当前位置:文档之家› 实验小鼠肠道微生物的研究现状

实验小鼠肠道微生物的研究现状

实验小鼠肠道微生物的研究现状
实验小鼠肠道微生物的研究现状

微生物农药的应用现状和发展前景

微生物农药的应用现状和发展前景 摘要化学农药的使用能够控制病虫害,增加作物的产量,但在土壤、空气和粮食中的残留也带来了环境污染、生态平衡破坏和食品安全等一系列问题。微生物农药是指微生物及其代谢产物,和由它加工而成的、具有杀虫、杀菌、除草、杀鼠或调节植物生长等活性的物质,包括活体微生物农药和农用抗生素两大类。前者主要包括Bt制剂、病毒杀虫剂、真菌杀虫剂和真菌除草剂;后者主要指微生物所产生的一些有活性的次级代谢产物及其化学修饰物。微生物农药由于其广谱、高效、安全、环境相容性好等特点,日益受到重视。本文介绍了微生物农药的种类、特点、应用现状,并在此基础上对其发展前景进行了展望。 关键词微生物农药;应用现状;发展前景 1.传统化学农药和微生物农药的比较 1.1传统化学农药产生的危害 1.1.1对土壤的影响 传统化学农药施用以后,一部分残留在农作物表面,一部分直接进入土壤,被土壤颗粒吸附。大气中的残留农药和农作物上的农药经雨水淋洗进入土壤,直接或间接与土壤接触,杀灭土壤中的微生物,影响土壤的腐熟和透气性,破坏土壤结构和土壤肥力,影响作物生长发育。 1.1.2破坏生态平衡 在杀灭害虫的同时,也杀灭了害虫的天敌,破坏了生态平衡,导致害虫种群急剧上升。有些次要的害虫,由于天敌数量急剧减少,很快发展为主要害虫。 1.1.3产生抗药性 针对一种害虫长期使用同种农药,往往会使其产生抗药性,从而导致农药浓度及用药频率增加,使农药残留更高。 1.1.4威胁食品安全和人体健康 化学农药在蔬菜水果上的残留会对食品安全造成巨大的威胁。农药通过饮食或食物链间接进入人体造成急性或慢性中毒,甚至致癌,危害人体健康。 1.2微生物农药的优点 与传统化学农药相比,微生物农药具有以下优点:(1)对病虫害的防治效果良好。病原

生物农药的发展与苏云金杆菌杀虫剂研究现状_刘保民

2011.01B 总第206期生物农药的发展 在全球范围内,由于农业病虫害所造成的农产品损失每年达到15%~25%.大规模地使用化学农药是当前控制害虫的主要策略。这一措施虽然对于稳定农业产量具有一定的积极作用,但是,由于化学农药的杀虫谱广,田间残效期较长,容易诱发害虫对其产生抗药性,特别是化学农药对农产品和环境的污染,导致妇女流产、婴儿畸变以及诱发人类癌症等各种疾病。因此,使用生物农药防治害虫越来越受到人们的重视。 1.生物农药发展概况 随着人类环境保护意识的增强,高效低毒的生物农药已成为当今农药的发展方向。生物农药是指非人工合成,具有杀虫、杀菌或抗病、除草能力的,并可以制成具有农药功效和商品价值的生物制剂,包括微生物源农药(细菌、病毒、真菌及其次生代谢产物)、植物源农药、动物源农药和抗病虫草害的转基因植物等。相对于常规的化学农药而言,生物农药具有作用方式独特,防治对象专一,对天敌等有益生物安全,用量小,降解快,对人、畜、环境风险性低,适用于病、虫、草害综合防治等特点。1992年,世界环境与发展大会曾明确指出,到2000年要在全球范围内控制化学农药的销售和使用,生物农药的用量达到60%,然而,目前生物农药在全球农药销售总量中仅占2%的市场份额,与预期目标相差甚远。因此,大力发展生物农药已经成为世界各国共同面临的重大任务。我国有关部门提出到2015年,要求生物农药的使用占农药总量的30%~50%,按此比例计算,当前我国农药耗用量每年达120万t,年需生物农药量至少在60万t以上。至2002年底,包括转基因棉花,我国生物农药年产量仅占到农药总产量的10%左右,推广应用面积占到农药总应用面积的12%左右。可见发展生物农药已经成为我国急待解决的重大问题之一。目前,我国正式注册的农药生产企业近2000家,品种约250种,年产量近40万t,总产量仅次于美国。其中,化学农药占农药总量的90%以上,生物农药所占比例不足10%,我国农药品种结构老化,高毒品种仍在继续使用,集中表现为“3个70%”,即杀虫剂约占农药总产量的70%,有机磷农药约占杀虫剂的70%,几个高毒老品种,如,甲胺磷、甲基对硫磷、敌敌畏等约占有机磷农药的70%,这种现状已不能适应现代农业生产发展和环境保护的要求。 生物农药在我国发展有两个高潮,即20世纪60年代-70年代和20世纪90年代以后。在前一个高潮阶段由于当时生物技术水平相对较低,满足不了生物农药对工艺、贮藏和运输要求的条件,除井冈霉素外,未形成有影响的产品。进入20世纪90年代以后,由于生物技术尤其是微生物技术的进步,为生物农药的开发提供了便利,形成了第二个高潮。据《农药登记公告》统计,我国已商品化的生物农药产品主要有以下几类:苏云金杆菌、核型多角体病毒、阿维菌素和农用抗生素等。 不同种类的生物农药各有特点,病毒类生物农药由于病毒无法离体培养,生产中需要大量养殖昆虫,从而使大规模生产受到限制;真菌类生物农药,由于大量培养抗逆孢子技术没有突破,致使产品的保存期和稳定性达不到农药登记的要求,造成规模化生产存在一定的难度;植物源农药由于需要种植大量植物,工业规模化生产受到土地、植被和生态保护等限制;动物源农药主要是被开发成仿生合成农药,直接开发成生物农药难度很大;转基因植物,由于安全性评价问题也影响其推广应用。以苏云金杆菌为代表的细菌类杀虫剂,由于 山西省芮城县生物农药厂刘保民 与 苏云金杆菌杀虫剂研究现状 27 AGRICULTURAL TECHNOLOGY&EQUIPMENT

微生物发展历程及前景展望

微生物学发展历程及前景展望 微生物学(microbiology)生物学的分支学科之一。它是在分子、细胞或群体水平上研究各类微小生物的形态结构、生长繁殖、生理代谢、遗传变异、生态分布和分类进化等生命活动的基本规律,并将其应用于工业发酵、医学卫生和生物工程等领域的科学。 微生物学是高等院校生物类专业必开的一门重要基础课或专业基础课,也是现代高新生物技术的理论与技术基础。基因工程、细胞工程、酶工程及发酵工程就是在微生物学原理与技术基础上形成和发展起来的;《微生物学》也是高等农林院校生物类专业发展及农林业现代化的重要基石之一。随着生物技术广泛应用,微生物学对现代与未来人类的生产活动及生活必将产生巨大影响。 一、发展历程 (一)微生物学的经验时期 公元二千多年的夏禹时代,就有仪狄作酒的记载。北魏(386~534)贾思勰《齐民要术》一书中,详细地记载了制醋方法。我国古代人民也发现豆类的发酵过程,从而制成了酱。 十一世纪时。北宋未年刘真人就有肺痨由虫引起之说。意大利学者Fracastoro 认为传染病的传播有直接、间接和通过空气等几种途径。 在预防医学方面,我国自古以来就有将水煮沸后饮用的习惯。明李时珍的《本草纲目》中,亦有对病人穿过的衣服应该进行消毒的记载。 我国古代人民,创用了预防天花的人痘接种法。大量古书证明,我国在明代隆庆年间,人痘已经广泛使用,并先后传至俄国、日本、朝鲜、土耳其、英国等国家,人痘接种是我国对预防医学的一大贡献。 (二)实验微生物学时期 1.微生物的发现 首先看到微生物的是荷兰人列文虎克。他于1676年创制了一架原始显微镜,正确地描述了微生物的形态有球形、杆状、螺旋样等,为微生物的存在提供了有力证据。 法国科学家巴斯德首先实验证明有机物质的发酵与腐败是由微生物引起。巴斯德的研究开始了微生物的生理学时期。自此,微生物学开始成为一门独立的学科。 巴斯德创造了巴氏消毒法。随后,英国外科医师李斯德创用石碳酸喷洒手术室和煮沸手术用具,以防止外科手术的继发感染,为防腐、消毒以及无菌操作打下基础。 微生物学的另一奠基人是德国学者郭霍。他创用固体培养基,使有可能将细菌从环境或病人排泄物等标本中分出成为纯培养,便于对各种细菌分别具体研究。后又创用了染色方法和实验性动物感染,为发现各种传染病的病原体提供有利条件。 2.免疫学的兴起 十八世纪末,英国医师Jenner创制牛痘苗来预防天花,为预防医学开辟了广

农药微生物降解研究进展32237

农药的微生物降解研究进展.txt25爱是一盏灯,黑暗中照亮前行的远方;爱是一首诗,冰冷中温暖渴求的心房;爱是夏日的风,是冬日的阳,是春日的雨,是秋日的果。摘要:综述了在环境中降解农药的微生物种类、微生物降解农药的机理、在自然条件下影响微生物降解农药的因素及农药微生物降解研究方面的新技术和新方法。文章认为,在农药的微生物降解研究中,应重视自然状态下微生物对农药的降解过程,分离构建应由天然的微生物构成的复合系,利用微生物复合系进行堆肥或把堆肥应用于被污染的环境是消除农药污染的一个有效方法。 关键词:微生物生物降解农药降解农药 20世纪60年代出现的第一次“绿色革命”为人类的粮食安全做出了重大贡献,其中作为主要技术之一的农药为粮食的增产起到了重要的保障作用。因为农药具有成本低、见效快、省时省力等优点,因而在世界各国的农业生产中被广泛使用,但农药的过分使用产生了严重的负面影响。仅1985年,世界的农药产量为200多万t[1];在我国,仅1990年的农药产量就为22.66万t[2],其中甲胺磷一种农药的用量就达6万t[3]。化学农药主要是人工合成的生物外源性物质,很多农药本身对人类及其他生物是有毒的,而且很多类型是不易生物降解的顽固性化合物。农药残留很难降解,人们在使用农药防止病虫草害的同时,也使粮食、蔬菜、瓜果等农药残留超标,污染严重,同时给非靶生物带来伤害,每年造成的农药中毒事件及职业性中毒病例不断增加[3~6]。同时,农药厂排出的污水和施入农田的农药等也对环境造成严重的污染,破坏了生态平衡,影响了农业的可持续发展,威胁着人类的身心健康。农药不合理的大量使用给人类及生态环境造成了越来越严重的不良后果,农药的污染问题已成为全球关注的热点。因此,加强农药的生物降解研究、解决农药对环境及食物的污染问题,是人类当前迫切需要解决的课题之一。 这些农药残留广泛分布于土壤、水体、大气及农产品中,难以利用大规模的项目措施消除污染。实际上,在自然界主要依靠微生物缓慢地进行降解,这是依靠自然力量、不产生二次污染的理想途径。但自然环境复杂多变,影响着农药生物降解的可否和效率。近年随着对农药残留污染问题的重视,科学家们对农药生物降解进行了大量的研究,但许多问题需要进一步探明。本文整理出了近年来对农药生物降解的研究进展,提出存在的问题,建议有效的研究途径,旨在为加强农药的生物降解研究、解决农药对环境及食物的污染问题提供依据。 1 农药的微生物降解研究进展 1.1 农业生产上主要使用的农药类型 当前农业上使用的主要有机化合物农药如表1所示。其中,有些已经禁止使用,如六六六、滴滴涕等有机氯农药,还有一些正在逐步停止使用,如有机磷类中的甲胺磷等。 表1 农业生产中常用农药种类简表[7] 类型农药品种 有机磷:敌百虫、甲胺磷、敌敌畏、乙酰甲胺磷、对硫磷、双硫磷、乐果等 杀虫剂有机氮:西维因、速灭威、巴沙、杀虫脒等 有机氯:六六六、滴滴涕、毒杀芬等 杀螨剂螨净、杀螨特、三氯杀螨砜、螨卵酯、氯杀、敌螨丹等 除草剂 2,4-D、敌稗、灭草灵、阿特拉津、草甘膦、毒草胺等 杀菌剂甲基硫化砷、福美双、灭菌丹、敌克松、克瘟散、稻瘟净、多菌灵、叶枯净等 生长调节剂矮壮素、健壮素、增产灵、赤霉素、缩节胺等 人们发现,在自然生态系统中存在着大量的、代谢类型各异的、具有很强适应能力的和能利用各种人工合成有机农药为碳源、氮源和能源生长的微生物,它们可以通过各种谢途径把有机农药完全矿化或降解成无毒的其他成分,为人类去除农药污染和净化生态环境提供必要的条件。

水生动物肠道微生物研究进展

水生动物肠道微生物研究进展 作者:张美玲杜震宇 来源:《华东师范大学学报(自然科学版)》2016年第01期 摘要:动物体消化道栖息着一个数量庞大、种类繁多的微生物群落,肠道微生物与宿主生理代谢的相互关系已成为国际生物学界研究的热点之一.然而与高等动物相比,水生动物这方面的研究尚处于起步阶段.本文从水生动物肠道共生微生物形成的影响因素、水生动物肠道微生物的组成特点、肠道微生物对宿主的影响以及肠道微生物生态学研究策略方面综述了近年来国内外研究取得的进展,阐述了消化道微生物分子生态学研究在水生动物营养代谢、免疫及发育调控中的意义和发展前景. 关键词:肠道微生物;水生动物;益生菌;免疫调节;营养代谢 中图分类号:Q938.1 文献标识码:A DOI:10.3969/j.issn.1000-5641.2016.01.001 0引言 动物体消化道内栖息着一个数量庞大的微生物群落,约含1000~5000种微生物,并由此在宿主肠道内形成了一个复杂的微生态系统(micro-ecosystem).目前已知,消化道菌群与宿主及消化道环境(如食物、体温、pH值等)三者之间构成了相互作用与依赖的“三角”关系,共同参与营养物质的消化、吸收及能量代谢的过程,在高等动物中,已有很多研究阐明肠道微生物参与宿主营养代谢或免疫调节.新近的研究工作发现,人体肠道内的拟杆菌具有独特的碳水化合物结合结构域,可以有效地提高细菌对于膳食纤维的结合能力,增强其降解多糖的效率,帮助宿主利用膳食中的多糖类物质,人体肠道内的柔嫩梭菌(Fae-calibacterium prausnitzii)通过分泌特定的代谢物阻断NF-κB的激活及IL-8的产生,从而抑制肠道炎症疾病的发生,随着对肠道微生物功能解析工作的逐步深入,现在学界已逐渐认识到,在动物生理学尤其营养代谢研究中,必须充分考虑肠道细菌的作用。当前,高等动物肠道微生物与宿主生理代谢的相互关系与调控机制已成为国际生物学和医学的研究热点之一.然而水生动物肠道微生物与宿主生理的关联与调控研究尚处于起步阶段。相比于陆生脊椎动物,水生动物处于更为复杂的生态环境之中,其肠道微生物结构和陆生动物相比具有更大的多样性和复杂性,这也给水生动物肠道微生物研究带来了挑战。尽管如此,国内外仍有一些学者对水生动物肠道微生物进行了初步研究,并取得了较好的进展。 1水生动物肠道微生物结构形成的影响因素 与其它动物相类似,目前的研究表明水生动物的遗传背景、饲养环境、饲料组分均可以显著影响其肠道微生物的结构组成.关于宿主的遗传背景对肠道微生物的影响目前在国内外均有报道,研究发现处于不同生长环境中的斑马鱼肠道存在一个核心菌群,而生活在同一淡水环境

肠道微生物与人类

肠道微生物与人类健康 很多人认为,显微镜下才能看到的微生物和人们的生活关系不大,即便有关也不是我们需要了解的。但事实上,微生物和人类健康有着密不可分的关系。在我们身体的表面和内部,尤其是在肠道里,不为人知地“居住”着许多微生物。在人体内,渺小的微生物最有“发言权”。 我们体内有2公斤重的细菌,但是其中只有大约20%可以被培养和研究。绝大多数的“人体房客”至今还不为人所知,它们对人体的健康也还不被理解。 1、基本概念及综述 1.1 肠道微生物的定义:是一类生长在动物肠道中的微生物,它们构成了一个独特、多变的生态系统。这是在已发现的生态系统中细胞密度最高的系统之一。该系统中积聚着大量的微生物,同时细菌与宿主细胞之间紧密地接触在一起。 人类肠道微生物:即生长在人体内的肠道微生物。 1.2 肠道微生物的类别:分为两种,第一种称为正常菌群,第二种称为过路菌群,又称为外籍菌群。 正常菌群:数量是巨大的,约为1014左右,在长期的进化过程中,通过个体的适应和自然选择,正常菌群中不同种类之间,正常菌群与宿主之间,正常菌群、宿主与环境之间,始终处于动态平衡状态中,形成一个互相依存,相互制约的系统,因此,人体在正常情况下,正常菌群对宿主表现不致病。 过路菌群:是由非致病性或潜在致病性细菌所组成,来自周围环境或宿主其它生境,在宿主身体存留数小时,数天或数周,如果正常菌群发生紊乱,过路菌群可在短时间内大量繁殖,引起疾病。 1.3 肠道微生物的分布:在人类胃肠道内的细菌可构成一个巨大而复杂的生态系统,一个人结肠内就有400个以上的菌种。从口腔进入胃的细菌绝大多数被胃酸杀灭,剩下的主要是革兰氏阳性需氧菌。小肠微生物的构成介于胃和结肠的微生物结构之间。近端小肠的菌丛与胃内相近,但常能分离出大肠杆菌和厌氧菌。远段回肠,厌氧菌的数量开始超过需氧菌,其中大肠杆菌恒定存在,厌氧菌如类杆菌属、双歧杆菌属、梭状芽孢杆菌属,都有相当数量。在回盲瓣的远侧,细菌浓度急剧上升,结肠细菌浓度高达1011~1012 CFU/mL(CFU即colony forming unit,菌落形成单位),细菌总量几乎占粪便干重的1/3。其中厌氧菌达需氧菌的103~

微生物农药及其发展概况

微生物农药及其发展概况 王建伟 上海师范大学 环境工程系 2003级 0313530 摘 要:在食品安全日益备受关注的新世纪, 绿色食品的发展已成为国际食品工业的发展趋 势。作为生产绿色食品的生态农业生产模式. 生物农药的研制和应用是其能否成功实施的关 键因素之一。从真菌杀虫剂、细菌杀虫剂、病毒杀虫剂、 物农药以及抗生素类杀虫剂、 基因工程杀虫剂等微生物源生物活性物质 农药对微生物农药的 研究与开发现状进行了综述,并指出我国与国外微生物农药的发展差距。 关键词 : 绿色食品, 农药, 微生物农药, 微生物源生物, 微生物源生物活性物质, 发展差距, 发展前景 目前食品安全是全球关注的焦点,追求安全、无污染食品已成为当今社会的消费潮流。 距,人世后已面临更大的压力和挑战,因此,加快绿色食品工业的发展已是当务之急 能否成功实施的关键因素之一,生物农药中应用最多、效果最好的是微生物农药。 微生物农药 [2] 微生物农药就是指由微生物及其微生物的代谢产物和由它加工而成的具有杀虫 除草 、杀鼠或调节植物生长等具有农药活性的物质 [3]。 1.活体微生物源生物农药 株,杀菌剂方面有以色列开发出的名为 Trichodex 哈次木霉制剂,可以防治灰霉病、菌核病、 霜霉病、 白粉病等叶部病害已在欧洲和北美 20多个国家注册, 具有良好的市场前景。 除草剂 方面有美国Ecogen 公司等开发的用于防除水稻、 麦类田间杂草的盘长孢状刺盘孢、 防除柑橘 杂草的棕榈疫霉菌,日本和加拿大也有—些品种。 我国早在 20世纪 50年代后期就开始应用白僵菌防治食心虫、松毛虫、玉米螟等的研究, 并得至U 了不断地发展。近年又分离出了绿僵菌菌株,现正利用其进行蝗虫、蛴螬的防治及 虫生线虫杀虫剂等活体微生物源生 绿色食品由于安全无公害而受到人们的普遍青睐, 但我国绿色食品的发展与国外有较大的差 [1] 。 绿色食品是基于生态农业的农业生产模式生产的。 而生物农药的研制和应用是生态农业 、杀菌、 真菌——真菌可以被用作为杀虫、 杀菌、 除草的生物农药。 杀虫真菌目前世界上已记载 的约有 100属, 800多种。半知菌亚门集中了大约 50%的杀虫真菌。其中白僵菌是发展历史较 早、普及面积大、 应用最广的—种真菌杀虫剂。 美国和以色列等国家已筛选出了大量生防菌

2020肠道微生物与免疫的研究进展

2020肠道微生物与免疫的研究进展 人体正常的肠道微生物数量达1012~1014,其平均质量约为1.5 kg[1-2],约6~10个类群(3 000种)微生物组成[2-3]。婴儿在出生之后不久就有微生物在肠道定植,直到肠道微生物达到一个稳定的共生群[4]。肠道微生物对于宿主是有益的,在过去10年的研究中,已经发现肠道微生物在人体发育、肠道屏障、免疫调节、物质代谢、营养吸收、毒素排出,以及疾病的发生、发展等方面发挥着巨大的作用。肠道菌群的紊乱可能导致肥胖、肝硬化、糖尿病、心血管疾病,以及孤独症等各种疾病的发生。肠道微生物的主要功能是帮助宿主代谢,使能量和营养物质更好地被利用,为肠道上皮细胞提供营养,增强宿主免疫功能,帮助寄主抵抗病原菌[5]。最近,大量的研究表明,肠道微生物的代谢功能是非常重要的,并且效率远远超过肝的代谢功能。例如肠道微生物不仅可以影响视网膜的脂肪酸组成和眼睛晶状体、骨骼的密度、肠道血管的形成[6];而且可以提供必需的营养物质(生物素、维生素K、丁酸等)和消化食用纤维素[7]。肠道微生物同脊柱动物已经一起进化了几千年,因此,免疫系统正常功能(抵抗细菌病原体)的实施需要依靠肠道微生物。同时,肠道微生物是刺激“黏膜免疫系统”(mucosal immune system)和“全身免疫系统”(systemic immune system)成熟的重要因子[8-9]。许多实验研究发现肠道微生物的组成及代谢产物对免疫和炎性反应有很重要的影响。如果肠内部免疫系统

崩溃就会引起慢性肠炎疾病,例如克罗恩病和溃疡性结肠炎[10],然而,由于共生肠道微生物的多样性和很难断定哪种细菌是共生菌还是条件致病菌,所以对于肠道微生物定植反应的免疫调控是复杂的。近几年,肠道菌群与免疫的研究受到越来越多人们的关注。因此,本文就肠道微生物与免疫系统的关系做一综述。 1 肠道微生物群相关的疾病 近年来,大量肠道微生物与肠道生理功能关系的研究表明,肠道微生物在宿主健康与疾病方面有重要的作用[11],通过对炎性反应动物模型的研究已经确定肠道微生物与肥胖、糖尿病、过敏和哮喘等疾病的发展和变化有重要关系[12]。目前,已经有许多实验发现肠道微生物与肥胖和糖尿病有关,其中一个最新的研究表明,在遗传或者饮食诱导的肥胖小鼠肠道内Akkermansia muciniphila(一种存在于黏液层的黏液素降解菌,在健康情况下,它占肠道微生物菌群总数量的3%~5%)菌急剧减少,在饮食诱导的肥胖小鼠肠道内A. muciniphila的丰度比对照组小鼠低100倍,在饮食诱导的肥胖小鼠口服A. muciniphila后发现小鼠的体质量降低和身体指数得到改良;进一步研究发现,A. muciniphila可以降低胰岛素耐受性,控制脂肪储存、脂肪代谢、甘油酯和葡萄糖的稳态[13]。另一个研究通过比较Ⅱ型糖尿(T2D)和正常70岁欧洲妇女的肠道微生物组成,发现在有糖尿病的群体中,4个乳酸

生物农药的研究进展.

生物农药的研究进展 随着化学农药广泛的使用,靶标生物的抗药性逐渐增强,对其控制越来越难,使得近几年的化学农药毒性更强、浓度更高,导致整个农业生态系统已经日趋恶化,严重影响了自然生态平衡和生态系统的自我调节能力。而这些化学农药的开发难度和开发成本也很大, 同时化学农药毒性大、残留量高, 长期使用会对环境和人类健康造成严重威胁。因此,生物农药得以迅速发展,并获得独立的知识产权,成为创制新农药的重要途径。开发安全性高、残留量低、无公害、生物活性高、选择性强的生 物农药成为当今农药发展的趋势和迫切需要。在今后相当长一段时间内,生物农药将有较大发展,它将成为今后农药发展的一个重要方向,并逐渐成为研究和应用的热点。 生物农药指用来防治病、虫、草等有害生物的生物活体及其代谢产物和转基因产物, 并制成商品的生物源制剂。生物农药与传统化学农药的区别在于它们通常是控制而不是消灭病虫,具有延迟的作用,更具有选择性。生物农药具备以下优点: 第一,活性高, 选择性强,对非靶标生物相对安全;第二,不易产生抗药性;第三,高效,低 残留,无污染,常常能迅速分解,不破坏生态环境;第四,种类繁多,研发、利用途径多; 第五, 作为病虫综合防治项目 IPMP 的一个组成部分,作用机理不同于常规农药,不影响作物产量。因此,生物农药具有广阔的应用前景。 1. 生物农药的研究进展 据“发展中国家生物农药国际研讨会”上的专家们介绍,目前全世界投入化学农 药的总投资平均每年 280亿美元,但生物农药的投资只有 3.8亿美元,只占总额的 4%, 在中美洲生物农药只占地区农药市场的 2-3%,亚洲和拉美的生物农药的生产能力也很弱,但是鉴于世界各国消费者对于无害农产品的需求日益增长,生物农药的发展具有广阔的天地。在拉美,目前在使用生物农药方面领先的国家有古巴、哥伦比亚和巴西等。世界上生物农药使用量最多的国家有墨西哥、美国和加拿大,三国的生物农药使用量占世界总量的 44%。欧洲的生物农药使用量占全世界的 20%, 亚洲占13%, 大洋洲占 11%; 拉美和加勒比占 9%,非洲占 3%。

肠道菌群领域研究进展(完整版)

肠道菌群领域研究进展(完整版) 已有大量研究证实,肠道菌群与肥胖、糖尿病、高脂血症、高血压、心脑血管疾病、慢性肾病、神经系统疾病等相关,肠道菌群科学家们2019年在肠道微生物组研究领域取得了研究成果; 【1】Nat Biotechnol:突破!科学家在人类肠道微生物组中鉴别出100多种新型肠道菌群! 近日,一项刊登在国际杂志Nature Biotechnology上的研究报告中,来自英国桑格研究院等机构的科学家们通过对肠道微生物组研究,从健康人群的肠道中分离出了100多个全新的细菌类型,这是迄今为止研究人员对人类肠道菌群进行的最全面的收集研究,相关研究结果获奖帮助研究人员调查肠道微生物组在人类机体健康及疾病发生过程中所扮演的关键角色。 本文研究结果能帮助研究人员快速准确地检测人类肠道中存在的细菌类型,同时还能帮助开发出治疗多种人类疾病的新型疗法,比如胃肠道疾病、感染和免疫疾病等。人类机体中细菌大约占到了2%的体重,肠道微生物组就是一个主要的细菌聚集位点,同时其对人类健康非常重要。肠道微生物组的失衡会诱发诸如炎性肠病等多种疾病的发生,然而由于很多肠道菌群难以在实验室环境下生存,因此研究人员就无法对其进行更加直观地研究。

【2】Science:肠道微生物组可能是药物出现毒副作用的罪魁祸首 药物本是用于治疗很多患者,但是一些患者遭受这些药物的毒副作用。在一项新的研究中,来自美国耶鲁大学的研究人员给出了一种令人吃惊的解释---肠道微生物组(gut microbiome)。他们描述了肠道中的细菌如何能够将三种药物转化为有害的化合物,相关研究结果发表在Science期刊上。 研究者表示,如果我们能够了解肠道微生物组对药物代谢的贡献,那么我们能够决定给患者提供哪些药物,或者甚至改变肠道微生物组,这样患者具有更好的反应。在这项新的研究中,研究人员研究了一种抗病毒药物,它的分解产物可引起严重的毒副反应,并确定了肠道细菌如何将这种药物转化为有害的化合物。他们随后将这种药物给予携带着经基因改造后缺乏这种药物转化能力的细菌的小鼠,并测量了这种毒性化合物的水平。利用这些数据,他们开发出一种数学模型,并成功地预测了肠道细菌在对第二种抗病毒药物和氯哌嗪(一种抵抗癫痫和焦虑的药物)进行代谢中的作用。 【3】Nat Med:肠道微生物组的改变或与结直肠癌发生密切相关肠道中“居住”着很多不同的微生物群落,即肠道微生物组,其与人类健康和疾病息息相关,近来有研究表明,评估粪便样本中的遗传改变或能准确反映肠道微生物组的状况,或有望帮助诊断人类多种疾病。近日,一项刊登在国际杂志Nature Medicine上的研究报告中,来自

国内外生物技术发展现状

国内外生物技术发展概况 (2010-10-21 18:00:05) (一)国内外生物技术发展动态 1、国际生物技术发展现状生物技术是近 20 年来发展最为迅猛的高新技术,越来越广泛地应用于农业、医药、轻工食品、海洋开发、环境保护及可再生生物质能源等诸多领域,具有知识经济和循环经济特征,对提升传统产业技术水平和可持续发展能力具有重要影响。近 10 年来,生物技术获得突破性发展,生物技术产业产值以每 3 年增长 5 倍的速度递增,以生物技术为重点的第四次产业革命正在兴起,预计到 2020 年,全球生物技术市场将达到 30,000 亿美元。在发达国家,生物技术已成为新的经济增长点,其增长速度大致是 25%-30%,是整个经济增长平均数的 8-10 倍。在生物技术制药领域,包括基因工程药物、基因工程疫苗、医用诊断试剂、活性蛋白与多肽、微生物次生代谢产物、药用动植物细胞工程产品以及现代生物技术生产的生物保健品等研究成果迅速转化为生产力,其中与基因相关的产业发展最强劲。全球医药生物技术产品占生物技术产品市场的 70%以上,占药物市场的 9% 左右,以高于全球经济增长 5 个百分点的速度快速发展,仅单克隆抗体市场销售额就达 40 亿美元。农业生物技术产业已经成为各国政府未来农业发展的战略重点,应用基因工程、细胞工程等高新技术培育的农林牧渔新品种、兽用疫苗、新型作物生长调节剂及病虫害防治产品、高效生物饲料及添加剂等已推广运用,产生了巨大的经济效益。 1996 年,全球转基因作物才 170 万公顷,以后逐年直线上升,到 2004 年已经达到 8100 万公顷,8 年间全球转基因作物种植面积增加近 48 倍。照此增长速度预计 2010 年世界范围内 50%的耕地将种植转基因作物,2020 年将增至 80%。尤其是抗虫、抗除草剂转基因作物的推广,大幅度提高劳动生产率并减少化学农药施用量,经济效益极为显著。全球转基因作物市场价值 1995 年仅 7500 万美元, 1997 年达 6.7 亿美元,2002 年为 45.2 亿美元,预计到2010 年将达 200 亿美元。本文章来自生物科学博览网站,欢迎您的光临食品生物技术产业产值约占生物产业总产值的 15-20%,目前国际市场上以生物工程为基础的食品工业产值已达 2500 亿美元左右,其中转基因食品市场的销售额 2010 年将达到 250 亿美元。此外,保健食品行业是全球性的朝阳产业,市场增长迅速。环境生物技术是生物技术、工程学、环境学和生态学交叉渗透形成的新兴边缘学科,是 21 世纪国际生物技术的一大热点。环境生物技术兼有基础科学和应用科学的特点,在环境污染治理与修复、自然资源可持续再生等方面发挥着日益重要的作用。能源生物技术主要目标是利用生物质能源。生物质能一直是人类赖以生存的重要能源,是仅次于煤炭、石油和天然气而居世界能源消费总量第四位的能源。目前,全球储量为亿吨,相当于 640 亿吨石油。许多国家都制定了相应的开发研究计划,如日本的阳光计划、印度的绿色能源工程、美国的能源农场和巴西的酒精能源计划等,主要是开发生物柴油和生物乙醇汽油。尽管生物质液化燃料开发还处于初级阶段,市场份额还不大,但由于岂疫有环保和再生性特点,前景非常广阔。 2.国内生物技术发展现状我国政府一直把生物技术作为重点支持的战略高技术领域,提出了“加强源头创

微生物农药的研究应用及前景展望

第18卷 第1期 四川理工学院学报(自然科学版)V ol.18 No.1 JOURNAL OF SICHUAN UNIVERSITY OF 2005年3月 SCIENCE & ENGINEERING(NATURAL SCIENCE EDITION)Mar.2005文章编号:1673-1549(2005)01-0108-03 微生物农药的研究应用及前景展望 赵兴秀1,何义国2 (1.四川理工学院生物工程系,四川自贡643000;2.四川大学生命科学学院,四川成都 610064) 摘 要:综述了国内外微生物杀虫剂的研究、应用情况,展望了其发展前景,并对细菌杀虫剂、病毒杀虫剂、农用抗生素和真菌杀虫剂的研究、应用及进展情况进行了重点阐述。 关键词:微生物农药;Bt;病毒;抗生素;真菌 中图分类号:S4 文献标识码:A 微生物农药是指利用生物活体及其代谢产物制成的防治作物病害、虫害、杂草的制剂,也包括农药、辅助剂和增效剂以及模拟某些杀虫毒素和抗生素的人工合成的制剂[1]。当代农业的可持续发展战略,要求生产者在利用资源、提高产量的同时,注意保护和改善人们赖以生存的环境,而长期使用化学农药对生态环境的破坏日益严重,这就迫使人们急切寻找化学农药的替代品,微生物农药就成了较佳选择,近年来得到了广泛的开发和利用。目前,微生物农药主要包括细菌杀虫剂、农用抗生素、病毒杀虫剂和真菌杀虫剂等,本文仅就国内外微生物农药的研究、应用及发展前景进行阐述。 1 微生物农药 目前生产上大量使用的生物农药主要为细菌杀虫剂、农用抗生素、病毒杀虫剂、真菌杀虫剂等。 1.1 细菌杀虫剂 细菌杀虫剂是应用得最早的微生物农药,主要是从昆虫病体上分离得到的病原菌,目前已成功开发了某些芽孢杆菌,如Bt(苏云金芽孢杆菌)、球形芽孢杆菌,金龟子芽孢杆菌等。细菌杀虫剂作用对象主要是咀嚼式口器的害虫,如鳞翅目、翘翅目和双翅目等有害作物昆虫。球形芽孢杆菌对蚊幼虫特别是库蚊具有高毒力,金龟子芽孢杆菌可以防治芽孢害虫。新发现的类产碱假单孢菌可以分泌一种杀虫蛋白到胞外对蝗虫有一定的致死作用[2]。 Bt杀虫剂是细菌杀虫剂中研究最深入、应用最广泛的微生物杀虫剂[3]。Berliner于1911年首先从德国的带苏云金杆病毒的地中海粉螟中分离得到该菌[4]。其作用机理是依靠其所含有的伴孢晶体、外毒素及卵磷脂等致病物质引起昆虫肠道等病症而使昆虫致死。一般是δ-内毒素起作用使发生毒血症而死亡,也就是由于晶体毒素对中肠上皮作用,导致肠壁破损,中肠的碱性高渗内含物进入血腔,使血淋巴pH升高,从而导致感病幼虫麻痹死亡[5~6]。 1957年Bt制剂首次上市销售,如今是世界上产量最大的微生物杀虫剂,广泛用于防治农、林、贮藏害虫和医学昆虫[7]。据初步统计,1990年我国Bt杀虫剂产量超过1500吨,目前年产量约为3.5万吨,成为我国“无公害生产”中的首选杀虫剂[8],其主要通过液体深层发酵产生,剂型以悬浮剂、可湿性粉剂为主,还有原粉、水分散颗粒剂等[9]。每年防治棉铃虫面积达3000公顷。由于质量高,杀虫能力强,我国生产的Bt制剂还打开了国际市场,出口远销到新加坡、泰国等东南亚国家。在北美大陆Bt制剂用于防治毒蛾,市场占有率达60%;在美国Bt制剂用于防治粉纹夜蛾,市场占有率达80%以上,加拿大Bt制剂用于防治云杉粉芽蛾,市场占有率达95%以上[10]。 目前已报道有多种害虫对Bt制剂产生抗性,近年在我国的深圳、广州等地报道小菜蛾对Bt制剂已产生抗性,害虫对微生物农药的抗性无疑会对其应用效果和发展带来影响,且Bt制剂对家蚕的毒性较 收稿日期:2004-09-16 作者简介:赵兴秀(1977-),女,陕西人,助教,主要从事微生物病毒方面的研究。

肠道微生物体外模型研究进展

肠道微生物体外模型研究进展 随着分子微生态学,特别是高通量测序技术的发展,人类对肠道微生物的作用有了新的突破性认识。我们现在了解到人体和动物消化道系统中生长着大量的细菌,肠道中细菌的总数量甚至高出人体细胞总数的十倍。肠道微生物的菌群多样性受到多种因素的影响。其中环境和宿主的遗传背景在决定肠道菌群结构和组成方面各自起到50% 的作用。而且由于外部环境在肠道菌群结构形成过程中的巨大影响,个体之间肠道菌群结构和组成极为不同。目前的研究证明只有极少数的细菌存在于大多数人的肠道中。而个人之间菌群结构的不同反过来又直接影响到宿主的免疫系统发育和营养物质的吸收,甚至和自身免疫性疾病的产生相关。肠道微生物现在认为是人体的一个新“器官”。而肠道微生物生态的研究近十年来也受到了广泛的重视。但是肠道微生物研究存在的重要的瓶颈在于样品的采集。对正常人来说,除了收集粪便之外,小肠、升结肠、横结肠等部位的取样几乎不现实。另一方面,由于肠道细菌受到外部环境和宿主肠道环境的双重影响,如何区分外部环境和肠道内环境对肠道菌群的作用变得十分重要。所以,建立合理而易操作的体外模型对推动肠道微生态学、人体和动物营养学的发展非常有意义。本文就国内外目前经常使用的用于肠道微生态研究的体外肠道模型做一简单介绍。 体外肠道模型的发展 1 静止发酵或罐批量培养模型此模型为最原始、最简单的体外发酵模型。该发酵在小瓶子中或者pH 控制的批量发酵罐中进行。具体做法为在批量发酵罐中接入动物肠内容物或人粪便菌群的悬浮液,培养基中含有不同的待测碳水化合物或蛋白质,整个发酵过程在充满氮气或二氧化碳的下进行。该模型简单、易操作,可以同时对多种底物进行比较,所以用于对碳水化合物的初步筛选。缺点是只能用于短期的发酵研究,因为培养物内pH 和营养物水平变化很快群的改变导致该模型对肠道环境的模拟效果不理想。而且,由于死亡的细菌不能及时从发酵系统中清理出去,如果采用分子生态学的检测手段,如荧光定量PCR 或FISH 等方法无法区别死亡细菌还是活细菌,所以该模型不适用于使用16S rRNA 的分子生态学实验手段来测定菌群的变化,使用范围有比较大的局限性。但常规微生态学手段,如采用选择性培养基培养活细菌的方法还是能够测定菌群变化的。由于24 h 之后培养基中养分已被大量消耗,而发酵终产物不断累积,长时间培养结果离肠道实际内环境偏差很大。GIBSON 和FULLER 报道用此模型进行研究在48 h 内结果还是比较稳定可靠. 2 连续发酵培养系统食糜在人体和大部分单胃动物消化系统中按照口到肛门的单方向流动,所以肠道细菌在单胃动物肠道中的发酵可以看做是一种恒温连续发酵的过程。发酵工艺中连续发酵的特点和肠道发酵特点比较接近,所以通过恒化连续发酵工艺从理论上可以模拟肠道细菌发酵的自然过程。COATES 等首先设计了连续发酵培养系统,在这个系统中可以连续的加入新鲜培养基同时移除使用过的废液。随着设计工艺和制造技术的不断发展,研究人员已经可以在体外控制这个连续培养系统的pH、温度、氧化还原能和营养状态等,来控制发酵罐中细菌的数量与菌群结。最原始的连续培养是单相连续发酵模型。但由于大肠环境的复杂性及不同肠道位置的解剖结构和环境存在差异,单相连续发酵模型的局限性越来越明显,继而GIBSON 和MACFARLAN 等根据人体结肠的生理特点建立了三相连续发酵模型,同时通过比较该群的结构特点和突然死亡的人体肠道菌群的生理生化指标之间的相关性,对该模型的可靠性进行了验证。研究结果表明三相连续发酵模型能较好的模拟各个肠道解剖位置,即升结肠、横结肠和降结肠环境中肠道菌群的实际结构。现在常用的三相连续发酵系统由三个发酵瓶V1、V2 和V 3 串联而组成,它们各自的容积分别为0.22、0.32 和0.32 升,分别代表升结肠、横结肠和降结肠的生理位置。根据人体肠道不同解剖位置的实际生理特点,三个罐的pH 分别控制在5.5、6.2 和6.8,整体温度控制在37 ℃。每个发酵瓶都用磁力搅拌器以一定速度进行搅拌以混匀培养基,同时充入无氧氮气,以维持发酵瓶的厌氧环境。如图 1 所示,培养基从培养瓶依次流入V1,再从V1 流入V2,V2 流入V3,最后从V3 流入废液罐中。其营养物质的流向和人体结肠中营养物质的流同。连续培养模型目前广泛应用在肠道细菌的生理、生化研究 1.3 人类肠道微生态模拟器由于三相连续发酵模型仅仅模拟了人体结肠部位的肠道微生物小肠的微生物。1993 年MOLLY 等设计了一个五相反应器,命名为人类肠道微生态模拟器。该模拟系统被认为能够全方位,更好的的模拟人体肠道内的微环境。如图 2 所示,该系统温度仍然保持在37 ℃。其中Vessel l 模拟的是胃环境,反应体积是0.2 L,保留时间为 2 h,pH 控制在2.0 ~2.5。1.3 人类肠道微生态模拟器由于三相连续发酵模型仅仅模拟了人体结肠部位的肠道微生物生态过程,没有涉及胃和 Vessel 2 系统模拟小肠部位,反应体积为0.3 L,保留时间为6 h,pH 控制在5.0 ~6.0。Vessel 3、Vessel 4、Vessel 5 三相反应系统模拟升结肠、横结肠、降结肠部位,反应体积分别是.7、1.3、

农药的发展及现状

国内农药中杀虫剂的现状及发展 摘要:我国是一个农药生产和使用大国,我国现有农药生产企业2600多家,能够生产600多种农药原药的农药,在世界农药发展上占有举足轻重的地位。农药行业满足了农业生产防治病虫草害的需要,对于保证夏粮、秋粮丰收发挥了重要作用,功不可没。自2008年以来,农药工业大力调整结构,努力提高质量,积极拓展服务,在上半年取得了产销两旺、效益增长的好成绩,呈现出又好又快发展的态势。杀虫剂是农药中使用最多的一类,是主要用于防治农业病虫害和城市卫生害虫的药品。但是杀虫剂的危害却是不容忽视的,不单单对环境有较大危害,甚至会危及动物及人类的生存。所以,农药中杀虫剂的现状及发展就有待研究了,本文就是针对农药中杀虫剂的危害和改进方法,以及未来我国农药中杀虫剂的发展研究进行讨论。 关键词:杀虫剂;危害;改进;发展 前言 在我国农药的使用十分广泛,农药中的杀虫剂更是屡见不鲜,相关资料表明自十年前起,农药中杀虫剂占70%,杀虫剂中高毒农药占70%,高毒农药中有机磷农药占70%,到目前为止高毒农药所占的比例不到3%,多年以来,我国生产的农药中,杀虫剂一直占据主导地位,在杀虫剂中又是以高毒有机磷杀虫剂为主,其中甲胺磷、对硫磷、甲基对硫磷、久效磷和氧化乐果5个品种的使用规模最大。但是杀虫剂带来的危害也是比比皆是,在这种情况下便给生物农药杀虫剂的兴起创造了一个发展的平台。 1.农药杀虫剂的分类 在二十世纪,农业的迅速发展,杀虫剂令农业产量大升。但是,几乎所有杀虫剂都会严重地改变生态系统,大部分对人体有害,其它的会被集中在食物链中。我们必须在农业发展与环境及健康中取得平衡。那么农药杀虫剂的分类有哪些呢? 按化学成分来源和发展过程分 无机杀虫剂和有机杀虫剂。无机杀虫剂,如砷酸钙、亚砷酸、氟化钠等。有机杀虫剂包括天然的有机杀虫剂、人工合成有机杀虫剂和生物杀虫剂。1、天然的有机杀虫剂包括植物性杀虫剂(如鱼藤、除虫菊、烟草等)和矿物性杀虫剂(如机油、柴

肠道微生物菌群与慢性肾脏病的研究进展

中国血液净化2019年9月第18卷第9期Chin J Blood Purif,September,2019,Vol.18,No.9 ·综述· 肠道微生物菌群与慢性肾脏病的研究进展 王小琪1李忠心1 中图分类号:R692.5文献标识码:A doi:10.3969/j.issn.1671-4091.2019.09.017 肠道微生物群与宿主一直互利共存的,并在宿主的新陈代谢中扮演着重要角色。正常肠道微生物群以营养、代谢、生理和免疫功能等多方面影响着人体健康,而肠道微生物群菌群失调参与多种疾病的发生发展,如肥胖、2型糖尿病、炎症性肠病、心血管疾病等。目前越来越多的证据表明,肠道菌群失调参与了导致慢性肾脏病(chronic kidney disease,CKD)的进展以及并发症的发生,而补充益生菌可能对CKD 患者具有潜在的收益,本文就肠道微生物菌群与CKD 的关系,综述如下。1肠道微生物群人类的肠道具有极为复杂的生态环境,栖息着大约30属500多种细菌,超过1013的微生物细胞构成了肠道微生物群,即肠道菌群。通常成人的肠道中存在2种优势菌群,厚壁菌门和拟杆菌;其他的一些放线菌、变形菌则占较少的比例[1]。每种细菌在肠壁的特定位置定植,不同的细菌沿着肠道有不同的分布。肠道菌群的功能多样,甚至可以被认为是一个具有代谢活性的内生“器官”,在疾病的诊断、治疗和预防等诸多方面具有重要作用。1.1参与宿主代谢及免疫调控生理状态下,肠道菌群参与了那些宿主不能独立完成的代谢活动,如代谢不易消化的植物多糖,合成特定的维生素,转化结合胆汁酸,降解草酸盐等[2]。更为重要的是,肠道菌群促进了免疫系统的发展与成熟,并降低了食物和环境抗体诱发的过敏反应[3]。机体处于应激状态时去甲肾上腺素的释放会使致病性革兰氏阴性细菌的数量和种类增加。1.2构建肠道上皮屏障肠上皮细胞是指位于固有层表面的单层柱状上皮细胞,位于肠腔与固有层间,这些柱状上皮通过紧密连接结合在一起,构成肠道上皮屏障,对抗体和病原体的转移具有隔离作用。在良好的健康状况下,肠道屏障非常有效,肠腔内的一侧被肠道细菌大量繁殖,而基底外侧则保持无菌状态。共生的肠道微生物通过多种机制维持肠道功能的完整性,包括①恢复并维持紧密连接的蛋白结构;②诱导上皮细胞的热休克蛋白;③与致病菌竞争结合肠道上皮细胞;④分泌抗菌肽[4]。另一方面,肠道菌群通过降低肠道内炎症反应来维持肠上皮屏障。TOLL 样受体(Toll-like receptor,TLR)由模式识别受体家族组成,用于识别微生物的保守分子产物。肠道菌群通过细胞壁脂质酸激活TLR2来抑制肠道炎症,有效保 护了紧密连接,从而强化了肠道屏障[5]。 2CKD 与肠道菌群 最近,人们已经证明CKD 的发生及发展与肠道微生物菌群失调有关,肠道微生物群和肾脏疾病可以相互影响,互为因果,微生物菌群失调会增加肾脏疾病的易感性,并加重肾脏疾病的进展;而肾功能恶化也会加剧肠道菌群失调。 2.1肠道微生物菌群失调 由于肠道微生物群可以很好地适应生物环境的 变化,因此早期CKD 的患者中就可以观察到肠道细 菌的定量和定性发生变化。在早期CKD 患者体内,小肠中的需氧菌和厌氧菌较正常人有所增加,而结肠内的变形菌、放线菌和厚壁菌属也有增加。在终末期肾病(end-stage renal disease,ESRD)患者中,十二指肠和空场的需氧菌和厌氧菌较正常人群均有明显升高,而乳杆菌和普雷沃氏菌的数量则明显减少。在透析人群的研究中发现,虽然在细菌总 数上血液透析患者与普通人并无明显差异,但血液 透析患者体内的需氧菌约为正常人的100倍,肠杆菌属、肠球菌属等明显增多;厌氧菌方面,血液透析患者体内的双歧杆菌含量明显下降,产气荚膜杆菌 基金项目:潞河医院中心实验平台建设研究(KJ2019CX001-09) 作者单位:101199北京,1首都医科大学附属北京潞河医院肾病中心 通讯作者:李忠心101199北京,1首都医科大学附属北京潞河医院肾病中心Email:lymtics0327@https://www.doczj.com/doc/f214000640.html, ?? 646

相关主题
文本预览
相关文档 最新文档