 线于E,求证:DE=AE+BC 。 七、遇到等腰三角形,可作底边上的高,或延长加倍法(“三线合一”“对折”) A D B C C A E B D

全等三角形中常见辅助线的添加方法

全等三角形中常见辅助线的添加方法举例 一. 有角平分线时,通常在角的两边截取相等的线段,构造全等三角形。 例:如图1:已知AD 为△ABC 的中线,且∠1=∠2,∠3=∠4,求证:BE +CF >EF 。 二、有以线段中点为端点的线段时,常延长加倍 此线段,构造全等三角形。 例::如图2:AD 为△ABC 的中线,且∠1=∠2,∠3=∠4,求证:BE +CF >EF 三、有三角形中线时,常延长加倍中线,构造 全等三角形。 例:如图3:AD 为 △ABC 的中线,求证:AB +AC >2AD 。 图3 练习:已知△ABC ,AD 是BC 边上的中线,分别以AB 边、AC 边为直角边各向形外作等腰直角三角形,如图4, 求证EF =2AD 。 A B C D E F N 1 图1234 2 图A B C D E F M 123 4A B C D E A B C D E F 4 图

四、截长补短法作辅助线。 例如:已知如图5:在△ABC 中,AB >AC ,∠1=∠2,P 为AD 上任一点。 求证:AB -AC >PB -PC 。 五、延长已知边构造三角形: 例如:如图6:已知AC =BD ,AD ⊥AC 于A ,BC ⊥BD 于B , 求证:AD =BC 六、有和角平分线垂直的线段时,通常把这条线段延长。 例如:如图8:在Rt △ABC 中,AB =AC ,∠BAC =90°,∠1=∠2,CE ⊥BD 的延长于E 。求证:BD =2CE 7 七、连接已知点,构造全等三角形。 例如:已知:如图9;AC 、BD 相交于O 点,且AB =DC ,AC =BD ,求证:∠A =∠D 。 八、取线段中点构造全等三有形。 例如:如图10:AB =DC ,∠A =∠D 求证:∠ABC =∠DCB 。 A B C D N M P 5图12A B C D E 6 图O D B A 110 图O 10图D C B A M N

人教版八年级上册数学专题+全等三角形中辅助线的添加

全等三角形中辅助线的添加 一.教学内容:全等三角形的常见辅助线的添加方法、基本图形的性质的掌握及熟练应用。 二.知识要点: 1、添加辅助线的方法和语言表述 (1)作线段:连接……; (2)作平行线:过点……作……∥……; (3)作垂线(作高):过点……作……⊥……,垂足为……; (4)作中线:取……中点……,连接……; (5)延长并截取线段:延长……使……等于……; (6)截取等长线段:在……上截取……,使……等于……; (7)作角平分线:作……平分……;作角……等于已知角……; (8)作一个角等于已知角:作角……等于……。 2、全等三角形中的基本图形的构造与运用 常用的辅助线的添加方法: (1)倍长中线(或类中线)法:若遇到三角形的中线或类中线(与中点有关的线段),通常考虑倍长中线或类中线,构造全等三角形。 (2)截长补短法:若遇到证明线段的和差倍分关系时,通常考虑截长补短法,构造全等三角形。①截长:在较长线段中截取一段等于另两条中的一条,然后证明剩下部分等于另一条;②补短:将一条较短线段延长,延长部分等于另一条较短线段,然后证明新线段等于较长线段;或延长一条较短线段等于较长线段,然后证明延长部分等于另一条较短线段。 (3)一线三等角问题(“K”字图、弦图、三垂图):两个全等的直角三角形的斜边恰好是一个等腰直角三角形的直角边。 (4)角平分线、中垂线法:以角平分线、中垂线为对称轴利用”轴对称性“构造全等三角形。 (5)角含半角、等腰三角形的(绕顶点、绕斜边中点)旋转重合法:用旋转构造三角形全等。 (6)构造特殊三角形:主要是30°、60°、90°、等腰直角三角形(用平移、对称和弦图也可以构造)和等边三角形的特殊三角形来构造全等三角形。 三、基本模型: (1)△ABC中AD是BC边中线 方式1:延长AD到E,使DE=AD,方式2:间接倍长,作CF⊥AD于F,方式3:延长MD到N,连接BE 作BE⊥AD的延长线于E,连接BE 使DN=MD,连接CD

2017中学考试全等三角形专题(8种辅助线地作法)

全等三角形问题中常见的辅助线的作法【三角形辅助线做法】 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。要证线段倍与半,延长缩短可试验。 三角形中两中点,连接则成中位线。三角形中有中线,延长中线等中线。 1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题 2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形 3.角平分线在三种添辅助线 4.垂直平分线联结线段两端 5.用“截长法”或“补短法”:遇到有二条线段长之和等于第三条线段的长, 6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形 7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。从而为证明全等三角形创造边、角之间的相等条件。 8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。 常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。 1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变 换中的“对折”法构造全等三角形. 2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的 思维模式是全等变换中的“旋转”法构造全等三角形. 3)遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂

初中数学三角形全等常用几何模型及构造方法大全(初二)

初二数学三角形全等 常用几何模型及构造方法大全 掌握它轻松搞定全等题! 全等是初中数学中非常重要的内容,一般会在压轴题中进行考察,而掌握几何模型能够为考试节省不少时间,这次整理了常用的各大模型,一定要认真掌握~ 全等变换类型: (一)平移全等:平行等线段(平行四边形) (二)对称全等模型:角平分线或垂直或半角 1:角平分线模型; 2:对称半角模型; (三)旋转全等模型:相邻等线段绕公共顶点旋转 1. 旋转半角模型 2. 自旋转模型 3. 共旋转模型 4. 中点旋转

如图,在△ABC的边上取两点D、E,且BD=CE,求证:AB+AC>AD+AE 分析:将△ACE平移使EC与BD重合。B\D,上方交点,左右两个三角形,两边和大于第三边!

1:角平分线模型: 说明:以角平分线为轴在角两边进行截长补短或者作边的垂线,形成对称全等。两边进行边或者角的等量代换,产生联系。垂直也可以做为轴进行对称全等。 2:对称半角模型 说明:上图依次是45°、30°、45+ 22.5°、对称(翻折)15°+30°直角三角形对称(翻折)30+60+90直角三角形对称(翻折) 翻折成正方形或者等腰直角三角形、等边三角形、对称全等。

1. 半角:有一个角含1/2角及相邻线段 2. 自旋转:有一对相邻等线段,需要构造旋转全等 3. 共旋转:有两对相邻等线段,直接寻找旋转全等(共顶点) 4. 中点旋转:倍长中点相关线段转换成旋转全等问题(专题七) 1、旋转半角模型 说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。 2、自旋转模型 构造方法: 遇60度旋60度,造等边三角形遇90度旋90度,造等腰直角 遇等腰旋顶点,造旋转全等遇中点旋180度,造中心对称

全等三角形中常用辅助线(经典)

三角形中的常用辅助线 课程解读 一、学习目标: 归纳、掌握三角形中的常见辅助线 二、重点、难点: 1、全等三角形的常见辅助线的添加方法。 2、掌握全等三角形的辅助线的添加方法并提高解决实际问题的能力。 三、考点分析: 全等三角形是初中数学中的重要内容之一,是今后学习其他知识的基础。判断三角形全等的公理有SAS、ASA、AAS、SSS和HL,如果所给条件充足,则可直接根据相应的公理证明,但是如果给出的条件不全,就需要根据已知的条件结合相应的公理进行分析,先推导出所缺的条件然后再证明。一些较难的证明题要构造合适的全等三角形,把条件相对集中起来,再进行等量代换,就可以化难为易了。 典型例题 人说几何很困难,难点就在辅助线。辅助线,如何添?把握定理和概念。还要刻苦加钻研,找出规律凭经验。 全等三角形辅助线 找全等三角形的方法: (1)可以从结论出发,寻找要证明的相等的两条线段(或两个角)分别在哪两个可能全等的三角形中; (2)可以从已知条件出发,看已知条件可以确定哪两个三角形全等; (3)可从条件和结论综合考虑,看它们能确定哪两个三角形全等; (4)若上述方法均不可行,可考虑添加辅助线,构造全等三角形。 三角形中常见辅助线的作法: ①延长中线构造全等三角形; ②利用翻折,构造全等三角形; ③引平行线构造全等三角形; ④作连线构造等腰三角形。 常见辅助线的作法有以下几种: (1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”。 例1:如图,ΔABC是等腰直角三角形,∠BAC=90°,BD平分∠ABC交AC于点D,CE垂直于BD,交BD的延长线于点E。求证:BD=2CE。

全等三角形的经典模型(一)

作弊? 漫画释义 三角形9级 全等三角形的经典模型(二) 三角形8级 全等三角形的经典模型(一) 三角形7级 倍长中线与截长补短 满分晋级 3 全等三角形的 经典模型(一)

D C B A 45°45° C B A 等腰直角三角形数学模型思路: ⑴利用特殊边特殊角证题(AC=BC 或904545??°,,).如图1; ⑵常见辅助线为作高,利用三线合一的性质解决问题.如图2; ⑶补全为正方形.如图3,4. 图1 图2 图3 图4 思路导航 知识互联网 题型一:等腰直角三角形模型

A B C O M N A B C O M N 【例1】 已知:如图所示,Rt △ABC 中,AB =AC ,90BAC ∠=°,O 为BC 的中点, ⑴写出点O 到△ABC 的三个顶点A 、B 、C 的距离的关系(不要 求证明) ⑵如果点M 、N 分别在线段AC 、AB 上移动,且在移动中保持 AN =CM .试判断△OMN 的形状,并证明你的结论. ⑶如果点M 、N 分别在线段CA 、AB 的延长线上移动,且在移动中保持AN =CM ,试判断⑵中结论是否依然成立,如果是请给出证明. 【解析】 ⑴OA =OB =OC ⑵连接OA , ∵OA =OC 45∠=∠=BAO C ° AN =CM ∴△ANO ≌△CMO ∴ON =OM ∴∠=∠NOA MOC ∴90∠+∠=∠+∠=?NOA BON MOC BON ∴90∠=?NOM ∴△OMN 是等腰直角三角形 ⑶△ONM 依然为等腰直角三角形, 证明:∵∠BAC =90°,AB =AC ,O 为BC 中点 ∴∠BAO =∠OAC =∠ABC =∠ACB =45°, ∴AO =BO =OC , ∵在△ANO 和△CMO 中, AN CM BAO C AO CO =?? ∠=∠??=? ∴△ANO ≌△CMO (SAS ) ∴ON =OM ,∠AON =∠COM , 又∵∠COM -∠AOM =90°, ∴△OMN 为等腰直角三角形. 【例2】 两个全等的含30,60角的三角板ADE 和三角板ABC ,如 图所示放置,,,E A C 三点在一条直线上,连接BD ,取BD 的 中点M ,连接ME ,MC .试判断EMC △的形状,并说明理由. 【解析】EMC △是等腰直角三角形. 典题精练 A B C O M N M E D C B A

全等三角形常用辅助线做法

五种辅助线助你证全等 姚全刚 在证明三角形全等时有时需添加辅助线,对学习几何证明不久的学生而言往往是难点?下面介绍证明全等时常见的五种辅助线,供同学们学习时参考. 一、截长补短 一般地,当所证结论为线段的和、差关系,且这两条线段不在同一直线上时,通常可以考虑用 截长补短的办法:或在长线段上截取一部分使之与短线段相等;或将短线段延长使其与长线段相等. 例1.如图1,在△ ABC 中,/ ABC=60 ° , AD、CE 分别平分/ BAC、/ ACB .求证: AC=AE+CD . 分析:要证AC=AE+CD , AE、CD不在同一直线上.故在AC上截取AF=AE,则只要证明 CF=CD . 证明:在AC上截取AF=AE,连接OF. ?/ AD、CE 分别平分/ BAC、/ ACB,/ ABC=60 ° ???/ 1 + Z 2=60 ° ,A Z 4=Z 6= / 1 + Z 2=60 ° . 显然,△ AEO ◎△ AFO,?/ 5= / 4=60 ° ,?/ 7=180° — (/ 4+ / 5) =60 ° 在厶DOC 与厶FOC 中,/ 6= / 7=60°,/ 2= / 3, OC=OC ???△ DOC ◎△ FOC, CF=CD ? AC=AF+CF=AE+CD 截长法与补短法,具体作法是在某条线段上截取一条线段与特定线段相等, 或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明。这种作 法,适合于证明线段的和、差、倍、分等类的题目。

例2:如图甲,AD// BC 点E在线段AB上,/ ADE=/CDE / DC=Z ECB 求证: CD=AD F BC 思路分析: 1)题意分析:本题考查全等三角形常见辅助线的知识:截长法或补短法。 2)解题思路:结论是CDAC+BC,可考虑用“截长补短法”中的“截长”,即在CD上截取CF=CE,只要再证DF=DA即可,这就转化为证明两线段相等的问题,从而达到简化问题的目的。 解答过程: 证明:在CD上截取CF=BC如图乙 6 = CS CE= CE ???△ FCE^A BCE(SAS, ???/ 2=Z 1。 又??? AD// BC ???/ ADG-Z BCD:180°, ???/ DC+Z CD=90°,

全等三角形辅助线专题(师)

1、如图,在△ABC中,AD是∠BAC的角平分线,AC=AB+BD,求证:∠B=2∠C 证明:在AC上截取AE=AB,连结DE ∵AD是∠BAC的角平分线 ∴∠BAD=∠EAD 在△BAD与△EAD中,有: AB=AE (已知) ∠BAD=∠EAD (已证) AD=AD (公共边) 2、如图,在△ABC中,AD是∠BAC的角平分线,AB> AC,试判断AB-AC与BD-CD的大小并说明 理由。 证明:在AB上截取AE=AC,连结DE ∵AD是∠CAB的角平分线 ∴∠CAD=∠EAD 在△CAD与△EAD中,有: AC=AE (已知) ∠CAD=∠EAD (已证) AD=AD (公共边) ∴△CAD≌△EAD (SAS) ∴CD=ED (全等三角形对应边相等) ∵AC=AE (已知) ∴AB-AC=AB-AE=BE (等量代换) ∵BD-CD=BD-DE<BE (三角形两边之差少于第三边) ∴BD-CD=AB-AC 3、如图,O为∠BAC内一点,且AB=AC,OB=OC,反向延长OB 交AC于D,反向延长OC交AB于E,求证:AD=AE 证明方法一:连结BC ∵AB=AC,OB=OC ∴∠ABC=∠ACB,∠OBC=∠OCB (等边对等角) ∴∠ABC-∠OBC=∠ACB-∠OBC ∴∠ABD=∠ACE 在△ABD与△ACE中,有: ∠ABD=∠ACE (已证) AB=AC (已知) ∠A=∠A (公共角) ∴△ABD≌△ACE (ASA) ∴AD=AE (全等三角形对应边相等) 证明方法二:连结AO 在△AOB与△AOC中,有: OB=OC (已知) AB=AC (已知)

全等三角形常见的几何模型

1绕点型(手拉手模型) 遇600旋60°,造等边三角形 遇90°旋90°,造等腰直角遇等腰旋 顶角,造旋转全等遇中点旋1800,造中 心对称 (2)共旋转(典型的手拉手模型) 例1、在直线ABC的同一侧作两个等边三角形△ (1)△ ABE ◎△ DBC (2)AE=DC (3)AE与DC的夹角为60。 (4)△ AGB ◎△ DFB (5)△ EGB ◎△ CFB (6)BH 平分/ AHC (7)GF // AC 变式练习2、如果两个等边三角形△ ABD和厶BCE,连接AE与CD,证明: ("△ ABE ◎△ DBC (2)AE=DC (3)AE与DC的夹角为60。 (4) AE与DC的交点设为H,BH平分/ AHC [D山3 Vi壮-U (I) ? 变式练习1、如果两个等边三角形△ABD和厶BCE,连接AE与CD,证明 (1) △ ABE ◎△ DBC (2) AE=DC (3) AE与DC的夹角为60。 (4) AE与DC的交点设为H,BH 平分/ AHC (1自旋转:自旋转构造方法 ABD和厶BCE,连接AE与CD,证明:

3、(1)如图1,点C是线段AB上一点,分别以AC, BC为边在AB的同侧作等边△ ACM和厶CBN ,连接AN , BM .分别取BM, AN的中点E, F,连接CE, CF, EF.观察并猜想△ CEF的形状,并说明理由. (2)若将(1)中的“以AC , BC为边作等边△ ACM和厶CBN”改为“以AC, BC为腰在AB的同侧作等腰△ ACM和△ CBN,”如图2,其他条件不变,那么(1)中的结论还成立吗?若成立,加以证明;若不成立,请说明理由. B 例4、例题讲解: 1.已知△ ABC为等边三角形,点D为直线BC上的一动点(点D不与B,C重合),以AD为边作菱形ADEF(按A,D,E,F 逆时针排列),使/ DAF=60 ° ,连接CF. (1)如图1,当点D在边BC上时,求证:① BD=CF 宓AC=CF+CD. (2)如图2,当点D在边BC的延长线上且其他条件不变时,结论AC=CF+CD是否成立?若不成立,请写出AC、CF、 CD之间存在的数量关系,并说明理由; ⑶如图3,当点D在边BC的延长线上且其他条件不变时,补全图形,并直接写出AC、CF、CD之间存在的数量关系。 2、半角模型 说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起, 成对称全等。 D A D A M x N rt B D 例1、如图,正方形ABCD的边长为1, AB,AD上各存在一点P、0,若厶APQ的周长为2, A P

全等三角形几种常见辅助线精典题型

全等三角形几种常见辅助线精典题型 一、截长补短 1、已知ABC ?中,60A ∠=,BD 、CE 分别平分ABC ∠和.ACB ∠,BD 、CE 交于点O ,试判断BE 、CD 、BC 的数量关系,并加以证明. 2、如图,点M 为正三角形ABD 的边AB 所在直线上的任意一点(点B 除外),作60DMN ∠=?,射线MN 与DBA ∠外角的平分线交于点N ,DM 与MN 有怎样的数量关系? 3、如图,AD ⊥AB ,CB ⊥AB ,DM =CM =a ,AD =h ,CB =k ,∠AMD =75°,∠BMC =45°,求AB 的长。 4、已知:如图,ABCD 是正方形,∠FAD =∠FAE . 求证:BE +DF =AE . N E B M A D D O E C B A M D C B A F D A

5、以ABC ?的AB 、AC 为边向三角形外作等边ABD ?、ACE ?,连结CD 、BE 相交于点O .求证:OA 平分DOE ∠. 6、如图所示,ABC ?是边长为1的正三角形,BDC ?是顶角为120?的等腰三角形,以D 为顶点作一个60?的MDN ∠,点M 、N 分别在AB 、AC 上, 求AMN ?的周长. 7、如图所示,在ABC ?中,AB AC =,D 是底边BC 上的一点,E 是线段AD 上的一点,且2BED CED BAC ∠=∠=∠,求证2BD CD =. 8、 五边形ABCDE 中,AB =AE ,BC +DE =CD ,∠ABC +∠AED =180°,求证:AD 平分∠CDE F A B C D E O O E D C B A N M D C B A E D B A E B A

全等三角形中做辅助线的技巧

全等三角形中做辅助线的技巧 口诀: 三角形 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。线段和差及倍半,延长缩短可试验。 线段和差不等式,移到同一三角去。三角形中两中点,连接则成中位线。 三角形中有中线,延长中线等中线。 一、由角平分线想到的辅助线 口诀: 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。 角平分线具有两条性质:a 、对称性;b 、角平分线上的点到角两边的距离相等。对于有角平分线的辅助线的作法,一般有两种。 ①从角平分线上一点向两边作垂线; ②利用角平分线,构造对称图形(如作法是在一侧的长边上截取短边)。 通常情况下,出现了直角或是垂直等条件时,一般考虑作垂线;其它情况下考虑构造对称图形。至于选取哪种方法,要结合题目图形和已知条件。 与角有关的辅助线 (一)、截取构全等 图1-1 B

如图1-1,∠AOC=∠BOC ,如取OE=OF ,并连接DE 、DF ,则有△OED ≌△OFD ,从而为我们证明线段、角相等创造了条件。 例1. 如图1-2,AB//CD ,BE 平分∠BC D ,C E 平分∠BCD ,点E 在AD 上,求证:BC =AB+CD 。 例2. 已知:如图1-3,AB=2AC ,∠BAD=∠CAD ,DA=DB ,求证DC ⊥AC 例3. 已知:如图1-4,在△ABC 中,∠C=2∠B,AD 平分∠BAC ,求证:AB -AC=CD 分析:此题的条件中还有角的平分线,在证明中还要用到构造全等三角形,此题还是证明线段的和差倍分问题。用到的是截取法来证明的,在长的线段上截取短的线段,来证明。试试看可否把短的延长来证明呢? 练习 1. 已知在△ABC 中,AD 平分∠BAC ,∠B=2∠C ,求证:AB+BD=AC 图1-2 D B C 图 1-4 A B C

全等三角形证明中的基本模型

把一个图形经过平移、翻折、旋转后,它们的位置虽然变化了,但是形状、大小都没有改变,即平移、翻折、旋转前后的图形全等. 我们把平移、翻折(轴对称)、旋转称为几何变换. 这一讲我们就来学习基本变换下的全等三角形. 常见平移模型 【引例】如图,A E F B 、、、四点在一条直线上,AC CE ⊥,BD DF ⊥,AE BF =,AC BD =. 求证:CF DE = 模块一 平移型全等 知识导航 知识互联网 夯实基础 全等中的基本模型 F E D C B A

【解析】 ∵AC CE ⊥,BD DF ⊥ ∴90ACE BDF ∠=∠=? 在Rt ACE △和Rt BDF △中 AC BD AE BF =?? =? ∴()Rt Rt HL ACE BDF △≌△ ∴CE DF =,AEC BFD ∠=∠ ∴CEF DFE ∠=∠ 在CEF △和DFE △中 CE DF CEF DFE EF FE =?? ∠=∠??=? ∴CEF DFE △≌△ ∴CF DE = 【例1】 如图1,A 、B 、C 、D 在同一直线上,AB CD =,DE AF ∥,且.DE AF = 求证:AFC DEB △≌△ 如果将BD 沿着AC 边的方向平行移动,图2,B 点与C 点重合时;图3,B 点在C 点右侧时,其余条件不变,结论是否成立,如果成立,请选择一种情况请予证明;如果不成立,请说明理由. 图1 F E D C B A 图2 F E D (C ) B A 图3 F E D C B A 常见轴对称模型 知识导航 模块二 对称型全等 能力提升

【例2】 ⑴如图,△ABC 中,AB =AC ,BD ⊥AC 于D ,CE ⊥AB 于E ,BD 和CE 交于点O ,AO 的延长线交BC 于F ,则图中全等直角三角形的对数为( ) A.3对 B.4对 C.5对 D.6对 ⑵如图,ABE △和ADC △是ABC △分别沿着AB ,AC 翻折到同一平面内形成的.若1:2:315:2:1∠∠∠=,则4∠=________. 【例3】 如图,AB AC =,D 、E 分别是AB 、AC 的中点,AM CD ⊥于M ,AN BE ⊥于N . 求证:AM AN =. 常见旋转模型: 夯实基础 能力提升 知识导航 模块三 旋转型全等 E D N M C B A 43 2 1 E D C B A D O F E C B A

全等三角形常见的几何模型

1、绕点型(手拉手模型) (1)自旋转:?????? ?,造中心对称遇中点旋 全等遇等腰旋顶角,造旋转 ,造等腰直角 旋遇,造等边三角形旋遇自旋转构造方法00 00018090906060 (2 )共旋转(典型的手拉手模型) 例1、在直线ABC 的同一侧作两个等边三角形△ABD 和△BCE ,连接AE 与CD ,证明: (1) △ABE ≌△DBC (2) AE=DC ( 3) AE 与DC 的夹角为60。 (4) △AGB ≌△DFB (5) △ EGB ≌△CFB (6) BH 平分∠AHC (7) GF ∥AC 变式练习1、如果两个等边三角形△ABD 和△BCE ,连接AE 与CD ,证明: (1) △ABE ≌△DBC (2) AE=DC (3) AE 与DC 的夹角为60。 (4) AE 与DC 的交点设为H,BH 平分∠AHC

变式练习2、如果两个等边三角形△ABD 和△BCE ,连接AE 与CD ,证明: (1)△ABE ≌△DBC (2)AE=DC (3)AE 与DC 的夹角为60。 (4)AE 与DC 的交点设为H,BH 平分∠AHC (1)如图1,点C 是线段 AB 上一点,分别以AC ,BC 为边在AB 的同侧作等边△ACM 和△CBN ,连接AN ,BM .分别取BM ,AN 的中点E ,F ,连接CE ,CF ,EF .观察并猜想△CEF 的形状,并说明理由. (2)若将(1)中的“以AC ,BC 为边作等边△ACM 和△CBN”改为“以AC ,BC 为腰在AB 的同侧作等腰△ACM 和△CBN ,”如图2,其他条件不变,那么(1)中的结论还成立吗?若成立,加以证明;若不成立,请说明理由. 例4、例题讲解: 1. 已知△ ABC 为等边三角形,点D 为直线BC 上的一动点(点D 不与B,C 重合),以AD 为边作菱形ADEF(按A,D,E,F 逆时针排列),使∠DAF=60°,连接CF. (1) 如图1,当点D 在边BC 上时,求证:① BD=CF ? ②AC=CF+CD. (2)如图2,当点D 在边BC 的延长线上且其他条件不变时,结论AC=CF+CD 是否成立?若不成立,请写出AC 、CF 、CD 之间存在的数量关系,并说明理由; (3)如图3,当点D 在边BC 的延长线上且其他条件不变时,补全图形,并直接写出AC 、CF 、CD 之间存在的数量关系。

人教版八年级数学全等三角形的常见模型总结(精选.)

人教版八年级数学全等三角形常见模型总结 要点梳理 全等三角形的判定与性质 类型一:角平分线 模型应用 1.角平分性质模型:(利用角平分线的性质) 辅助线:过点G 作GE ⊥射线AC 例题解析 例:(1)如图1,在△ABC 中,∠C=90°,AD 平分∠CAB ,BC=6cm ,BD=4cm ,那么点D 到直线AB 的距离是 cm. (2)如图2,已知,∠1=∠2,∠3=∠4,求证:AP 平分∠ BAC. 图1 图2 【答案】①2 (提示:作DE ⊥AB 交AB 于点E ) ②21∠=∠Θ,PN PM =∴,43∠=∠Θ,PQ PN =∴,BAC PA PQ PM ∠∴=∴平分,. 类型二:角平分线模型应用 2.角平分线,分两边,对称全等(截长补短构造全等)

两个图形的辅助线都是在射线OA上取点B,使OB=OA,从而使△OAC≌△OBC. 例题解析 例1:在△ABC中,∠BAC=60°,∠C=40°,AP平分∠BAC交BC于P,BQ平分∠ABC交AC于Q,求证:AB+BP=BQ+AQ。 证明:如图(1), 过O作OD∥BC交AB于D, ∴∠ADO=∠ABC=180°-60°-40°=80°, 又∵∠AQO=∠C+∠QBC=80°, ∴∠ADO=∠AQO, 又∵∠DAO=∠QAO,OA=AO, ∴△ADO≌△AQO, ∴OD=OQ,AD=AQ, 又∵OD∥BP, ∴∠PBO=∠DOB, 又∵∠PBO=∠DBO, ∴∠DBO=∠DOB, ∴BD=OD, 又∵∠BPA=∠C+∠PAC=70°, ∠BOP=∠OBA+∠BAO=70°, ∴∠BOP=∠BPO, ∴BP=OB, ∴AB+BP=AD+DB+BP=AQ+OQ+BO=AQ+BQ。 解题后的思考: (1)本题也可以在AB上截取AD=AQ,连OD,构造全等三角形,即“截长法”。 (2)本题利用“平行法”的解法也较多,举例如下: ①如图(2),过O作OD∥BC交AC于D,则△ADO≌△ABO从而得以解决。

【2020中考数学专项复习】全等三角形的常见基本模型

【中考专项复习】全等三角形的常见模型 【回归概念】 概念:经过翻转、平移后,能够完全重合的两个三角形叫做全等三角形 [1] ,而该两个三角形的三条边及三个角都对应相等。全等三角形指两个全等的三角形,它们的三条边及三个角都对应相等。全等三角形是几何中全等之一。 [2] 根据全等转换,两个全等三角形经过平移、旋转、翻折后,仍旧全等。正常来说,验证两个全等三角形一般用边边边(SSS)、边角边(SAS)、角边角(ASA)、角角边(AAS)、和直角三角形的斜边,直角边(HL)来判定。 规律: 全等三角形基本模型: 1.平移模型 2.对称模型 3.旋转模型 4.三垂直模型

5.一线三等角模型 【规律探寻】 构造全等三角形的一般方法 1.题目中出现角平分线 (1)通过角平分线上的某个已知点,向两边作垂线,这是利用角平分线的性质定理或者逆定理来构造的全等三角形 (2)在角平分线的某个已知点,作角平分线的垂线和两边相交,构造全等三角形。 (3)在该角的两边,距离角的顶点相等长度的位置上截取两点,分别连接这两点与角平分线上的某已知点,构造全等三角形 2.题目中出现中点或者中线(中位线) (1)倍长中线法,把中线延长至二倍位置 (2)过中点作某一条边的平行线 3.题目中出现等腰或者等边三角形 (1)找中点,倍长中线 (2)过顶点作底边的垂线 (3)过某已知点作一条边的平行线 (4)三线合一 4.题目中出现三条线段之间的关系 通常用截长补短法,在某条线段上截取一段线段,使之与特定的线段相等,或者将某条线段延长,使之与特定线段相等。这种方法,在证明多条线段的和、差、倍、分关系时,效果非常好。 5.题目中出现垂直平分线

全等三角形辅助线专题

八年级数学上册辅助线专题 教学目标:掌握各种类型得全等三角形得证明方法 教学重点:构造全等三角形 教学难点: 如何巧妙作辅助线 知识点: (一)截长补短型 (二)中点线段倍长问题 (三)蝴蝶形图案解决定值问题 (四)角平分线与轴对称 (五)等腰直角三角形,等边三角形 (六)双重直图案与全等三角形 典型例题讲练 重点例题: 一、截长补短型 如图,R T △CDA ≌RT △CDB , ①、若∠ACD =30°,∠M DN=60°,当∠MDN 绕点D 旋转时,AM 、MN 、BN 三条线段之间得关系式为______ ②、若∠ACD=45°,∠MDN=45°,AM 、M N、BN 三条线段之间得数量关系式为:______ ③、由①②猜想:在上述条件下,当∠ACD 与∠MDN 满足什么条件时,上述关系式成立,证明您得结论。 二、中点线段倍长问题 如图△A BC 中,点D就是BC 边中点,过点D 作直线交AB 、CA 延长线于点E 、 F 。当AE=A F时,求证BE=CF 。 三、蝴蝶形图案解决定值问题 1、如图,在R t△ACB 中,∠ACB =90°,CA=CB,D 就是斜边A B得中点,E 就是DA上一点,过点B 作BH ⊥CE于点H ,交CD 于点F 。 (1) 求证:DE=DF 、(2)若E 就是线段B A得延长线上一点,其它条件不 变,DE=DF 成立吗?画图说明。 2在△ABC 中,AB=AC,AD 与CE 就是高,它们所在得直线相交于H。 (1)如图1,若∠BAC =45°,求证:AH=2BD 、 (2)如图2,若∠BAC=135°,(1)中得结论就是否依然成立?请您在图2中画出图形并加以证明。 3,如图,等腰直角三角形ABC 中,AB =AC,∠BAC=90°,BE 平分∠ABC 交 AC 于E ,过C 作CD ⊥BE 于D 、求证BE=2CD 、 (2) 连接AD ,求证:∠ADB=45°、 B A C D M N ① B D A C M N ② A B C D M N ③ A B C D E F A B C D E F H A B C D E H B A C C D B A E D B A E C

全等三角形几何证明-常用辅助线

几何证明-常用辅助线 (一)中线倍长法: 例1、求证:三角形一边上的中线小于其他两边和的一半 1 已知:如图,△ ABC 中,AD 是 BC 边上的中线,求证:AD < - (AB+AC) 2 1 分析:要证明AD < - (AB+AC),就是证明AB+AO2AD 也就是证明两条线段之和大于第三 2 条线段,而我们只能用“三角形两边之和大于第三边”,但题中的三条线段共点,没有构 成一个三角形,不能用三角形三边关系定理,因此应该进行转化。待证结论AB+AC>2A 中, 出现了 2AD 即中线AD 应该加倍。 证明:延长 AD 至E,使DE=AD 连CE 则AE=2AD 在厶 ADBm EDC 中, AD= DE ZADB= ZEDC BD= DC ???△ ADB^A EDC(SAS) ??? AB=CE 又在厶ACE 中, AC+C 呂 AE 1 ??? AC+AB>2AD 即 AD < - (AB+AC) 2 小结:(1)涉及三角形中线问题时,常采用延长中线一倍的办法,即 中线倍长法。它可以 将分居中线两旁的两条边 AB AC 和两个角/ BAD 和/CAD 集中于同一个三角形中,以利于 问题的获解。 课题练习:ABC 中,AD 是 BAC 的平分线,且BD=CD 求证AB=AC N, 作BE! AD 的延长线于E 连接BE E 例3:A ABC 中, AB=5 AC=3求中线AD 的取值范围 例4:已知在△ ABC 中, AB=AC D 在AB 上, E 在AC 的延长线上,DE 交BC 于 F , 且 DF=EF 求证:BD=CE 课堂练习:已知在△ ABC 中,AD 是BC 边上的中线, AC 于 F ,求证:AF=EF 例5:已知:如图,在 ABC 中,AB AC , D E 上,且 DE=EC 过 D 作 DF //BA 交 AE 于点 F , DF=AC. 例2:中线一倍辅助线作法 作 CF 丄 AD 于 F , A ^式 1:延长 AD 到 E , / 使 DE=AD B ————(连接BE 方式2:间接倍长 延长MD 到 使 DN=M P 连接CD A C △ ABC 中 AD 是BC 边中线 D

全等三角形常见的几何模型

1、绕点型(手拉手模型) 遇 600旋 60 0,造等边三角形 遇 900旋 900,造等腰直角 ( 1)自旋转:自旋转构造方法 遇等腰旋顶角,造旋转全等 遇中点旋 1800,造中心对称 (2)共旋转(典型的手拉手模型) 例 1、在直线 ABC 的同一侧作两个等边三角形△ABD和△ BCE,连接 AE与 CD,证明: ( 1)△ ABE≌△ DBC D ( 2)AE=DC ( 3)AE 与 DC的夹角为 60。E ( 4)△ AGB≌△ DFB H F ( 5)△ EGB≌△ CFB G (6) BH平分∠ AHC (7)GF∥AC A B C 变式练习 1、如果两个等边三角形△ABD和△ BCE,连接 AE 与 CD,证明: ( 1)△ ABE≌△ DBC D ( 2)AE=DC C ( 3)AE 与 DC的夹角为 60。 E ( 4)AE 与 DC的交点设为 H,BH平分∠ AHC A B

变式练习 2、如果两个等边三角形△ABD 和△ BCE,连接 AE 与 CD,证明: D (1) △ ABE≌△ DBC (2)AE=DC (3)AE 与 DC的夹角为 60。 ( 4) AE与 DC的交点设为 H,BH 平分∠ AHC B A H E C (1)如图 1,点 C 是线段 AB 上一点,分别以 AC ,BC 为边在 AB 的同侧作等边△ ACM 和△ CBN ,连接 AN ,BM .分别取BM , AN 的中点 E, F,连接 CE, CF, EF.观察并猜想△ CEF 的形状,并说明理由. (2)若将( 1)中的“以 AC ,BC 为边作等边△ ACM 和△ CBN”改为“以 AC ,BC 为腰在 AB 的同侧作等腰△ ACM 和△CBN ,”如图 2,其他条件不变,那么(1)中的结论还成立吗?若成立,加以证明;若不成立,请说明理由. 例 4、例题讲解: 1.已知△ ABC 为等边三角形,点 D 为直线 BC 上的一动点(点 D 不与 B,C 重合),以 AD 为边作菱形 ADEF( 按 A,D,E,F 逆时针排列),使∠ DAF=60° ,连接 CF. (1) 如图 1,当点 D 在边 BC 上时,求证:①BD=CF ?② AC=CF+CD. (2)如图 2,当点 D 在边 BC 的延长线上且其他条件不变时,结论AC=CF+CD 是否成立?若不成立,请写出AC 、 CF、CD 之间存在的数量关系,并说明理由; (3)如图 3,当点 D 在边 BC 的延长线上且其他条件不变时,补全图形,并直接写出AC 、CF、CD 之间存在的数量关系。

相关主题
文本预览
相关文档 最新文档