当前位置:文档之家› ABB变送器选型指南

ABB变送器选型指南

ABB变送器选型指南
ABB变送器选型指南

如何选择熔断器

(1)熔断器的安秒特性 熔断器的动作是靠熔体的熔断来实现的,当电流较大时,熔体熔断所需的时间就较短。而电流较小时,熔体熔断所需用的时间就较长,甚至不会熔断。因此对熔体来说,其动作电流和动作时间特性即熔断器的安秒特性,为反时限特性,如图所示。 图熔断器的安秒特性 每一熔体都有一最小熔化电流。相应于不同的温度,最小熔化电流也不同。虽然该电流受外界环境的影响,但在实际应用中可以不加考虑。一般定义熔体的最小熔断电流与熔体的额定电流之比为最小熔化系数,常用熔体的熔化系数大于1.25,也就是说额定电流为10A的熔体在电流12.5A以下时不会熔断。熔断电流与熔断时间之间的关系如表1-2所示。 从这里可以看出,熔断器只能起到短路保护作用,不能起过载保护作用。如确需在过载保护中使用,必须降低其使用的额定电流,如8A的熔体用于10A的电路中,作短路保护兼作过载保护用,但此时的过载保护特性并不理想。 表1-2熔断电流与熔断时间之间的关系 (2)熔断器的选择 主要依据负载的保护特性和短路电流的大小选择熔断器的类型。对于容量小的电动机和照明支线,常采用熔断器作为过载及短路保护,因而希望熔体的熔化系数适当小些。通常选用铅锡合金熔体的RQA系列熔断器。对于较大容量的电动机和照明干线,则应着重考虑短路保护和分断能力。通常选用具有较高分断能力的RM10和RL1系列的熔断器;当短路电流很大时,宜采用具有限流作用的RT0和RTl2系列的熔断器。 熔体的额定电流可按以下方法选择: 1)保护无起动过程的平稳负载如照明线路、电阻、电炉等时,熔体额定电流略大于或等于负荷电路中的额定电流。 2)保护单台长期工作的电机熔体电流可按最大起动电流选取,也可按下式选取: IRN ≥(1.5~2.5)IN 式中IRN--熔体额定电流;IN--电动机额定电流。如果电动机频繁起动,式中系数可适当加大至3~3.5,具体应根据实际情况而定。 3)保护多台长期工作的电机(供电干线) IRN ≥(1.5~2.5)IN max+ΣIN IN max-容量最大单台电机的额定电流。ΣIN其余.电动机额定电流之和。 (3)熔断器的级间配合 为防止发生越级熔断、扩大事故范围,上、下级(即供电干、支线)线路的熔断器间应有良好配合。选用时,应使上级(供电干线)熔断器的熔体额定电流比下级(供电支线)的大1~2个级差。 常用的熔断器有管式熔断器R1系列、螺旋式熔断器RLl系列、填料封闭式熔断器RT0系列

熔断器种类及选择

对熔断器的选择要求是: 在电气设备正常运行时,熔断器不应熔断;在出现短路时,应立即熔断;在电流发生正常变动(如电动机起动过程)时,熔断器不应熔断;在用电设备持续过载时,应延时熔断。对熔断器的选用主要包括类型选择和熔体额定电流的确定。 选择熔断器的类型时,主要依据负载的保护特性和短路电流的大小。 例如,用于保护照明和电动机的熔断器,一般是考虑它们的过载保护,这时,希望熔断器的熔化系数适当小些。所以容量较小的照明线路和电动机宜采用熔体为铅锌合金的RC1A系列熔断器,而大容量的照明线路和电动机,除过载保护外,还应考虑短路时分断短路电流的能力。若短路电流较小时,可采用熔体为锡质的RCIA系列或熔体为锌质的RM10系列熔断器。用于车间低压供电线路的保护熔断器,一般是考虑短路时的分断能力。当短路电流较大时,宜采用具有高分断能力的RL1系列熔断器。当短路电流相当大时,宜采用有限流作用的RT0系列熔断器。 熔断器的额定电压要大于或等于电路的额定电压 熔断器的额定电流要依据负载情况而选择。 ①电阻性负载或照明电路,这类负载起动过程很短,运行电流较平稳,一般按负载额定电流的1~1.1倍选用熔体的额定电流,进而选定熔断器的额定电流。 ②电动机等感性负载,这类负载的起动电流为额定电流的4~7倍,一般选择熔体的额定电流为电动机额定电流的1.5~2.5倍。这样一般来说,熔断器难以起到过载保护作用,而只能用作短路保护,过载保护应用热继电器才行。

熔断器型号规格用途对照大全 第一位:产品字母代号(R-熔断器) 第二位:使用环境(N-户内,W-户外) 第三位:设计序号(1,2,3……) 第四位:额定电压(KV) 第五位:结构特点(H-带有限流电阻,Z-带重合闸,T-带热脱扣器) 第六位:额定电流(A) 1;熔断器型号:QX374-RN2 用于1000v以下电力设备保护 2;PW10户外跌落式熔断器 产品名称:PW10户外跌落式熔断器 产品型号:RW10-100 RW10-200 10KV-15KV 产品概述:PW10户外跌落式熔断器采用IEC60282、GB15166标准!适用于交流50Hz,额定电压为10KV ∽35KV户外架空配电系统上,作为线路或电力变压器的过载和短路保护用。

BUSSMANN熔断器产品手册

Circuit Protection Solutions Low Voltage Fuse Links Catalogue

Table of Contents Domestic Applications to BS1361 & BS1312 Consumer Unit Fuse Link4 Plug T op Fuse Links4 Industrial & Motor Applications to BS88 Offset Bolted Tags 5 - 7 Centre Bolted T ags8 - 9 Offset Blade Tags10 Merchandising Stand11 Industrial Applications to BS88 - 500Vdc Special DC Range Offset/Centre Bolted Tag12 Industrial Applications to BS88 - 660/690V Offset Bolted Tags 13 Centre Bolted T ags14 Special Tag Arrangements15 Street Lighting Applications to BS88 Offset Bolted Tags16 Utility Applications to BS88 House-Service Cut-Out Fuse Links17 J Type Fuse Links to BS88: Part 5 Cylindrical17 J Type Fuse Links to BS88: Part 5 Slotted/Non Slotted 18 Joint NATO Reference System Cylindrical/Offset Bolted T ag19 BS88 Fuseholders Camaster HRC Fuseholder20 Safeloc Fuseholder21 Cylindrical Domestic Fuses22 Domestic Fuses23 Cylindrical Industrial Fuses Class gG 24 Class aM25 CHD26 CHM27 CH28 NH Fuses - Dual Indicator Class gG - Low Power Loss29 - 30 Class gG 31 Class aM32 -33 Class gG - aM34 NH Fuses - Dimensions35 NH Fuseholders for Knife Fuses36 Dimensions for Knife fuse and Fuseholders (NH)37 - 38 NH Fuse Rails and Disconnectors39 - 41 DO Fuses42 DO Fuseholders43 D Fuses44 D Fuseholders45 Other Low Voltage Fuse Ranges 46 Medium Voltage Fuses and Isolators47 Ultra Fast Fuses and Holders48 - 49

熔断器选择原则

熔断器的选择 (一) 熔断器类型的选择 应根据使用场合选择熔断器的类型.电网配电一般用刀型触头熔断器(如HDLRT0 RT36系列);电动机保护一般用螺旋式熔断器;照明电路一般用圆筒帽形熔断器;保护可控硅元件则应选择半导体保护用快速式熔断器. (二) 熔断器规格的选择 1.熔体额定电流的选择 (1) 对于变压器、电炉和照明等负载,熔体的额定电流应略大于或等于负载电流. (2) 对于输配电线路,熔体的额定电流应略大于或等于线路的安全电流. (3) 在电动机回路中用作短路保护时,应考虑电动机的启动条件,按电动机启动时间的长短来选择熔体的额定电流. 对启动时间不长的电动机,可按下式决定熔体的额定电流IN熔体=Ist/(2.5~3) 式中Ist——电动机的启动电流,单位:A 对启动时间较长或启动频繁的电动机,按下式决定熔体的额定电流 IN熔体=Ist/(1.6~2) 对于多台电动机供电的主干母线处的熔断器的额定电流可按下式计算: In=(2.0~2.5)Imemax+∑Ime 注:In熔断器的额定电流;Ime电动机的额定电流;Imemax多台电动机容量最大的一台电动机的额定电流; ∑Ime其余电动机的额定电流之和. 电动机末端回路的保护,选用aM型熔断器,熔断体的额定电流In稍大于电动机的额定电流; (4) 电容补偿柜主回路的保护,如选用gG型熔断器,熔断体的额定电流In约等于线路计算电流1.8~2.5倍;如选用aM 型熔断器,熔断体的额定电流In 约等于线路电流的1~2.5倍. (5) 线路上下级间的选择性保护,上级熔断器与下级熔断器的额定电流In的比等于或大于1.6,就能满足防止发生越级动作而扩大故障停电范围的需要. (6) 保护半导体器件用熔断器,熔断器与半导体器件串联,而熔断器熔体的额定电流用有效值表示,半导体器件的额定电流用正向平均电流表示,因此,应按下式计算熔体的额定电流: IRN≥1.57 IRN ≈1.6 IRN 式中IRN 表示半导体器件的正向平均电流. (7) 降容使用 在20℃环境温度下,我们推荐熔断体的实际工作电流不应超过额定电流值.选用熔断体时应考虑到环境及工作条件,如封闭程度空气流动连接电缆尺寸(长度及截面) 瞬时峰值等方面的变化;熔断体的电流承载能力试验是在20℃环境温度下进行的,实际使用时受环境温度变化的影响.环境温度越高,熔断体的工作温度就越高, 其寿命也就越短.相反,在较低的温度下运行将延长熔断体的寿命. (8) 在配电线路中,一般要求前一级熔体比后一级熔体的额定电流大2~3倍,以防止发生越级动作而扩大故障停电范围. 2.熔断器的选择 (1)UN熔断器≥UN线路. (2)I N熔断器≥IN 线路. (3)熔断器的最大分断能力应大于被保护线路上的最大短路电流。 熔断器在工矿企业的生产过程中和日常生活中主要用于保护低压电器设备,由于使用于不同的电气设备,其容量、大小的选择原则差别很大,在实践中必须严格按照规程规定选择配置。否则,将失去其应有的保护作用。

保险丝选型手册

保险丝的应用指南 目录 一.保险丝的基本工作原理 二.管状保险丝的分类 三.选择保险丝的十个要素 四.小型管状保险丝的测试要求 五.小型管状保险丝的安全认证

一. 保险丝的基本原理 ----------------------------------------------- 1.结构: 在电路过电流保护元件中最常用的就是小型管状保险丝,它是由两端带有金属联接端子的管体和管内的金属熔体这两大主要部份所组成的,其外壳部份的作用是支撑和联接,大多数保险丝的外型是圆柱形的,即所称为管状的;关键的功能是由内部的熔体所决定的。 2.功能: 保险丝是串联在电路中的,一般要求其电阻要小(功耗要小),因此当电路正常工作时,保险丝只相当于一根导线,能够长时间稳定的使用;由于电源或外部干扰而发生电流波动时,保险丝也能承受一定范围的过载;只有当电路中出现较大的过载电流--故障或短路--时,保险丝才会动作,通过断开电流来保护电路的安全。 3.原理: 保险丝通电时因电流转换的热量会使熔体的温度上升,在负载正常工作电流或允许的过载电流时,电流所产生的热量和通过熔体,壳体和周围环境所幅射,对流和传导等方式散发的热量能逐步达到平衡;如果散热速度跟不上发热时,这些热量就会在熔体上逐部积蓄,使熔体温度上升,一旦温度达到和超过熔体材料的熔点就会使它熔化,从而断开电流,起到安全保护的作用。 4.名词术语: 额定电流:保险丝的公称工作电流,代号:In 额定电压:保险丝的公称工作电压,代号:Un 电压降:额定电流下保险丝两端的电压降,代号:Ud 冷电阻:保险丝不工作时本身的电阻值,代号:Rn

过载能力:保险丝能长期工作的过载电流(有些品种能在高温条件下) 熔断特性:保险丝工作的性能指标--负载电流和熔断时间两者的函数关系,即时间/电流特性 (也称为安-秒特性)。通常 有两种表达方法: ----熔断特性曲线:以负载电流为X座标,熔断时间为Y座标,由保险丝在不同电流负载下的平均熔断时间座标点 连成的曲线。每一个型号规格的保险丝都有一条相应的 曲线可代表它的熔断特性,这种曲线可用于选用保险丝 时的参考。 ----熔断特性表:由若干个具有代表性的负载电流值和对应的熔断时间所组成的表格。每一种型号的保险丝都有一 个熔断特性表,这种表格可用于检测保险丝时的依据。 分断能力:保险丝最重要的安全指标—在很大的过载电流(短路)时,保险丝能够安全分断的最大电流值。安全分断即是 指在保险丝分断电路是不发生喷溅,燃烧,爆炸等危及 周围元件部件以至人身安全的现象。代号:Ir 熔化热能值:使保险丝的熔体熔化所需要的公称能量值,是保险丝本身的一个参数。代号:I2 t

常用低压电器选型手册

常用低压电器选型手册 一、低压电器选型手册的一般原则: 1、低压电器的额定电压应不小于回路的工作电压,即Ue≥Ug。 2、低压电器的额定电流应不小于回路的计算工作电流,即Ie≥Ig。 3、设备的遮断电流应不小于短路电流,即Izh≥Ich 4、热稳定保证值应不小于计算值。 5、按回路起动情况选择低压电器。如,熔断器和自动空气开关就需按起动情况进行选择。 二、断路器的选型 保护:过载,短路,欠电压 一般选型: 1、断路器额定电压≥线路额定电压; 2、断路器额定电流≥线路计算负荷电流; 3、断路器脱扣器额定电流≥线路计算负荷电流; 4、断路器极限通断能力≥线路中最大短路电流; 5、线路末端单相对地短路电流不小于1.25 倍的自动开关瞬时(或短延时)脱扣整定电流; 6、断路器欠电压脱扣器额定电压等于线路额定电压。 1、配电用断路器的选型: 1、长延时动作电流整定为导线允许载流量的0.8~1 倍; 2、3 倍长延时动作电流整定值的可返回时间不小于线路中最大起动电流的电动机的起动时间; 3、短延时动作电流整定值不小于1.1(Ijx+1.35kIedm)。Ijx 为线路计算负荷电流;k 为电动机起动电流倍数,Iedm 为最大一台电动机额定电流; 4、短延时时间按被保护对象的热稳定校验; 5、无短延时时,瞬时电流整定值不小于1.1(Ijx+1.35k1kIedm)。k1 为电动机起动电流的冲击系数,取1.7~2。 如有短延时,则瞬时电流整定值不小于1.1 的下级开关进线端计算短路电流值。

2、电动机保护用自动开关的选型: 1、长延时电流整定值=电动机额定电流; 2、6 倍长延时电流整定值的可返回时间≥电动机起动时间; 3、鼠笼形瞬时整定电流为8~15 倍脱扣器额定电流;绕线形瞬时整定电流为3~6 倍脱扣器额定电流。 3、照明用自动开关的选型: 1、长延时电流整定值不大于线路计算负荷电流; 2、瞬时电流整定值=6 倍的线路计算负荷电流。 三、刀开关的选型 保护:主要用作隔离开关,不切断故障电流,只能承受故障电流引起的电动力和热效应。 选型: 1、按额定电压选: 刀开关额定电压≥刀开关工作电压。 2、按额定电流选: 刀开关额定电流≥刀开关工作电流。如电路中有电动机,工作电流应按电动机起动电流计算。 3、按热稳定和动稳定校验: imax≥ich imax:最大允许电流。 ich:三相短路冲击电流。 四、熔断器选型 保护:短路,若作过载保护,可靠性不高。 1、熔断器熔体的选择 (1)按正常工作电流选择 熔体额定电流≥线路计算电流 (2)按短路电流校验动作灵敏性 Idmin/Ier≥Kr Idmin:被保护线路最小短路电流Kr:熔断器动作系数,一般为4

快熔及元件选型.九方

整流元件与快速熔断器的选型 西安九方科技开发有限公司王颐龙董卫社 前言 在变流设备及装置中,元件与快速熔断器匹配不恰当,往往出现元件、快速熔断器频繁发生故障损坏或快速熔断器起不到保护作用的现象,从而造成设备不能正常稳定、有效地运行,故二者的合理匹配对设备的正常运行非常重要。 本文对变流设备及变流装置中主要元器件晶闸管、快速熔断器、变压器等的相关参数的计算给出了相应的公式,公式及系数来源于《电机工程手册》第32篇及多年从事变流设计的经验,在此对各参数的概念及定义和对公式及系数的推导不做讨论,只追求简捷与实用。 一、快速熔断器概述 快速熔断器简称快熔,主要由熔体(纯银)、触刀(铜)及瓷瓶(氧化铝)和填充材料(石英砂)组成。熔体焊接在两端的触刀(即安装的导电面)上,触刀用盖板紧固在瓷瓶两端,瓷瓶里面填充着灭弧介质石英砂。 快速熔断器是利用热效应原理工作的保护器件,当电路中发生故障短路或过载电流时,流过熔体的电流随之增大,快熔的熔体在极短的时间内产生大量的热量,当熔体的温度达到熔点时,开始熔化直至汽化,从而分断故障电流,达到保护整个电路和设备的作用。 快速熔断器的熔体熔断时一般分为四个阶段: 1.升温阶段:当熔体通过过载或短路电流时,熔体的温度会不断升高到熔化温度,此时 熔体并未开始熔化,而是仍处于固体状态。温度的上升率与电流的大小成正比。 2.熔化阶段:故障电流继续通过熔体产生大量的热量,熔体吸收热量开始熔化,熔体继 续熔化而温度不变。 3.电弧阶段:熔化了的金属在短时间内仍保持原来状态,熔体在电流的作用下继续产生 热量而使熔体温度不断升高直到汽化点,开始产生金属蒸气。此时,由于瞬间产生 的绝缘间隙很小,电流突然中断,电路电压立即击穿此间隙,产生电弧。 4.熄灭阶段:电弧形成后,汽化的金属离子扩散、渗透到周围灭弧介质石英砂中,电弧 能量被吸收,电弧间隙扩大而自行熄灭,快熔切断电流。 快速熔断器具有分断时间短,限流特性好的特点。其熔体多采用纯银(电阻率1.64×10-6Ω?cm熔点960℃热熔常数8×108A2S/CM4)材质,而不采用铜(电阻率1.7×10-6Ω?cm 熔点1083℃热熔常数11.72×108A2S/CM)和铝(电阻率2.86×10-6Ω?cm熔点660℃热

低压熔断器选用指南

很多的朋友迫切的想要了解熔断器的具体状况,那么今天我们特别为大家介绍熔断器的选择大家可以参考一下。更多知识请关注我们熔断器厂家焦作茗熔集团官方网站。 主要依据负载的保护特性和短路电流的大小选择熔断器的类型。对容量小的电动机和照明支线,常常采用熔断器作为过载及短路保护,因而希望熔体的熔化系数适当的小些。通常是选用铅锡合金熔体的RQA系列熔断器。而对于较大容量的电动机和照明干线,则应着重的考虑短路保护和分断能力。通常是选用具有较高分断能力的RM10和RL1系列的熔断器;当短路电流很大时,宜采用具有限流作用的RT0和RTl2系列的熔断器,熔体的额定电流可按以下方法选择: 1)保护无起动过程的平稳负载如照明线路、电阻、电炉等时,熔体额定电流略大于或等于负荷电路中的额定电流。 2)保护单台长期工作的电机熔体电流可按最大起动电流选取,也可按下式选取: IRN ≥ (1.5~2.5)IN 式中IRN--熔体额定电流;IN--电动机额定电流。如果电动机频繁起动,式中系数可适当加大至3~3.5,具体应根据实际情况而定。3)保护多台长期工作的电机(供电干线) IRN ≥ (1.5~2.5)IN max+ΣIN IN max-容量最大单台电机的额定电流。ΣIN其余.电动机额定电流之和。 (3)熔断器的级间配合为防止发生越级熔断、扩大事故范围,上、下级(即供电干、支线)线路的熔断器间应有良好配合。选用时,应使上级(供电干线)熔断器的熔体额定电流比下级(供电支线)的大1~2个级差。

低压熔断器选用指南 熔断体设置在电路中主要功能是当电路发生故障时能安全可靠地切断,从而为各分立元器件或整个电路提供保护。以下为用户提 供选择熔断体时需要考虑的有关条件: 正常工作条件和安装条件 周围空气温度:-5℃~+40℃,且其24h 内的平均温度值不超过+35℃ 海拔高度:不超过2000m 大气条件:湿度:安装地点的空气相对湿度在最高温度为+40℃时不超过50%,在较低的温度下可允许有较高相对湿度。例如, 在20℃时,相对温度可达90%,对由于温度变化发生在产品上的凝露必须采取措施。 污染等级:三级 安装类别:III 类 环境温度 指直接环绕熔断体周围的空气温度,不应与室温相混淆。在许多实用场合,熔断体的温度相当高,这是因为熔断体是配置在不同 结构的支持件/ 底座中以及整个熔断器又是封闭在配电/ 控制柜中。 降容使用 在20℃环境温度下,我们推荐熔断体的实际工作电流不应超过额定电流值。选用熔断体时应考虑到环境及工作条件,如封闭程度、 空气流动、连接电缆尺寸( 长度、截面)、瞬时峰值等方面的变化;熔断体的电流承载能力试验是在20℃环境温度下进行的,实际使用

熔断器选择

照明电路熔体额定电流的选择:照明电路中的熔断器熔体一般采用铅--锑或铅--锡合金.对于照明配电支路,熔体的额定电流应大于或等于该支路实际的最大负载电流.但应小于支路中最细导线的安全电流. 照明电路的总熔体的额定电流应按下式进行选择: 总熔体额定电流(安)=(0.9-1)×电度表额定电流(安) 总熔体一般装在电度表出线上,熔体额定电流不应大于单相电度表的额定电流但必须大于电路中全部用电器用电时工作电流之和. 电动机电路中熔体额定电流的选择: (1)当电路中只有一台电动机时:熔体额定电流(安)≥(1.5-2.5)×电动机的额定电流(安).当电动机额定容量小,轻载或有降压启动设备时,倍数可选取小些;重载或直接启动时,倍数可取大些. (2)当一条电路中有几台电动机时:总熔体额定电流(安)≥(1.5-2.5)×容量最大一台电动机的额定电流(安)+其余几台电动机的额定电流之和(安). 对于直流电动机和利用降压启动的绕线式交流电动机,其熔断器熔体的额定电流应按下式进行选择: 熔体的额定电流(安)=(1.2-1.5)×电动机额定电流(安)配电变压器的高,低压侧熔体额定电流的选择: (1)对容量在100千伏安及以下的配电变压器,其高压侧熔体额定电流应按变压器高压侧额定电流的2-3倍选取; (2)对容量在100千伏安以上的配电变压器,其高压侧熔体额定电流应按变压器高压侧额定电流的1.5-2倍选取; (3)低压侧熔体额定电流可按变压器低压侧额定电流的1.2倍选取. 硅整流的快速熔断器熔体额定电流可按下式选择: I≤0.8Ie 式中I---快速熔体额定电流,安; Ie---硅整流器额定工作电流,安. 熔断器在使用中应注意的事项: (1)应正确选择熔体,保证其工作的选择性;

保险丝选型指南

保险丝选型指南 保险丝选型相关因素如下: 一. 工作电流(Normal operating current) 二. 使用电压(Application Voltage, AC or DC) 三. 周围温度(Ambient temperature) 四. 过载电流及熔断时间(Overload current and length of time in which the fuse must open) 五. 最大有效的故障电流(Maximum available fault current) 六. 脉冲(Pulses, Surge Currents, Inrush Currents,Start-up Current,and Circuit Transients) 七. 物理尺寸限制,如长度,直径或高度(Physical size limitations, such as length, diameter, or height) 八. 代理商认证要求,如UL, CSA,VDE, METI, MITI or Military(Agency Approvals required, such as UL, CSA,VDE, METI, MITI or Military) 一. 工作电流 保险丝的额定电流在25℃时,运行上是代表性地降低25%,避免nuisance blowing。例如,某保险丝的额定电流是10A,通常建议在周围温度25℃时运行电流不超过7.5A。 二. 使用电压 保险丝的额定电压,要大于或等于有效的电路电压。 三. 周围温度 保险丝的电流负载容量测试是在25℃时进行,会因为周围温度的改变而影响。较高的周围温度保险丝运行上较热,而且会缩短保险丝的使用寿命,相反的运行的温度较低,会延长保险丝的使用寿命。 正常运行电流趋近或超过保险丝的额定电流时,保险丝的运行温度也会较高。实际经验指出,保险丝在室温应该最后不确定地,假如运行电流不超过保险丝目录上电流的75%。

熔断器型号规格用途对照大全

1;熔断器型号:QX374-RN2 用于1000v以下电力设备保护 2;PW10户外跌落式熔断器 产品名称:PW10户外跌落式熔断器 产品型号:RW10-100 RW10-200 10KV-15KV 产品概述:PW10户外跌落式熔断器采用IEC60282、GB15166标准!适用于交流50Hz,额定电压为10KV ∽35KV户外架空配电系统上,作为线路或电力变压器的过载和短路保护用。 产品名称:370RSM□MZ (170M\3NE) 系列有填料方型插刀母线式快速熔断器 产品型号:370RSM□MZ80KN、370RSM□MZ110KN 产品概述:370RSM□MZ系列有填料方型插刀母线式快速熔断器采用GB13539、IEC60269、VDE0636标准! 适用于交流50Hz,额定电压交流690/700V,直流440V,额定电流至2000A,作为半导体器件短路故障保护。

产品名称:370RSM□MZ (170M\3NE) 系列有填料方型插刀母线式快速熔断器 产品型号:370RSM□MZ110TN、370RSM□MZ110KN 产品概述:370RSM□MZ系列有填料方型插刀母线式快速熔断器采用GB13539、IEC60269、VDE0636标准! 适用于交流50Hz,额定电压交流1000V,直流600V,额定电流至1400A,作为半导体器件短路故障保护。 产品名称:370RSM□MZ (170M\3NE) 系列有填料方型插刀母线式快速熔断器 产品型号:370RSM□MZ110、370RSM□MZ110TN 产品概述:370RSM□MZ系列有填料方型插刀母线式快速熔断器采用GB13539、IEC60269、VDE0636标准! 适用于交流50Hz,额定电压交流1250/1300V,直流1000V,额定电流至1400A,作为半导体器件短路故障保护。 产品名称:370RSM□MZ (170M\3NE) 系列有填料方型插刀母线式快速熔断器 产品型号:370RSM□MZ110KN

保险丝计算选型指南

保险丝计算选型指南 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

电流保险丝应用基本知识 一、保险丝的作用: 1、正常情况下,保险丝在电路中起连接电路作用。 2、非正常(超负载)情况下,保险丝做为电路中的安全保护元件,通过自身熔断安全切断并保护电路。 二、保险丝的工作原理: 保险丝通电时,由电能转换的热量使可熔体的温度上升。正常工作电流或允许的过载电流通过时,产生的热量通过可熔体、外壳体向周围环境辐射,通过对流、传导等方式散发的热量与产生的热量逐渐达到平衡。如果产生的热量大于散发的热量,多余的热量就逐渐积聚在可熔体上,使可熔体温度上升;当温度达到和超过可熔体的熔点时,就会使可熔体熔化、熔断而切断电流,起到了安全保护电路的作用。 三、保险丝的分类: 1、按外型尺寸分为:φ 2、φ 3、φ 4、φ 5、φ6及其它。 2、按熔断特性分为:快速熔断型、中等延时熔断型、延时熔断型。(还可分特快、强延时)。 3、按分断能力分为:低分断型、高分断型(还可分增强分断型)。 4、按安全标准(或使用地区)分为:UL/CSA(北美)规格、IEC(中国、欧洲等)规格、 MIT/KTL(日本/韩国)规格等。 5、其它分类。 四、保险丝的特性术语: 1、额定电流:保险丝管的公称工作电流(正常条件下,保险丝长期维持正常工作的最大电流)。 2、额定电压:保险丝的公称工作电压(保险丝断开瞬间,能安全承受的最大电压)。选用保险丝时,被选用保险丝的额定电压,应大于被保护回路的输入电压。 3、分断能力:当电路中出现很大的过载电流(如强短路)时,保险丝能安全切断(分断)电路的最大电流。它是保险丝最重要的安全指标。安全分断是指在分断电路中不发生喷溅、燃烧、爆炸等危及周围元、部件以至人身安全的现象。 4、过载能力(承载能力):保险丝能在规定时间内维持工作的最大过载电流。当流经保险丝的电流超过额定电流时,一段时间后熔体温度将逐渐上升以至最后被熔断。 UL标准规定:保险丝维持工作4小时以上,最大不熔断电流是额定电流的110%(微型保险丝 管为100%) IEC标准规定:保险丝维持工作1小时以上,最大不熔断电流是额定电流的150% 5、熔断特性(I-T):保险丝所加负载电流与保险丝熔断时间的关系。 A、熔断特性曲线(I-T曲线):在以负载电流为X轴,熔断时间为Y坐标的对数坐标系内,由保 险丝在不同负载电流下的平均熔断时间坐标点连成的曲线。每一种型号规格的保险丝都有一条 相应的曲线可代表其熔断特性,这种曲线很好地描绘了保险丝的过载性能。可供保险丝选用时 参考。 B、熔断特性表:由几个规定的具有代表性的负载电流值和对应的熔断时间范围所组成的表 格。各安全标准都已明确规定,这是验收保险丝的最主要依据。 例如UL、CSA、MIT/KTLA种规格快速熔断型,规定为: In 100% 4小时最小 In135% 1小时最大 In 200% 2分钟最大 6、熔化热能值(I2T):使保险丝的熔断体熔化,部份汽化的切断电流所需要的公称能量值,简单说就是使保险丝熔断所需的最小热能值。

美国BUSSMANN BAF及BAN系列熔断器datasheet,选型手册,规格资料

Recommended fuse blocks/fuse holders See Data Sheets listed below ? Open fuse blocks - 1104, 2104 ? Finger-safe fuse holders - 1109, 1102, 1103, 2053? Panel-mount fuse holders - 2114, 2113, 2108, 2112, 2109, 2140 ? In-line fuse holders - 2127, 2126 Catalog Symbol:BAF Fast-Acting 2 ?10to 30 UL Recognized , STD. 248-14 250Vac (2?10-15A) (GUIDE # JDYX, FILE # E19180)CSA CERTIFIED 250Vac (2?10-15A) (CLASS 1422-01, FILE # 53787)CE ? Fiber tube. ? Nickel-plated brass endcaps. .4 1 10 100200 CURRENT IN AMPS 100 10 1 .1 .01 T I M E I N S E C O N D S AMP RATING 10 1 3 1520 30 Part Interrupting Rating (amps)Direct Current Ratings Number 250Vac 125Vac Vdc IR (amps)BAF-2?103510,000--BAF-1?43510,000- -BAF-1?23510,000--BAF-6?103510,000- -BAF-8?103510,000--BAF-13510,000--BAF-1-1?210010,000--BAF-1-8?1010010,000--BAF-210010,000-- BAF-2-1?210010,000--BAF-310010,00015010,000BAF-420010,00015010,000BAF-520010,00015010,000BAF-620010,00015010,000BAF-6-1?420010,0001210,000BAF-720010,0001210,000BAF-820010,0001210,000BAF-920010,0001210,000BAF-1020010,0001210,000BAF-1275010,0001210,000BAF-1575010,0001210,000BAF-2020010,000--BAF-2520010,000--BAF-30 200 10,000 -- ?2010 Cooper Bussmann St.Louis,MO 63178 https://www.doczj.com/doc/f214391929.html, 0310 BU-SB091067Page 1 of 1Data Sheet 2011 The only controlled copy of this Data Sheet is the electronic read-only version located on the Cooper Bussmann Network Drive.All other copies of this document are by definition uncontrolled.This bulletin is intended to clearly present comprehensive product data and provide technical informa-tion that will help the end user with design applications.Cooper Bussmann reserves the right,without notice,to change design or construction of any products and to discontinue or limit distribution of any products.Cooper Bussmann also reserves the right to change or update,without notice,any technical information contained in this bulletin.Once a product has been selected,it should be tested by the user in all possible applications.

美国BUSSMANN FWH-(35-1600)A系列北美快速熔断器规格资料,选型手册,datasheet,图纸,尺寸图,安时曲线图

Bussmann ? Form No. FWH 500 Page 1 of 2BIF Doc #720007 FWH 500V 35-1600A 7-11-01SB01191

Bussmann ? The only controlled copy of this BIF document is the electronic read-only version located on the Bussmann Network Drive. All other copies of this document are by definition uncontrolled.This bulletin is intended to clearly present comprehensive product data and provide technical information that will help the end user with design applications. Bussmann reserves the right,without notice, to change design or construction of any products and to discontinue or limit distribution of any products. Bussmann also reserves the right to change or update, without notice, any technical information contained in this bulletin. Once a product has been selected, it should be tested by the user in all possible applications. Form No. FWH 500 Page 2 of 2BIF Doc #720007 FWH 500V 35-1600A Order #Fig.A B C D E F G H J FWH-35B-60B 1 3.1880.813 1.593 2.541 2.1930.3440.7190.1250.518FWH-70B-100B 1 3.6250.947 1.736 2.853 2.8070.3520.7500.1250.375FWH-125B-200B 1 3.625 1.156 1.836 2.892 2.7680.344 1.0000.1880.406FWH-225A-400A 1 4.340 1.500 2.090 3.440 2.7500.410 1.0000.2500.750FWH-450A-600A 1 4.340 2.000 2.090 3.530 2.7800.410 1.5000.2500.780FWH-700A-800A 1 6.340 2.500 2.090 4.970 3.4400.530 2.0000.380 1.300FWH-1000A-1200A 1 6.969 3.000 3.219 5.465 4.475 0.625 2.375 0.438 1.120 FWH-1400A-1600A 2 See Drawing Dimensions 500 400 250 100 1.51.0 0.5 0.30.2 0.15 E g K 1)2) U L 2.01.61.2 103 800600 500400300100 400 300 200 500 E g 2)1) K p 1.0 0.80.40.50.60.30.2 0.1 304050 60 70 8090100% I b Fig. 1: 35-1200 Amp Range Fig. 2: 1400-1600 Amp Range Dimension in inches. 1mm = 0.0394∑ 1∑ = 25.4mm 1) 35-800 Amp Range 2) 1000-1600 Amp Range 1) 35-200 & 1000-1600 Amp Range 2) 225-800 Amp Range Total Clearing I 2t The total clearing I 2t at rated voltage and at power factor of 15% are given in the electrical characteristics. For other volt-ages, the clearing I 2t is found by multi-plying by correction factor, K, given as a function of applied working voltage,E g , (RMS). Arc Voltage This curve gives the peak arc voltage,U L ,which may appear across the fuse during its operation as a function of the applied working voltage, E g , (RMS) at a power factor of 15%. Power Losses Watts loss at rated current is given in the electrical characteristics. The curve allows the calculation of the power losses at load currents lower than the rated current. The correction factor, K p ,is given as a function of the RMS load current, I b , in % of the rated current. Electrical Characteristics 7-11-01SB01191

大功率整流器中快速熔断器的选型

大功率整流器中快速熔断器的选型摘要:说明了作为大功率整流器中整流管或晶闸管的短路保护元件——快速熔断器的选型与参数计算。 关键词:整流器;快速熔断器;短路保护 快速熔断器在大功率整流器中与整流管或晶闸管串联连接,作为对整流器件短路故障的保护元件。当整流器件发生反向击穿故障时,快速熔断器快速分断故障支路的短路电流,保护整流器免受故障短路电流的危害。 1 大功率整流器的特点 大功率整流器可以电解铝用整流器为代表,在我国随着单个电解槽产量的提高,电解铝的年产量已由100kt增加到140kt,于是槽电压已由800V提高到1200V,槽电流已由160kA增至280kA,相应的整流变压器容量已提高到75~100MVA。单台输出电流高达50~75kA的整流器,对整流管、快速熔断器也提出了更高的技术要求。 图1为年产140kt电解铝用直流系统图,它由四组整流机组并联组成,其中一组为备用。每组整流变压器容量2×54.99MVA,向二台1220V、37kA整流装置供电。整流器采用三相桥式同相逆并联电路,每桥臂由4只ZP-4800V/4500A整流管并联组成,下面讨论如何选用合适的快速熔断器进行保护。 图1 整流系统结构图 2 快速熔断器的选用 2.1 熔断器的额定电压U NF U NF值应稍大于熔断器熔断后两端出现的外加电压稳态最大有效值。对数台整流器并联运行的直流供电系统,当其中某一桥臂短路时,或逆变器中发生桥臂直通故障时,施加在熔断器二端的电压为交流电压U VO与部分直流电压U do之和,可按下式计算[1]:

>(三相桥式电路)>(双反星形电路) =·

相桥臂短路电流幅值的60%与54%。短路电流的幅值大小与产生短路的时刻(合闸角)及短路电路中的感抗X与电阻R值等因素有关。从这个观点考虑,在多个整流管并联的桥臂中,快速熔断器的I2t F值允许大于串联连接的整流管的I2t D值,但不宜相差太多。众所周知,熔断器的熔断能量I2t F是熔化能量I2t1与燃弧能量I2t2之和,即I2t F=I2t1+I2t2,I2t1值约为(15~25)%I2t F。因此,在选用快速熔断器时,要防止流过健全臂中熔断器的I2t1值过大,否则会引起健全臂中熔断器热疲劳损坏及整流管的过载损坏。 图2 模拟整流管击穿短路时的相关波形图 熔断器的I2t F值与其设计参数,生产工艺有关。因此,由于生产厂家不同,设计参数不同,生产工艺不同,国内外厂家生产的相同额定电压,额定电流的快速熔断器,却有着不同的I2t F值。如西安西整熔断器厂生产的1000V,6000A快速熔断器老产品的I2t F值为76×106A2s,而该企业的新产品RS-1000V/6000AP115SS型快速熔断器(1000V、6000A)的I2t F值为55×106A2s,二者相差38%。因此,在设计大功率整流器时,对于具有相同电压和电流的快速熔断器应优先选用I2t F值较小的。 按上所述,针对图1中的大功率整流器选用快速熔断器时,应选用I2t F值为 40×106A2s,与ZP 4800V/4500A整流管的I2t D相比,后者I2t D值为30×106A2s,尚小于前者,但相差不大。由于桥臂上有四只整流管并联工作,这样选用快速熔断器是合理的,并且是可靠的。 2.4 分断能力的核算 大功率整流器的整流变压器容量大,当变压器阀侧桥臂短路时,短路电流相当大,整流器或直流电源系统设计时应计算桥臂短路电流值与直流侧短路电流值。被选用快速熔断器的分断能力应大于可能流过故障支路熔断器的最大短路电流值,否则快速熔断器在分断短路电流时可能会发生瓷套炸裂、喷弧、甚至烧损整流器等现象。 文献[3]曾对图1所示整流电路的桥臂短路电流进行过计算,流过桥臂故障整流管的稳态短路电流有效值I bD=186kA,直流侧短路时,短路电流平均值I bDp1=100.12kA。 在数台整流器并联的直流电源系统中,对三相桥式电路的桥臂熔断器核算其分断短路电流值时,可以计算整流变压器阀侧短路的稳态电流有效值。但对双反星型电路的整流器来说,流过故障桥臂熔断器的短路电流除上述变压器阀侧短路的交流分量外,尚包含其余并联整流器输入的直流电流分量,这时,快速熔断器应有更高的分断能力。过去国产快速熔断器的分断能力为50、70、100kA数种,已不能适应大功率整流器配套的需要。目前,西安

相关主题
文本预览
相关文档 最新文档