当前位置:文档之家› (完整版)随机变量的数学期望与方差

(完整版)随机变量的数学期望与方差

(完整版)随机变量的数学期望与方差
(完整版)随机变量的数学期望与方差

第9讲 随机变量的数学期望与方差

教学目的:1.掌握随机变量的数学期望及方差的定义。

2.熟练能计算随机变量的数学期望与方差。

教学重点:

1.随机变量的数学期望

2.随机变量函数的数学期望

3.数学期望的性质

4.方差的定义

5.方差的性质

教学难点:数学期望与方差的统计意义。

教学学时:2学时。

教学过程:

第三章 随机变量的数字特征

§3.1 数学期望

在前面的课程中,我们讨论了随机变量及其分布,如果知道了随机变量X 的概率分布,那么X 的全部概率特征也就知道了。然而,在实际问题中,概率分布一般是较难确定的,而在一些实际应用中,人们并不需要知道随机变量的一切概率性质,只要知道它的某些数字特征就够了。因此,在对随机变量的研究中,确定其某些数字特征是重要的,而在这些数字特征中,最常用的是随机变量的数学期望和方差。

1.离散随机变量的数学期望

我们来看一个问题:

某车间对工人的生产情况进行考察。车工小张每天生产的废品数X 是一个随机变量,如何定义X 取值的平均值呢?

若统计100天,32天没有出废品,30天每天出一件废品,17天每天出两件废品,21天每天出三件废品。这样可以得到这100天中每天的平均废品数为

27.1100

213100172100301100320=?+?+?+? 这个数能作为X 取值的平均值吗?

可以想象,若另外统计100天,车工小张不出废品,出一件、二件、三件废品的天数与前面的100天一般不会完全相同,这另外100天每天的平均废品数也不一定是

1.27。

对于一个随机变量X ,若它全部可能取的值是Λ,,21x x , 相应的概率为 Λ,,21P P ,则对X 作一系列观察(试验)所得X 的试验值的平均值是随机的。但是,如果试验次数很大,出现k x 的频率会接近于K P ,于是试验值的平均值应接近

∑∞=1k k k p x

由此引入离散随机变量数学期望的定义。

定义1 设X 是离散随机变量,它的概率函数是

Λ ,2 ,1,)()(====k P x X P x p K K k

如果 ∑∞

=1||k k k p x 收敛,定义X 的数学期望为

∑∞

==1)(k k k p x X E

也就是说,离散随机变量的数学期望是一个绝对收敛的级数的和。

例1 某人的一串钥匙上有n 把钥匙,其中只有一把能打开自己的家门,他随意地试用这串钥匙中的某一把去开门。若每把钥匙试开一次后除去,求打开门时试开次数的数学期望。

解 设试开次数为X ,则

n k X p 1)(==,n , ,2 ,1Λ=k

于是 ∑=?

=n k n k X E 11)(2)1(1n n n +?=2

1+=n 2. 连续随机变量的数学期望

为了引入连续随机变量数学期望的定义,我们设X 是连续随机变量,其密度函数为)(x f ,把区间) , (∞+-∞分成若干个长度非常小的小区间,考虑随机变量X 落在任意小区间] , (dx x x +内的概率,则有

)(dx x X x p +≤<=?+dx

x x dx t f )(dx x f )(≈

由于区间] , (dx x x +的长度非常小,随机变量X 在] , (dx x x +内的全部取值都可近似为x ,而取值的概率可近似为dx x f )(。参照离散随机变量数学期望的定义,我们可以引入连续随机变量数学期望的定义。

定义2 设X 是连续随机变量,其密度函数为)(x f 。如果

?∞

∞-dx x f x )(||

收敛,定义连续随机变量X 的数学期望为

?∞

∞-=dx x f x X E )()( 也就是说,连续随机变量的数学期望是一个绝对收敛的积分。

由连续随机变量数学期望的定义不难计算:

若),(~b a U X ,即X 服从), (b a 上的均匀分布,则

2

)(b a X E += 若X 服从参数为的泊松分布,则λ

λ=)(X E

若X 服从则 ),,(2σμN

μ=)(X E

3.随机变量函数的数学期望

设已知随机变量X 的分布,我们需要计算的不是随机变量X 的数学期望,而是X 的某个函数的数学期望,比如说)(X g 的数学期望,应该如何计算呢?这就是随机变量函数的数学期望计算问题。

一种方法是,因为)(X g 也是随机变量,故应有概率分布,它的分布可以由已知的 X 的分布求出来。一旦我们知道了)(X g 的分布,就可以按照数学期望的定义把)]([X g E 计算出来,使用这种方法必须先求出随机变量函数)(X g 的分布,一般是比较复杂的。

那么是否可以不先求)(X g 的分布,而只根据X 的分布求得)]([X g E 呢?答案是肯定的,其基本公式如下:

设X 是一个随机变量,)(X g Y =,则

?????==?∑∞∞

-∞

=连续离散X dx x f x g X p x g X g E Y E k k k ,)()(,)()]([)(1 当X 是离散时, X 的概率函数为Λ ,2 ,1 ,)()(====k P x X P x P K K k ;

当X 是连续时,X 的密度函数为)(x f 。

该公式的重要性在于,当我们求E [g (X )]时,不必知道g (X )的分布,而只需知道X 的分布就可以了,这给求随机变量函数的数学期望带来很大方便。

4.数学期望的性质

(1)设C 是常数,则E(C )=C 。

(2)若k 是常数,则E (kX )=kE (X )。

(3))E(X )E(X )X E(X 2121+=+。

推广到n 个随机变量有∑∑===n

i i n i i X E X E 11)(][。

(4)设X 、Y 相互独立,则有 E (XY )=E (X )E (Y )。

推广到n 个随机变量有 ∏∏===n

i i n i i X E X E 11)(][

5.数学期望性质的应用

例2 求二项分布的数学期望。

解 若 ),(~p n B X ,则X 表示n 重贝努里试验中的“成功” 次数,现在我们来求X 的数学期望。

若设

???=次试验失败

如第次试验成功如第i i X i 01 i =1,2,…,n

则n X X X X +++=Λ21,因为 P X P i ==)1(,q P X P i =-==1)0(

所以p p q X E i =*+*=10)(,则

=)(X E np X E X E n

i i n i i ==∑∑==11)(][

可见,服从参数为n 和p 的二项分布的随机变量X 的数学期望是np 。

需要指出,不是所有的随机变量都存在数学期望。

例3 设随机变量X 服从柯西分布,概率密度为 +∞<<-∞=+x x f x ,)()

1(12π 求数学期望)(X E 。

解 依数学期望的计算公式有 dx X E x x ?+∞∞-+=

112)(π 因为广义积分dx x x

?+∞∞-+12不收敛,所以数学期望)(X E 不存在。

§3.2 方差

前面我们介绍了随机变量的数学期望,它体现了随机变量取值的平均水平,是随机变量一个重要的数字特征。但是在一些场合下,仅仅知道随机变量取值的平均值是不够的,还需要知道随机变量取值在其平均值附近的离散程度,这就是我们要学习的方差的概念。

1. 方差的定义

定义3 设随机变量X 的数学期望)(X E 存在,若]))([(2X E X E -存在,则称

]))([(2X E X E - (3.1)

为随机变量X 的方差,记作)(X D ,即]))([()(2X E X E X D -=。 方差的算术平方根)(X D 称为随机变量X 的标准差,记作)(X σ,即

)()(X D X =σ

由于)(X σ与X 具有相同的度量单位,故在实际问题中经常使用。

方差刻画了随机变量的取值对于其数学期望的离散程度,若X 的取值相对于其数学期望比较集中,则其方差较小;若X 的取值相对于其数学期望比较分散,则方差较大。若方差)(X D =0,则随机变量X 以概率1取常数值。

由定义1知,方差是随机变量X 的函数2)]([)(X E X X g -=的数学期望,故

?????--=?∑∞∞

-∞=连续时当离散时当X dx x f X E x p X E x X D k k k k ,)()]([X ,)]([)(212 当X 离散时, X 的概率函数为Λ ,2 ,1 ,)()(====k P x X P x P K K k ;

当X 连续时,X 的密度函数为)(x f 。

计算方差的一个简单公式:

22)]([)()(X E X E X D -=

2

2222)]([)(])]([)(2[]

))([()(X E X E x E X XE X E X E X E X D -=+-=-=

请用此公式计算常见分布的方差。

例4 设随机变量X 服从几何分布,概率函数为

1)1(--=k k p p P , k =1,2,…,n

其中0

解 记q =1-p

∑∞=-=11)(k k kpq

X E ∑∞==1)'(k k q p ∑∞==1

)'(k k q p )'1(q q p -=p 1= ∑∞=-=112

2)(k k pq k X E ])1([1111∑∑∞=-∞=-+-=k k k k kq q k k p ∑∞=''=1

)(k k q qp +E (X ) p q q qp 1)1(+''-=p q qp 1)1(23+-=p

p q 122+=

22)]([)()(X E X E X D -=22p p -=21p -21p p -= 2. 方差的性质

(1)设C 是常数,则D (C )=0。

(2)若C 是常数,则)()(2X D C CX D =。

(3)若X 与Y 独立,则

)()()(Y D X D Y X D +=+。 证 由数学期望的性质及求方差的公式得

{}{}

)()()]([)()]([)()

()(2)]([)]([)()(2)()()]()([]2[)]([])[()(222

222

222

222

2Y D X D Y E Y E X E X E Y E X E Y E X E Y E X E Y E X E Y E x E XY Y X E Y X E Y X E Y X D +=-+-=---++=+-++=+-+=+ 可推广为:若1X ,2X ,…,n X 相互独立,则

∑∑===n

i i n i i X D X D 11)(][

∑∑===n

i i i n i i i X D C X C D 121)(][

(4) D (X )=0 ?P (X = C )=1, 这里C =E (X )。

请同学们思考当X 与Y 不相互独立时,?)(=+Y X D 下面我们用例题说明方差性质的应用。

例5 二项分布的方差。

解 设),(~p n B X , 则X 表示n 重贝努里试验中的“成功” 次数。 若设

???=次试验失败

如第次试验成功如第i i X i 01 i =1,2,…,n

则∑==n

i i X X 1是n 次试验中“成功”的次数,p p q X E i =*+*=10)(,故

)1()]([)()(222

p p p p X E X E X D i i i -=-=-=, 1,2,,i n =L 由于n X X X ,,,21Λ相互独立,于是∑==n i i X D X D 1)()(= np (1- p )。

例6 设随机变量X 的数学期望)(X E 与方差)()(2X X D σ=都存在,0)(>X σ,则 标准化的随机变量 )

()(*X X E X X σ-=

证明 0)(*=X E ,1)(*=X D 。

证 由数学期望和方差的性质知 _()*()()*()22[()] ()[]0()[()]()()[]1()()X E X X X

E X X E X E X E X E X D X E X D X D X D X X σσσσσ--==

=-====

随机变量的数学期望与方差

第9讲随机变量的数学期望与方差 教学目的:1.掌握随机变量的数学期望及方差的定义。 2.熟练能计算随机变量的数学期望与方差。 教学重点: 1.随机变量的数学期望 For personal use only in study and research; not for commercial use 2.随机变量函数的数学期望 3.数学期望的性质 4.方差的定义 For personal use only in study and research; not for commercial use 5.方差的性质 教学难点:数学期望与方差的统计意义。 教学学时:2学时。 For personal use only in study and research; not for commercial use 教学过程: 第三章随机变量的数字特征 §3.1 数学期望 For personal use only in study and research; not for commercial use 在前面的课程中,我们讨论了随机变量及其分布,如果知道了随机变量X的概率分布,那么X的全部概率特征也就知道了。然而,在实际问题中,概率分布一般是较难确定的,而在一些实际应用中,人们并不需要知道随机变量的一切概率性质,只要知道它的某些数字特征就够了。因此,在对随机变量的研究中,确定其某些数字特征是重要的,而在这些数字特征中,最常用的是随机变量的数学期望和方差。

1.离散随机变量的数学期望 我们来看一个问题: 某车间对工人的生产情况进行考察。车工小张每天生产的废品数X 是一个随机变 量,如何定义X 取值的平均值呢? 若统计100天,32天没有出废品,30天每天出一件废品,17天每天出两件废品, 21天每天出三件废品。这样可以得到这100天中每天的平均废品数为 27.1100 213100172100301100320=?+?+?+? 这个数能作为X 取值的平均值吗? 可以想象,若另外统计100天,车工小张不出废品,出一件、二件、三件废品的 天数与前面的100天一般不会完全相同,这另外100天每天的平均废品数也不一定是 1.27。 对于一个随机变量X ,若它全部可能取的值是 ,,21x x , 相应的概率为 ,,21P P , 则对X 作一系列观察(试验)所得X 的试验值的平均值是随机的。但是,如果试验次数 很大,出现k x 的频率会接近于K P ,于是试验值的平均值应接近 ∑∞=1k k k p x 由此引入离散随机变量数学期望的定义。 定义1 设X 是离散随机变量,它的概率函数是 ,2 ,1,)()(====k P x X P x p K K k 如果 ∑∞ =1||k k k p x 收敛,定义X 的数学期望为 ∑∞ ==1)(k k k p x X E 也就是说,离散随机变量的数学期望是一个绝对收敛的级数的和。 例1 某人的一串钥匙上有n 把钥匙,其中只有一把能打开自己的家门,他随意地 试用这串钥匙中的某一把去开门。若每把钥匙试开一次后除去,求打开门时试开次数 的数学期望。

离散型随机变量的期望与方差

开锁次数的数学期望和方差 例 有n 把看上去样子相同的钥匙,其中只有一把能把大门上的锁打开.用它们去试开门上的锁.设抽取钥匙是相互独立且等可能的.每把钥匙试开后不能放回.求试开次数ξ的数学期望和方差. 分析:求)(k P =ξ时,由题知前1-k 次没打开,恰第k 次打开.不过,一般我们应从简单的地方入手,如3,2,1=ξ,发现规律后,推广到一般. 解:ξ的可能取值为1,2,3,…,n . Λ;12112121)111()11()3(;111111)11()2(,1)1(n n n n n n n n n P n n n n n n P n P =-?--?-=-?--?-===-?-=-?-====ξξξ n k n k n k n n n n n n n k n k n n n n k P 111212312111)211()211()111()11()(=+-?+-+---?--?-=+-?+----?--?-==ΛΛξ;所以ξ的分布列为: 2 31211=?++?+?+?=n n n n n E Λξ; n n n n n k n n n n n n D 1)21(1)21(1)213(1)212(1)211(22222?+-++?+-++?+-+?+-+?+- =ΛΛξ ?? ?????+++++++-++++=n n n n n n 22222)21()321)(1()321(1ΛΛ 1214)1(2)1()12)(1(611222-=?? ????+++-++=n n n n n n n n n 说明:复杂问题的简化处理,即从个数较小的看起,找出规律所在,进而推广到一般,方差的公式正确使用后,涉及一个数列求和问题,合理拆项,转化成熟悉的公式,是解决的关键. 次品个数的期望

知识讲解离散型随机变量的均值与方差

知识讲解离散型随机变量的均值与方差(总13页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

离散型随机变量的均值与方差 【学习目标】 1. 理解取有限个值的离散型随机变量的均值或期望的概念,会根据离散型随机变量的分布列求出均值或期望,并能解决一些实际问题; 2. 理解取有限个值的离散型随机变量的方差、标准差的概念,会根据离散型随机变量的分布列求出方差或标准差,并能解决一些实际问题; 【要点梳理】 要点一、离散型随机变量的期望 1.定义: 一般地,若离散型随机变量ξ的概率分布为 则称=ξE +11p x +22p x …++n n p x … 为ξ的均值或数学期望,简称期望. 要点诠释: (1)均值(期望)是随机变量的一个重要特征数,它反映或刻画的是随机变量取值的平均水平. (2)一般地,在有限取值离散型随机变量ξ的概率分布中,令=1p =2p …n p =,则有 =1p =2p …n p n 1= =,=ξE +1(x +2x …n x n 1 )?+,所以ξ的数学期望又称为平均数、均值。 (3)随机变量的均值与随机变量本身具有相同的单位. 2.性质: ①()E E E ξηξη+=+; ②若b a +=ξη(a 、b 是常数),ξ是随机变量,则η也是随机变量,有 b aE b a E +=+ξξ)(; b aE b a E +=+ξξ)(的推导过程如下:: η的分布列为

于是=ηE ++11)(p b ax ++22)(p b ax …()i i ax b p +++… =+11(p x a +22p x …i i x p ++…)++1(p b +2p …i p ++…)=b aE +ξ ∴b aE b a E +=+ξξ)(。 要点二:离散型随机变量的方差与标准差 1.一组数据的方差的概念: 已知一组数据1x ,2x ,…,n x ,它们的平均值为x ,那么各数据与x 的差的平方的平均数 [1 2n S = 21)(x x -+22)(x x -+…+])(2x x n -叫做这组数据的方差。 2.离散型随机变量的方差: 一般地,若离散型随机变量ξ的概率分布为 则称ξD =121)(p E x ?-ξ+222)(p E x ?-ξ+…+2()n i x E p ξ-?+…称为随机变量ξ的方差,式中的ξE 是随机变量ξ的期望. ξD 的算术平方根ξD 叫做随机变量ξ的标准差,记作σξ. 要点诠释: ⑴随机变量ξ的方差的定义与一组数据的方差的定义式是相同的; ⑵随机变量ξ的方差、标准差也是随机变量ξ的特征数,它们都反映了随机变量取值的稳定与波动、集中与离散的程度;方差(标准差)越小,随机变量的取值就越稳定(越靠近平均值). ⑶标准差与随机变量本身有相同的单位,所以在实际问题中应用更广泛。 3.期望和方差的关系:

正态分布的数学期望与方差

正态分布的数学期望与方差 正态分布: 密度函数为:分布函数为 的分布称为正态分布,记为N(a, σ2). 密度函数为: 或者 称为n元正态分布。其中B是n阶正定对称矩阵,a是任意实值行向量。 称N(0,1)的正态分布为标准正态分布。 (1)验证是概率函数(正值且积分为1) (2)基本性质: (3)二元正态分布: 其中, 二元正态分布的边际分布仍是正态分布: 二元正态分布的条件分布仍是正态分布:

即(其均值是x的线性函数) 其中r可证明是二元正态分布的相关系数。 (4)矩,对标准正态随机变量,有 (5)正态分布的特征函数 多元正态分布 (1)验证其符合概率函数要求(应用B为正定矩阵,L为非奇异阵,然后进行向量线性变换) (2)n元正态分布结论 a) 其特征函数为: b) 的任一子向量,m≤n 也服从正态分布,分布为其中,为保留B 的第,…行及列所得的m阶矩阵。 表明:多元正态分布的边际分布还是正态分布 c) a,B分别是随机向量的数学期望及协方差矩阵,即 表明:n元正态分布由它的前面二阶矩完全确定 d) 相互独立的充要条件是它们两两不相关 e) 若,为的子向量,其中是,的协方差矩阵,则是,相应分量的协方差构成的相互协方差矩阵。则相互独立的充要条件为=0 f) 服从n元正态分布N(a,b)的充要条件是它的任何一个线性组合服

从一元正态分布 表明:可以通过一元分布来研究多元正态分布 g) 服从n元正态分布N(a,b),C为任意的m×n阶矩阵,则服从m元正态分布 表明:正态变量在线性变换下还是正态变量,这个性质简称正态变量的线性变换不变性 推论:服从n元正态分布N(a,b),则存在一个正交变化U,使得是一个具有独立正态分布分量的随机向量,他的数学期望为Ua,而他的方差分量是B的特征值。 条件分布 若服从n元正态分布N(a,b),,则在给定下,的分布还是正态分布,其条件数学期望: (称为关于的回归) 其条件方差为: (与无关)

知识讲解离散型随机变量的均值与方差(理)(基础)

离散型随机变量的均值与方差 【学习目标】 1. 理解取有限个值的离散型随机变量的均值或期望的概念,会根据离散型随机变量的分布列求出均值或期望,并能解决一些实际问题; 2. 理解取有限个值的离散型随机变量的方差、标准差的概念,会根据离散型随机变量的分布列求出方差或标准差,并能解决一些实际问题; 【要点梳理】 要点一、离散型随机变量的期望 1.定义: 一般地,若离散型随机变量ξ的概率分布为 则称=ξE +11p x +22p x …++n n p x … 为ξ的均值或数学期望,简称期望. 要点诠释: (1)均值(期望)是随机变量的一个重要特征数,它反映或刻画的是随机变量取值的平均水平. (2)一般地,在有限取值离散型随机变量ξ的概率分布中,令=1p =2p …n p =,则有=1p =2p … n p n 1= =,=ξE +1(x +2x …n x n 1 )?+,所以ξ的数学期望又称为平均数、均值。 (3)随机变量的均值与随机变量本身具有相同的单位. 2.性质: ①()E E E ξηξη+=+; ②若b a +=ξη(a 、b 是常数),ξ是随机变量,则η也是随机变量,有b aE b a E +=+ξξ)(; b aE b a E +=+ξξ)(的推导过程如下:: η的分布列为 于是=ηE ++11)(p b ax ++22)(p b ax …()i i ax b p +++… =+11(p x a +22p x …i i x p ++…)++1(p b +2p …i p ++…)=b aE +ξ

∴b aE b a E +=+ξξ)(。 要点二:离散型随机变量的方差与标准差 1.一组数据的方差的概念: 已知一组数据1x ,2x ,…,n x ,它们的平均值为x ,那么各数据与x 的差的平方的平均数 [1 2n S = 21)(x x -+22)(x x -+…+])(2x x n -叫做这组数据的方差。 2.离散型随机变量的方差: 一般地,若离散型随机变量ξ的概率分布为 则称ξD =121)(p E x ?-ξ+22 2)(p E x ?-ξ+…+2()n i x E p ξ-?+…称为随机变量ξ的方差,式中 的ξE 是随机变量ξ的期望. ξD 的算术平方根ξD 叫做随机变量ξ的标准差,记作σξ. 要点诠释: ⑴随机变量ξ的方差的定义与一组数据的方差的定义式是相同的; ⑵随机变量ξ的方差、标准差也是随机变量ξ的特征数,它们都反映了随机变量取值的稳定与波动、集中与离散的程度;方差(标准差)越小,随机变量的取值就越稳定(越靠近平均值). ⑶标准差与随机变量本身有相同的单位,所以在实际问题中应用更广泛。 3.期望和方差的关系: 22()()D E E ξξξ=- 4.方差的性质: 若b a +=ξη(a 、b 是常数),ξ是随机变量,则η也是随机变量,2 ()D D a b a D ηξξ=+=; 要点三:常见分布的期望与方差 1、二点分布: 若离散型随机变量ξ服从参数为p 的二点分布,则 期望E p ξ= 方差(1).D p p ξ=-

61随机变量的概率分布、期望与方差1

如皋市薛窑中学2011届高三理科数学一轮复习 61随机变量的概率分布、期望与方差 【考点解读】 离散型随机变量及其分布列:A;超几何分布:A;条件概率及相互独立事件:A; n次独立重复试验的模型及二项分布:B;离散型随机变量的均值与方差:B 【复习目标】 1?了解取有限值的离散型随机变量及其分布列的概念,了解分布列对于刻画随机现象的重要性;会求某些简单的离散型随机变量的分布列。 2?了解超几何分布及其导出过程,并能进行简单的应用。 3?了解条件概率和两个事件相互独立的概念( 对条件概率的应用题不作要求 )。 4 ?理解n次独立重复试验的模型及二项分布,并能解决一些简单的实际问题。 5?了解取有限值的离散型随机变量的均值、方差的意义,会根据离散型随机变量的分布列求出期望值、方差。 活动一:基础知识 1. 随机变量: 1) 定义: _________________________________________________________ 。 2) ____________________________________ 表示方法:。 2. 随机变量分布列的定义: 假定随机变量X有n个不同的取值,它们分别是X1,X2丄X n且P(X=x i)=p i ,i=1,2, -n,① 称①为随机变量X 的概率分布列,简称X的分布列 3. 概率分布表 将①用表的形式表示如下: 4. 分布列的性质: 概率分布列中P(i 1,2L n)满足以下两个条件: (1) ______________________________ (2) ______________________________ 5. 两点分布 如果随机变量X只取两个可能值_0 和__________ 1 ___ ,则称该随机变量X服从0-1分布或两点分布并记为X?0-1或X?两点分布. 其概率分布表为: 其中丨min{ M , n},且n N,M N,n,M,N N .称分布列

离散型随机变量的期望值和方差

离散型随机变量的期望值和方差 一、基本知识概要: 1、 期望的定义: 一般地,若离散型随机变量ξ的分布列为 则称E ξ=x 1P 1+x 2P 2+x 3P 3+…+x n P n +…为ξ的数学期望或平均数、均值,简称期望。 它反映了:离散型随机变量取值的平均水平。 若η=a ξ+b(a 、b 为常数),则η也是随机变量,且E η=aE ξ+b 。 E(c)= c 特别地,若ξ~B(n ,P ),则E ξ=n P 2、 方差、标准差定义: D ξ=(x 1- E ξ)2·P 1+(x 2-E ξ)2·P 2+…+(x n -E ξ)2·P n +…称为随机变量ξ的方差。 D ξ的算术平方根ξD =δξ叫做随机变量的标准差。 随机变量的方差与标准差都反映了:随机变量取值的稳定与波动、集中与离散的程度。 且有D(a ξ+b)=a 2D ξ,可以证明D ξ=E ξ2- (E ξ)2。 若ξ~B(n ,p),则D ξ=npq ,其中q=1-p. 3、特别注意:在计算离散型随机变量的期望和方差时,首先要搞清其分布特征及分布列,然后要准确应用公式,特别是充分利用性质解题,能避免繁琐的运算过程,提高运算速度和准确度。 二、例题: 例1、(1)下面说法中正确的是 ( ) A .离散型随机变量ξ的期望E ξ反映了ξ取值的概率的平均值。 B .离散型随机变量ξ的方差D ξ反映了ξ取值的平均水平。 C .离散型随机变量ξ的期望E ξ反映了ξ取值的平均水平。 D .离散型随机变量ξ的方差D ξ反映了ξ取值的概率的平均值。 解:选C 说明:此题考查离散型随机变量ξ的期望、方差的概念。 (2)、(2001年高考题)一个袋子里装有大小相同的3个红球和2个黄球,从中同时取出两个,则其中含红球个数的数学期望是 。 解:含红球个数ξ的E ξ=0× 101+1×106+2×10 3=1.2 说明:近两年的高考试题与《考试说明》中的“了解……,会……”的要求一致,此部分以重点知识的基本 题型和内容为主,突出应用性和实践性及综合性。考生往往会因对题意理解错误,或对概念、公式、性质应用错误等,导致解题错误。 例2、设ξ是一个离散型随机变量,其分布列如下表,试求E ξ、D ξ 剖析:应先按分布列的性质,求出q 的值后,再计算出E ξ、D ξ。 解:因为随机变量的概率非负且随机变量取遍所有可能值时相应的概率之和等于1,所以??? ? ???≤≤-≤=+-+11 2101212122 q q q q

2.5 随机变量的均值和方差

2.5随机变量的均值和方差 扬州市新华中学查宝才 教学目标: 1.通过实例,理解取有限值的离散型随机变量均值(数学期望)的概念和意义; 2.能计算简单离散型随机变量均值(数学期望),并能解决一些实际问题. 教学重点: 取有限值的离散型随机变量均值(数学期望)的概念和意义. 教学方法: 问题链导学. 教学过程: 一、问题情境 1.情景. 前面所讨论的随机变量的取值都是离散的,我们把这样的随机变量称为离散型随机变量.怎样刻画离散型随机变量取值的平均水平和稳定程度呢? 甲、乙两个工人生产同一种产品,在相同的条件下,他们生产100件产品所出的不合格品数分别用X1,X2表示,X1,X2的概率分布如下. 2.问题. 如何比较甲、乙两个工人的技术? 二、学生活动 1.直接比较两个人生产100件产品时所出的废品数.从分布列来看,甲出0件废品的概率比乙大,似乎甲的技术比乙好;但甲出3件废品的概率也比乙大,

似乎甲的技术又不如乙好.这样比较,很难得出合理的结论. 2.学生联想到“平均数”,如何计算甲和乙出的废品的“平均数”? 3.引导学生回顾《数学3(必修)》中样本的平均值的计算方法. 三、建构数学 1.定义. 在《数学3(必修)》“统计”一章中,我们曾用公式x1p1+x2p2+…+x n p n 计算样本的平均值,其中p i为取值为x i的频率值. 类似地,若离散型随机变量X的分布列或概率分布如下: X x1x2…x n P p1p2…p n 其中,p i≥0,i=1,2,…,n,p1+p2+…+p n=1,则称x1p1+x2p2+…+x n p n为随机变量X的均值或X的数学期望,记为E(X)或μ. 2.性质. (1)E(c)=c;(2)E(aX+b)=aE(X)+b.(a,b,c为常数) 四、数学应用 1.例题. 例1高三(1)班的联欢会上设计了一项游戏,在一个小口袋中装有10个红球,20个白球,这些球除颜色之外完全相同.某学生一次从中摸出5个球,其中红球的个数为X,求X的数学期望. 分析从口袋中摸出5个球相当于抽取n=5个产品,随机变量X为5个球中的红球的个数,则X服从超几何分布H(5,10,30). 例2从批量较大的成品中随机取出10件产品进行质量检查,若这批产品的不合格品率为0.05,随机变量X表示这10件产品中的不合格品数,求随机变量X的数学期望E(X). 说明例2中随机变量X服从二项分布,根据二项分布的定义,可以得到:当X~B(n,p) 时,E(X)=np. 例3设篮球队A与B进行比赛,每场比赛均有一队胜,若有一队胜4场, 那么比赛宣告结束,假定A,B在每场比赛中获胜的概率都是1 2 ,试求需要比赛 场数的期望.

概率分布以及期望和方差

概率分布以及期望和方差 上课时间: 上课教师: 上课重点:掌握两点分布、超几何分布、二项分布、正态分布的概率分布及其期望和方差 上课规划:解题技巧和方法 一 两点分布 ⑴两点分布 如果随机变量X 的分布列为 X 1 0 P p q 其中01p <<,1q p =-,则称离散型随机变量X 服从参数为p 的二点分布. 二点分布举例:某次抽查活动中,一件产品合格记为1,不合格记为0,已知产品的合格率为80%,随机变量X 为任意抽取一件产品得到的结果,则X 的分布列满足二点分布. X 1 0 P 0.8 0.2 两点分布又称01-分布,由于只有两个可能结果的随机试验叫做伯努利试验,所以这种分布又称为伯努利分布. (2)典型分布的期望与方差: 二点分布:在一次二点分布试验中,离散型随机变量X 的期望取值为p ,在n 次二点分布试验中,离散型随机变量X 的期望取值为np . 1、在抛掷一枚图钉的随机试验中,令10X ?=? ? ,针尖向上; ,针尖向下.,如果针尖向上的 概率为p ,试写出随机变量X 的概率分布. 2、从装有6只白球和4只红球的口袋中任取一只球,用X 表示“取到的 知识内容 典例分析

白球个数”,即???=,当取到红球时, ,当取到白球时, 01X ,求随机变量X 的概率分布. 3、若随机变量X 的概率分布如下: X 1 P 29C C - 38C - 试求出C ,并写出X 的分布列. 3、抛掷一颗骰子两次,定义随机变量 ?? ?=)(,1)(,0的点数数等于第二次向上一面当第一次向上一面的点 面的点数数不等于第二次向上一当第一次向上一面的点 ξ 试写出随机变量ξ的分布列. 4、篮球运动员比赛投篮,命中得1分,不中得0分,已知运动员甲投篮命中率的概率为P . ⑴ 记投篮1次得分X ,求方差()D X 的最大值; ⑵ 当⑴中()D X 取最大值时,甲投3次篮,求所得总分Y 的分布列及Y 的期望与方差. 二 超几何分布

离散型随机变量的均值与方差(含答案)

离散型随机变量的均值与方差测试题(含答案) 一、选择题 1.设随机变量()~,B n p ξ,若()=2.4E ξ,()=1.44D ξ,则参数n ,p 的值为( ) A .4n =,0.6p = B .6n =,0.4p = C .8n =,0.3p = D .24n =, 0.1p = 【答案】B 【解析】由随机变量()~,B n p ξ,可知()==2.4E np ξ,()=(1)=1.44D np p ξ-,解得 6n =,0.4p =. 考点:二项分布的数学期望与方差. 【难度】较易 2.已知随机变量X 服从二项分布(),B n p ,若()()30,20E X D X ==,则p =( ) A .13 B .23 C .15 D .25 【答案】A 考点:二项分布的数字特征. 【题型】选择题 【难度】较易 3.若随机变量),(~p n B ξ,9 10 3 5==ξξD E ,,则=p ( ) A. 31 B. 32 C. 52 D. 5 3 【答案】A 【解析】由题意可知,()5,3 101,9E np D np p ξξ? ==????=-=?? 解得5,1,3n p =???=??故选A. 考点:n 次独立重复试验.

【题型】选择题 【难度】较易 4.若随机变量ξ的分布列如下表,其中()0,1m ∈,则下列结果中正确的是( ) ξ 0 1 P m n A .()()3 ,E m D n ξξ== B .()()2 ,E m D n ξξ== C .()()2 1,E m D m m ξξ=-=- D .()()2 1,E m D m ξξ=-= 【答案】C 考点:离散型随机变量的概率、数学期望和方差. 【题型】选择题 【难度】较易 5.已知ξ~(,)B n p ,且()7,()6E D ξξ==,则p 等于( ) A. 7 1 B. 6 1 C. 5 1 D. 4 1 【答案】A 【解析】∵ξ~(,)B n p ,∴()7,()(1)6E np D np p ξξ===-=,∴1 49,7 n p ==,故选A. 考点:二项分布的期望与方差. 【题型】选择题 【难度】较易 6.设随机变量ξ~(5,0.5)B ,若5ηξ=,则E η和D η的值分别是( )

独立随机变量期望和方差的性质

第七周多维随机变量,独立性 7.4独立随机变量期望和方差的性质 独立随机变量乘积的期望的性质: Y X ,独立,则()()() Y E X E XY E =以离散型随机变量为例,设二元随机变量(),X Y 的联合分布列() ,i j P X x Y y ==已知,则()()(),i j i j P X x Y y P X x P Y y ====?=, () 1,2,,; 1,2,,i m j n == ()() 11,m n i j i j i j E XY x y P X x Y y =====∑∑()() 11 m n i j i j i j x y P X x P Y y =====∑∑()() 1 1 m n i i j j i j x P X x y P Y y =====∑∑()() E X E Y =***********************************************************************独立随机变量和的方差的性质: Y X ,独立,则()()() Y Var X Var Y X Var +=+()()() 2 2 Var X Y E X Y E X Y ??+=+-+?? ()222E X XY Y =++()()()()22 2E X E X E Y E Y ??-++? ? ()()()()2 2 22E X E X E Y E Y =-+-()()()22E XY E X E Y +-()()()() 2 2 22E X E X E Y E Y =-+-()() Var X Var Y =+若12,,,n X X X 相互独立,且都存在方差,则()() 121 n m k k Var X X X Var X =+++=∑ ***********************************************************************利用独立的0-1分布求和计算二项分布随机变量()~,X b n p 期望和方差 我们在推导二项分布随机变量的方差时,已经利用了独立随机变量和的方差等于方差

数学期望(均值)、方差和协方差的定义与性质

均值、方差和协方差的定义和基本性质 1 数学期望(均值)的定义和性质 定义:设离散型随机变量X 的分布律为 {}, 1,2,k k P X x p k === 若级数 1k k k x p ∞=∑ 绝对收敛,则称级数1k k k x p ∞=∑的和为随机变量X 的数学期望,记为()E X 。即 ()1k k k E X x p ∞==∑。 设连续型随机变量X 的概率密度为()f x ,若积分 ()xf x dx ∞?∞? 绝对收敛,则称积分 ()xf x dx ∞?∞?的值为随机变量X 的数学期望,记为()E X 。即 ()()E X xf x dx ∞ ?∞=? 数学期望简称期望,又称为均值。 性质:下面给出数学期望的几个重要的性质 (1)设C 是常数,则有()E C C =; (2)设X 是一个随机变量,C 是常数,则有()()E CX CE X =; (3)设X 和Y 是两个随机变量,则有()()()E X Y E X E Y +=+,这一性质可以推 广至任意有限个随机变量之和的情况; (4)设X 和Y 是相互独立的随机变量,则有()()()E XY E X E Y =。 2 方差的定义和性质 定义:设X 是一个随机变量,若(){}2E X E X ?????存在,则称(){}2E X E X ?????为X

的方差,记为()D X 或()Var X ,即 性质:下面给出方差的几个重要性质 (1)设C 是常数,则有()0D C =; (2)设X 是一个随机变量,C 是常数,则有 ()()2D CX C D X =,()()D X C D X +=; (3)设X 和Y 是两个随机变量,则有 ()()()()()()(){}2D X Y D X D Y E X E X Y E Y +=++?? 特别地,若X 和Y 相互独立,则有()()()D X Y D X D Y +=+ (4)()0D X =的充分必要条件是以概率1取常数()E X ,即(){}1P X E X ==。 3 协方差的定义和性质 定义:量()(){} E X E X Y E Y ??????????称为随机变量X 与Y 的协方差。记为(),Cov X Y ,即 ()()(){},Cov X Y E X E X Y E Y =?????????? 性质:下面给出协方差的几个重要性质 (1)()(),,Cov X Y Cov Y X = (2)()(),Cov X X D X = (3)()()()(),Cov X Y E XY E X E Y =? (4)()(),,,,Cov aX bY abCov X Y a b =是常数 (5)()()()1212,,,Cov X X Y Cov X Y Cov X Y +=+ 参考文献 [1]概率论与数理统计(第四版),浙江大学

随机变量的均值与方差

随机变量的均值与方差 一、填空题 1.已知离散型随机变量X 的概率分布为 则其方差V (X )=解析 由0.5+m +0.2=1得m =0.3,∴E (X )=1×0.5+3×0.3+5×0.2=2.4,∴V (X )=(1-2.4)2×0.5+(3-2.4)2×0.3+(5-2.4)2×0.2=2.44. 答案 2.44 2.(优质试题·西安调研)某种种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为________. 解析 设没有发芽的种子有ξ粒,则ξ~B (1 000,0.1),且X =2ξ,∴E (X )=E (2ξ)=2E (ξ)=2×1 000×0.1=200. 答案 200 3.已知随机变量X 服从二项分布,且E (X )=2.4,V (X )=1.44,则二项分布的参数n ,p 的值分别为________. 解析 由二项分布X ~B (n ,p )及E (X )=np ,V (X )=np ·(1-p )得2.4=np ,且1.44=np (1-p ),解得n =6,p =0.4. 答案 6,0.4 4.随机变量ξ的取值为0,1,2.若P (ξ=0)=1 5,E (ξ)=1,则V (ξ)=________. 解析 设P (ξ=1)=a ,P (ξ=2)=b , 则????? 15+a +b =1,a +2b =1, 解得????? a =3 5,b =1 5,

所以V(ξ)=(0-1)2×1 5+(1-1) 2× 3 5+(2-1) 2× 1 5= 2 5. 答案2 5 5.已知随机变量X+η=8,若X~B(10,0.6),则E(η),V(η)分别是________.解析由已知随机变量X+η=8,所以有η=8-X.因此,求得E(η)=8-E(X)=8-10×0.6=2,V(η)=(-1)2V(X)=10×0.6×0.4=2.4. 答案 2.4 6.口袋中有5只球,编号分别为1,2,3,4,5,从中任取3只球,以X表示取出的球的最大号码,则X的数学期望E(X)的值是________. 解析由题意知,X可以取3,4,5,P(X=3)=1 C35= 1 10, P(X=4)=C23 C35= 3 10,P(X=5)= C24 C35= 6 10= 3 5, 所以E(X)=3×1 10+4× 3 10+5× 3 5=4.5. 答案 4.5 7.(优质试题·扬州期末)已知X的概率分布为 设Y=2X+1,则 解析由概率分布的性质,a=1-1 2- 1 6= 1 3, ∴E(X)=-1×1 2+0× 1 6+1× 1 3=- 1 6, 因此E(Y)=E(2X+1)=2E(X)+1=2 3. 答案2 3 8.(优质试题·合肥模拟)某科技创新大赛设有一、二、三等奖(参与活动的都有奖)且相应奖项获奖的概率是以a为首项,2为公比的等比数列,相应的奖金分

离散型随机变量的期望值和方差

12.2
离散型随机变量的期望值和方差
一、知识梳理 1.期望:若离散型随机变量ξ ,当ξ =xi 的概率为 P(ξ =xi)=Pi(i=1,2,…,n,…) , 则称 Eξ =∑xi pi 为ξ 的数学期望,反映了ξ 的平均值. 期望是算术平均值概念的推广,是概率意义下的平均.Eξ 由ξ 的分布列唯一确定. 2.方差:称 Dξ =∑(xi-Eξ )2pi 为随机变量ξ 的均方差,简称方差.
D?
叫标准差,反
映了ξ 的离散程度. 3.性质: (1)E(aξ +b)=aEξ +b,D(aξ +b)=a2Dξ (a、b 为常数). (2)二项分布的期望与方差:若ξ ~B(n,p) ,则 Eξ =np,Dξ =npq(q=1-p). Dξ 表示ξ 对 Eξ 的平均偏离程度,Dξ 越大表示平均偏离程度越大,说明ξ 的取值越分 散. 二、例题剖析 【例 1】 设ξ 是一个离散型随机变量,其分布列如下表,试求 Eξ 、Dξ .
ξ P -1
1 2
0 1-2q
1 q2
拓展提高
既要会由分布列求 Eξ 、Dξ ,也要会由 Eξ 、Dξ 求分布列,进行逆向思维.如:若ξ 是 离散型随机变量,P(ξ =x1)=
3 5 2 5 7 5
,P(ξ =x2)=
,且 x1,Dξ =
6 25
.求ξ
的分布列. 解:依题意ξ 只取 2 个值 x1 与 x2,于是有 Eξ = Dξ =
3 5 3 5
x1+
2 5
x2=
2 5
7 5

6 25
x12+
x22-Eξ 2=
.
从而得方程组 ?
?3 x1 ? 2 x 2 ? 7 , ? ?3 x1 ?
2
? 2x2
2
? 11 .
【例 2】 人寿保险中(某一年龄段) 在一年的保险期内, , 每个被保险人需交纳保费 a 元, 被保险人意外死亡则保险公司赔付 3 万元,出现非意外死亡则赔付 1 万元.经统计此年龄段一 年内意外死亡的概率是 p1,非意外死亡的概率为 p2,则 a 需满足什么条件,保险公司才可能 盈利? 【例 3】 把 4 个球随机地投入 4 个盒子中去,设ξ 表示空盒子的个数,求 Eξ 、Dξ .
特别提示
求投球的方法数时,要把每个球看成不一样的.ξ =2 时,此时有两种情况:①有 2 个空盒 子,每个盒子投 2 个球;②1 个盒子投 3 个球,另 1 个盒子投 1 个球. 【例 4】 若随机变量 A 在一次试验中发生的概率为 p(02D? ? 1 E?
的最大值.
【例 5】 袋中装有一些大小相同的球,其中有号数为 1 的球 1 个,号数为 2 的球 2 个, 号数为 3 的球 3 个,…,号数为 n 的球 n 个.从袋中任取一球,其号数作为随机变量ξ ,求ξ
1

随机变量的均值与方差的计算公式的证明

随机变量的均值与方差的计算公式的证明 姜堰市励才实验学校 姜近芳 组合数有很多奇妙的性质,笔者试用这些性质证明了随机变量的均值与方差的两组计算公式。 预备知识: 1. ()()()()11!!1!1! !!--=-?--?=-??=k n k n nC k n k n n k n k n k kC 2. k k n C 2=()1111111-------+=k n k n k n C k n nC nkC =()22111-----+k n k n C n n nC 3.N 个球中有M 个红色的,其余均为白色的,从中取出n 个球,不同的取法有: n N l n M N l M n M N M n M N M n M N M C C C C C C C C C =++++------- 22110 ()()M n l ,m i n =. 公式证明: 1.X ~()p n B , ()()X E 1.np =()()X V 2().1p np -= 证明:()n n p x p x p x p x X E ++++= 332211 ()()()n n n n n n n n n p nC p p C p p C p p C ++-+-+-?=-- 222110012110 ()()[] n n n n n n n p C p p C p p C n 11221110111------++-+-= ()[] 11-+-=n p p np .np = ()()()()n n p x p x p x X V 2 222121μμμ-++-+-= n n p x p x p x p x 2323222121++++= ()n n p x p x p x p x ++++- 3322112μ ()n p p p p +++++ 3212μ ()() 2222222112121μμ+-++-+-=--n n n n n n n p C n p p C p p C ()()[]11121110111-------++-+-=n n n n n n n p C p p C p C np ()()()[] 22223122022111μ-++-+--+-------n n n n n n n p C p p C p C p n n

概率、期望与方差的计算和性质

概率与统计 知识点一:常见的概率类型与概率计算公式; 类型一:古典概型; 1、 古典概型的基本特点: (1) 基本事件数有限多个; (2) 每个基本事件之间互斥且等可能; 2、 概率计算公式: A 事件发生的概率()A P A = 事件所包含的基本事件数 总的基本事件数 ; 类型二:几何概型; 1、 几何概型的基本特点: (1) 基本事件数有无限多个; (2) 每个基本事件之间互斥且等可能; 2、 概率计算公式: A 事件发生的概率()A P A = 构成事件的区域长度(或面积或体积或角度) 总的区域长度(或面积或体积或角度) ; 注意: (1) 究竟是长度比还是面积比还是体积比,关键是看表达该概率问题需要几个变量,如 果需要一个变量,则应该是长度比或者角度比;若需要两个变量则应该是面积比;当然如果是必须要三个变量则必为体积比; (2) 如果是用一个变量,到底是角度问题还是长度问题,关键是看谁是变化的主体,哪 一个是等可能的; 例如:等腰ABC ?中,角C= 23 π ,则: (1) 若点M 是线段AB 上一点,求使得AM AC ≤的概率; (2) 若射线CA 绕着点C 向射线CB 旋转,且射线CA 与线段AB 始终相交且交点是M ,求 使得AM AC ≤的概率; 解析:第一问中明确M 为AB 上动点,即点M 是在AB 上均匀分布,所以这一问应该是长度 之比,所求概率: 13P =; 而第二问中真正变化的主体是射线的转动,所以角度的变化是均匀的,所以这一问应该是角度之比的问题,所以所求的概率:2755 = =1208 P ?; 知识点二:常见的概率计算性质; 类型一:事件间的关系与运算; A+B (和事件):表示A 、B 两个事件至少有一个发生; A B ?(积事件) :表示A 、B 两个事件同时发生; A (对立事件) :表示事件A 的对立事件;

随机变量的均值和方差学习资料

随机变量的均值和方 差

随机变量的均值和方差 自主梳理 1.离散型随机变量的均值与方差 若离散型随机变量 (1)均值 μ=E (X )=________________________________为随机变量X 的均值或______________,它反映了离散型随机变量取值的____________. (2)方差 σ2=V (X )=_________________________________=∑n i =1 x 2i p i -μ2为随机变量X 的方差, 它刻画了随机变量X 与其均值E (X )的______________,其________________________为随机变量X 的标准差,即σ=V (x ). 2.均值与方差的性质 (1)E (aX +b )=________. (2)V (aX +b )=________(a ,b 为实数). 3.两点分布与二项分布的均值、方差 (1)若X 服从两点分布,则E (X )=____,V (X )=

____________________________________. (2)若X ~B (n ,p ),则E (X )=____,V (X )=________. 1.若η=aξ+b ,则E (η)=aE (ξ)+b ,V (η)=a 2V (ξ). 2.若ξ~B (n ,p ),则E (ξ)=np ,V (ξ)=np (1-p ). 自我检测 1.若随机变量X 2.已知随机变量X n ,p 的值分别为________和________. 3.(2010·课标全国改编)某种种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需要再补种2粒,补种的种子数记为X ,则X 的数学期望为________. 4.(2011·浙江)某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简 历.假定该毕业生得到甲公司面试的概率为2 3 ,得到乙、丙两公司面试的概率均为p ,且三 个公司是否让其面试是相互独立的,记X 为该毕业生得到面试的公司个数.若P (X =0)=1 12 ,则随机变量X 的数学期望E (X )=________.

期望-方差公式-方差和期望公式

期望与方差的相关公式 -、数学期望的来由 早在17世纪,有一个赌徒向法国著名数学家帕斯卡挑战,给他出了一道题目,题目是这样的:甲乙两个人赌博,他们两人获胜的机率相等,比赛规则是先胜三局者为赢家,赢家可以获得100法郎的奖励。当比赛进行到第三局的时候,甲胜了两局,乙胜了一局,这时由于某些原因中止了比赛,那么如何分配这100法郎才比较公平? 用概率论的知识,不难得知,甲获胜的概率为1/2+(1/2)*(1/2)=3/4,或者分析乙获胜的概率为(1/2)*(1/2)=1/4。因此由此引出了甲的期望所得值为100*3/4=75法郎,乙的期望所得值为25法郎。 这个故事里出现了“期望”这个词,数学期望由此而来。 定义1 若离散型随机变量ξ可能取值为i a (i =1,2,3 ,…),其分布列为i p (i =1,2,3, …),则当i i i p a ∑∞=1<∞时,则称ξ存在数学期望,并且数学期望为E ξ=∑∞ =1i i i p a ,如果i i i p a ∑∞ =1=∞,则数学期望不存在。[]1 定义2 期望:若离散型随机变量ξ,当ξ=x i 的概率为P (ξ=x i )=P i (i =1, 2,…,n ,…),则称E ξ=∑x i p i 为ξ的数学期望,反映了ξ的平均值. 期望是算术平均值概念的推广,是概率意义下的平均.E ξ由ξ的分布列唯一确定. 二、数学期望的性质 (1)设C 是常数,则E(C )=C 。 (2)若k 是常数,则E (kX )=kE (X )。 (3))E(X )E(X )X E(X 2121+=+。 三、 方差的定义 前面我们介绍了随机变量的数学期望,它体现了随机变量取值的平均水平,

相关主题
文本预览
相关文档 最新文档