当前位置:文档之家› DNA编码化合物库在小分子药物发现中的应用

DNA编码化合物库在小分子药物发现中的应用

DNA编码化合物库在小分子药物发现中的应用
DNA编码化合物库在小分子药物发现中的应用

This article was published as part of the Advances in DNA-based nanotechnology

themed issue

Guest editors Eugen Stulz, Guido Clever, Mitsuhiko Shionoya and

Chengde Mao

Please take a look at the issue 12 2011table of contents to access other reviews in this themed issue

Cite this:Chem.Soc.Rev .,2011,40,5707–5717Small-molecule discovery from DNA-encoded chemical libraries w

Ralph E.Kleiner,z Christoph E.Dumelin z and David R.Liu*

Received 23rd March 2011DOI:10.1039/c1cs15076f

Researchers seeking to improve the e?ciency and cost e?ectiveness of the bioactive small-molecule discovery process have recently embraced selection-based approaches,which in principle o?er much higher throughput and simpler infrastructure requirements compared with traditional small-molecule screening methods.Since selection methods bene?t greatly from an information-encoding molecule that can be readily ampli?ed and decoded,several academic and industrial groups have turned to DNA as the basis for library encoding and,in some cases,library synthesis.The resulting DNA-encoded synthetic small-molecule libraries,integrated with the high sensitivity of PCR and the recent development of ultra high-throughput DNA sequencing technology,can be evaluated very rapidly for binding or bond formation with a target of interest while consuming minimal quantities of material and requiring only modest investments of time and equipment.In this tutorial review we describe the development of two classes of approaches for encoding chemical structures and reactivity with DNA:DNA-recorded library synthesis,in which encoding and library synthesis take place separately,and DNA-directed library

synthesis,in which DNA both encodes and templates library synthesis.We also describe in vitro selection methods used to evaluate DNA-encoded libraries and summarize successful applications of these approaches to the discovery of bioactive small molecules and novel chemical reactivity.

Introduction

The discovery of bioactive small molecules remains a major focus of both academic and industrial chemists.The global

pharmaceutical industry spends B $100billion annually on research and development,re?ecting the continued need for new therapies for the treatment of human disease.1Bioactive molecules that do not meet all safety,e?cacy,and marketability requirements of drugs have nonetheless proven valuable as probes to study a wide range of biological processes in the life sciences.2

The development of highly e?cient methods to study the complete DNA,RNA,protein,or small-molecule content of

Department of Chemistry and Chemical Biology and the Howard Hughes Medical Institute,Harvard University,12Oxford Street,Cambridge,MA 02138,USA.E-mail:drliu@https://www.doczj.com/doc/f72624045.html,

w Part of a themed issue on the advances in DNA-based nanotechnology.Ralph E.Kleiner

Ralph E.Kleiner obtained his AB in Chemistry (2005)from Princeton University,where he studied de novo protein design with Prof.Michael Hecht.He received his PhD in Chemistry (2011)under the supervision of Prof.David Liu at Harvard University,where he developed and applied methods for the genetic encoding and in vitro selection of synthetic small molecules and polymers.His interests lie on the interface of chemistry and biology,particularly in the areas of molecular evolution and chemical genetics.

Christoph E.Dumelin

Christoph Dumelin received his MSc in biochemistry (2003)and his PhD (2007)from the ETH Zurich.During his doctoral studies with Prof.Dario Neri he developed and applied methodology for the identi?cation of bioactive small molecules from DNA-encoded chemical libraries.After working at Philochem (2007–2008)on the preclinical development of a blood pool contrast agent arising from his graduate studies,he joined the group of Prof.David Liu at

Harvard University as a postdoctoral fellow.His research interests lie in drug discovery and the application of chemical tools to probe biological systems.

z These authors contributed equally to this article.Chem Soc Rev

Dynamic Article Links

https://www.doczj.com/doc/f72624045.html,/csr

TUTORIAL REVIEW

cells has provided researchers with an enormous wealth of information on cellular targets implicated in human disease.3,4In order to ?nd modulators of these disease-associated targets,researchers frequently use a drug discovery approach based on combinatorial or diversity-oriented synthesis 5coupled with high-throughput screening.This approach seeks to create libraries of hundreds or thousands of compounds using reactions capable of tolerating chemically and structurally diverse building blocks.Once a library has been synthesized,a variety of screening methods are used to interrogate the activity of each library member in a discrete biochemical or cell-based phenotypic assay.Hits that emerge from high-throughput screens then serve as lead compounds for further development towards probes or therapeutic agents.

While high-throughput screening has become widely adopted in the drug discovery industry,it can be time consuming and typically requires substantial investment in costly infrastructure such as liquid-handling robots and in consumable reagents such as pipette tips and multi-well plates.Moreover,due to the discrete nature of screening assays,screening time and cost scale approximately linearly with library size.

In contrast,selection-based approaches,in which all library members are simultaneously tested for their ability to interact with a target of interest in a single one-pot experiment,can be much more e?cient than screening.Since the time and e?ort required to perform a selection are independent of library size,researchers have selected large (‘‘high-complexity’’,in evolution terminology)libraries containing up to 1015members,6while

screening-based methods have not been applied to libraries with complexity greater than 108,7and are typically applied to libraries in the range of 103–106members.Moreover,selection methods regardless of the target typically require only modest,widely available infrastructure such as disposable vessels and ?lters or magnetic separators,in contrast with the more specialized and target-speci?c equipment used to perform screens on biological targets.

The ability to deconvolute and decode a complex mixture of chemical entities before and after selection is a critical requirement for the application of selections to small-molecule discovery.Since directed analysis based upon the physicochemical properties of the library members (such as mass or retention time)may not o?er the sensitivity and resolution required to uniquely identify the components of a highly complex mixture,researchers have developed the use of molecular barcodes directly associated with each library member that can be decoded with high ?delity.8–11The in vitro or in vivo selection of proteins and nucleic acids is made possible by their genetic encoding and by biosynthetic machinery that uniquely translates DNA sequences into corresponding RNA or protein molecules.Due to the association of genotype and phenotype,the identity of library members surviving selection can be analyzed by PCR ampli?cation and DNA sequencing of their associated genes.

Nature does not provide corresponding encoding and trans-lation machinery for synthetic molecules.In 1992,Brenner and Lerner 12described a theoretical framework for using DNA to encode synthetic peptides.In 2001,Liu and co-workers implemented the use of DNA-templated synthesis to generate DNA-encoded small molecules with arbitrary chemical structures.13Additional methods for preparing and subjecting DNA-encoded small-molecule libraries to in vitro selection have been reported by several academic and industrial groups.This review summarizes the development of these approaches and their recent application to discover bioactive synthetic small molecules.

DNA as a barcode for library synthesis

DNA o?ers several key features as a molecular barcode for synthetic libraries.Its information density is very high,such that a 20-mer can encode millions of library members with error-avoiding redundancy.Moreover,the ability of minute quantities (sub-fmol)of DNA to be routinely ampli?ed by PCR enables library evaluation to take place with a sensitivity not achievable by most screening methods.Finally,the advent of highly e?cient methods for the separation and comprehensive,statistical sequencing of complex mixtures of DNA o?ers crucial advantages for library evaluation.Because of these advances in ultra-high throughput DNA sequencing techno-logies,even small changes in the abundance of each member of a large DNA-encoded library upon exposure to a target-binding selection can be revealed in a single,cost-e?ective experiment.These features collectively explain the growing popularity of DNA as the basis for synthetic library encoding.The theory of using DNA to encode a combinatorial chemistry library was ?rst described in the literature by Brenner and Lerner in 1992.12Their scheme used oligonucleotide synthesis to record

David R.Liu

David R.Liu performed research on sterol biosynthesis under Professor E.J.Corey’s guidance throughout his undergraduate years at Harvard.Liu graduated in 1994with a bachelor’s degree in chemistry before entering the PhD program at U. C.Berkeley.In the group of Professor Peter Schultz,Liu initiated the ?rst general e?ort to expand the genetic code in living cells.He earned his PhD in 1999and became Assistant Professor of Chemistry and

Chemical Biology at Harvard University in the same year.Currently,Liu is Professor of Chemistry and Chemical Biology at Harvard University,a Howard Hughes Medical Institute Investigator,and a Senior Associate Member of the Broad Institute of Harvard and MIT.Professor Liu’s research applies evolutionary principles to the study and manipulation of bio-logical and synthetic molecules.His major research interests include (i)the evolution,delivery,and characterization of synthetic regulatory elements,macromolecules that precisely manipulate information ?ow in human cells;(ii)the discovery of new structures and functions among cellular nucleic acids;and (iii)the discovery of bioactive synthetic small molecules,functional synthetic polymers,and new chemical reactions through DNA-templated synthesis and in vitro selection.

the chemical steps of split-and-pool library synthesis performed on a common solid-phase substrate.Multiple rounds of small-molecule and DNA co-synthesis would result in a combinatorial library in which each library member is linked to a DNA sequence that encodes its identity.

Brenner and Lerner’s strategy was visionary but posed signi?cant synthetic challenges since the co-synthesis of library members and oligonucleotides requires chemical compatibility between two combinatorial synthesis schemes.In1993,two groups experimentally implemented the synthesis of DNA-encoded peptides.Early e?orts by Brenner and Janda to synthesize DNA-encoded peptides(synthesis of a DNA-encoded library was never reported)were successful upon careful selection of a suitable linker conducive to both chemistries.14Using a modi?ed approach that was conceptually similar to that of Brenner and Lerner,Gallop and co-workers were able to construct a library of B105DNA-encoded peptides by synthe-sizing in parallel peptide and oligonucleotides on di?erent sites of the same resin bead.15In this strategy,the bead itself serves as the ‘‘linker’’that associates a genetic tag with its corresponding library structure.While Gallop and co-workers were able to isolate active peptide sequences from this library,they were forced to evaluate the library using a screening approach since the library was resin-bound.In vitro selections typically require solution-phase libraries since each library member must be able to freely access and compete for target binding(or for reaction with a target substrate). Notably,both of these early examples of DNA-encoded libraries required substantial modi?cations to standard oligonucleotide and peptide synthesis methodology such as acid-stable purine analogs that could survive TFA-mediated peptide side chain deprotection, methyl phosphate protecting groups instead of the standard 2-cyanoethyl phosphate protecting group,and careful optimiza-tion of reaction conditions.14,15

In the following decade,researchers developed and implemented several distinct approaches to the synthesis of DNA-encoded libraries.Two classes of strategies were pursued: what we refer to as‘‘DNA-recorded chemistry,’’in which the oligonucleotide is added as an identi?cation tag before or after a synthesis reaction,and what we term‘‘DNA-directed chemistry,’’in which the oligonucleotide both identi?es and directs the synthesis of each library member.DNA-directed approaches allow iterated rounds of selection and,in principle, directed evolution of synthetic libraries since the library can be re-synthesized after selection in a process analogous to protein translation.DNA-recorded approaches,in contrast,lack the ability to undergo translation en masse from DNA sequences to corresponding synthetic molecules and thus do not support this capability.DNA-recorded strategies,however,o?er simpler access to library members since oligonucleotide sequences do not direct chemical reactions during library synthesis and there-fore library synthesis steps can precede and be performed independent of DNA polymerization events.

Building on the original proposal of Brenner and Lerner, DNA-recorded library chemistry has been pioneered by Professor Dario Neri and co-workers(ETH Zurich,Switzerland) and commercialized by Philochem(Zurich,Switzerland)as well as researchers at Praecis Pharmaceuticals(Waltham,MA, USA)(now owned by GlaxoSmithKline)and NuEvolution (Copenhagen,Denmark).

Three distinct approaches to DNA-directed chemistry have been developed:DNA-templated synthesis(DTS)by Professor David Liu and co-workers(Harvard University,USA)and later commercialized by Ensemble Discovery(Cambridge, MA,USA),DNA-display or DNA-routing by Professor Pehr Harbury and co-workers(Stanford University,USA),and the YoctoReactor system developed by Vipergen(Copenhagen, Denmark).Professor Neri and coworkers have also developed an approach known as encoded self-assembling combinatorial (ESAC)libraries,in which DNA hybridization directly assembles each library member.In contrast to the DNA-directed methods described above,however,ESAC libraries cannot be subjected to iterated rounds of selection.These approaches will be described in further detail below.

Development of DNA-directed library synthesis

In2001,Gartner and Liu described DNA-templated organic synthesis(DTS),an approach to DNA-encoded chemistry in which a DNA oligonucleotide directs(or‘‘templates’’)bond-forming reactions by bringing DNA-linked reagents into proximity through Watson–Crick base pairing.13Liu and co-workers were not the?rst to use nucleic acid hybridization to template chemical reactions.In1966,Naylor and Gilham16 demonstrated that a polyA template could catalyze chemical phosphodiester bond formation between polyT hexamers,and pioneering work by Leslie Orgel and others17has demonstrated the ability of an oligonucleotide template to catalyze the polymerization of activated nucleotide units,including those of DNA,RNA,and peptide nucleic acid(PNA).Liu and co-workers discovered that DTS is a general approach to increase the e?ective molarity of chemical reactants,enabling access to a wide variety of products with no structural similarity to nucleic acids.13Because the products of DTS reactions are linked to DNA templates that encode and direct their synthesis,and because Watson–Crick base pairing between many oligonucleotides can take place in one solution in a highly sequence-speci?c manner,DTS can‘‘translate’’libraries of DNA into corresponding libraries of DNA-encoded synthetic molecules suitable for in vitro selection. Demonstrating the versatility of the approach,Liu and co-workers have applied DTS to three distinct problems:(1) synthesis and selection of DNA-templated small-molecule libraries,(2)reaction discovery using DNA-encoded libraries of small-molecule substrates,and(3)a system for the in vitro translation,selection and ampli?cation of sequence-de?ned synthetic polymers.In2004,Gartner et al.described the?rst DNA-templated small-molecule library synthesis in which a pilot65-membered macrocycle library was generated by three DNA-templated amine acylations and one Wittig macro-cyclization reaction.18Incorporation of a phenyl sulfonamide-containing building block into this library enabled a model selection against carbonic anhydrase to be performed successfully. Several years later,advances in DNA-templated library synthesis methodology enabled the rapid synthesis of a13000-membered DNA-templated macrocycle library suitable for in vitro selection and ligand discovery(Fig.1A).19Bioactive macro-cycles discovered from this library are described below.

DTS libraries have been applied to research programs beyond those seeking the discovery of functional DNA-encoded small-molecules.In 2004,Kanan et al.reported a DNA-encoded reaction discovery system 20that revealed a novel Pd(II )-catalyzed alkene–alkynamide coupling.In this system,two pools of DNA-linked substrates were hybridized,resulting in 168pairwise substrate combinations,and subjected to in vitro selection for bond formation under a variety of reaction conditions.PCR ampli?cation and DNA microarray analysis revealed bond-forming substrate combinations.Liu and co-workers developed a hybridization-independent DNA-encoded reaction discovery system that resulted in the discovery of an Au(III )-or acid-mediated hydroarylation reaction 21and a Ru(II )-catalyzed azide reduction 22that is triggered by visible light and is compatible with the functional groups present in proteins,nucleic acids,and carbohydrates.

The principles of DTS have also been applied to synthetic polymers capable of Watson–Crick base pairing with DNA templates.In 2009,Brudno et al.23reported the synthesis and selection of a library of DNA-encoded synthetic PNA analogs.They demonstrated that PNA building blocks can be non-enzymatically ‘‘translated’’from a DNA template sequence with high sequence ?delity,and that the resulting DNA-encoded synthetic polymer library could support iterated cycles of translation,selection,and ampli?cation,enabling a single biotinylated library member to be successively enriched from

a library of more than 108PNAs through successive in vitro selection for streptavidin binding.23

In 2009,scientists at Vipergen applied the principles of DNA-templated synthesis to generate a 100-membered DNA-encoded peptide library.24Their system,termed the ‘‘YoctoReactor’’,relies on DNA-templated reactions occurring at the center of a DNA three-way junction (Fig.1B).Like other DTS-based systems,the YoctoReactor can support iterated rounds of selection,ampli?cation,and translation.Indeed,in a model selection conducted over two rounds,Hansen et al.demonstrated >150000-fold enrichment of a known ligand for [Leu]-enkephalin from a YoctoReactor-synthesized library.24

While synthetic small-molecule libraries made by split-and-pool synthesis typically use o?-the-shelf chemical reagents for library synthesis,the DNA-templated approaches described above require the separate synthesis and puri?cation of DNA-linked reagents for use in DTS steps.The approach to DNA-encoded library synthesis described by Harbury and co-workers,termed ‘‘DNA display,’’25–27circumvents this requirement by combining the ability of DNA to direct reactions in a sequence-speci?c manner with the ease of performing library synthesis using commercially available building blocks.In the DNA display method,immobilized DNA sequences complemen-tary to individual library codons capture and segregate a subset of DNA-linked library members in a codon-dependent manner via Watson–Crick base pairing (Fig.1C).Spatial segregation of DNA

Fig.1Approaches to DNA-directed library synthesis.(A)Synthesis of a library of 13824macrocycles using DNA-templated synthesis.(B)Synthesis of a DNA-encoded library using the ‘‘YoctoReactor’’system.(C)Synthesis of a library of 100million peptoids using DNA-display.(D)Library synthesis through the encoded self-assembling combinatorial (ESAC)approach.

sequences according to individual codon identity allows the small-molecule library to be generated by what is e?ectively DNA-directed split-and-pool chemical synthesis.The DNA display method,like other DNA-directed library synthesis approaches,allows resynthesis (‘‘retranslation’’)of active library members from DNA isolated after selection.One complication of the use of DNA to route attached small molecules during library synthesis is the apparent requirement for long coding sequences on the order of 300nucleotides.25Harbury and co-workers demonstrated the potential of the DNA display approach by synthesizing a 1-million-membered DNA-encoded synthetic peptide library and performing a model selection for binding a [Leu]-enkephalin antibody.26

Another DNA-directed library approach was reported by Neri and co-workers in 2004.28Their approach,encoded self-assembling combinatorial (ESAC)libraries,uses DNA hybridization to combinatorially assemble independently con-structed libraries of DNA-encoded small-molecule fragments in a sequence-programmed fashion.In this approach,two DNA-encoded libraries containing n unique elements can combine to generate a DNA-duplex library displaying n 2DNA-encoded non-covalent fragment combinations (Fig.1D).Neri and co-workers used ESAC to improve known ligands to albumin and carbonic anhydrase.In these initial e?orts,one hybridiza-tion partner with known target a?nity was kept constant,and the second strand consisting of a DNA-encoded library was hybridized to the ?rst strand.Selection of the resulting DNA duplexes displaying two small molecules led Melkko et al.to identify and synthesize tighter binding derivatives of dansyl amide and 4-carboxybenzenesulfonamide.28One inherent challenge in the ESAC approach is the lack of information from selection results on an appropriate structural sca?old for the selected bidentate ligand once combinations of fragments are identi?ed.

Development of DNA-recorded library synthesis

In contrast to DNA-directed libraries,DNA-recorded libraries cannot be generated from libraries of DNA and therefore cannot be subjected to iterated rounds of selection and trans-lation.Nevertheless,DNA-recorded libraries o?er advantages including their ease of synthesis and their ability to use encoding DNA sequences (codons)that do not necessarily support sequence-speci?c hybridization.These features have enabled researchers to construct DNA-recorded libraries con-taining up to 800million individual library members.29The general approach to DNA-recorded library synthesis involves alternating library synthesis steps with enzyme-catalyzed DNA polymerization or ligation of short DNA sequences used to encode each synthetic step.30Library diversity is generated over repeated cycles of division,synthesis,and pooling,a well-established method in combinatorial chemistry known as ‘‘split-and-pool’’synthesis.31

In 2008,the Neri lab reported the synthesis of two 4000-membered DNA-recorded libraries created by the above strategy.Each library contained two diversity-generating building blocks coupled using either the Diels–Alder cyclo-addition (Fig.2A)32or amide bond formation.33Synthesis of the encoding double-stranded DNA was achieved by Klenow

fragment DNA polymerase-catalyzed primer extension templated by partially complementary coding oligonucleotides.Neri and co-workers used DNA-conjugated desthiobiotin as a positive control in the library and selected the resulting population against streptavidin.They used high-throughput DNA sequencing,the ?rst reported application of this technology to a DNA-encoded library,to analyze the selection results and con?rm enrichment of the positive control as well as several novel streptavidin-binding molecules.33

At Praecis Pharmaceuticals (Waltham,MA,USA),now owned by GlaxoSmithKline,researchers devised an encoding method that records each library synthesis reaction by prior enzymatic ligation of a double-stranded DNA tag.DNA ligation and chemical synthesis on a triazine sca?old were cycled in a split-and-pool manner over three rounds to create a DNA-encoded library of up to 7million members (DEL-A)(Fig.2B),and over four rounds to create a library of up to 800million members (DEL-B),29the largest DNA-encoded small-molecule library reported to date.As a proof-of-principle demonstration,VX-680,a known Aurora A kinase inhibitor,was conjugated to DNA and spiked into DEL-A at the expected concentration of a single library member.Three rounds of panning (binding selection without ampli?cation)

Fig.2Approaches to DNA-recorded library synthesis.(A)Neri and co-workers synthesized a 4000-membered DNA-encoded library using a bicyclic Diels–Alder-formed sca?old and DNA-tag synthesis using primer extension.A similar 4000-membered DNA-encoded library was also synthesized using amide-bond-formation chemistry.(B)Researchers at Praecis Pharmaceuticals assembled a 7-million-membered DNA-encoded library using alternating cycles of enzymatic DNA ligation and chemical synthesis on a triazine sca?old.

of this library against Aurora A resulted in 100000-fold enrichment of the positive control VX-680-encoding DNA as determined by high-throughput sequencing.29Praecis scientists included a known p38MAPK inhibitor pharma-cophore,3-amino-4-methyl-N -methoxybenzamide (AMMB),into DEL-A during a second proof-of-principle selection experiment.Selection of DEL-A against p38MAPK resulted in substantial enrichment of library members containing the AMMB moiety.

Collectively,the results from the Neri group and Praecis/GSK validated the ability of split-and-pool synthesis to furnish large DNA-recorded libraries suitable for the discovery of protein-binding small molecules,and established high-throughput DNA sequencing as a critical component of molecular discovery from large DNA-encoded libraries.

Methods for in vitro selection of DNA-encoded libraries

In vitro selections for target a?nity are a simple but very powerful tool for evaluating synthetic libraries.34–37They enable the preferential enrichment of molecules with target-binding activity relative to non-binding molecules from a high-complexity library,facilitating the identi?cation of rare library members with desirable properties.During a selection,the properties of each molecule are evaluated on the basis of that molecule’s individual properties at the same time in one pot,enabling extremely high throughput.6In contrast,a screening approach by de?nition interrogates the properties of each library member discretely,a process that requires time,e?ort,and expense roughly proportional to library size,and that also typically requires the physical separation of each library member,or synthesis of each library member in a spatially segregated format.38

Binding selections are often performed using an immo-bilized target that chromatographically separates active library members bound to the target from non-binding library members still in solution (Fig.3A).Washing removes inactive library members,and target-bound library members are then eluted by cleaving the target from the solid support,by disrupting ligand–target interactions,or by treating with an excess of a competitive ligand.In the case of DNA-encoded libraries,the DNA encoding selection survivors can then be ampli?ed by PCR and subjected to subsequent rounds of in vitro selection (perhaps under more stringent conditions)to further enrich the most active library members.Phage display ?rst popularized this in vitro selection method,39termed ‘panning’in analogy to the process for removing contaminants from samples containing gold.Panning has been extensively used for the in vitro selection and evolution of nucleic acid aptamers long before its application to synthetic library evaluation.6

In 2003,Doyon et al.40demonstrated the use of in vitro selection methodology with immobilized protein targets to enrich DNA-linked small-molecule ligands from mixtures containing predominantly non-binding small molecules.This approach has been widely used to process DNA-encoded chemical libraries.While target immobilization is the most straightforward approach to in vitro binding selection,it is not an absolute requirement and methods such as capillary

electrophoresis enable the solution-phase separation of library member–target complexes from free non-binding library members.41

An in vitro binding selection can be adapted into a selection for bond formation or bond cleavage by linking changes in covalency among library members with the transfer of an a?nity handle such as biotin,thereby enabling physical separation of reactive library members from unreactive ones (Fig.3B).Researchers in the ribozyme and DNAzyme evolution ?eld have used such in vitro bond-forming and bond-breaking selections to evolve RNA and DNA catalysts.6

While the traditional approaches to in vitro selection described above have proven extremely successful for the discovery of ligands and catalysts,they are subject to two fundamental limitations:the inability to select a library against multiple targets in one solution and the general reliance on physical separation of active and inactive library members (usually by target or ligand immobilization)to enable enrichment.42,43Since researchers are often interested in interro-gating multiple targets to increase the likelihood of ?nding a potent and selective ligand,the ?rst constraint restricts the

Fig.3Methods to perform in vitro selections on DNA-encoded libraries.(A)Traditional in vitro selection for target a?nity.(B)Traditional in vitro selection for bond formation.(C)Selection for bond formation using reaction-dependent PCR (RDPCR).(D)Selection for target binding using interaction-dependent PCR (IDPCR).

throughput of the method.The second limitation requires puri?cation of library member–target complexes from inactive library members and,when immobilized targets are used, introduces artifacts arising from matrix binding,imprecise control of target concentration,or loss of native target structure.44In principle,a solution-phase in vitro selection approach capable of evaluating the covalent or non-covalent interactions between a library of ligands and a library of targets should be able to overcome the restrictions discussed above. Towards this goal,Gorin et al.recently developed reaction-dependent PCR(RDPCR)45as an in vitro selection method for interrogating solution-phase reactions between pairs of DNA-encoded small molecules(Fig.3C).RDPCR relies on the di?erence in melting temperature between an inter-molecular versus an intramolecular(known as a‘‘hairpin’’) DNA duplex.By linking a single-stranded oligonucleotide capable of initiating primer extension to one small molecule, covalent-bond formation between a DNA-encoded library member and oligo-linked small molecule results in an intra-molecular duplex which can be selectively extended by a DNA polymerase and subsequently PCR ampli?ed preferentially over the intermolecular duplex formed by non-reacting DNA-encoded library members(Fig.3C).McGregor et al.46 expanded the principles of RDPCR to solution-phase non-covalent binding between a DNA-encoded library and an oligonucleotide-tagged protein or nucleic acid target in a method termed interaction-dependent PCR(IDPCR).IDPCR enables multiple selections to be performed in one solution by adding a DNA barcode to each target,thereby allowing all possible combinations of a library of small molecules and a library of macromolecular targets to be evaluated simultaneously in a single experiment(Fig.3D).McGregor et https://www.doczj.com/doc/f72624045.html,ed IDPCR to selectively enrich the DNA sequences encoding biotin+ streptavidin,desthiobiotin+streptavidin,carboxybenzene-sulfonamide+carbonic anhydrase,Gly-Leu-carboxybenzene sulfonamide+carbonic anhydrase,and antipain+trypsin small molecule–target pairs out of B68000possible small molecule–target DNA barcode combinations in a single solution. The application of IDPCR and related methods could signi?cantly facilitate multiplexed selection experiments that simultaneously identify ligand–receptor pairs,reveal ligand selectivity across multiple receptors,and pro?le receptor selectivity across many ligands.

Decoding selection outcomes

Every member of a DNA-encoded chemical library is linked to ‘‘genes’’that encode their structures.Assuming the method to synthesize the library rigorously preserves the correspondence between gene sequence and library member structure(or, minimally,library member reaction history),the outcomes of in vitro selections can be revealed by comparing DNA sequences before and after selection.DNA sequences enriched upon selection suggest that the corresponding library members possess target a?nity or reactivity.Rapid advances in DNA sequencing technologies over the past decade47,48have dramatically increased the resulting information content that results from decoding DNA-encoded chemical libraries while decreasing the cost by several orders of magnitude.As a result,it is currently possible to obtain detailed structure–activity relationships across large DNA-encoded libraries subjected to in vitro selection in less than a few weeks of time and at a cost of less than$100per selection.Future next-generation DNA sequencing technologies will likely drive these time and cost requirements down by at least an additional order of magnitude within the next few years,such that the cost of evaluating many selections of DNA-encoded libraries containing thousands or millions of library members may become trivial.

During the initial growth of DNA-encoded library technology in the early90s and the beginning of the millennium,automated Sanger‘‘dideoxy’’sequencing was the method of choice for determining DNA sequence identity and thus it saw application in many of the pilot studies mentioned above.18,28,49While Sanger sequencing o?ers relatively long and accurate read lengths(a property that is not critical for decoding synthetic DNA tag sequences which are often short and designed to be maximally distinguishable),it is not a high-throughput technique, and is only useful and cost-e?ective when sampling a small number of sequences(o1000)can give an accurate picture of the distribution of sequences in the entire population,as is the case for small DNA-encoded libraries or for multi-round selection e?orts that have su?ciently enriched the population to converge to a small number of active sequences.

DNA sequencing by hybridization to a microarray of complementary DNA oligonucleotides is a technique that provides a global pro?le of a DNA population and is not subject to the stochasticity present in methods that sample individual population members.Neri and co-workers successfully used DNA microarrays to analyze the results of a?nity selections performed with a DNA-encoded library.28The application of microarray-based methods for decoding complex populations of DNA sequences is unfortunately limited by the inherent speci?city of DNA hybridization and the physical limitation on the number of probes that can be arrayed on a chip;consequently,this method is not suitable for analyzing very large DNA libraries containing many highly-similar encoding sequences.Microarray-based sequencing is an e?cient method for analyzing modestly-sized populations of DNA sequences and has been repeatedly used by Liu and co-workers for decoding selection results from DNA-encoded reaction discovery experiments.20–22

Over the past six years,‘‘next-generation’’DNA sequencing technology has become readily available to the scienti?c community.One of the?rst such technologies to be commer-cialized,‘‘454sequencing’’50(454Life Sciences,Branford,CT, USA,now owned by Roche),was initially able to provide on the order of B10000–100000sequence reads per sample,and was quickly adopted by the DNA-encoded library community, seeing application in selection analysis performed by Praecis Pharmaceuticals29and by Neri and co-workers.33More recently,Illumina’s(San Diego,CA,USA)Solexa sequencing technology51has become the industry standard for providing very large numbers of sequences from a single experi-ment(B1–10million reads per sample)with read lengths (B30–100bases)that are su?cient to decode most types of DNA-encoded libraries.Kleiner et al.52used Solexa sequencing to interrogate the selection of a DNA-templated macrocycle library against36protein targets.To maximize the capabilities

of the technology,PCR barcoding was used to facilitate the parallel sequencing of all 36selections as one sample.Similarly,Neri and co-workers have reported the use of Illumina technology to interrogate DNA-encoded libraries.53,54

As DNA-encoded libraries have increased in size,the unprecedented sample coverage provided by high-throughput sequencing technology has become a crucial tool for the analysis of DNA-encoded library selections since it is the only method capable of detecting very rare library members or modest enrichments in a library member’s abundance upon selection.Continued advances in these rapidly developing technologies will make selection-based approaches increasingly e?cient and cost-e?ective.

Bioactive synthetic small molecules discovered from DNA-encoded libraries

Researchers have recently integrated the developments summarized above to discover dozens of de novo synthetic small molecules with the ability to bind,inhibit,or activate biomedically relevant targets.The ?rst example of such a discovery was reported by Harbury and colleagues in 2007.49They generated a 100-million-membered peptoid library using the DNA display method and subjected this library to a?nity selection against the SH3domain of the proto-oncogene Crk.To favor the selection of Crk-SH3ligands,the building blocks of the library were chosen based on a Crk-SH3–peptide co-crystal structure.After ?ve rounds of selection,Sanger sequencing of 960library clones revealed that the library sequences converged on ten families of structurally related compounds.Synthesis of one molecule per family gave rise to six Crk-SH3-binding poly-peptoids with dissociation constants ranging from 16–97m M.These a?nities are consistent with those observed for natural Crk-SH3ligands,and the 16m M peptoid binder (Table 1)has the highest a?nity wholly unnatural SH3ligand known at the time.

Several molecules discovered from DNA-encoded chemical libraries have shown activity in biological settings.One well-characterized bioactive molecule used for in vivo applications was reported by Neri and co-workers.They isolated a novel class of structurally-related human serum albumin-binding small molecules from a 619-membered DNA-encoded chemical library with a?nities ranging from 3.2m M to 55m M.55The highest-a?nity ligand was applied as an albumin a?nity tag by replacing the encoding DNA with other molecules of interest (Table 1).56,57In mouse studies,conjugates of the albumin binder and the commonly used blood pool contrast agents,?uorescein and Gd-DTPA,displayed increased circulatory half-lives and consequently improved performance as imaging agents over their unmodi?ed counterpart.Further studies in mice demonstrated the bene?ts of endowing acetazolamide,56a general carbonic anhydrase inhibitor routinely used for the treatment of a number of diseases including glaucoma,and a tumor-targeting antibody fragment 57with albumin-binding properties using the albumin a?nity tag.In the ?rst example,conjugation of the albumin binder to acetazolamide restricted the low molecular weight drug to the extracellular space and allowed speci?c inhibition of extracellular tumor-associated enzymes carbonic anhydrase IX and XII,resulting in tumor

growth inhibition in a combination therapy with sunitinib in mice.56In the second example,conjugation of the albumin binder to the antibody fragment increased the delivery of the protein to the tumor and resulted in superior tumor-to-organ ratios in comparison to the unmodi?ed antibody fragment.57ESAC libraries led to the discovery of matrix metallo-proteinase 3(MMP3)inhibitors,representing the ?rst enzyme inhibitors isolated from a DNA-encoded chemical library.58

Table 1Bioactive synthetic small molecules discovered from DNA-encoded chemical libraries and in vitro selection Target Structure

K d /IC 50Crk-SH3

16m M

HSA 3.2m M

MMP39.9m M

Bcl-xL 930nM

TNF 15m M

CA IX 260nM

Aurora A 270nM

P38MAPK 7nM

Src

680nM/960nM

P38a -MK2 3.4m M

Initially,panning a550-membered DNA-encoded library against MMP3identi?ed a starting compound which was then used as a lead structure for the assembly of an ESAC library. Selection of the dual fragment library against MMP3resulted in several combinations of synergistically binding molecules. Suitable conjugation of these binding moieties resulted in an MMP3inhibitor with an IC50of9.9m M(Table1).In contrast to most MMP inhibitors,the discovered molecule lacks common Zn-chelating groups.

The emergence of high-throughput DNA sequencing technology has facilitated the isolation of active molecules from increasingly larger libraries.In a collaboration between Philochem and Cambridge Antibody Technology(Cambridge,UK) (now MedImmune),a4000-membered amide-bond synthesized library was deployed for the identi?cation of molecules binding to the anti-apoptotic protein Bcl-xL.59High-throughput sequencing after a?nity selection identi?ed34molecules,of which31bound to the target with dissociation constants of60m M or better.The highest a?nity binder(K d=930nM)bound competitively with the Bak peptide,a natural ligand of Bcl-xL (Table1),and induced cell death in Raji cells with an EC50 value of77m M.Interestingly,the molecule is a conjugate between indomethacin and a b-amino acid derivative.Indo-methacin was originally discovered as an anti-in?ammatory drug but has also been reported to be cytotoxic and to induce apoptosis in several cancer cell lines.In another example from the Neri lab, three binders of tumor necrosis factor(TNF)were isolated from a 4000-membered Diels–Alder based library.Among these compounds,the most potent molecule displayed a dissociation constant of20m M.60Further modi?cation resulted in a small molecule capable of completely inhibiting TNF-induced apoptosis in cells,when applied at high concentrations(Table1).

Neri and co-workers recently reported the discovery of inhibitors towards carbonic anhydrase IX(CA IX).54Six inhibitors were isolated from a1-millon-membered DNA-recorded library with inhibition activities as potent as IC50=240nM(Table1).All inhibitors included one or two sulfonamide-containing building blocks,functional groups known to bind enzymes containing zinc in their active site.A?uorescently labeled derivative of one of the bis(sulfonamide)compounds was shown to speci?cally localize at tumors overexpressing CA IX in two mouse models.54

Two groups have reported inhibitors for several disease-related kinases discovered using DNA-encoded libraries. Researchers at Praecis Pharmaceuticals/GSK discovered two families of Aurora A inhibitors from a7-million-membered DNA-recorded library synthesized with a triazine chemical sca?old as described above.29The most potent of these compounds inhibited Aurora A with an IC50of270nM (Table1).While the compounds were unrelated to previously described Aurora A inhibitors,they contained structural features common to kinase inhibitors.A co-crystal structure of one of the inhibitors showed the molecule binding in the ATP-binding pocket of the kinase and the former point of attachment to DNA exposed to solvent.Encouraged by these results,a DNA-recorded library of up to800million compounds was synthesized using the same triazine sca?old and was used to isolate molecules that bind p38MAP kinase.29 In vitro selection revealed a family of enriched molecules sharing three out of the four library building blocks.Since the selection pro?le did not indicate any structural preference at the fourth building block,compounds corresponding to hydrolysis products of that synthetic step were included in the evaluation of hits.Indeed,one of these molecules lacking a fourth building block proved to be the most potent p38MAP kinase inhibitor with an IC50of7nM(Table1).Crystallization experiments demonstrated binding of this molecule in the ATP pocket with the DNA attachment site pointing towards solvent. Liu and co-workers described the?rst de novo discovery of active molecules from a DNA-templated library.Parallel selections of a13824-membered macrocycle library against 36proteins resulted in the discovery of several novel classes of kinase inhibitors and activators.52The most potent compounds isolated inhibited Src kinase with IC50values of680and960nM (Table1).Even though the identi?ed inhibitors contained no building blocks strongly resembling ATP,they bound to Src in an ATP-competitive manner and with unusually high target speci?city.The second family of kinase-binding macrocycles inhibited the kinases Akt3,MAPKAPK2,and Pim1with low micromolar IC50values(Table1).Interestingly,one of the macrocycles in this family enhanced VEGFR2activity signi?cantly, suggesting that these macrocycles can also bind kinases in a manner that increases their activity.A third family of macrocycles inhibited their target kinases with modest activity,the best IC50value being 11m M for the p38a–MAPKAP2cascade.

Although industrial drug-discovery activities are often not immediately reported in the literature,the number of companies successfully harnessing the power of DNA-encoded chemical libraries and in vitro selection for drug discovery is further suggestive of the recent signi?cant impact of these technologies.Indeed,interest in DNA-encoded chemical libraries has grown continuously since their initial reports (Table2).This interest is re?ected both by the growing number of new companies entering the?eld,and by the recent establishment of collaborative e?orts(or acquisitions)involving large pharmaceutical companies and companies with expertise in DNA-encoded library synthesis and selection.

Table2Companies and industrial collaborations engaged in small-molecule discovery using DNA-encoded libraries Biotech Founded Collaboration/acquisition Initiation Ensemble Therapeutics2004Bristol-Myers Squibb2009

P?zer2010 NuEvolution2001Merck2008

Lexicon Pharmaceuticals2008

Novartis2009 Philochem2006Cambridge Antibody Technology2007 Praecis Pharmaceuticals2001GlaxoSmithKline(acquisition)2007 Vipergen2005

Conclusion/discussion

Over the past decade,DNA-encoded chemical libraries have o?ered a valuable and versatile alternative to labor-and cost-intensive high-throughput screening campaigns.Several independent groups in academia and industry have reported the synthesis of many diverse DNA-encoded libraries using the methods summarized in this article.Selection of these libraries has yielded dozens of novel ligands for biomedically relevant targets.Although the chemistry that can be performed in the presence of DNA represents only a subset of known chemical reactions,the variety of synthetic schemes used to create DNA-encoded libraries to date have resulted in large,diverse collections of small molecules including libraries based on triazines, bicyclic Diels–Alder products,macrocycles,oxazolidines, peptoids,and PNA.The ligands,inhibitors,and activators isolated from DNA-encoded chemical libraries are likewise chemically diverse(Table1).Moreover,the nature of the technology readily allows independently synthesized libraries to be combined so long as their template sequences are distinguishable,thereby increasing the complexity of libraries that can still be simultaneously assayed in each selection. Selection methods require minimal infrastructure,have enormous throughput,and are versatile in target scope.While target-binding selections do not explicitly require binding to a speci?c site on the target,the majority of compounds surviving selection generally bind at predisposed locations,including enzyme active sites,enabling the isolation of novel inhibitors. Since minimal assay optimization is required for each individual target,selections against multiple targets are easily performed in parallel.This concept of rapidly assaying members of a large library for interaction with many targets has been extended by the development of IDPCR,in which all members of a library of DNA-encoded small molecules are simultaneously evaluated for binding to all members of a library of DNA-tagged macromolecules in a single experiment.46

The selection-based methods enabled by DNA-encoded chemical libraries can be tailored to yield more sophisticated insights beyond simple target a?nity.For example,Wrenn et al.49incorporated an elution step using an excess of the natural ligand to favor the selection of active-site binders. Alternatively,selections can be designed for the opposite outcome.Performing selections for kinase binding in the presence of high ATP or substrate peptide concentrations, for example,should preferentially enrich allosteric ligands.

A target can likewise be locked in a catalytically inactive state to facilitate the selection of binders that stabilize the inactive conformation.Finally,free o?-target macromolecules,such as related enzymes for which inhibition is undesirable,can be added to selections to remove library members with undesired speci?cities.Therefore,in vitro selections can be performed in replicates under slightly varied conditions to isolate multi-functional library members and to gain insights into corres-ponding complex structure–activity relationships.

DNA-encoded chemical libraries have bene?ted greatly from advances in high-throughput sequencing technology. Although developed for rapid and cost-e?ective genome sequencing,next-generation DNA sequencing technologies have been highly enabling the evaluation of selections on DNA-encoded chemical libraries.The ability to obtain millions of sequence counts per selection has obviated the need for post-selection libraries to converge on a small number of surviving sequences since DNA-encoded libraries containing up to B106members can now be sequenced with a high-degree of coverage.DNA-encoded library evaluation will continue to bene?t from the ongoing development of DNA sequencing methods that o?er longer read lengths and even greater throughput.

The fact that most DNA-encoded libraries contain thousands to millions of molecules,rather than billions or trillions, re?ects a tradeo?between library size(complexity)and the degree to which library size and quality have been rigorously https://www.doczj.com/doc/f72624045.html,rger libraries are typically achieved by adding additional steps to library synthesis,increasing the frequency among library members that an unplanned reaction has taken place or an anticipated reaction has failed to occur,potentially complicating the interpretation and recapitulation of selection data.As the success of the Praecis/GSK e?orts demonstrate, however,even libraries containing non-productive reactions can yield the discovery of potent and selective ligands when coupled with su?cient downstream characterization and deconvolution.Collectively,the rapid development and successful application of DNA-encoded library synthesis and evaluation methods over the past ten years suggests that these platforms will continue to reshape academic and industrial small molecule-discovery e?orts. Acknowledgements

We thank Dr Mary M.Rozenman for help in preparing Fig.1 and Dr David J.Gorin and Lynn M.McGregor for assistance in preparing Fig.3.

References

1The Pharmaceutical Industry in Figures,European Federation of Pharmaceutical Industries and Associations,2010.

2B.R.Stockwell,Nature,2004,432,846–854.

3R.Kaddurah-Daouk,B.S.Kristal and R.M.Weinshilboum, Annu.Rev.Pharmacol.Toxicol.,2008,48,653–683.

4R.Kramer and D.Cohen,Nat.Rev.Drug Discovery,2004,3, 965–972.

5D.S.Tan,Nat.Chem.Biol.,2005,1,74–84.

6D.S.Wilson and J.W.Szostak,Annu.Rev.Biochem.,1999,68, 611–648.

7J.J.Agresti,E.Antipov,A.R.Abate,K.Ahn,A.C.Rowat, J.C.Baret,M.Marquez,A.M.Klibanov,A.D.Gri?ths and

D.A.Weitz,Proc.Natl.Acad.Sci.U.S.A.,2010,107,4004–4009. 8R.L.A?eck,Curr.Opin.Chem.Biol.,2001,5,257–263.

9C.Barnes and S.Balasubramanian,Curr.Opin.Chem.Biol.,2000, 4,346–350.

10A.W.Czarnik,Curr.Opin.Chem.Biol.,1997,1,60–66.

11N.J.Ede and Z.Wu,Curr.Opin.Chem.Biol.,2003,7,374–379. 12S.Brenner and R.A.Lerner,Proc.Natl.Acad.Sci.U.S.A.,1992, 89,5381–5383.

13Z.J.Gartner and D.R.Liu,J.Am.Chem.Soc.,2001,123, 6961–6963.

14J.Nielsen,S.Brenner and K.D.Janda,J.Am.Chem.Soc.,1993, 115,9812–9813.

15M. C.Needels, D.G.Jones, E.H.Tate,G.L.Heinkel, L.M.Kochersperger,W.J.Dower,R.W.Barrett and M. A.Gallop,Proc.Natl.Acad.Sci.U.S. A.,1993,90, 10700–10704.

16R.Naylor and P.T.Gilham,Biochemistry,1966,5,2722–2728.

17G.F.Joyce,Cold Spring Harb.Symp.Quant.Biol.,1987,52, 41–51.

18Z.J.Gartner,B.N.Tse,R.Grubina,J.B.Doyon,T.M.Snyder and D.R.Liu,Science,2004,305,1601–1605.

19B.N.Tse,T.M.Snyder,Y.S.Shen and D.R.Liu,J.Am.Chem.

Soc.,2008,130,15611–15626.

20M.W.Kanan,M.M.Rozenman,K.Sakurai,T.M.Snyder and

D.R.Liu,Nature,2004,431,545–549.

21M.M.Rozenman,M.W.Kanan and D.R.Liu,J.Am.Chem.

Soc.,2007,129,14933–14938.

22Y.Chen,A.S.Kamlet,J.B.Steinman and D.R.Liu,Nat.Chem., 2011,3,146–153.

23Y.Brudno,M. E.Birnbaum,R. E.Kleiner and D.R.Liu, Nat.Chem.Biol.,2010,6,148–155.

24M.H.Hansen,P.Blakskjaer,L.K.Petersen,T.H.Hansen, J.W.Hojfeldt,K.V.Gothelf and N.J.V.Hansen,J.Am.Chem.

Soc.,2009,131,1322–1327.

25D.R.Halpin and P.B.Harbury,PLoS Biol.,2004,2,1015–1021. 26D.R.Halpin and P.B.Harbury,PLoS Biol.,2004,2,1022–1030. 27D.R.Halpin,J. A.Lee,S.J.Wrenn and P. B.Harbury, PLoS Biol.,2004,2,1031–1038.

28S.Melkko,J.Scheuermann, C. E.Dumelin and D.Neri, Nat.Biotechnol.,2004,22,568–574.

29M. A.Clark,R. A.Acharya, C. C.Arico-Muendel, S.L.Belyanskaya, D.R.Benjamin,N.R.Carlson, P. A.Centrella, C.H.Chiu,S.P.Creaser,J.W.Cuozzo,

C.P.Davie,Y.Ding,G.J.Franklin,K.

D.Franzen,

M.L.Gefter,S.P.Hale,N.J.V.Hansen,D.I.Israel,J.Jiang, M.J.Kavarana,M.S.Kelley,C.S.Kollmann,F.Li,K.Lind, S.Mataruse,P.F.Medeiros,J.A.Messer,P.Myers,H.O’Keefe, M.C.Oli?,C.E.Rise,A.L.Satz,S.R.Skinner,J.L.Svendsen, L.Tang,K.v.Vloten,R.W.Wagner,G.Yao,B.Zhao and

B.A.Morgan,Nat.Chem.Biol.,2009,5,647–654.

30Y.Kinoshita and K.Nishigaki,Nucleic Acids Symp.Ser.,1995,34, 201–202.

https://www.doczj.com/doc/f72624045.html,m,M.Lebl and V.Krchnak,Chem.Rev.,1997,97, 411–448.

32F.Buller,L.Mannocci,Y.Zhang,C.E.Dumelin,J.Scheuermann and D.Neri,Bioorg.Med.Chem.Lett.,2008,18,5926–5931.

33L.Mannocci,Y.Zhang,C.E.Dumelin,J.Scheuermann and

D.Neri,Proc.Natl.Acad.Sci.U.S.A.,2008,105,17670–17675. 34F.Buller,L.Mannocci,J.Scheuermann and D.Neri,Bioconjugate Chem.,2010,21,1571–1580.

35M.A.Clark,Curr.Opin.Chem.Biol.,2010,14,396–403.

36X.Li and D.R.Liu,Angew.Chem.,Int.Ed.,2004,43,4848–4870. 37J.Scheuermann and D.Neri,ChemBioChem,2010,11,931–937. 38J.R.Broach and J.Thorner,Nature,1996,384,14–16.

39G.P.Smith and V.A.Petrenko,Chem.Rev.,1997,97,391–410. 40J.B.Doyon,T.M.Snyder and D.R.Liu,J.Am.Chem.Soc.,2003, 125,12372–12373.

41S.N.Krylov,in Aptamers in Bioanalysis,ed.M.Mascini,John Wiley&Sons,Inc.,Hoboken,NJ,USA,2008.

42J.Inglese,R.L.Johnson, A.Simeonov,M.Xia,W.Zheng,

C.P.Austin and

D.S.Auld,Nat.Chem.Biol.,2007,3,466–479.43Z.Zhu and J.Cuozzo,J.Biomol.Screening,2009,14,1157–1164. 44R.A.Vijayendran and D.

E.Leckband,Anal.Chem.,2001,73, 471–480.

45D.J.Gorin,A.S.Kamlet and D.R.Liu,J.Am.Chem.Soc.,2009, 131,9189–9191.

46L.M.McGregor,D.J.Gorin,C.E.Dumelin and D.R.Liu, J.Am.Chem.Soc.,2010,132,15522–15524.

47E.Pettersson,J.Lundeberg and A.Ahmadian,Genomics,2009,93, 105–111.

48E.R.Mardis,Annu.Rev.Genomics Hum.Genet.,2008,9,387–402. 49S.J.Wrenn,R.M.Weisinger,D.R.Halpin and P.B.Harbury, J.Am.Chem.Soc.,2007,129,13137–13143.

50M.Margulies,M.Egholm,W.E.Altman,S.Attiya,J.S.Bader, L.A.Bemben,J.Berka,M.S.Braverman,Y.J.Chen,Z.Chen, S.B.Dewell,L.Du,J.M.Fierro,X.V.Gomes,B.C.Godwin, W.He,S.Helgesen,C.H.Ho,G.P.Irzyk,S.C.Jano,M.L.I.

Alenquer,T.P.Jarvie,K.B.Jirage,J.B.Kim,J.R.Knight,J.R.

Lanza,J.H.Leamon,S.M.Lefkowitz,M.Lei,J.Li,K.L.

Lohman,H.Lu,V. B.Makhijani,K. E.McDade,M.P.

McKenna,E.W.Myers,E.Nickerson,J.R.Nobile,R.Plant,

B.P.Puc,M.T.Ronan,G.T.Roth,G.J.Sarkis,J.F.Simons,

J.W.Simpson,M.Srinivasan,K.R.Tartaro, A.Tomasz, K. A.Vogt,G. A.Volkmer,S.H.Wang,Y.Wang, M.P.Weiner,P.Yu,R.F.Begley and J.M.Rothberg,Nature, 2005,437,376–380.

51D.R.Bentley,S.Balasubramanian,H.P.Swerdlow,G.P.Smith, https://www.doczj.com/doc/f72624045.html,ton,C.G.Brown,K.P.Hall,D.J.Evers,C.L.Barnes and

H.R.Bignell,Nature,2008,456,53–59.

52R.E.Kleiner,C.E.Dumelin,G.C.Tiu,K.Sakurai and D.R.Liu, J.Am.Chem.Soc.,2010,132,11779–11791.

53F.Buller,M.Steiner,J.Scheuermann,L.Mannocci,I.Nissen, M.Kohler,C.Beisel and D.Neri,Bioorg.Med.Chem.Lett.,2010, 20,4188–4192.

54F.Buller,M.Steiner,K.Frey, D.Mircsof,J.Scheuermann, M.Kalisch,P.Buhlmann,C.T.Supuran and D.Neri,ACS Chem.

Biol.,2011,6,336–344.

55C. E.Dumelin,S.Trussel, F.Buller, E.Trachsel, F.Bootz, Y.Zhang,L.Mannocci,S. C.Beck,M.Brumea-Mirancea, M.W.Seeliger,C.Baltes,T.Muggler, F.Kranz,M.Rudin, S.Melkko,J.Scheurermann and D.Neri,Angew.Chem., Int.Ed.,2008,47,3196–3201.

56J.K.Ahlskog,C.E.Dumelin,S.Trussel,J.Marlind and D.Neri, Bioorg.Med.Chem.Lett.,2009,19,4851–4856.

57S.Trussel,C.E.Dumelin,K.Frey,A.Villa,F.Buller and D.Neri, Bioconjugate Chem.,2009,20,2286–2292.

58J.Scheuermann, C. E.Dumelin,S.Melkko,Y.Zhang, L.Mannocci,M.Jaggi,J.Sobek and D.Neri,Bioconjugate Chem., 2008,19,778–785.

59S.Melkko,L.Mannocci,C.E.Dumelin,A.Villa,R.Sommavilla, Y.Zhang,M.G.Grutter,N.Keller,L.Jermutus,R.H.

Jackson,J.Scheuermann and D.Neri,ChemMedChem,2010,5, 584–590.

60F.Buller,Y.Zhang,J.Scheuermann,J.Schafer,P.Buhlmann and

D.Neri,Chem.Biol.,2009,16,1075–1086.

抗菌药物考试题库(含答案)

第二篇抗菌药物临床应用专业知识第一章抗菌药物临床应用管理体系架构、技术支持体系与策略 一、多选题 1、医院抗菌药物管理工作组( C、开展微生物学监测 E、开展科研工作 2、按抗菌药物处方过程设计的管理策略有 A 、教育/指南 A 、青霉素类B、处方集/限制 B、头孢菌素 C、处方点评和反馈 D、红霉素D、循环用药 E、阿奇霉素3、下列哪种抗菌药物属于时间依赖性药物 C、环丙沙星4、短程抗菌治疗主要适用于 A 、宿主免疫机制健全 D、社区感染和医院感染 A 、包括“降级”治疗 二、问答题 1、医院抗菌药物管理工作组(AST )的职责有哪些? 2、根据处方过程的抗菌药物管理策略主要有哪些?B 单一敏感菌感染 E、以上都是

B、包括“降阶梯”治疗 C、包括序贯治疗C 不存在影响抗菌药物作用的局部组织因素AST )的职责 B、制定教育培训计划和负责实施D、制订和建立资料管理制度A 、制订和执行适合医院实际情况的管理细则 5、关于抗菌药物转换治疗下列哪项概念是不正确的 D、特指由静脉给药转为口服给药 E、降低用药剂量E、医疗机构不能根据本机构具体情况增加特殊使用类别的抗菌药物品种2、医师在临床使用“特殊使用”抗菌药物应按照 A、严格掌握适应证 D、根据临床需要应用 A 、有明确适应证用药B、不经过药师审核 E、以上都不对 B、抗菌药物选择与更换无依据,无记录 C、可未经会诊越级使用3、有关抗菌药物合理应用的综合评价标准,正确的是 C、抗菌药物应用48-72小时后临床无效,无细菌培养结果不能更换抗菌素 D、抗菌药物应用48-72小时后临床无效,必须等待药敏结果才能更换抗菌素 E、以上都不对 4、对主要目标细菌耐药率超过 A 、参照药敏结果选择抗菌素 E、以上都正确 5、有关I 类手术切口应用抗菌药物,错误的是 A 、要严格掌握适应证、药物选择与用药时间 B、术前0.5-2小时或麻醉开始时首次给药

抗菌药物考试试题库汇总

1、下面说法错误的是(C ) A、卫生部负责全国医疗机构抗菌药物临床应用的监督管理。 B、抗菌药物临床使用应当遵循安全、有效、经济的原则。 C、抗菌药物是指治疗细菌、支原体、衣原体、立克次体、螺旋体、真菌、病毒、寄生虫等所致感染性疾病的药物。 D、根据安全性、疗效、细菌耐药性、价格等因素,将抗菌药物分为三级:非限制使用级,限制使用级和特殊使用级。 2、关于非限制使用级抗菌药物的说法正确的是(B ) A、非限制使用级抗菌药物是指经长期临床应用证明安全、有效,对细菌耐药性影响较大,或者价格相对较高的抗菌药物。 B、非限制使用级抗菌药物是指经长期临床应用证明安全、有效,对细菌耐药性影响较小,价格相对较低的抗菌药物。 C、非限制使用级抗菌药物具有明显的或者严重的不良反应,不宜随意使用的抗菌药物。 D、非限制使用级抗菌药物是疗效、安全性方面临床资料较少的抗菌药物。 3、主治医师临床应用中一般情况下,可以选用的抗菌药物有(B ) A、特殊使用级和限制使用级 B、非限制使用级和限制使用级 C、非限制使用级和特殊使用级 D、三种级别可任意选用 4、急性胆道感染时临床上最常选用()D A、第1、2代头孢菌素或喹诺酮类 B、第3代头孢菌素或四环素类 C、第1、2代头孢菌素或氨基糖甙类 D、第3代头孢菌素或广谱青霉素 5、发生CRI/CRBSI的危险性顺序正确的是()A A、锁骨下静脉<颈内静脉<股静脉 B、锁骨下静脉<股静脉<颈内静脉 C、颈内静脉<锁骨下静脉<股静脉 D、股静脉<颈内静脉<锁骨下静脉 6、最常见的引起过敏性休克的药物是()A A、青霉素 B、红霉素 C、庆大霉素 D、万古霉素 7、最有效的杀阿米巴包囊的药物是()B A、双碘喹啉 B、二氯尼特 C、氯喹 D、吐根碱 8、最常见的致病曲霉是()C A、黑曲霉 B、黄曲霉 C、烟曲霉 D、土曲霉 9、儿童CMV感染的一线用药是()B A、左氧氟沙星 B、更昔洛韦 C、万古霉素 D、美洛培南

2015年抗菌药物临床应用考试题及答案

2015年抗菌药物临床应用管理考试题 姓名:科室:分数: 一、单项选择题(每题2分,共20题40分) 1、门诊患者抗菌药物处方比例不超过 A.20% B.30% C.40% D.50% 2、引起医院内感染的致病菌主要是 A.革兰阳性菌 B.革兰阴性菌 C.真菌 D.支原体 3、老年人和儿童在应用抗菌药时,最安全的品种是 A.氟喹诺酮类 B.氨基糖苷类 C.β—内酰胺类 D.氯霉素类 4、预防用抗菌药物缺乏指征(无效果,并易导致耐药菌感染)的是 A.普通感冒、麻疹、病毒性肝炎、灰髓炎、水痘等病毒性疾病有发热的患者 B.昏迷、休克、心力衰竭患者 C.免疫抑制剂应用者 D.以上都是 5、二级医院购进抗菌药物品种不得超过种。 A. 40 B. 35 C. 50 D. 60 6、具有级以上专业技术职务任职资格的医师,经培训并考核合格后,方可授予限制使用级抗菌药物处方权。 A. 初级 B. 中级 C. 高级 D. 初中高均可 7、紧急情况下,医师可以越级使用抗菌药物,处方量应当限于天用量。 A. 1天 B. 2天 C. 4天 D. 7天 8、医疗机构应当对出现抗菌药物超常处方以上且无正当理由的医师提出警告,限制其特殊使用级和限制使用级抗菌药物处方权。 A. 2次 B. 4次 C. 5次 D. 3次 9、对大多数厌氧菌有良好抗菌作用的药物是 A. 头孢唑啉 B . 庆大霉素 C .青霉素G D. 甲硝唑 10、住院患者抗菌药物使用比例不超过 A.20% B.40% C.60% D.80% 11、联合使用抗菌药物的指征不包括 A .单一抗菌药物不能有效控制的混合感染 B . 需要较长时间用药,细菌有可能产生耐药性者 C .合并病毒感染者 D. 联合用药以减少毒性较大的抗菌药物的剂量 12、抗菌药物疗程因感染不同而异,一般宜用至体温正常、症状消退后几小时,特殊情况,妥善处理 A .24h B . 48h C .72~96h D. 96h 13、清洁手术的下列情况不考虑预防用药 A .手术范围大,时间长,污染机会增加 B . 手术涉及重要脏器,一旦发生感染容易造成严重后果者

抗菌药物考试试题

广州医学院第一附属医院 药事管理和抗菌药物季度培训试题 单选题(共50题): 1.药物治疗时出现过敏反应应当(B) A减量并对症处理 B停药并对症处理 C继续用药同时对症处理 D停药待过敏反应消失后,继续使用原药 2.患者,男,58岁。因“咳嗽,咳痰8天”就诊。初步诊断:急性支气管炎。给予罗红霉素口服,请告诉患者每天最佳服药次数(B) A每日1次 B每日2次 C每日3次 D每日4次 3.MRSA菌株是指金黄色葡萄球菌对下列哪一种抗菌药耐药(B) A 万古霉素 B甲氧西林或苯唑西林 C术后一周 D 用至患者出院 4.在骨组织中浓度高的药物为(A) A克林霉素 B亚胺培南地塞米松 C庆大霉素 D青霉素 5.对大多数厌氧菌有良好抗菌作用的药物是(D) A头孢唑啉 B庆大霉素 C青霉素G D甲硝唑 E链霉素 6.门诊患者抗菌药物处方比列不超过(A) A20% B30% C40% D50% 7.抗菌药分三类管理是为了(C) A规范抗菌药按一、二、三线使用 B按感染病情轻重分别用药 C抗菌药合理临床使用的管理 D患者需要 8.预防用药用于何种情况可能有效(D) A用于预防任何细菌感染 B长期用药预防 C晚期肿瘤患者 D风湿热复发 9.有些抗生素应用之后,即使抗生素浓度降低到低于MIC,也能抑制细菌的繁殖。这种现象称为抗生素的 (B) A协同作用 B后效应 C增强作用 D拮抗作用 10.大肠埃希菌所致尿路感染治疗不宜选用(A) A阿奇霉素 B SMZ/TMP C氨苄西林/舒巴坦 D环丙沙星 11.老年人和儿童在应用抗菌药时,以下品种中最安全的是(C ) A氟喹诺酮类 B氨基糖苷类 Cβ-内酰胺类 D氯霉素类 12. 对肾脏毒性最小的头孢菌素是:(E)

(完整版)合理应用抗生素培训考试题库及答案

抗菌药物培训试题及答案 一、填空题: 1.抗菌药物是指具有___________活性,主要供全身应用(个别也可局部应用)的各种抗生素以及___________、磺胺类、硝基咪唑类、硝基呋喃类等化学合成药。抗菌药物用于细菌、衣原体、支原体、立克次体、__________等所致的感染性疾病,非上述感染原则上不用抗菌药物。 2.医师开具处方和药师调剂处方应当遵循、、、的原则。抗菌药物使用的合理性包括、、三个因素。 3.抗菌药物的预防性应用,包括______________应用抗菌药物和_______________预防用药。 4.不合理处方包括处方、用药处方及处方。 5.按照《卫生部抗菌药物临床应用指导原则》有关规定,接受清洁手术者(Ⅰ类切口),术前___ ___小时内,或麻醉开始时给药。如果手术时间超过____ __小时或失血量大于1500ml,术中可给予第二剂。总的预防用药时间不超过__ ___小时,个别情况可延长至48小时。 6.对不同级别医务人员经培训考核合格后,授予不同级别抗菌药物处方权:骨干级以上技术职务任职资格医师可使用;责任级以上技术职务任职资格的医师可使用。紧急情况下,医师可越级使用抗菌药物,处方量限于天。 7.手术进入呼吸、消化或泌尿生殖道但无明显污染,例如无感染且顺利完成的胆道、胃肠道、阴道、口咽部手术,该类手术切口属于__ 类切口。 8.《抗菌药物临床应用管理办法》规定,二级医院抗菌药物品种不得超过种,医疗机构住院患者抗菌药物使用率不得超过,门诊患者抗菌药物处方比例不得超过。。 二、单项选择题: 1、正确的抗菌治疗方案需考虑( ) A、患者感染病情 B、感染的病原菌种类 C、抗菌药作用特点 D、以上3项 2、胆汁中药物浓度最高的头孢菌素类药物是:( ) A.头孢曲松 B.头孢氨苄 C.头孢哌酮 D.头孢呋辛 3、下列情况有抗菌药联合用药指征( ) A、慢支急性发作 B、病原菌尚未查明的严重细菌感染 C、急性肾盂肾炎 D、急性细菌性肺炎 4、已经感染的病人使用抗菌药物针对感染进行治疗时,应该明确( ) A. 是否存在感染 B. 感染的部位及病原体 C. 病原体可能存在的耐药性 D. 以上都对 5、下列情况何种是预防用药的适应( ) A、昏迷 B、中毒 C、上呼吸道感染 D、人工关节移植手术

2015年抗菌药物临床应用知识培训考试试题

2015年抗菌药物临床应用知识培训考 试试题 姓名:科室:分数: 一、单项选择题(30分) 1、以下抗菌药物按化学结构不属于抗生素的是()。 A、青霉素类 B、头孢菌素类 C、氨基糖苷类 D、.喹诺酮类 2、对多数革兰阴性杆菌包括铜绿假单胞菌具抗菌活性的青霉素类药物是(): A.青霉素 B.苯唑西林 C.氨苄西林 D、哌拉西林 3、肠球菌感染的首选应用的青霉素类药物是() A.青霉素 B.苯唑西林 C.氨苄西林 D、哌拉西林 4、青霉素类药物最常见的不良反应是()。 A.过敏反应 B.中枢神经系统反应 C.消化系统反应 D.肝脏损坏 5、以下为三代头孢菌素的是() A.头孢呋辛 B.头孢唑啉 C.头孢吡肟 D.头孢曲松 6、对主要目标细菌耐药率超过()的抗菌药物,应当暂停该类药物的使用。 A.30% B.40% C.50% D.75% 7、抗菌药物的选择及其合理使用是控制和治疗院内感染的关键和重要措施,以下哪项不正确()。 A.病毒性感染者不用 B.尽量避免皮肤粘膜局部使用抗菌药物C.联合使用必须有严格指征 D.发热原因不明者应使用抗菌药物 8、哺乳期妇女在应用何种抗菌药时可继续哺乳()。 A.四环素类 B.青霉素类 C.红霉素酯化物 D.磺胺类 9、头孢菌素中抗铜绿假单胞菌作用最强的是()。

A.头孢唑啉 B.头孢呋辛 C.头孢曲松 D.头孢他啶 10、耐甲氧西林的葡萄球菌(MRSA)的治疗应选用()。 A.青霉素 B.头孢拉啶 C.头孢哌酮 D.万古霉11、下列哪种情况是预防用药的适应症()。 A.昏迷 B.中毒 C.上呼吸道感染 D.人工关节置换术12、预防术后切口感染常选用的抗菌药物是()。 A.头孢氨苄 B.头孢唑啉 C.阿奇霉素 D.头孢他啶 13、磺胺类药物在尿中乙酰化率高,且溶解性较低,较易出现结晶尿、血尿等。大剂量应用时宜大量饮水,并与等量()同服。 A.氯化钠 B.碳酸钠 C.碳酸氢钠 D.氯化钾 14、β溶血性链球菌感染引起的急性细菌性咽炎及扁桃体炎首选的抗菌药物为:() A.青霉素 B.头孢氨苄 C.罗红霉素 D.头孢克洛 15、以下手术切口属I类(清洁)切口的是(), A、新鲜开放性创伤手术:手术进入急性炎症但未化脓区域;胃肠道内容物有明显溢出污染;无菌技术有明显缺陷(如紧急开胸心脏按压)者。 B、有失活组织的陈旧创伤手术;已有临床感染或脏器穿孔的手术。 C、手术未进入炎症区,未进入呼吸道、消化道及泌尿生殖道,以及闭合性创伤手术符合上述条件者。 D、手术进入呼吸道、消化道及泌尿生殖道但无明显污染,例如无感染且顺利完成的胆道、胃肠道、阴道、口咽部手术。 二、多项选择题(20分) 1、抗菌药物超常处方包括:() A、越级使用抗菌药物 B、无适应症应用抗菌药物 C、超剂量使用抗菌药物 D、重复使用抗菌药物 E、无指征联合应用 2、氨基糖苷类抗菌药物的不良反应包括:()

抗菌药物考试题库汇总(1)

1、下面说法错误的是( C ) A、卫生部负责全国医疗机构抗菌药物临床应用的监督管理。 B、抗菌药物临床使用应当遵循安全、有效、经济的原则。 C、抗菌药物是指治疗细菌、支原体、衣原体、立克次体、螺旋体、真菌、病毒、寄生虫等所致感染性疾病的药物。 D、根据安全性、疗效、细菌耐药性、价格等因素,将抗菌药物分为三级:非限制使用级,限制使用级和特殊使用级。 2、关于非限制使用级抗菌药物的说法正确的是( B ) A、非限制使用级抗菌药物是指经长期临床应用证明安全、有效,对细菌耐药性影响较大,或者价格相对较高的抗菌药物。 B、非限制使用级抗菌药物是指经长期临床应用证明安全、有效,对细菌耐药性影响较小,价格相对较低的抗菌药物。 C、非限制使用级抗菌药物具有明显的或者严重的不良反应,不宜随意使用的抗菌药物。 D、非限制使用级抗菌药物是疗效、安全性方面临床资料较少的抗菌药物。 3、主治医师临床应用中一般情况下,可以选用的抗菌药物有( B ) A、特殊使用级和限制使用级 B、非限制使用级和限制使用级 C、非限制使用级和特殊使用级 D、三种级别可任意选用 4、急性胆道感染时临床上最常选用()D A、第1、2代头孢菌素或喹诺酮类 B、第3代头孢菌素或四环素类 C、第1、2代头孢菌素或氨基糖甙类 D、第3代头孢菌素或广谱青霉素 5、发生CRI/CRBSI的危险性顺序正确的是()A A、锁骨下静脉<颈内静脉<股静脉 B、锁骨下静脉<股静脉<颈内静脉 C、颈内静脉<锁骨下静脉<股静脉 D、股静脉<颈内静脉<锁骨下静脉 6、最常见的引起过敏性休克的药物是()A A、青霉素 B、红霉素 C、庆大霉素 D、万古霉素 7、最有效的杀阿米巴包囊的药物是()B A、双碘喹啉 B、二氯尼特 C、氯喹 D、吐根碱 8、最常见的致病曲霉是()C A、黑曲霉 B、黄曲霉 C、烟曲霉 D、土曲霉 9、儿童CMV感染的一线用药是()B A、左氧氟沙星 B、更昔洛韦 C、万古霉素 D、美洛培南 10、急性细菌性上呼吸道感染的病原菌主要为()C

抗菌药物临床应用知识培训考试习题

夏津县人民医院2016年抗菌药物临床应用知识培训考试试题 姓名:科室:分数: 一、单项选择题(30分) 1、以下抗菌药物按化学结构不属于抗生素的是()。 A、青霉素类 B、头孢菌素类 C、氨基糖苷类 D、.喹诺酮类 2、对多数革兰阴性杆菌包括铜绿假单胞菌具抗菌活性的青霉素类药物是(): A.青霉素B.苯唑西林C.氨苄西林D、哌拉西林 3、肠球菌感染的首选应用的青霉素类药物是() A.青霉素B.苯唑西林C.氨苄西林D、哌拉西林 4、青霉素类药物最常见的不良反应是()。 A.过敏反应B.中枢神经系统反应C.消化系统反应D.肝脏损坏 5、以下为三代头孢菌素的是() A.头孢呋辛B.头孢唑啉C.头孢吡肟D.头孢曲松 6、对主要目标细菌耐药率超过()的抗菌药物,应当暂停该类药物的使用。 A.30%B.40%C.50%D.75% 7、抗菌药物的选择及其合理使用是控制和治疗院内感染的关键和重要措施,以下哪项不正确()。A.病毒性感染者不用B.尽量避免皮肤粘膜局部使用抗菌药物 C.联合使用必须有严格指征D.发热原因不明者应使用抗菌药物 8、哺乳期妇女在应用何种抗菌药时可继续哺乳()。 A.四环素类B.青霉素类C.红霉素酯化物D.磺胺类 9、头孢菌素中抗铜绿假单胞菌作用最强的是()。 A.头孢唑啉B.头孢呋辛C.头孢曲松D.头孢他啶 10、耐甲氧西林的葡萄球菌(MRSA)的治疗应选用()。

A.青霉素B.头孢拉啶C.头孢哌酮D.万古霉 11、下列哪种情况是预防用药的适应症()。 A.昏迷B.中毒C.上呼吸道感染D.人工关节置换术 12、预防术后切口感染常选用的抗菌药物是()。 A.头孢氨苄B.头孢唑啉C.阿奇霉素D.头孢他啶 13、磺胺类药物在尿中乙酰化率高,且溶解性较低,较易出现结晶尿、血尿等。大剂量应用时宜大量饮水,并与等量()同服。 A.氯化钠B.碳酸钠C.碳酸氢钠D.氯化钾 14、β溶血性链球菌感染引起的急性细菌性咽炎及扁桃体炎首选的抗菌药物为:() A.青霉素B.头孢氨苄C.罗红霉素D.头孢克洛 15、以下手术切口属I类(清洁)切口的是(), A、新鲜开放性创伤手术:手术进入急性炎症但未化脓区域;胃肠道内容物有明显溢出污染;无菌技术有明显缺陷(如紧急开胸心脏按压)者。 B、有失活组织的陈旧创伤手术;已有临床感染或脏器穿孔的手术。 C、手术未进入炎症区,未进入呼吸道、消化道及泌尿生殖道,以及闭合性创伤手术符合上述条件者。 D、手术进入呼吸道、消化道及泌尿生殖道但无明显污染,例如无感染且顺利完成的胆道、胃肠道、阴道、口咽部手术。 二、多项选择题(20分) 1、抗菌药物超常处方包括:() A、越级使用抗菌药物 B、无适应症应用抗菌药物 C、超剂量使用抗菌药物 D、重复使用抗菌药物 E、无指征联合应用 2、氨基糖苷类抗菌药物的不良反应包括:() A.耳毒性B.肾毒性C.消化系统反应 D.神经肌肉阻滞作用E.过敏反应 3、抗菌药物的不合理应用表现在以下哪几方面:()

抗菌药物临床应用培训试卷及答案

×××医院抗菌药物临床应用培训试卷 一、选择题(单选) 1、正确的抗菌治疗方案需考虑() A、患者感染病情 B、感染的病原菌种类 C、抗菌药作用特点 D、以上3项 2、可辅以抗菌药局部应用的情况有() A、化脓性胸膜炎大量胸腔积液 B、反复发作性尿路感染 C、隐球菌脑膜炎 D、化脓性腹膜炎 3、下列情况有抗菌药联合用药指征() A、慢支急性发作 B、病原菌尚未查明的严重细菌感染 C、急性肾盂肾炎 D、急性细菌性肺炎 4、抗菌药分三类管理是为了() A、规范抗菌药按一、二、三线使用 B、按感染病情轻重分别用药 C、抗菌药合理使用的管理 5、限制使用类抗菌药是限制() A、抗菌药应用适应证和适用人群 B、限制抗菌药作二线使用 C、限制抗菌药用于重症感染患者 6、下列情况何种是预防用药的适应() A、昏迷 B、中毒 C、上呼吸道感染 D、人工关节移植手术 7、预防用药用于何种情况可能有效() A、用于预防任何细菌感染 B、长期用药预防 C、晚期肿瘤患者 D、风湿热复发 8、外科手术前预防用药应在何时使用() A、手术开始前24h B、术前60min内 C、手术开始后2h D、手术结束后2h 9、手术前预防用药目的是预防() A、切口感染 B、手术深部气管或腔隙的感染 C、肺部感染 D、切口感染和手术深部气管或腔隙感染 10、外科手术预防用药多数不超过() A、手术后3天 B、术后24小时 C、术后1周 D、用至患者出院

11、肝功能减退时,不需调整给药剂量的药物为() A、红霉素酯化物 B、利福平 C、氟康唑 D、头孢他啶 12、肾功能减退时,需调整给药剂量的药物为() A、氨基糖甙类 B、克林霉素 C、利福平 D、大环内酯类 13、新生儿感染时不宜选用() A、头孢菌素 B、青霉素类 C、克林霉素 D、氨基糖甙类 14、氨基糖甙类抗生素不宜用于() A、腹腔感染 B、感染性心内膜炎 C、革兰阴性菌败血症 D、孕妇无症状菌尿 15、下列哪种药物对铜绿假单胞菌不具抗菌活性() A、哌拉西林 B、头孢哌酮 C、头孢他啶 D、头孢噻肟 16、需鞘内给药的抗菌药物为() A、青霉素 B、头孢曲松 C、两性霉素B D、氟康唑 17、大肠埃希菌所致尿路感染治疗不宜选用() A、克林霉素 B、SMZ/TMP C、氨苄西林/舒巴坦 D、左氧氟沙星 18、无论脑膜有无炎症,不能透入脑脊液的抗菌药物为() A、氯霉素 B、头孢噻肟 C、青霉素 D、多粘菌素B 19、氨基糖甙类抗生素具有一定耳肾毒性,适用于() A、中耳炎 B、严重G-b感染 C、扁桃体炎 D、小儿尿路感染 20、肺炎链球菌、溶血性链球菌感染的首选药物为() A、氧氟沙星 B、头孢他啶 C、庆大霉素 D、青霉素 21、治疗甲氧西林耐药葡萄球菌感染时首选() A、氨苄西林/舒巴坦 B、头孢唑林 C、克林霉素 D、万古霉素 22、妊娠期可以选用的抗菌药物有() A、庆大霉素 B、环丙沙星 C、克拉霉素 D、哌拉西林 23、治疗艰难梭菌引起的假膜性肠炎可选用() A、甲硝唑 B、诺氟沙星 C、氨苄西林 D、克林霉素 24、治疗厌氧菌感染可以选用() A、氨基糖甙类 B、头孢唑林 C、环丙沙星 D、甲硝唑

最新2019年抗菌药物考试题及答案

抗菌药物考试题 科室:姓名:得分: 一、单选题(每题3分) 1、主要通过抑制细胞壁合成起抗菌药物作用的药物有 D A.克林霉素 B.氯霉素 C.红霉素 D.万古霉素 E.达托霉素 2、对铜绿假单胞菌无抗菌活性的药物:D A.哌拉西林 B.头孢他啶C美罗培南D 头孢曲松E.环丙沙星 3、对MRSA不具抗菌活性的药物为:D A.达托霉素B万古霉素C利奈唑胺D头孢唑林钠E替考拉宁 4.第一代头孢菌素,应重点关注哪个问题?C A光敏反应B红人综合征C肾功能损害D肝功能损害E血液系统三系降低 5以下哪个药物容易进入中枢神经系统C A头孢唑林钠B苯唑西林钠C头孢曲松D头孢哌酮E头孢硫脒 6以下哪个药物用于外科围手术期切口感染预防C A左氧氟沙星B阿米卡星C头孢唑林钠D阿奇霉素E多西环素 7甲硝唑最常见的不良反应D A头疼、眩晕B白细胞降低C肢体麻木D恶心、口腔金属味E发热8下列与呋塞米合用易增强耳毒性的抗菌药物是E A林可霉素B B—内酰胺类C四环素类D大环内酯类E氨基糖苷类9、MIC是那种英文简称?B A最低杀菌浓度B最低抑菌浓度C最高杀菌浓度D最高抑菌浓度E

以上都不是 10、耐甲氧西林金黄色葡萄球菌的英文缩写:A A、MRSA B MRS C MRCNS D MRSS E SPA 11、治疗军团菌感染的药物:D A、氨基糖苷类 B、青霉素 C、头孢菌素类D红霉素E庆大霉素 12、腹外疝手术确需预防用药抗菌药物应选用:A A第一代头孢B第二代头孢C第三代头孢D第四代头孢E大环内酯13、重症患者感染的致病菌主要是:C A肺炎链球菌B流感嗜血杆菌C多重耐药菌D MSSA E大肠埃希菌14、腹腔感染最常见的革兰氏阴性菌为:C A铜绿假单胞菌B鲍曼不动杆菌C大肠埃希菌D阴沟肠杆菌E肺炎克雷伯 15、几类以上药物耐药可以称为多重耐药?C A1 B2 C3 D4 E5 二、多选题(每题5分) 1、浓度依耐性药物:AB A氨基糖苷类抗生素B氟喹诺酮类C头孢菌素类D氟胞嘧啶E利奈唑胺 2、时间依耐性药物:ABCE A青霉素类B头孢菌素类C碳青霉烯类D两性霉素E大环内酯类3、肝功能减退时按原治疗量应用的药物:ABCDE A头孢他啶B阿米卡星C青霉素D万古霉素E左氧氟沙星

抗菌药物考试题库含答案

第二篇抗菌药物临床应用专业知识 第一章抗菌药物临床应用管理体系架构、技术支持体系与策略 一、多选题 1、医院抗菌药物管理工作组(AST )的职责 A、制订和执行适合医院实际情况的管理细则 B、制定教育培训计划和负责实施 C、开展微生物学监测 D、制订和建立资料管理制度 E、开展科研工作 2、按抗菌药物处方过程设计的管理策略有 A、教育/指南 B、处方集/限制 C、处方点评和反馈 D、循环用药 3、下列哪种抗菌药物属于时间依赖性药物 A、青霉素类 B、头抱菌素 C、环丙沙星 D、红霉素 E、阿奇霉素 4、短程抗菌治疗主要适用于 A、宿主免疫机制健全B单一敏感菌感染C不存在影响抗菌药物作用的局部组织因素 D、社区感染和医院感染 E、以上都是 5、关于抗菌药物转换治疗下列哪项概念是不正确的 A、包括“降级”治疗 B、包括“降阶梯”治疗 C、包括序贯治疗 D、特指由静脉给药转为口服给药 E、降低用药剂量 二、问答题 1、医院抗菌药物管理工作组(AST )的职责有哪些? 2、根据处方过程的抗菌药物管理策略主要有哪些? 3、你所在医院目前实行的抗菌药物管理策略有哪些?你的看法怎样? 4、如何根据抗菌药物的PK/PD 理论优化抗菌治疗? 5、除了处方集/限制外,减少抗菌药物暴露或用量的措施还有哪些?参考答案 一、多选题 1、A BCDE 2、ABCDE 3、ABD 4、ABC 5、BE 第二章抗菌药物应用与医疗质量控制 一、单选题 1、有关抗菌药物使用权限,正确的是 A、临床应用时间长、安全有效、经济且耐药较少的药物属非限制使用 B、仅不良反应明显的药物不属于限制使用

C、仅对细菌耐药性影响明显的药物不属于限制使用、临床应用资料少的药物不能限制使用D. E、医疗机构不能根据本机构具体情况增加特殊使用类别的抗菌药物品种 2、医师在临床使用“特殊使用”抗菌药物应按照 A、严格掌握适应证 B、不经过药师审核 C、可未经会诊越级使用 D、根据临床需要应用 E、以上都不对 3、有关抗菌药物合理应用的综合评价标准,正确的是 A、有明确适应证用药 B、抗菌药物选择与更换无依据,无记录 C、抗菌药物应用48-72小时后临床无效,无细菌培养结果不能更换抗菌素 D、抗菌药物应用48-72小时后临床无效,必须等待药敏结果才能更换抗菌素 E、以上都不对 4、对主要目标细菌耐药率超过50%的抗菌药物,应该 A、参照药敏结果选择抗菌素 B、加强病原检测 C、及时给予预警信息通报本机构医务人员 D、慎重选择抗菌素 E、以上都正确 5、有关I 类手术切口应用抗菌药物,错误的是 A 、要严格掌握适应证、药物选择与用药时间 B 、术前0.5-2 小时或麻醉开始时首次给药 C、术前4小时开始首次给药 D、预防用药一般不超过24小时 E、都不对 二、多选题 1、临床抗菌药物不合应用主要表现在 A、品种选择错误 B、剂量选择不当 C、给药途径不当 D、疗程不合理 E、无指征治疗用药 2、有关细菌耐药性正确的是 A 、是抗菌药物、细菌本身及环境共同作用的结果 B 、随着抗菌药物的广泛应用而随之产生 C、耐药菌对某一种抗菌药物抵抗的同时,也可对化学结构相似的药物产生交叉性耐药 D、不同种属的细菌之间可发生耐药基因转移 E、同种细菌的细菌之间可发生耐药基因的转移 3、抗菌药物滥用可以引起 A、造成卫生资源浪费 B、引发耐药菌增加 C、感染性疾病的发病率和死亡率升高 D、机体菌群失调,岀现继发感染 E、对患者安全造成威胁 4、关于抗菌药物应用,医疗机构中存在 A、药品管理制度不完善 B、临床医师不合理用药 C、患者认识误区 D、药学人员未发挥作用 E、一些医疗卫生行业希望药品收入越多越好 5、围手术期预防抗菌药物不合理主要表现在 A、预防用药范围过广 B、预防用药时间过长 C、预防用药起点偏高 D、外科I类切口必要时应用头抱唑林 E、丨类切口一般不用抗菌药物预防感染 6、有关合理应用抗菌药物,不应该忽视的特殊人群是 、壮年E 、青年D 、肝肾功能不全者C 、老年B 、小儿A 7、医疗机构加强抗菌药物质量控制与管理,主要措施包括 A、建立健全抗菌药物合理应用的管理组织制度 B、加强抗菌药物使用的监测与监督反馈

抗菌药物临床合理应用管理考试题(附答案)

《2013年抗菌药物临床合理应用管理》试题 姓名:科室:分数: 一、单项选择题(每题2分,共20题40分) 1、门诊患者抗菌药物处方比例不超过 A A.20% B.30% C.40% D.50% 2、引起医院内感染的致病菌主要是 B A.革兰阳性菌 B.革兰阴性菌 C.真菌 D.支原体 3、老年人和儿童在应用抗菌药时,最安全的品种是 C A.氟喹诺酮类 B.氨基糖苷类 C.β—内酰胺类 D.氯霉素类 4、预防用抗菌药物药缺乏指征(无效果,并易导致耐药菌感染)的是 D A.普通感冒、麻疹、病毒性肝炎、灰髓炎、水痘等病毒性疾病有发热的患者B.昏迷、休克、心力衰竭患者 C.免疫抑制剂应用者 D.以上都是 5、卫办医政发〔2009〕38号文的要求,当目标细菌耐药率超过50%的抗菌药 物时应 B A.及时将预警信息通报本机构医务人员 B.参照药敏试验结果选用 C.慎重经验用药 D.暂停该类抗菌药物的临床应 用 6、二级医院购进抗菌药物品种不得超过 B 种。 A. 40 B. 35 C. 50 D. 60 7、具有 B 级以上专业技术职务任职资格的医师,经培训并考核合格后,方可授予限制使用级抗菌药物处方权。 A. 初级 B. 中级 C. 高级 D. 初中高均可

8、紧急情况下,医师可以越级使用抗菌药物,处方量应当限于 A 天用量。 A. 1天 B. 2天 C. 4天 D. 7天 9、医疗机构应当对出现抗菌药物超常处方 D 以上且无正当理由的医师提出警告,限制其特殊使用级和限制使用级抗菌药物处方权。 A. 2次 B. 4次 C. 5次 D. 3次 10、对大多数厌氧菌有良好抗菌作用的药物是 D A.头孢唑啉 B . 庆大霉素 C .青霉素G D. 甲硝唑 11、联合使用抗菌药物的指征不包括 C A .单一抗菌药物不能有效控制的混合感染 B . 需要较长时间用药,细菌有可能产生耐药性者 C .合并病毒感染者 D. 联合用药以减少毒性较大的抗菌药物的剂量 12、抗菌药物疗程因感染不同而异,一般宜用至体温正常、症状消退后几小时,特殊情况,妥善处理 C A .24h B . 48h C .72~96h D. 96h 13、清洁手术的下列情况不考虑预防用药 D A .手术范围大,时间长,污染机会增加 B . 手术涉及重要脏器,一旦发生感染容易造成严重后果者 C .人工关节置换手术 D. 术野为无菌部位,局部无炎症,无损伤,无污染,且不涉及人体与外界相通的器官 14、不属于二线管理的抗菌药物 C

河南省抗菌药物临床应用分级管理 附件

附件一 抗菌药物临床应用分级管理目录(试行)分类非限制使用级限制使用级特殊使用级 四环素类四环素米诺环素*替加环素多西环素 土霉素 氯霉素类氯霉素 广谱青霉素阿莫西林阿洛西林氨苄西林美洛西林哌拉西林磺苄西林 替卡西林 对青霉素酶不稳定的青霉素类青霉素 青霉素V 苄星青霉素 普鲁卡因青霉素 对青霉素酶稳定的青霉素类苯唑西林氟氯西林氯唑西林 β-内酰胺 酶抑制剂 *舒巴坦阿莫西林/克拉维酸氨苄西林/舒巴坦

青霉素类复方制剂(β-内酰胺酶抑制剂) 青霉素类复方制剂(β-内酰胺酶抑制剂)哌拉西林/他唑巴坦哌拉西林/舒巴坦替卡西林/克拉维酸阿莫西林/舒巴坦 美洛西林/舒巴坦 第一代头孢菌素类头孢氨苄头孢硫脒头孢唑林 头孢拉定 头孢羟氨苄 第二代头孢菌素类头孢呋辛(酯)头孢丙烯头孢克洛头孢替安 第三(四)代头孢菌素类头孢曲松头孢噻肟头孢吡肟 头孢克肟头孢匹罗 头孢他啶 头孢地尼 头孢唑肟 头孢哌酮/舒巴坦 头孢泊肟酯 头孢哌酮

其他β内酰胺类头孢美唑氨曲南 头孢西丁法罗培南(注射)头孢米诺 拉氧头孢 法罗培南(口服) 碳青霉烯类厄他培南美罗培南 亚胺培南/西司他丁 帕尼培南/倍他米隆 比阿培南 磺胺类和甲氧 苄啶复方磺胺甲噁唑甲氧苄啶 磺胺嘧啶 联磺甲氧苄啶磺胺甲噁唑 大环内酯类红霉素阿奇霉素(注射)阿奇霉素(口服)地红霉素 琥乙红霉素 乙酰螺旋霉素 罗红霉素 克拉霉素 林可酰胺类 克林霉素 林可霉素

氨基糖苷类庆大霉素妥布霉素阿米卡星依替米星链霉素奈替米星新霉素异帕米星 大观霉素 喹诺酮类环丙沙星莫西沙星*洛美沙星诺氟沙星安妥沙星*氟罗沙星左氧氟沙星吉米沙星氧氟沙星 吡哌酸 糖肽类万古霉素 去甲万古霉素*替考拉宁 多粘菌素类 粘菌素(口服)*粘菌素(注射) *多粘菌素B 咪唑衍生物甲硝唑 替硝唑 奥硝唑 左旋奥硝唑 硝基呋喃衍生物呋喃妥因呋喃唑酮 其它抗菌药物磷霉素利福平夫西地酸

抗菌药物考试题

XXX人民医院抗菌药物处方权及调剂权考试试卷 科室:_________ 姓名: ___________ 分数:________ 一、填空题(每题0.5分,共35分) 1、专项整治活动方案规定医院门诊、住院患者抗菌药物使用率分别不 超过() A、20% 50% B、20% 60% C、30% 70% D、30% 80% 2、专项整治活动方案规定I类切口手术患者预防使用抗菌药物比例不 超过() A、20% B、30% C、40% D、50% 3、专项整治活动方案规定抗菌药物使用强度力争控制在()DDD以下 A、20 B 、30 C 、40 D 、50 4、接受抗菌药物治疗住院患者微生物检验样本送检率不低于() A、20% B、30% C、40% D、50% 5、抗菌药物临床应用专项治理中抗菌药物不包括() A、抗细菌 B、抗衣原体、支原体、立克次体螺旋体 C、抗真菌 D、 抗病毒、寄生虫 6、世界卫生组织对合理使用药物的定义是() A、患者能得到适合于他们的临床需要和个体需要的药品以及正确的用药方法 B、药物必须质量可靠、可获得 C、药物必须可负担得起 D、以上全 都是 7、合理用药原则包括() A、安全 B、有效 C、经济 D、以上均是 8、促进合理用药的主要措施正确的有() A、制定合理用药相关的临床应用指南 B 、严格医师和药师资质,建 立抗菌药物分级管理 C 、建立抗菌药物临床应用和细菌耐药监测体 系 D、加大监督管理力度,严肃查处抗菌药物使用不合理情况 E、以上均 是 9、抗菌药物分几级进行管理() A、一级 B、二级 C、三级 D、四级

10、列为特殊使用类抗菌药物的是()

抗菌药物临床合理应用管理考试题及答案

精心整理 1.肝功能减退时不需调整剂量的抗菌药物有: A.庆大霉素、青霉素、头孢唑啉 B.氨苄西林酯化物、异烟肼、四环素类 C.磺胺药、酮康唑、咪康唑、两性霉素B D.氯霉素、利福平、红霉素酯化物 C.左心室 D.左心房 6.发生CRI/CRBSI的危险性顺序正确的是: A.锁骨下静脉<颈内静脉<股静脉

B.锁骨下静脉<股静脉<颈内静脉 C.颈内静脉<锁骨下静脉<股静脉 D.股静脉<颈内静脉<锁骨下静脉7.移植肝发生的感染性并发症中,较少见却最重要的是: A.胆道感染 B.肠出血 9.骨髓炎的治疗应选用能在骨关节中形成有效治疗浓度的抗菌药物,从这个角度考虑,首选: A.万古霉素、氨基糖苷类 B.较大剂量β内酰胺类、克林霉素 C.大环内酯类

10.ABCD 10.狂犬病从临床发病到死亡的平均持续时间为: A.5天 刘建10:39:31 怎么就一个题 子梦10:39:53 1.肝功能减退时不需调整剂量的抗菌药物有: A.庆大霉素、青霉素、头孢唑啉

C.磺胺药、酮康唑、咪康唑、两性霉素B D.氯霉素、利福平、红霉素酯化物 2.治疗深部真菌感染的药物不包括:A.丁醇类 D.13% 5.感染性心内膜炎常出现肺栓塞症状,多是哪侧心腔脱落的栓子引起: A.右心室 B.右心房

D.左心房 6.发生CRI/CRBSI的危险性顺序正确的是: A.锁骨下静脉<颈内静脉<股静脉 B.锁骨下静脉<股静脉<颈内静脉 8.化脓性关节炎最常见的来源是: A.血行感染 B.继发于关节创伤、手术及穿刺的感染 C.密切接触感染

9.ABCD 9.骨髓炎的治疗应选用能在骨关节中形成有效治疗浓度的抗菌药物,从这个角度考虑,首选: A.万古霉素、氨基糖苷类 11.由痢疾志贺菌引起的菌痢特别严重,死亡率可高达: A.10% B.20% C.30% D.40%

2016年抗菌药物临床应用知识培训考试试题

夏津县人民医院 2016年抗菌药物临床应用知识培训考试试题 姓名:科 室:分数: 一、单项选择题(30分) 1、以下抗菌药物按化学结构不属于抗生素的是()。 A、青霉素类 B、头孢菌素类 C、氨基糖苷类 D、.喹诺酮类 2、对多数革兰阴性杆菌包括铜绿假单胞菌具抗菌活性的青霉素类药物是(): A.青霉素B.苯唑西林C.氨苄西林D、哌拉西林 3、肠球菌感染的首选应用的青霉素类药物是() A.青霉素B.苯唑西林C.氨苄西林D、哌拉西林 4、青霉素类药物最常见的不良反应是()。 A.过敏反应 B.中枢神经系统反应C.消化系统反应D.肝脏损坏 5、以下为三代头孢菌素的是() A.头孢呋辛 B.头孢唑啉 C.头孢吡肟D.头孢曲松 6、对主要目标细菌耐药率超过()的抗菌药物,应当暂停该类药物的使用。 A.30% B.40% C.50% D.75% 7、抗菌药物的选择及其合理使用是控制和治疗院内感染的关键和重要措施,以下哪项不正确()。 A.病毒性感染者不用B.尽量避免皮肤粘膜局部使用抗菌药物

C.联合使用必须有严格指征D.发热原因不明者应使用抗菌药物 8、哺乳期妇女在应用何种抗菌药时可继续哺乳()。 A.四环素类B.青霉素类 C.红霉素酯化物D.磺胺类 9、头孢菌素中抗铜绿假单胞菌作用最强的是()。 A.头孢唑啉B.头孢呋辛 C.头孢曲松 D.头孢他啶 10、耐甲氧西林的葡萄球菌(MRSA)的治疗应选用()。 A.青霉素B.头孢拉啶C.头孢哌 酮 D.万古霉 11、下列哪种情况是预防用药的适应症()。 A.昏迷B.中毒 C.上呼吸道感染 D.人工关节置换术 12、预防术后切口感染常选用的抗菌药物是()。 A.头孢氨苄 B.头孢唑啉 C.阿奇霉素D.头孢他啶 13、磺胺类药物在尿中乙酰化率高,且溶解性较低,较易出现结晶尿、血尿等。大剂量应用时宜大量饮水,并与等量()同服。 A.氯化钠B.碳酸钠C.碳酸氢钠D.氯化钾 14、β溶血性链球菌感染引起的急性细菌性咽炎及扁桃体炎首选的抗菌药物为:() A.青霉素B.头孢氨苄C.罗红霉素D.头孢克洛 15、以下手术切口属I类(清洁)切口的是(), A、新鲜开放性创伤手术:手术进入急性炎症但未化脓区域;胃肠道内容物有明显溢出污染;无菌技术有明显缺陷(如紧急开胸心脏按压)者。 B、有失活组织的陈旧创伤手术;已有临床感染或脏器穿孔的手术。

关于进一步加强特殊使用级抗菌药物临床应用管理的相关规定

关于进一步加强特殊使用级抗菌药物临床应用 管理的相关规定 各科室、分部: 根据《抗菌药物临床应用指导原则》、《卫生部办公厅关于抗菌药物临床应用管理有关问题的通知》及《抗菌药物临床应用管理办法》,为进一步加强特殊级抗菌药物临床应用的管理,结合我院实际,制定相关规定如下: 一、严格控制特殊使用级抗菌药物的使用,特殊使用级抗菌药物不得在门诊使用。 临床应用特殊使用级抗菌药物应当严格掌握用药指征,经抗菌药物管理工作组指定的专业技术人员会诊同意后,由具有相应处方权医师开具处方。 特殊使用级抗菌药物会诊人员由具有抗菌药物临床应用经验的感染性疾病科、呼吸科、重症医学科、微生物检验科、药学部门等具有高级专业技术职务任职资格的医师、药师或具有高级专业技术职务任职资格的抗菌药物专业临床药师担任。 二、临床科室使用特殊使用级抗菌药物相关规定 1、住院患者确须使用特殊使用级抗菌药物的,由临床科室提出会诊申请,由指定的具有高级技术职务任职资格的专家(专家组成员名单见附件1)进行会诊,要求由申请科室本组以外的专家会诊确定是否使用,包括特殊使用级抗菌药物品种、使用剂量、疗程及预后等,

最后由临床药师签会诊意见。 2、经会诊确需使用的,临床科室须填写《特殊使用抗菌药物申请表》见附件2,由会诊专家签名、具有高级专业技术任职资格的医师开具处方方可使用。 3、《特殊使用抗菌申请表》一式两份,一份留存于病历中,一份交于药剂科留存。 4、使用过程中,严密观察,对于已出现严重不良反应的,立即停药,并积极救治。 5、紧急情况下未经会诊同意或需越级使用的,处方量不得超过1日用量,做好相关病历记录,并于48小时内补办会诊审批手续。 附件1:特殊使用级抗菌药物应用会诊专家组成员名单

抗菌药物临床应用试题

抗菌药物临床应用试题 姓名分数 一、单项选择(每题2分) 1、老年人和儿童在应用抗菌药物时,最安全的品种是(C) A、氟喹诺酮类 B、氨基糖苷类 C、β-内酰胺类 D、氯霉素类 2、亚胺培南、美罗培南等青霉烯类抗菌药主要用于(A) A、革兰氏阴性产酶菌 B、革兰氏阳性产酶菌 C、真菌 D、支原体 3、对产生超广谱β-酰胺酶的细菌感染的患者进行治疗时宜首选 A 类抗菌素。 A、碳青霉烯类 B、氯霉素类 C、大环内酯类 D、氨基糖苷类 4、引起医院内感染的致病菌主要是(B) A、革兰阳性菌 B、革兰阴性菌 C、真菌 D、支原体 5、在细菌所引起的医院感染中,以 C 感染在我国最常见 A、尿路感染 B、术后伤口感染 C、肺部感染 D、皮肤感染 6、抗菌药物的选择及其合理使用时控制和治疗院内感染的关键和重要措施,以下哪项说法不正确(D) A、病毒性感染者不用 B、尽量避免皮肤粘膜局部使用抗菌药物 C、联合使用必须有严格指征 D、发热原因不明显者应使用抗菌药物

7、下列哪种手术宜预防性应用抗菌素(D ) A、疝修补术 B、甲状腺腺瘤摘除术 C、乳房纤维腺瘤切除术 D、开放性骨折清创内固定术 8、耐甲氧西林的葡萄球菌(MRSA)的治疗应选用(D ) A、青霉素 B、头孢拉啶 C、头孢哌酮 D、万古霉素 9、预防用抗菌药物缺乏指征(无效果,并易导致耐药感染)的是(D) A、免疫抑制剂应用者 B、昏迷、休克、心力衰竭患者 C、普通感冒、麻疹、病毒性肝炎、灰髓炎、水痘等病毒性疾病有发热的患者 D、以上都是 10、经临床长期应用证明安全、有效,价值相对较低的抗菌药物在抗菌药物分级管理中属于(A) A、非限制性使用抗菌药物 B、限制使用抗菌药物 C、特殊使用抗菌药物 D、以上都是 11、青霉素G最常见的不良反应是(D) A、肝肾损害 B、耳毒性 C、二重感染 D、过敏反应 12、可辅以抗菌药局部应用的情况有(A) A、化脓性胸膜炎大量胸腔积液 B、反复发作性尿路感染 C、隐球菌脑膜炎 D、化脓性腹膜炎 13、下列哪种情况有抗菌药联合用药指征(B) A、慢支急性发作 B、病原菌尚未查明的严重细菌感染 C、急性肾盂肾炎 D、急性细菌性肺炎 14、下列情况何种是预防用药的适应(D)

卫生部抗菌药物临床应用--38号文

卫生部抗菌药物临床应用--38号文附件 常见手术预防用抗菌药物表 手术名称抗菌药物选择 颅脑手术第一、二代头孢菌素,头孢曲松颈部外科,含甲状腺,手术第一代头孢菌素 经口咽部粘膜切口的大手术第一代头孢菌素~可加用甲硝唑乳腺手术第一代头孢菌素 周围血管外科手术第一、二代头孢菌素 腹外疝手术第一代头孢菌素 胃十二指肠手术第一、二代头孢菌素 阑尾手术第二代头孢菌素或头孢噻肟,可加用甲硝唑 结、直肠手术第二代头孢菌素或头孢曲松或头孢噻肟,可加用甲硝唑 肝胆系统手术第二代头孢菌素~有反复感染史者可选头孢曲松或头孢哌酮或头孢哌酮/舒巴坦 食管、肺) 第一、二代头孢菌素~头孢曲松胸外科手术( 心脏大血管手术第一、二代头孢菌素 泌尿外科手术第一、二代头孢菌素~环丙沙星一般骨科手术第一代头孢菌素 应用人工植入物的骨科手术(骨折内固定术、脊柱融合术、关节置换术)第一、二代头孢菌素~头孢曲松 妇科手术第一、二代头孢菌素或头孢曲松或头孢噻肟,涉及阴道时可加用甲硝唑

剖宫产第一代头孢菌素,结扎脐带后给药, 注:1. ?类切口手术常用预防抗菌药物为头孢唑啉或头孢拉定。 scope this document applies to all branches of the Bank's personal loans (not including personal loans and fund loans). 2.2 target customers, consumer loan customers: with a focus on marketing the Government civil servants, official staff of public institutions, telecommunications, electricity, tobacco and other more efficient State-owned enterprises staff, finance, insurance, education, scientific research 卫生部办公厅关于抗菌药物临床应用管理有关问题的通知--卫办医政发〔2009〕38号 发布时间:2009-08-16 各省、自治区、直辖市卫生厅局,新疆生产建设兵团卫生局: 《卫生部办公厅关于进一步加强抗菌药物临床应用管理的通知》(卫办医发〔2008〕48号)下发以来,各级卫生行政部门和医疗机构认真组织学习、贯彻落实,取得了一定的成效,部分地区医疗机构抗菌药物应用比例有所下降,围手术期抗菌药物预防应用进一步规范。为继续推进抗菌药物临床合理应用,根据2008年度全国抗菌药物临床应用监测与细菌耐药监测结果,现就抗菌药物临床应用管理有关问题通知如下: 一、以严格控制?类切口手术预防用药为重点,进一步加强围手术期抗菌药物预防性应用的管理 医疗机构要严格按照《抗菌药物临床应用指导原则》中围手术期抗菌药物预防性应用的有关规定,加强围手术期抗菌药物预防性应用的管理,改变过度依赖抗菌药物预防手术感染的状况。对具有预防使用抗菌药物指征的,参照《常见手术预防

相关主题
相关文档 最新文档