当前位置:文档之家› 邮递员问题与旅行商问题讨论

邮递员问题与旅行商问题讨论

邮递员问题与旅行商问题讨论
邮递员问题与旅行商问题讨论

旅行商问题概述_郭靖扬

旅行商问题(TravelingSalesmanProblem,简称TSP)是一个著名的组合优化问题:给定n个城市,有一个旅行商从某一城市出发,访问每个城市各一次后再回到原出发城市,要求找出的巡回路径最短。如果用图论来描述,那就是已知带权图G= (C,L),寻出总权值最小的Hamilton圈。其中C={c1,c2,…,cn}表示n个城市的集合,L={lij|ci,cj∈C}是集合C中元素(城市)两两连接的集合,每一条边lij,都存在与之对应的权值dij,实际应用中dij可以表示距离、费用、时间、油量等。 TSP的描述虽然简单, 解决起来却很困难。最简单思路是用穷举法把所有可能的巡回路径全部列出来,最短的一个就是最优解,但这样只能处理很小规模的问题。旅行商问题属于 NP-complete问题, 是NP(non-deterministicpoly-nominal)问题中最难的一类,不能在多项式时间内求解。如果有n座城市,那么巡游路径共有(n-1)!/2条,计算的时间和(n-1)!成正比。当 城市数n=20,巡回路径有1.2×1018种,n=100, 巡回路径就有多达4.6×10155种,而据估计宇宙中基本粒子数“仅仅只有”1087个。 尽管如此,随着算法研究的逐步深入和计算机技术飞速提高,对TSP问题的研究不断取得进展。70年来,被征服的TSP规模从几十个城市增加到上万个城市。目前的最高记录是在2004年5月,找到的巡游瑞典24978个城镇的最优路径 (sw24978), 花费了84.8个CPU年。图1展示了TSP的研究进展,最近的二三十年时间里,被攻克的TSP规模高速增长,差不多是每十年增加一个数量级。照这样发展下去的话,再过20年就能解决上百万个城市的TSP,有专家甚至已经为此准备好了数据:全球190,4711个城市的坐标。当然,能不能达到这 个目标,有赖于未来计算技术的发展。 图1TSP的发展 字母后面的数字表示城市数,“sw24978”就是瑞典的 24978个城镇。 一、应用 旅行商问题具有重要的实际意义和工程背景。它一开始 是为交通运输而提出的,比如飞机航线安排、送邮件、快递服务、设计校车行进路线等等。实际上其应用范围扩展到了许多其他领域,下面举几个实例。 印制电路板转孔是TSP应用的经典例子,在一块电路板上打成百上千个孔,转头在这些孔之间移动,相当于对所有的孔进行一次巡游。把这个问题转化为TSP,孔相当于城市,孔到孔之间的移动时间就是距离。 为了避免大气干扰,使光学系统达到其衍射极限分辨率,欧美发达国家提出发展空间光干涉仪和综合孔径望远镜的计划。美国航空航天局有一个卫星群组成空间天文台(Space-basedObservatories)的计划, 用来探测宇宙起源和外星智慧生命。欧洲空间局也有类似的Darwin计划。对天体成像的时候,需要对两颗卫星的位置进行调整,如何控制卫星,使消耗的燃料最少,可以用TSP来求解。这里把天体看作城市,距离就是卫星移动消耗的燃料。 美国国家卫生协会在人类基因排序工作中用TSP方法绘制放射性杂交图。把DNA片断作为城市,它们之间的相似程度作为城市间的距离。法国科学家已经用这种办法作出了老鼠的放射性杂交图。 此外,旅行商问题还有电缆和光缆布线、晶体结构分析、数据串聚类等多种用途。更重要的是,它提供了一个研究组合优化问题的理想平台。很多组合优化问题,比如背包问题、分配问题、车间调度问题,和TSP同属NP-complete类,它们都是同等难度的,如果其中一个能用多项式确定性算法解决,那么其他所有的NP-complete类问题也能用多项式确定性算法解决。很多方法本来是从TSP发展起来的,后来推广到其他NP-complete类问题上去。 二、TSP求解方法 求解旅行商问题的方法可以分为两大类,一类是精确算法,目的是要找到理论最优解;另一类是近似算法,不强求最优解,只要找到“足够好”的满意解就可以了。 (一)精确算法 如前面所述,穷举法和全局搜索算法属于精确算法,但 旅行商问题概述 郭靖扬 (电子科技大学光电信息学院, 四川成都610054) 【摘要】旅行商问题是组合优化的经典问题,应用广泛,而且长期以来被作为NP-complete问题的理想研究平台。文章介绍 了旅行商问题的基础知识、应用,以及常用的求解方法。 【关键词】旅行商问题;组合优化;NP-complete;k-opt;智能算法【中图分类号】TP182【文献标识码】A【文章编号】1008-1151(2006)08-0229-02大众科技 DAZHONGKEJI2006年第8期(总第94期) No.8,2006 (CumulativelyNo.94) 【收稿日期】2006-03-18【作者简介】郭靖扬(1980-),四川宜宾人,电子科技大学光电信息学院硕士研究生。 229--

算法时间复杂度的计算

算法时间复杂度的计算 [整理] 基本的计算步骤 时间复杂度的定义 一般情况下,算法中基本操作重复执行的次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时,T(n)/f(n)的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数。记作T(n)=O(f(n)),称O(f(n))为算法的渐进时间复杂度(O是数量级的符号 ),简称时间复杂度。 根据定义,可以归纳出基本的计算步骤 1. 计算出基本操作的执行次数T(n) 基本操作即算法中的每条语句(以;号作为分割),语句的执行次数也叫做语句的频度。在做算法分析时,一般默认为考虑最坏的情况。 2. 计算出T(n)的数量级 求T(n)的数量级,只要将T(n)进行如下一些操作: 忽略常量、低次幂和最高次幂的系数 令f(n)=T(n)的数量级。 3. 用大O来表示时间复杂度 当n趋近于无穷大时,如果lim(T(n)/f(n))的值为不等于0的常数,则称f(n)是T(n)的同数量级函数。记作T(n)=O(f(n))。 一个示例: (1) int num1, num2; (2) for(int i=0; i

时间序列分析——最经典的

【时间简“识”】 说明:本文摘自于经管之家(原人大经济论坛) 作者:胖胖小龟宝。原版请到经管之家(原人大经济论坛) 查看。 1.带你看看时间序列的简史 现在前面的话—— 时间序列作为一门统计学,经济学相结合的学科,在我们论坛,特别是五区计量经济学中是热门讨论话题。本月楼主推出新的系列专题——时间简“识”,旨在对时间序列方面进行知识扫盲(扫盲,仅仅扫盲而已……),同时也想借此吸引一些专业人士能够协助讨论和帮助大家解疑答惑。 在统计学的必修课里,时间序列估计是遭吐槽的重点科目了,其理论性强,虽然应用领域十分广泛,但往往在实际操作中会遇到很多“令人发指”的问题。所以本帖就从基础开始,为大家絮叨絮叨那些关于“时间”的故事!

Long long ago,有多long?估计大概7000年前吧,古埃及人把尼罗河涨落的情况逐天记录下来,这一记录也就被我们称作所谓的时间序列。记录这个河流涨落有什么意义?当时的人们并不是随手一记,而是对这个时间序列进行了长期的观察。结果,他们发现尼罗河的涨落非常有规律。掌握了尼罗河泛滥的规律,这帮助了古埃及对农耕和居所有了规划,使农业迅速发展,从而创建了埃及灿烂的史前文明。 好~~从上面那个故事我们看到了 1、时间序列的定义——按照时间的顺序把随机事件变化发展的过程记录下来就构成了一个时间序列。 2、时间序列分析的定义——对时间序列进行观察、研究,找寻它变化发展的规律,预测它将来的走势就是时间序列分析。 既然有了序列,那怎么拿来分析呢? 时间序列分析方法分为描述性时序分析和统计时序分析。 1、描述性时序分析——通过直观的数据比较或绘图观测,寻找序列中蕴含的发展规律,这种分析方法就称为描述性时序分析 ?描述性时序分析方法具有操作简单、直观有效的特点,它通常是人们进行统计时序分析的第一步。

货郎担问题或旅行商问题动态规划算法

#include #include #define maxsize 20 int n; int cost[maxsize][maxsize]; int visit[maxsize]={1}; //表示城市0已经被加入访问的城市之中 int start = 0; //从城市0开始 int imin(int num, int cur) { int i; if(num==1) //递归调用的出口 return cost[cur][start]; //所有节点的最后一个节点,最后返回最后一个节点到起点的路径 int mincost = 10000; for(i=0; i

{ /*if(mincost <= cost[cur][i]+cost[i][start]) { continue; //其作用为结束本次循环。即跳出循环体中下面尚未执行的语句。区别于break } */ visit[i] = 1; //递归调用时,防止重复调用 int value = cost[cur][i] + imin(num-1, i); if(mincost > value) { mincost = value; } visit[i] = 0;//本次递归调用完毕,让下次递归调用 } } return mincost;

} int main() { int i,j; // int k,e,w; n=4; int cc[4][4]={{0,10,15,20}, {5,0,9,10}, {6,13,0,12}, {8,8,9,0}}; for(i=0; i

最大公约数的三种算法复杂度分析时间计算

昆明理工大学信息工程与自动化学院学生实验报告 ( 2011 —2012 学年第 1 学期) 一、上机目的及内容 1.上机内容 求两个自然数m和n的最大公约数。 2.上机目的 (1)复习数据结构课程的相关知识,实现课程间的平滑过渡; (2)掌握并应用算法的数学分析和后验分析方法; (3)理解这样一个观点:不同的算法能够解决相同的问题,这些算法的解题思路不同,复杂程度不同,解题效率也不同。 二、实验原理及基本技术路线图(方框原理图或程序流程图) (1)至少设计出三个版本的求最大公约数算法; (2)对所设计的算法采用大O符号进行时间复杂性分析; (3)上机实现算法,并用计数法和计时法分别测算算法的运行时间; (4)通过分析对比,得出自己的结论。

三、所用仪器、材料(设备名称、型号、规格等或使用软件) 1台PC及VISUAL C++软件 四、实验方法、步骤(或:程序代码或操作过程) 实验采用三种方法求最大公约数 1、连续整数检测法。 2、欧几里得算法 3、分解质因数算法 根据实现提示写代码并分析代码的时间复杂度: 方法一: int f1(int m,int n) { int t; if(m>n)t=n; else t=m; while(t) { if(m%t==0&&n%t==0)break; else t=t-1; } return t; } 根据代码考虑最坏情况他们的最大公约数是1,循环做了t-1次,最好情况是只做了1次,可以得出O(n)=n/2; 方法二:int f2(int m,int n) {

r=m%n; while(r!=0) { m=n; n=r; r=m%n; } return n; } 根据代码辗转相除得到欧几里得的O(n)= log n 方法三: int f3(int m,int n) { int i=2,j=0,h=0; int a[N],b[N],c[N]; while(i

算法的时间复杂度计算

for(i=1;i<=n;i++) for(j=1;j<=i;j++) for(k=1;k<=j;k++) x++; 它的时间复杂度是多少? 自己计算了一下,数学公式忘得差不多了,郁闷; (1)时间复杂性是什么? 时间复杂性就是原子操作数,最里面的循环每次执行j次,中间循环每次执行 a[i]=1+2+3+...+i=i*(i+1)/2次,所以总的时间复杂性=a[1]+...+a[i]+..+a[n]; a[1]+...+a[i]+..+a[n] =1+(1+2)+(1+2+3)+...+(1+2+3+...+n) =1*n+2*(n-1)+3*(n-2)+...+n*(n-(n-1)) =n+2n+3n+...+n*n-(2*1+3*2+4*3+...+n*(n-1)) =n(1+2+...+n)-(2*(2-1)+3*(3-1)+4*(4-1)+...+n*(n-1)) =n(n(n+1))/2-[(2*2+3*3+...+n*n)-(2+3+4+...+n)] =n(n(n+1))/2-[(1*1+2*2+3*3+...+n*n)-(1+2+3+4+...+n)] =n(n(n+1))/2-n(n+1)(2n+1)/6+n(n+1)/2 所以最后结果是O(n^3)。 【转】时间复杂度的计算 算法复杂度是在《数据结构》这门课程的第一章里出现的,因为它稍微涉及到一些数学问题,所以很多同学感觉很难,加上这个概念也不是那么具体,更让许多同学复习起来无从下手,

下面我们就这个问题给各位考生进行分析。 首先了解一下几个概念。一个是时间复杂度,一个是渐近时间复杂度。前者是某个算法的时间耗费,它是该算法所求解问题规模n的函数,而后者是指当问题规模趋向无穷大时,该算法时间复杂度的数量级。 当我们评价一个算法的时间性能时,主要标准就是算法的渐近时间复杂度,因此,在算法分析时,往往对两者不予区分,经常是将渐近时间复杂度T(n)=O(f(n))简称为时间复杂度,其中的f(n)一般是算法中频度最大的语句频度。 此外,算法中语句的频度不仅与问题规模有关,还与输入实例中各元素的取值相关。但是我们总是考虑在最坏的情况下的时间复杂度。以保证算法的运行时间不会比它更长。 常见的时间复杂度,按数量级递增排列依次为:常数阶O(1)、对数阶O(log2n)、线性阶O(n)、线性对数阶O(nlog2n)、平方阶O(n^2)、立方阶O(n^3)、k次方阶O(n^k)、指数阶O(2^n)。 下面我们通过例子加以说明,让大家碰到问题时知道如何去解决。 1、设三个函数f,g,h分别为f(n)=100n^3+n^2+1000 , g(n)=25n^3+5000n^2 , h(n)=n^1.5+5000nlgn 请判断下列关系是否成立: (1)f(n)=O(g(n)) (2)g(n)=O(f(n)) (3)h(n)=O(n^1.5) (4)h(n)=O(nlgn) 这里我们复习一下渐近时间复杂度的表示法T(n)=O(f(n)),这里的"O"是数学符号,它的严格定义是"若T(n)和f(n)是定义在正整数集合上的两个函数,则T(n)=O(f(n))表示存在正的常数C和n0 ,使得当n≥n0时都满足0≤T(n)≤C?f(n)。"用容易理解的话说就是这两个函数当整型自变量n趋向于无穷大时,两者的比值是一个不等于0的常数。这么一来,就好计算了吧。 ◆(1)成立。题中由于两个函数的最高次项都是n^3,因此当n→∞时,两个函数的比值是一个常数,所以这个关系式是成立的。 ◆(2)成立。与上同理。 ◆(3)成立。与上同理。 ◆(4)不成立。由于当n→∞时n^1.5比nlgn递增的快,所以h(n)与nlgn的比值不是常数,

TSP问题算法分析

T S P问题算法分析集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

算法第二次大作业 TSP问题算法分析 021251班 王昱(02125029) 一.问题描述 “TSP问题”常被称为“旅行商问题”,是指一名推销员要拜访多个地点时,如何找到在拜访每个地点一次后再回到起点的最短路径。 TSP问题在本实验中的具体化:从A城市出发,到达每个城市并且一个城市只允许访问一次,最后又回到原来的城市,寻找一条最短距离的路径。 二.算法描述 2.1分支界限法 2.1.1算法思想 分支限界法常以广度优先或以最小耗费(最大效益)优先的方式搜索问题的解空间树。 在分支限界法中,每一个活结点只有一次机会成为扩展结点。活结点一旦成为扩展结点,就一次性产生其所有儿子结点。在这些儿子结点中,导致不可行解或导致非最优解的儿子结点被舍弃,其余儿子结点被加入活结点表中。 此后,从活结点表中取下一结点成为当前扩展结点,并重复上述结点扩展过程。这个过程一直持续到找到所需的解或活结点表为空时为止。

2.1.2算法设计说明 设求解最大化问题,解向量为X=(x1,…,xn),xi的取值范围为Si,|Si|=ri。在使用分支限界搜索问题的解空间树时,先根据限界函数估算目标函数的界[down,up],然后从根结点出发,扩展根结点的r1个孩子结点,从而构成分量x1的r1种可能的取值方式。 对这r1个孩子结点分别估算可能的目标函数bound(x1),其含义:以该结点为根的子树所有可能的取值不大于bound(x1),即: bound(x1)≥bound(x1,x2)≥…≥bound(x1,…,xn) 若某孩子结点的目标函数值超出目标函数的下界,则将该孩子结点丢弃;否则,将该孩子结点保存在待处理结点表PT中。 再取PT表中目标函数极大值结点作为扩展的根结点,重复上述。 直到一个叶子结点时的可行解X=(x1,…,xn),及目标函数值 bound(x1,…,xn)。 2.2A*算法 算法思想 对于某一已到达的现行状态,如已到达图中的n节点,它是否可能成为最佳路径上的一点的估价,应由估价函数f(n)值来决定。假设g*(n)函数值表示从起始节点s到任意一个节点n的一条最佳路径上的实际耗散值。h*(n)函数值表示从任意节点n到目标节点ti的最佳路径的实际耗散值。其中ti是一个可能的目标节点。f*(n)函数值表示从起始s,通过某一指定的n到达目标节点ti的一条最佳路径的实际耗散值,并有 f*(n)=g*(n)+h*(n)。

最大公约数的三种算法复杂度分析时间计算

理工大学信息工程与自动化学院学生实验报告 (2011 —2012 学年第 1 学期) 课程名称:算法设计与分析开课实验室:信自楼机房444 2011 年10月 12日 一、上机目的及容 1.上机容 求两个自然数m和n的最大公约数。 2.上机目的 (1)复习数据结构课程的相关知识,实现课程间的平滑过渡; (2)掌握并应用算法的数学分析和后验分析方法; (3)理解这样一个观点:不同的算法能够解决相同的问题,这些算法的解题思路不同,复杂程度不同,解题效率也不同。 二、实验原理及基本技术路线图(方框原理图或程序流程图) (1)至少设计出三个版本的求最大公约数算法; (2)对所设计的算法采用大O符号进行时间复杂性分析; (3)上机实现算法,并用计数法和计时法分别测算算法的运行时间; (4)通过分析对比,得出自己的结论。 三、所用仪器、材料(设备名称、型号、规格等或使用软件) 1台PC及VISUAL C++6.0软件 四、实验方法、步骤(或:程序代码或操作过程) 实验采用三种方法求最大公约数 1、连续整数检测法。

根据实现提示写代码并分析代码的时间复杂度: 方法一: int f1(int m,int n) { int t; if(m>n)t=n; else t=m; while(t) { if(m%t==0&&n%t==0)break; else t=t-1; } return t; } 根据代码考虑最坏情况他们的最大公约数是1,循环做了t-1次,最好情况是只做了1次,可以得出O(n)=n/2; 方法二:int f2(int m,int n) { int r; r=m%n; while(r!=0) { m=n; n=r; r=m%n; } return n; } 根据代码辗转相除得到欧几里得的O(n)= log n 方法三: int f3(int m,int n) { int i=2,j=0,h=0; int a[N],b[N],c[N]; while(i

Tsp问题的几种算法的分析

摘要 本文分析比较了tsp问题的动态规划算法,分支界限法,近似等算法。分析了旅行商问题的时间度特点,针对启发式算法求解旅行商问题中存在的一些问题提出了改进算法。此算法将群体分为若干小子集,并用启发式交叉算子,以较好利用父代个体的有效信息,达到快速收敛的效果,实验表明此算法能提高寻优速度,解得质量也有所提高。 关键词:旅行商问题TSP Abstract this paper analyzed the time complexity of traveling salesman problem,then put forward some imprivement towards the genetic algorithm for solving this problen: divding the population into some small parent individual well.so it can quickly get into convergence, the experimental result indicates the impwoved algorithm can accelerate the apeed of finding solution and improve the precision. Keywords traveling salesman problem; genetic algorithm; subset; henristic crossover operator

目录 1、摘要--------------------------------------------------------------1 2、Abstract---------------------------------------------------------1 3、Tsp问题的提法------------------------------------------------2 4、回溯法求Tsp问题--------------------------------------------3 5、分支限界法求Tsp问题--------------------------------------7 6、近似算法求解Tsp问题-------------------------------------10 7、动态规划算法解Tsp问题----------------------------------12

数据结构时间复杂度的计算

数据结构时间复杂度的计算 for(i=1;i<=n;i++) for(j=1;j<=i;j++) for(k=1;k<=j;k++) x++; 它的时间复杂度是多少? 自己计算了一下,数学公式忘得差不多了,郁闷; (1)时间复杂性是什么? 时间复杂性就是原子操作数,最里面的循环每次执行j次,中间循环每次执行 a[i]=1+2+3+...+i=i*(i+1)/2次,所以总的时间复杂性=a[1]+...+a[i]+..+a[n]; a[1]+...+a[i]+..+a[n] =1+(1+2)+(1+2+3)+...+(1+2+3+...+n) =1*n+2*(n-1)+3*(n-2)+...+n*(n-(n-1)) =n+2n+3n+...+n*n-(2*1+3*2+4*3+...+n*(n-1)) =n(1+2+...+n)-(2*(2-1)+3*(3-1)+4*(4-1)+...+n*(n-1)) =n(n(n+1))/2-[(2*2+3*3+...+n*n)-(2+3+4+...+n)] =n(n(n+1))/2-[(1*1+2*2+3*3+...+n*n)-(1+2+3+4+...+n)] =n(n(n+1))/2-n(n+1)(2n+1)/6+n(n+1)/2 所以最后结果是O(n^3)。 【转】时间复杂度的计算 算法复杂度是在《数据结构》这门课程的第一章里出现的,因为它稍微涉及到一些数学问题,所以很多同学感觉很难,加上这个概念也不是那么具体,更让许多同学复习起来无从下手,下面我们就这个问 题给各位考生进行分析。 首先了解一下几个概念。一个是时间复杂度,一个是渐近时间复杂度。前者是某个算法的时间耗费,它是该算法所求解问题规模n的函数,而后者是指当问题规模趋向无穷大时,该算法时间复杂度的数量级。 当我们评价一个算法的时间性能时,主要标准就是算法的渐近时间复杂度,因此,在算法分析时,往往对两者不予区分,经常是将渐近时间复杂度T(n)=O(f(n))简称为时间复杂度,其中的f(n)一般是算法中 频度最大的语句频度。

时间序列分析与动态数据建模

第五章目录 第五章极大熵谱估计 (1) 5.1 谱熵和极大熵准则 (1) 1.问题的提出 (1) 2.高斯过程的熵和熵率 (1) 3.功率谱和熵率的关系 (3) 5.2 极大熵准则的谱估计 (6) 5.3 极大熵谱估计的伯格算法 (9) 5.4 极大熵谱估计的LS—LUD算法 (16)

第五章 极大熵谱估计 1967年伯格(J .P .Burg)刚一发表:极大熵谱分析”的方法就在工程和科技界产生很大影响,成为相当流行的功率谱密度估计方法。伯格在谱估计准则的提出和具体算法上有所创新,由此演变出来的算法有很多种,被统称为“现代谱分析”。 5.1 谱熵和极大熵准则 1.问题的提出 从19世纪未舒斯特(Schuster)在利用富氏级数分析信号隐含的周期特性时提出了“周期图”,到1985年由伯来克曼和杜奇提出了谱估计的“间接法”和1965年FFT 算法提出后流行的“直接法”,它们本质上都是把原序列经过开窗截取处理来获得对序列谱密度的估计。不论对数据加窗还是对自相关函数加窗,其目的都在于使谱估计的方差减小,然而加窗不可避免地产生频域“泄漏”,使功率谱失真,尽管在窗函数形式的选择和处理方法上做了很多分析研究,使得以周期图为基础的方法达到相当成熟和实用的程度,但是任何抑制旁瓣的方法都是以损失谱分辨力为代价的,这个难题在数据量少的情况下更为突出。 问题的实质是:在周期图估计中,我们对数据或是它的相关函数所做的加窗处理,等于是假定在窗口外数据(或自相关)为零,而窗口内的部分则加上某种形式的修正。这些人为措施使来自观察的信息受到了一定程度的歪曲。 伯格提出的新概念是;和估计的功率谱相对应的自相关和由观察数据算得的自相关一致,同时对已有的区段之外的自相关值采用外推的办法求取,而不是一概假定为零,外推的原则是使相应的序列在未知点上取值的可能性具有最大的不确定性,亦即不对结果人为地强添任何增加的信息。 数学家申农最早提出“熵”的概念,在统计学中用它作为各种随机试验的不肯定性程度的度量。在热力学和信息论中,“熵”都有其具体的物理背景和应用。后面介绍将会看到,满足熵极大的谱估计是自回归模型的谱。1971年凡登包士(V an Den Bos )证明,一维极大熵谱估计和自回归谱的最小二乘估计是等效的。尽管如此,伯格关于熵谱估计的概念和他对自回归参数的递推算法却独树一帜,随后还有人提出了各种改进算法,但要注意把极大熵概念本身同等法区别开来。 2.高斯过程的熵和熵率 假定我们研究的随机试验a 只有有限个不相容的结果12,,,n A A A ,它们相应的概率为 12(),(),,()n P A P A P A ,且满足1 ()1n i i p A ==∑,简单描述如下: ()()1212,,,:,,,()n n A A A P A P A P A α? ? ? ? ? ? ? ?

算法报告-旅行商问题模板讲解

《算法设计与课程设计》 题目: TSP问题多种算法策略 班级:计算机技术14 学号: 姓名: 指导老师: 完成日期: 成绩:

旅行商问题的求解方法 摘要 旅行商问题(TSP 问题)时是指旅行家要旅行n 个城市然后回到出发城市,要求各个城市经历且仅经历一次,并要求所走的路程最短。该问题又称为货郎担问题、邮递员问题、售货员问题,是图问题中最广为人知的问题。本文主要介绍用动态规划法、贪心法、回溯法和深度优先搜索策略求解TSP 问题,其中重点讨论动态规划法和贪心法,并给出相应求解程序。 关键字:旅行商问题;动态规划法;贪心法;回溯法;深度优先搜索策略 1引言 旅行商问题(TSP)是组合优化问题中典型的NP-完全问题,是许多领域内复杂工程优化问题的抽象形式。研究TSP 的求解方法对解决复杂工程优化问题具有重要的参考价值。关于TSP 的完全有效的算法目前尚未找到,这促使人们长期以来不断地探索并积累了大量的算法。归纳起来,目前主要算法可分成传统优化算法和现代优化算法。在传统优化算法中又可分为:最优解算法和近似方法。最优解算法虽然可以得到精确解,但计算时间无法忍受,因此就产生了各种近似方法,这些近似算法虽然可以较快地求得接近最优解的可行解,但其接近最优解的程度不能令人满意。但限于所学知识和时间限制,本文重点只讨论传统优化算法中的动态规划法、贪心法、回溯法和深度优先搜索策略。 2正文 2.1动态规划法 2.1.1动态规划法的设计思想 动态规划法将待求解问题分解成若干个相互重叠的子问题,每个子问题对应决策过程的一个阶段,一般来说,子问题的重叠关系表现在对给定问题求解的递推关系(也就是动态规划函数)中,将子问题的解求解一次并填入表中,当需要再次求解此子问题时,可以通过查表获得该子问题的解而不用再次求解,从而避免了大量重复计算。 2.1.2 TSP 问题的动态规划函数 假设从顶点i 出发,令'(,)d i V 表示从顶点i 出发经过'V 中各个顶点一次且仅一次,最后回到出发点i 的最短路径长度,开始时,{}'V V i =-,于是,TSP 问

渐进时间复杂度的计算

时间复杂度计算 首先了解一下几个概念。一个是时间复杂度,一个是渐近时间复杂度。前者是某个算法的时间耗费,它是该算法所求解问题规模n的函数,而后者是指当问题规模趋向无穷大时,该算法时间复杂度的数量级。 当我们评价一个算法的时间性能时,主要标准就是算法的渐近时间复杂度,因此,在算法分析时,往往对两者不予区分,经常是将渐近时间复杂度T(n)=O(f(n))简称为时间复杂度,其中的f(n)一般是算法中频度最大的语句频度。 此外,算法中语句的频度不仅与问题规模有关,还与输入实例中各元素的取值相关。但是我们总是考虑在最坏的情况下的时间复杂度。以保证算法的运行时间不会比它更长。 常见的时间复杂度,按数量级递增排列依次为:常数阶O(1)、对数阶O(log2n)、线性阶O(n)、线性对数阶O(nlog2n)、平方阶O(n^2)、立方阶O(n^3)、k次方阶O(n^k)、指数阶O(2^n)。 1. 大O表示法 定义 设一个程序的时间复杂度用一个函数 T(n) 来表示,对于一个查找算法,如下: int seqsearch( int a[], const int n, const int x) { int i = 0; for (; a[i] != x && i < n ; i++ ); if ( i == n) return -1; else return i; } 这个程序是将输入的数值顺序地与数组中地元素逐个比较,找出与之相等地元素。 在第一个元素就找到需要比较一次,在第二个元素找到需要比较2次,……,在第n个元素找到需要比较n次。对于有n个元素的数组,如果每个元素被找到的概率相等,那么查找成功的平均比较次数为: f(n) = 1/n (n + (n-1) + (n-2) + ... + 1) = (n+1)/2 = O(n) 这就是传说中的大O函数的原始定义。 用大O来表述 要全面分析一个算法,需要考虑算法在最坏和最好的情况下的时间代价,和在平

算法的时间复杂度和空间复杂度-总结

算法的时间复杂度和空间复杂度-总结通常,对于一个给定的算法,我们要做两项分析。第一是从数学上证明算法的正确性,这一步主要用到形式化证明的方法及相关推理模式,如循环不变式、数学归纳法等。而在证明算法是正确的基础上,第二部就是分析算法的时间复杂度。算法的时间复杂度反映了程序执行时间随输入规模增长而增长的量级,在很大程度上能很好反映出算法的优劣与否。因此,作为程序员,掌握基本的算法时间复杂度分析方法是很有必要的。 算法执行时间需通过依据该算法编制的程序在计算机上运行时所消耗的时间来度量。而度量一个程序的执行时间通常有两种方法。 一、事后统计的方法 这种方法可行,但不是一个好的方法。该方法有两个缺陷:一是要想对设计的算法的运行性能进行评测,必须先依据算法编制相应的程序并实际运行;二是所得时间的统计量依赖于计算机的硬件、软件等环境因素,有时容易掩盖算法本身的优势。 二、事前分析估算的方法 因事后统计方法更多的依赖于计算机的硬件、软件等环境因素,有时容易掩盖算法本身的优劣。因此人们常常采用事前分析估算的方法。 在编写程序前,依据统计方法对算法进行估算。一个用高级语言编写的程序在计算机上运行时所消耗的时间取决于下列因素: (1). 算法采用的策略、方法;(2). 编译产生的代码质量;(3). 问题的输入规模;(4). 机器执行指令的速度。 一个算法是由控制结构(顺序、分支和循环3种)和原操作(指固有数据类型的操作)构成的,则算法时间取决于两者的综合效果。为了便于比较同一个问题的不同算法,通常的做法是,从算法中选取一种对于所研究的问题(或算法类型)来说是基本操作的原操作,以该基本操作的重复执行的次数作为算法的时间量度。 1、时间复杂度 (1)时间频度一个算法执行所耗费的时间,从理论上是不能算出来的,必须上机运行测试才能知道。但我们不可能也没有必要对每个算法都上机测试,只需知道哪个算法花费的时间多,哪个算法花费的时间少就可以了。并且一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。一个算法中的语句执行次数称为语句频度或时间频度。记为T(n)。 (2)时间复杂度在刚才提到的时间频度中,n称为问题的规模,当n不断变化时,时间频度T(n)也会不断变化。但有时我们想知道它变化时呈现什么规律。为此,我们引入时间复杂度概念。一般情况下,算法中基本操作重复执行的次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时,T(n)/f(n)的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数。记作T(n)=O(f(n)),称O(f(n))为算法的渐进时间复杂度,简称时间复杂度。

算法时间复杂度计算示例

算法时间复杂度计算示 例 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

基本计算步骤? 示例一:? (1) int num1, num2; (2) for(int i=0; i

旅行商问题的几种求解算法比较

旅行商问题的几种求解算法比较 作者: (xxx学校) 摘要:TSP问题是组合优化领域的经典问题之一,吸引了许多不同领域的研究工作者,包括数学,运筹学,物理,生物和人工智能等领域,他是目前优化领域里的热点.本文从动态规划法,分支界限法,回溯法分别来实现这个题目,并比较哪种更优越,来探索这个经典的NP(Nondeterministic Polynomial)难题. 关键词:旅行商问题求解算法比较 一.引言 旅行商问题(Travelling Salesman Problem),是计算机算法中的一个经典的难解问题,已归为NP一完备问题类.围绕着这个问题有各种不同的求解方法,已有的算法如动态规划法,分支限界法,回溯法等,这些精确式方法都是指数级(2n)[2,3]的,根本无法解决目前的实际问题,贪心法是近似方法,而启发式算法不能保证得到的解是最优解,甚至是较好的解释.所以我认为很多问题有快速的算法(多项式算法),但是,也有很多问题是无法用算法解决的.事实上,已经证明很多问题不可能在多项式时间内解决出来.但是,有很多很重要的问题他们的解虽然很难求解出来,但是他们的值却是很容易求可以算出来的.这种事实导致了NP完全问题.NP表示非确定的多项式,意思是这个问题的解可以用非确定性的算法"猜"出来.如果我们有一个可以猜想的机器,我们就可以在合理的时间内找到一个比较好的解.NP-完全问题学习的简单与否,取决于问题的难易程度.因为有很多问题,它们的输出极其复杂,比如说人们早就提出的一类被称作NP-难题的问题.这类问题不像NP-完全问题那样时间有限的.因为NP-问题由上述那些特征,所以很容易想到一些简单的算法――把全部的可行解算一遍.但是这种算法太慢了(通常时间复杂度为O(2^n))在很多情况下是不可行的.现在,没有知道有没有那种精确的算法存在.证明存在或者不存在那种精确的算法这个沉重的担子就留给了新的研究者了,或许你就是成功者. 本篇论文就是想用几种方法来就一个销售商从几个城市中的某一城市出发,不重复地走完其余N—1个城市,并回到原出发点,在所有可能的路径中求出路径长度最短的一条,比较是否是最优化,哪种结果好. 二.求解策略及优化算法 动态规划法解TSP问题 我们将具有明显的阶段划分和状态转移方程的规划称为动态规划,这种动态规划是在研究多阶段决策问题时推导出来的,具有严格的数学形式,适合用于理论上的分析.在实际应用中,许多问题的阶段划分并不明显,这时如果刻意地划分阶段法反而麻烦.一般来说,只要该问题可以划分成规模更小的子问题,并且原问题的最优解中包含了子问题的最优解(即满足最优子化原理),则可以考虑用动态规划解决.所以动态规划的实质是分治思想和解决冗余,因此,动态规划是一种将问题实例分解为更小的,相似的子问题,并存储子问题的解而避免计算重复的子问题,以解决最优化问题的算法策略. 旅行商问题(TSP问题)其实就是一个最优化问题,这类问题会有多种可能的解,每个解都有一个值,而动态规划找出其中最优(最大或最小)值的解.若存在若干个取最优值的解的话,它只取其中的一个.在求解过程中,该方法也是通过求解局部子问题的解达到全局最优解,但与分治法和贪心法不同的是,动态规划允许这些子问题不独立,(亦即各子问题可包含公共的子子问题)也允许其通过自身子问题的解作出选择,该方法对每一个子问题只解一次,并将结果保存起来,避免每次碰到时都要重复计算. 关于旅行商的问题,状态变量是gk(i,S),表示从0出发经过k个城市到达i的最短距离,S为包含k 个城市的可能集合,动态规划的递推关系为:

求时间复杂度的方法

求时间复杂度的方法 1.求和法 当算法中语句的执行次数与某一变量有直接关系,而该变量的变化起止范围又较为明确,则可以利用求和公式得出最大的语句频度f(n),再对其取数量级(阶)即可。 例1有算法如下: ①for(i=1;i<=n;i++)②for(j=1;j<=n;j++)③++x; 解:以上算法中频度最大的是语句③,它的执行次数跟循环变量i和j有直接关系,因此其频度可以通过求和公式求得: 所以,该算法的时间复杂度为平方阶,记作T(n)=O(n2)。例2有一算法如下: ①for(i=1;i<=n;i++)②for(j=1;j<=i;j++)③for(k=1;k<=j;k++)④++x; 解:以上算法中频度最大的是语句④,其频度可以通过求和公式求得: 所以,该算法的时间复杂度为立方阶,记作T(n)=O(n3)。例3有如下算法: ①y=0; ②while((y+1)2<=n)③x++; 解:算法中频度最大的应该是语句③,它的执行次数与y有关,已知y初值为0,当(y+1)2>n 时循环终止,则y的最大取值应该为 n姨-1。所以语句③的频度可以通过求和公式得到: 所以,该算法的时间复杂度记作 2.假设法 在某些较为复杂的算法中,循环结构的循环次数很难直接看出,特别是当循环次数与循环体中的某些语句执行有联系时,语句频度的计算变得比较困难。此时,可以先假设循环执行次数为k次,再对算法进行分析,根据循环终止条件求出语句频度f(n),最后求出T(n)。 例4有一算法如下: x=91;y=100;while(y>0) if(x>100){x-=10;y--;}elsex++; 解:假设while循环的循环体执行k次,可以发现:k=1时,x=92,y=100k=2时,x=93,y=100k=3时,x=94,y=100 … k=10时,x=101,y=100k=11时,x=91,y=99 … k=22时,x=91,y=98 … 由分析可知,每循环11次,y的值发生一次变化,y需共变化100次。所以,f(n)=100*11=1100。则该算法的执行时间是一个与问题规模n无关的常数,它不随着问题规模n的增加而增长,即使算法中有上千条语句,其执行时间也不过是一个较大的常数。因此,该算法的时间复杂度为常数阶,记作T(n)=O(1)。 例5有如下算法: i=s=0;while(s

相关主题
文本预览
相关文档 最新文档