当前位置:文档之家› 沉管法与盾构法在水下修建隧道的技术优劣比较

沉管法与盾构法在水下修建隧道的技术优劣比较

沉管法与盾构法在水下修建隧道的技术优劣比较
沉管法与盾构法在水下修建隧道的技术优劣比较

沉管法与盾构法在水下修建隧道的技术比较以及隧

道口的基坑支护

中国在城市化进程中,各大城市必然会不断扩张,与周边城市逐渐靠拢,形成城市群,这就要求城市之间的交通联系必须紧密。我们河南境内有黄河、淮河两条大河,在这两条河边的城市将来在于周边城市交流的时候必然面临着跨越河流这个交通问题。虽然现在河南在处理河流上的交通时还是采用架桥的方式,但将来肯定会修建水底隧道,所以提前比较一下沉管法与盾构法在水下修建隧道的技术优劣还是有必要的。

俗话说:逢山开路遇水架桥,但是随着科学技术的进步,人们已经意识到“遇水架桥”不再是唯一选择。而且从安全和环保方面考虑,修建水底隧道比建桥更为优越。目前,国内外隧道施工采用的施工方法主要有盾构法、沉管法、明挖法和暗挖法等4种,近年来被广泛使用的是盾构法和沉管法。

盾构法修建隧道开始于1818年,当时法国工程师布鲁诺尔研究并取得专利权,1825年在英国泰晤式河首次建造成功。沉管法修建隧道是在19世纪末,美国首先建成波士顿的下水道工程,又于1928年建成了第一条沉管道路隧道。

盾构是一种钢制的活动防护装置或活动支撑,是通过软弱含水层,特别是河底、海底,以及城市中心区修建的一种隧道。其构造通常由盾构壳体、推进系统、拼装系统、出土系统等4大部分组成。在盾构的掩护下,头部可以安全的开挖地层,一次掘进相当于装配式衬砌一环的宽度。尾部可以装配预制管片或砌块,迅速地拼装成隧道永久衬砌,并将衬砌与土层之间的空隙用水泥压浆填实,防止周围的地层继续变形和围岩压力的增长。盾构推进主要依靠盾构内部设置的千斤顶,用千斤顶将拼成的衬砌环推进到已挖好的空间内,然后缩回活塞杆,为下一环衬砌拼装创造条件。盾构形状大致可分为圆形、半圆形、矩形、马蹄形4种,圆形因其抵抗水压力较理想,衬砌拼装简便,构造可以互换,在工程中运用较为普遍。

沉管法亦称预制管段法或沉放法。先在隧址以外的船台上或临时干坞内制作隧道管段(管段每节长度一般在60-100m,目前最长的达268m),并于两端用临时封端墙封闭起来。预制完成后用拖轮拖运到隧址指定位置。这时已于隧位处预先挖好了一个水底基槽。待管段定位就绪后,向管段内灌水压载,使之下沉。然后把沉放的管段在水下联接起来。经覆土(石)回填后,便筑成隧道。沉管隧道的断面开关可分为圆形和矩形。圆形隧道管一般只能设两个车道,建设多车道时,则需两管或多管并列。矩形断面适于建造多车道。

沉管法在19世纪末已用于排水管道工程;20世纪初叶,开始用于交通隧道;50年代以后,由于水下连接技术的突破──采用水力压接法,并应用橡胶垫圈作止水接头,沉管法被广泛采用,并随之较快地发展。60年代后期,又出现了不设通风道,又无通风机房的第三代沉管隧道。

沉管法的技术优点在于:首先,从地层条件来看,沉管隧道在地基上不受地质条件的限制,对地基允许承载力的要求也很低,一般5N/cm2左右。第二,沉管隧道的埋深很浅,并且适用水深范围较大,因大多作业在水上操作,水下作业极少,故几乎不受水深限制,如以潜水作业实用深度范围,则可达70米。第三,断面形状、大小可自由选择,断面空间可充分利用。大型的矩形断面的管段可容纳4~8车道,而盾构法施工的圆形断面利用率不高,且只能设双车道。第四,沉管隧道工期短,施工质量高,易于做好防水措施;管段较长,接缝很少,漏水机会大为减少,而且采用水力压接法可以实现接缝不漏水。第五,工程造价较低。因水下挖土单价比河底下挖土低;管段的整体制作,浮运费用比制造、运送大量的管片低得多;又因接缝少而使隧道每米单价降低;再因隧道顶部覆盖层厚度可以很小,隧道长度可缩短很多,工程总价大为降低。第六,具有很强的抵抗战争破坏和抗自然灾害的能力。在战争条件下,一颗精确制导炸弹或巡航导弹就能摧毁一座坚固的大桥,不仅桥梁自身的交通中断,并且阻塞江河海港航道。而水下隧道却能安然无恙。第七,国内外的沉管隧道技术比较成熟。沉管法的适用范围:水道河床稳定和水流并不过急。前者不仅便于顺利开挖沟槽,并能减少土方量;后者便于管段浮运、定位和沉放。

盾构法修建隧道已有 150余年的历史。在1818年开始研究盾构法施工,并于1825年在英国伦敦泰晤

士河下,用一个矩形盾构建造世界上第一条水底隧道(宽11.4米、高6.8米)。从1897~1980年,在世界范围内用盾构法修建的水底道路隧道已有21条。德、日、法、苏等国把盾构法广泛使用于地下铁道和各种大型地下管道的施工。

盾构法的技术优点有:1、安全开挖和衬砌,掘进速度快;2、盾构的推进、出土、拼装衬砌等全过程可实现自动化作业,施工劳动强度低。3、不影响地面交通与设施,同时不影响地下管线等设施;4、穿越河道时不影响航运,施工中不受季节、风雨等气候条件影响,施工中没有噪音和扰动;5、在松软含水地层中修建埋深较大的长隧道往往具有技术和经济方面的优越性。盾构法的施工范围:在松软含水地层,或地下线路等设施埋深达到10m或更深时,可以采用盾构法,即,1、线位上允许建造用于盾构进出洞和出碴进料的工作井;2、隧道要有足够的埋深,覆土深度宜不小于6m且不小于盾构直径;[2]3、相对均质的地质条件;4、如果是单洞则要有足够的线间距,洞与洞及洞与其它建(构)筑物之间所夹土(岩)体加固处理的最小厚度为水平方向1.0m,竖直方向1.5m;5、从经济角度讲,连续的施工长度不小于300m。

综合考虑黄河流域的地质和水文条件,盾构法比沉管法有一定的优越性。在地质条件上,黄河下游地质为第四系近代沉积层,基岩埋置很深,一般在地面以下50m。土层以粉砂、粘砂土和砂粘土为主,夹有粘土和中细砂层,局部土层含有姜石,最上层为粘砂土或粉砂,易被冲刷,其下层为较密实的粘砂土或软塑-硬塑砂粘土,厚度约15m~17m,距河床面约12m,抗冲能力较强。由于河底泥沙易被冲刷,就要求沉管法的开挖深度比较深,所以地质条件比较适合盾构法施工。在水文条件上,考虑到黄河每年汛期突发性洪水较大,还有上游水库的调水调沙影响,不适合沉管法施工。而盾构法却不受季节影响,也不会影响航运,所以盾构法比沉管法更优越。此外,郑州市在建造地铁过程中已经使用了盾构技术,对盾构技术比较熟悉,具有技术优势。

对于隧道的防水问题,水下隧道经过含水丰富的地层必将受到地下水的侵害。如果没有可靠的防水、堵漏措施,地下水就会侵入隧道,影响其内部结构与附属设备,乃至危害到地下交通的运营和降低隧道使用寿命。盾构法施工隧道的防水包括盾构推进过程中的施工防水和隧道本身的防水。前者根据不同类型的盾构有不同的施工方法及采用冻结、气压、加泥水、背后注浆等辅助工法来解决施工防水问题。盾构法施工隧道的防水,必须采取“以防为主,多道防线,综合治理,标本兼治”的原则。所谓“综合处理”,即不但要从防水设计、施工着手,还要从衬砌结构设计、管片拼装质量、控制隧道的后期不均匀沉降等方面进行综合处理。合理正确的设计,精心科学的施工,可靠的质量保证体系,三者缺一不可。

对于水下隧道出入口的基坑支护,可以采用液氮冻结土层达到临时支护和防水的作用。由于水下隧道口靠近水源,地下水丰富,不能采用深井降水的方法达到降水的目的。可以先在要施工的范围里钻孔后伸入通有液氮的管道,对周围含水土体进行冻结。冻土帷幕达到设计厚度及强度后,开始隧道开挖,隧道开挖采用交叉中隔壁(CRD)法分6部进行。开挖进尺控制在10m,开挖后及时支护。初期支护采用钢格架喷射,二次衬砌采用钢筋混凝土支护,具有挡土、止水的双重功能,并且施工中具有无振动、无噪音、无污染挤土轻微的优点。

盾构隧道下穿高铁施工变形控制

盾构隧道下穿高铁施工变形控制 发表时间:2019-07-17T15:20:04.323Z 来源:《基层建设》2019年第13期作者:卢雨田[导读] 摘要:本文介绍了杭州至海宁城际铁路某区间盾构隧道下穿高铁桥梁工程的施工情况。 中铁第四勘察设计院集团有限公司湖北武汉 430000摘要:本文介绍了杭州至海宁城际铁路某区间盾构隧道下穿高铁桥梁工程的施工情况。由有限元建模分析和现场施工可得到结论:施工按照沉降控制和位移控制的要求,通过建立盾构试验段,设置隔离防护桩,掘进过程中结合现场监测数据,合理选择土压力、推进速度、同步注浆、二次补偿注浆等掘进参数,这一系列技术措施可有效保证地表沉降、桥墩位移处于可控范围,达到了预期的施工效果,为 后续工程和类似工程提供参考。 关键词:盾构隧道;有限元分析;隔离桩;穿越施工;现场监测 Abstract:This paper introduces the construction of shield tunnel under the high-speed railway bridge project of hangzhou-haining intercity railway. Conclusions can be drawn from finite element modeling analysis and on-site construction, according to the requirements of settlement control and displacement control, a series of technical measures such as the shield test section is established, and the isolation guard pile is set. Combined with the in-situ monitoring data during the excavation process, the soil pressure, propulsion speed, synchronous grouting and secondary compensation grouting are reasonably selected,which ensure the surface settlement, the displacement of the pier is in a controllable range, and the expected construction effect is achieved. Key words:shield tunnel; finite element analysis; isolation piles; crossing construction; in-situ monitoring 0引言 近年来随着城市轨道交通开发受到越来越广泛的关注[1-2],盾构近距离穿越高铁桩基的问题就显得更为突出。杭州、无锡、南京等地的地铁施工都面临盾构超近距离穿越高铁桩基的情况,而高速铁路需严格控制变形,导致了盾构隧道下穿高铁工程施工的困难性、复杂性。而现在关于盾构超近距离穿越高铁桩基的工程经验相对较少,对于采用何种保护措施、怎样控制施工过程及效果如何等问题尚还处于探索阶段[3]。 本文结合杭州至海宁城际铁路(以下简称“杭海城际”)某区间盾构下穿高铁桩基的一个典型工程现场试验研究,先后进行有限元建模分析[4-5],设置隔离防护桩,掘进过程中结合现场监测数据,合理选择盾构隧道掘进参数,最终完成该区段的施工,积累了处理该类型工程的经验,得出一些有意义的结论,可为高铁桩基周边盾构穿越施工行为的理论研究提供参考。 1工程概况 杭海城际是浙江省都市圈城际铁路网中的一条放射型线路,该铁路工程第四标段为海宁高铁站~长安镇站区间地下区间部分,其中穿越桐海特大桥段受影响桩基为575号、576号、577号共3根桥桩,运营里程DK129+461.518~DK129+526.918,区间隧道与桐海特大桥夹角约50°,下穿大桥段长约18m。每个桥墩由8根Φ1000钻孔桩支撑,桩长69~85m,左线盾构隧道距离桥桩最小距离为6.2m,右线盾构隧道距离桥桩最小距离为5.9m。杭海城际区间隧道与桐海特大桥相对位置关系如图1所示。 区段工程施工工法为盾构法,施工采用内径5500mm、外径6200mm、衬砌厚度350mm、环宽1200mm单圆盾构衬砌。衬砌环全环由六块组成,即一块小封顶块K、两块邻接块L和三块标准块B构成,环间采用错缝拼接方式,管片采用M30弯螺栓连接。盾构机选用德国海瑞克公司生产的S-997土压平衡盾构机,并配备同步注浆系统。 盾构区间全区间处在淤泥质黏土和粉质黏土的软土地层中,其中下穿高铁区段埋深约5.5m,属于浅埋盾构软弱地层高标准下穿既有高铁桥梁施工,施工难度大技术要求高。且根据上海铁路局要求,施工期间高铁限速至200km/h,桥墩变化值控制在1mm以内,为全线的重难点工程之一。 图1杭海城际区间隧道与沪杭甬客运专线桥梁平面关系图 Fig.1 Plane relationship diagram between Hangzhou-Haining inter-city tunnel and Shanghai-Hangzhou-Ningbo passenger line 本区段工程隧道主要穿越土层为④1层淤泥质黏土(土层厚1.2~14.0m,流塑)、⑤1层粉质黏土(土层厚2.2~7.0m,硬塑)和⑤2层粉质黏土夹粉土(土层厚约2.7~5.6m,可塑)。本区间工程地表水属上塘河水系,地下水类型主要可分为第四系松散土类孔隙潜水和孔隙微承压水。根据周边环境调查情况显示,盾构区间除高铁桥梁及高速桥梁外无其他建构筑物,周边以农耕地及荒地为主。 2施工变形控制 2.1隔离桩加固施工 盾构施工将不可避免的造成地层损失和引起周边土体的扰动,从而盾构上方土体及地面将产生一定的沉降,对邻近铁路桥梁将产生一定的影响。本区间隧道已进入铁路保护影响范围,为保证盾构能够安全顺利通过且不影响既有高铁桥梁正常运营,使地铁盾构施工对沪杭高铁桥梁的影响降到最低,拟采用在盾构下穿前在洞外设置隔离桩的防护措施,王国富等研究了采用合理形式的隔离桩对变形控制效果的可操作性、适用性[6-7]。

盾构现场施工隧道监测方法

精心整理上海长兴岛域输水管线工程盾构推进 环境监测 技术方案

目录 一工程概况 二盾构推进对周边环境影响程度的分析和估计三监测施工的依据 四监测内容

上海长兴岛域输水管线工程盾构推进环境监测技术方案 前言 科学技术的发展与试验技术的发展息息相关。历史上一些科学技术的重大突破都得益于试验测试技术。因此,试验测试技术是认识客观事物最直接、最有效的方法,也是解决疑难问题的必要手段,试验测试对保证工程质量、促进科学的发展具有越来越重要的地位和作用。测量技术在土建工程中同样占有重要地位,它在各类工程建筑,尤其是在地下工程中已成为一个不可或缺的组成部分。随着科学技术的发展,测量的地位更显关键和重要。早期地下工程的建设完全 工作井相连。 输水管线总长约10563.305m,其中东线长5280.993m,西线长5282.312m。全线最小平曲线半径为R=450m;最大纵坡为8.9‰。具体详见下表。

施工工序,第一台盾构自原水过江管工作井始发推进(东线)至中间盾构工作井进洞后盾构主机解体调头,继续西线隧道推进施工。第二台盾构自中间盾构工作井始发推进(东线)至水库出水输水闸井进洞后盾构转场回中间盾构工作井,继续进行西线隧道推进施工。总体筹划详见下图: 二盾构推进对周边环境影响程度的分析和估算 因很复杂,其中隧道线形、盾构形状、外径、埋深等设计条件和土的强度、变形特征、地下水位分 V l S (x )i Z -地面至隧道中心深度。 φ-土的内摩擦角。 在已知盾构穿越的土层性质、覆土深度、隧道直径及施工方法后,即可事先估算盾构施工可能引起的地面沉降量,同时可及时地采取措施把影响控制在允许范围内。在推进过程中根据盾构性能及监测数据及时调整施工参数,控制变形量,确保周边环境的绝对安全,实现信息化施工。 三监测施工的依据 3.1技术依据 1) 上海长兴岛域输水管道工程技术标卷(甲方提供)

盾构工法

第五章盾构法施工 第一节概述 盾构法是暗挖隧道的专用机械在地面以下建造隧道的一种施工方法。盾构是与隧道形状一致的盾构外壳内,装备着推进机构、挡土机构、出土运输机构、安装衬砌机构等部件的隧道开挖专用机械。采用此法建造隧道,其埋设深度可以很深而不受地面建筑物和交通的限制。近年来由于盾构法在施工技术上的不断改进,机械化程度越来越强,对地层的适应性也越来越好。城市市区建筑公用设施密集,交通繁忙,明挖隧道施工对城市生活干扰严重,特别在市中心,若隧道埋深较大,地质又复杂时,用明挖法建造隧道则很难实现。而盾构法施工城市地下铁道、上下水道、电力通讯、市政公用设施等各种隧道具有明显优点。此外,在建造水下公路和铁路隧道或水工隧道中,盾构法也往往以其经济合理而得到采用。 盾构法是一项综合性的施工技术。盾构法施工的概貌如图5-1所示。构成盾构法的主要内容是:先在隧道某段的一端建造竖井或基坑,以供盾构安装就位。盾构从竖井或基坑的墙壁预留孔处出发,在地层中沿着设计轴线,向另一竖井或基坑的设计预留孔洞推进。盾构推进中所受到的地层阻力,通过盾构千斤顶传至盾构尾部已拼装的预制衬砌,再传到竖井或基坑的后靠壁上。盾构是一个能支承地层压力,又能在地层中推进的圆形、矩形、马蹄形及其他特殊形状的钢筒结构,其直径稍大于隧道衬砌的直径,在钢筒的前面设置各种类型的支撑和开挖土体的装置,在钢筒中段周圈内安装顶进所需的千斤顶,钢筒尾部是具有一定空间的壳体,在盾尾内可以安置数环拼成的隧道衬砌环。盾构每推进一环距离,就在盾尾支护下拼装一环衬砌,并及时向盾尾后面的衬砌环外周的空隙中压注浆体,以防止隧道及地面下沉,在盾构推进过程中不断从开挖面排出适量的土方。 盾构是进行土方开挖正面支护和隧道衬砌结构安装的施工机具,它还需要其它施工技术密切配合才能顺利施工。主要有:地下水的降低;稳定地层、防止隧道及地面沉陷的土壤加固措施;隧道衬砌结构的制造;地层的开挖;隧道内的运输;衬砌与地层间的充填;衬砌的防水与堵漏;开挖土方的运输及处理方法;配合施工的测量、监测技术;合理的施工布置等。此外,采用气压法施工时,还涉及到医学上的一些问题和防护措施等。

水下盾构隧道纵向抗震性能分析及SMA柔性减震节点研究

水下盾构隧道纵向抗震性能分析及SMA柔性减震节点研究 随着城市建设的发展和地下空间的开发,大型水下盾构隧道正朝着超长、大 断面、高水压和地质条件复杂的方向发展,这对盾构隧道的抗震研究提出了更高 的要求和挑战。然而,过去人们普遍认为,地下结构受周围土体约束,较难受到地震灾害的影响,导致地下结构的抗震研究严重滞后于地上结构。 盾构隧道作为地下结构的重要组成部分,其整体纵向抗震的研究相对较少,且大型盾构法隧道结构系统尚未真正经受强震作用的考验。为保障高烈度区大型盾构法隧道的安全,探索新型有效的隧道抗震、减震措施十分有必要。 本文依托某大型水下盾构隧道工程,结合盾构隧道纵向抗震相关理论,建立能反映盾构隧道整体纵向受力特性的有限元模型,分析结构在地震作用下的动力 响应;针对隧道沿纵向土层变换处,环缝接头张开量超过防水限值的情况,提出了一种“哑铃式”形状记忆合金(SMA)柔性减震节点,布置于盾构隧道管环薄弱位置,并开展一系列不同SMA材料形式的力学性能试验,探讨SMA柔性减震节点用于隧道的可行性。具体研究内容如下:(1)归纳、总结盾构隧道纵向抗震计算常见的分 析模型和分析方法,对不同分析模型和分析方法优缺点、适用条件进行对比,并给出隧道接头弹簧参数的计算方法;通过总结地震动参数确定方法和人工合成地震 波相关理论,以及ANSYS/LS-DYNA的无反射边界理论,确定可以采用时域法生成 谱拟合人工地震波及得到粘性人工边界,为后续隧道纵向抗震奠定理论基础。 (2)依托某大型水下盾构隧道工程,采用梁-弹簧模型理论,利用ABAQUS软件,建立盾构隧道整体纵向有限元模型;基于经典广义反应位移法及无反射边界 (non-reflecting boundary)理论,利用ANSYS/LS-DYNA软件,建立隧道位置处土体三维有限元模型,分析得到土体的位移时程响应,并将该位移响应通过地层弹

特殊地段的盾构施工技术措施

特殊地段的盾构施工技术措施 摘要:盾构在地铁区间的特殊地段施工,必须作好充足的施工准备和施工技术措施。关键词:地铁区间;盾构施工;技术措施 广州西场站—西村站地铁区间施工标段,沿线两侧为密集民居、酒店、办公楼、商店等,交通繁忙,上部地面为环市西路,区间线路穿越广茂铁路,地形平坦,略有起伏,其中有岩溶和溶蚀空洞、内环高架桥桩、基岩球状风化体地段(风化深槽)、泥质粉砂岩、上软下硬岩段等特殊地段。其中广州火车站—草暖公园区间段下穿过广州火车站广场,到达草暖公园,施工难度大。根据现场实际情况,做出相应的盾构施工技术措施。 1盾构通过岩溶和溶蚀空洞 本工程隧道左右线均存在岩溶和溶蚀空洞,左线溶蚀空洞约为0.8m高,右线在YCK7+522和YCK7+576处存在溶蚀空洞,其中较大的溶蚀空洞为2.7m高,对盾构掘进造成极为

不利的影响,极有可能发生突泥、突水、地面沉陷、盾构机被卡等严重事故。 为保证盾构掘进顺利通过,必须提前探明隧道穿过的岩溶裂隙的位置、形状、尺寸大小、充填物性质等,并及时处理。施工采取以下措施探测和处理: (1)开工前,进行补充地质勘探,在左右线溶蚀空洞地段加密勘探,在勘探场地允许的前提下,使部分钻孔间距达到10m,进一步查明该段条件地层地质条件,对可能出现岩溶裂隙的段落、岩溶裂隙的规模、充填物等情况,提前作出盾构掘进方案。 (2)对盾构机适当改造,针对地质情况,盾构机增设超声波探测系统。盾构掘进施工时通过发射超声波,可对刀盘前方30m范围内的岩溶裂隙、砂土层中的孤石等分布情况进行探测,利用专业软件对接收到的反射波分析,即可精确查明岩溶裂隙或孤石的位置、形状、尺寸大小、充填物性质等。 (3)根据超前地质预报的资料,对分布于盾构周边的岩溶裂隙,通过地面注浆的办法进行超前注浆加固或回填。对岩溶裂隙要提前确定注浆方案,根据其位置、形状、充填物性质,确定实施超前注浆的里程位置、注浆品种及配合比、注浆压

沉管法施工工艺

沉管法施工工艺 铁工1401班第2组 组长:常博 组员:刘鹏赵昶王同祥 郭相凯袁自程

目录 一、优点和适用条件 (2) 二、管段制作 (3) 2.1容重控制技术 (3) 2.2几何尺寸控制 (3) 2.3结构裂缝预防 (3) 三、管段沉放 (3) 四、管段水下连接 (4) 五、基础处理 (5) 5.1(基础垫平)先铺法 (5) 5.2(基础垫平)后填法 (6) 六、总结 (6)

摘要:沉管法是在水底建筑隧道所使用的一种施工方法,较之于盾构法,其优势尤为突出。虽然沉管法在我国水底隧道修建中的应用起步较晚,但近年来得到了快速发展,据初步估算,沉管法在我国已建或在建隧道中的应用在15座以上。随着施工技术的发展,沉管法在隧道修建中的应用将越来越广泛。这种形势下,对沉管法技术进行深入研究,意义十分重大。只有充分掌握沉管法的优点及适用条件,并对隧道沉管法施工技术进行深入分析,才能确保水底隧道施工质量,为我国跨江河等水底隧道工程的发展提供强有力的技术职称。本文主要介绍沉管法的施工工艺以及相关的施工注意事项。 关键词:适用条件、施工工艺、注意事项 一、优点和适用条件 1.1 采用沉管法施工的水下段隧道,比用盾构法施工具有较多优点。主要有: (1)容易保证隧道施工质量。因管段为预制,混凝土施工质量高,易于做好防水措施;管段较长,接缝很少,漏水机会大为减少,而且采用水力压接法可以实现接缝不漏水。 (2)工程造价较低。因水下挖土单价比河底下挖土低;管段的整体制作,浮运费用比制造、运送大量的管片低得多;又因接缝少而使隧道每米单价降低;再因隧道顶部覆盖层厚度可以很小,隧道长度可缩短很多,工程总价大为降低。 (3)在隧道现场的施工期短。因预制管段(包括修筑临时干坞)等大量工作均不在现场进行。 (4)操作条件好、施工安全。因除极少量水下作业外,基本上无地下作业,更不用气压作业。 (5)适用水深范围较大。因大多作业在水上操作,水下作业极少,故几乎不受水深限制,如以潜水作业实用深度范围,则可达70米。 (6)断面形状、大小可自由选择,断面空间可充分利用。大型

盾构隧道排水通风具体内容

盾构隧道排水通风具体内容 采用盾构为施工机具,在地层中修建隧道和大型管道的一种暗挖式施工方法。施工时在盾构前端切口环的掩护下开挖土体,在盾尾的掩护下拼装衬砌(管片或砌块)。在挖去盾构前面土体后,用盾构千斤顶顶住拼装好衬砌,将盾构推进到挖去土体空间内,在盾构推进距离达到一环衬砌宽度后,缩回盾构千斤顶活塞杆,然后进行衬砌拼装,再将开挖面挖至新的进程。如此循环交替,逐步延伸而建成隧道。 采用盾构为施工机具,在地层中修建隧道和大型管道的一种暗挖式施工方法。施工时在盾构前端切口环的掩护下开挖土体,在盾尾的掩护下拼装衬砌(管片或砌块)。在挖去盾构前面土体后,用盾构千斤顶顶住拼装好衬砌,将盾构推进到挖去土体空间内,在盾构推进距离达到一环衬砌宽度后,缩回盾构千斤顶活塞杆,然后进行衬砌拼装,再将开挖面挖至新的进程。如此循环交替,逐步延伸而建成隧道。 历史和发展 用盾构法修建隧道已有150余年的历史。最早进行研究的是法国工程师M.I.布律内尔,他由观察船蛆在船的木头中钻洞,并从体内排出一种粘液加固洞穴的现象得到启发,在1818年开始研究盾构法施工,并于1825年在英国伦敦泰晤士河下,用一个矩形盾构建造世

界上第一条水底隧道(宽11.4米、高6.8米)。在修建过程中遇到很大的困难,两次被河水淹没,直至1835年,使用了改良后的盾构,才于1843年完工。其后P.W.巴洛于1865年在泰晤士河底,用一个直径2.2米的圆形盾构建造隧道。1847年在英国伦敦地下铁道城南线施工中,英国人J.H.格雷特黑德第一次在粘土层和含水砂层中采用气压盾构法施工,并第一次在衬砌背后压浆来填补盾尾和衬砌之间的空隙,创造了比较完整的气压盾构法施工工艺,为现代化盾构法施工奠定了基础,促进了盾构法施工的发展。20世纪30~40年代,仅美国纽约就采用气压盾构法成功地建造了19条水底的道路隧道、地下铁道隧道、煤气管道和给水排水管道等。从1897~1980年,在世界范围内用盾构法修建的水底道路隧道已有21条。德、日、法、苏等国把盾构法广泛使用于地下铁道和各种大型地下管道的施工。1969年起,在英、日和西欧各国开始发展一种微型盾构施工法,盾构直径最小的只有1米左右,适用于城市给水排水管道、煤气管道、电力和通信电缆等管道的施工。 中国于第一个五年计划期间,首先在辽宁阜新煤矿,用直径 2.6米的手掘式盾构进行了疏水巷道的施工。中国自行设计、制造的盾构,直径最大为11.26米,最小为3.0米。正在修建的第二条黄浦江水底道路隧道,水下段和部分岸边深埋段也采用盾构法施工,盾构的千斤顶总推力为108兆牛,采用水力机械开挖掘进。在上海地区用盾构法修建的隧道,除水底道路隧道外,还有地铁区间隧道、通向河海的排

特殊地段及复杂地质条件盾构施工技术措施

特殊地段及复杂地质条件盾构施工技术措施 一. 盾构下穿河流(续) 1.应对江河地段水文地质条件、河床、河堤状况、水流速度、水深、淤泥层厚度、岸边建(构)筑物情况及保护要求进行详细调查。必要时进行补堪,确定河底地质。 2.应对地质勘探孔位进行调查确认,防止河水从勘探孔灌入隧道。 3.盾构应具有土仓加泥或泡沫的功能,螺旋输送机应设有防喷装置。 4.穿越时在土仓和刀盘前注入泡沫、膨润土改善渣土性能,防止涌沙突水发生。 5.盾构机刀盘处于河岸前一倍覆土厚度时,应逐渐降低土仓压力,到达河岸下方时,土仓压力应与浅覆土的河流段土压力相等。确保快速通过危险区域。 6.穿越前,应对盾尾密封系统做全面检查和处理。使用优质盾尾油脂,掘进中不断地对盾尾密封注入油脂,保证每环30kg以上。防止泥水和浆液进入盾体。 7.严格控制盾构操作,控制好盾构的各项参数,调整好盾构推进油缸的压力差及各组推进油缸的行程,避免盾构上浮。注浆材料加入早强剂,块速达到强度。 8.注浆压力在理论上减小0.05—0.1MPa,避免形成劈裂注浆,造成河水倒灌。必要时,可每10环压注一次环箍(双液浆、水泥浆),防止窜浆,增强盾尾防水能力。注浆时应注意管片变形及隧道上浮。保证出渣量与掘进速度一致,避免“冒顶”。 9.掘进时保持土压平衡,停止掘进时保持土仓压力为正常值的1.1—

1.2倍。 二.穿越风险源施工 盾构穿越铁路、桥梁、建(构)筑物、大型管线、河流、胡泊、主干道路、不良地质地段(简称穿越施工): 1. 盾构机组装时,禁止使用劣质盾尾刷;使用优质盾尾油脂,防止盾尾漏浆。 2.加强盾构机检修、保养工作,保持盾构均速、快速施工,避免非正常停机。 3.确保盾构机姿态,减少姿态调整引起的土层扰动,必须纠偏时每环纠偏量控制在4mm以内。 4.必须对同步浆液的稠度进行现场测试,浆液水泥含量不得低于120kg/m3,稠度不得大于11,浆液初凝时间不得大于6小时。 5.必须进行“持续”注浆,即:除同步注浆和二次注浆外,盾尾与二次注浆之间的管片(一般为5—8环),在不能实现二次注浆之前,必须进行间歇注浆。必须保证从同步注浆开始,盾尾以后的所有管片都能实现即时注浆,以控制地面沉降。 6.必须加大监测频率,根据监测数据及时调整土仓压力,注浆压力及注浆量。 7.必须坚持精细化施工,每天至少两次进行穿越过程书面作业,即:核对盾构机与地面建(构)筑物的精确对应关系,分析监测结果,对沉降部位及时采取措施。 三. 浅覆土地段推进 (覆土厚度不大于盾构直径的地段)

(完整版)沉管隧道的发展与展望

沉管隧道的发展与展望 概述 为了跨越江河的阻隔 , 人们除了修建各种各样的桥梁来满足交通发展的需要 , 同时也修建了许多的跨海湾、海峡、大江河的水下隧道。沉埋管节法 (简称沉管法 ) , 也称预制管节沉放法是在干船坞内或大型驳船上先预制钢筋混凝土管节或全钢管节 , 然后浮运到指定的水域 ,再下水沉埋到设计位置固定 , 建成需要的过江隧道或大型水下空间。这种修建隧道的技术因其显著的优点而被广泛采用。 1隧道——地下空间的开发 随着全球城市化进程的加快 , 人们出行必然要求交通和运输系统不断增加和完善 ,由此而来 ,引起了跨越江河和海湾 (峡 ) 的问题。水下隧道因能很好地解决水域的跨越问题 , 同时又降低了对周围环境的影响 ,解决了大面积水域的航运问题等 , 使得大江大河上修建的大型水下隧道工程数量逐日增多。但水下隧道方式因为受到技术水平的制约 , 一直没有得到足够的重视和发展。随着修建水下隧道的一些关键技术的不断突破 , 隧道已逐渐成为了工程界普遍认同的跨越航运繁忙河道的第一选择 , 包括中国在内的许多国家已经掌握了建设水下隧道的全部技术 , 加快发展水下隧道的时机趋于成熟。 与桥梁方案相比 , 采用隧道越江 (海 ) 的主要优点有: ( 1) 全天候运营。 ( 2) 对航运、航空无干扰 ( 3) 隧道线路短 , 可快速过江 (海 ) , 且两岸拆迁少。 ( 4) 保持原有生态和自然环境不变 ( 5) 抗地震能力好。 ( 6) 防战能力强。 ( 7) 多用途 , 易维护 , 造价相对降低。 在我国 ,越江隧道的优越性也逐渐得到认同 ,在内河航运水道上发展水下隧道建设可能成为一种趋势。以桥梁或隧道跨越江河各有优缺点 ,在规划跨越江河的通道时 ,应该对两者进行认真的比选。随着社会的发展 ,越江隧道的优越性将会突出地表现出来 , 并必将促进大型水下隧道工程的建设 , 从而推动中国水下隧道建设技术的大发展。 2 沉管法用于隧道建设 目前修建水下隧道有以下几种施工方法: 矿山法、盾构法、围堰明挖法、沉埋管节法 (简称沉管法 )、暗挖法、气压沉箱法、顶推法等。在大型的水下隧道工程中 , 沉管法和盾构法适用范围较广 ,几乎不受地质条件限制 ,被世界各国广泛采用。而其他几种施工方法因要受到地质条件限制 ,难以推广使用。盾

土压平衡盾构施工技术难点及处理措施

土压平衡盾构施工技术难点及处理措施 【摘要】土压平衡盾构以其高效、安全、环保等优点,已被广泛应用于地铁施工中,虽然技术成熟,但施工中一些常见的问题,施工方依然应当采取预防及处理措施,从而确保地铁工程的施工质量。本文根据实际工作经验,对施工中几个常见的难题探讨了其预防及处理措施。 【关键词】土压平衡盾构;盾构法隧道;事故预防;处理 一、盾构刀盘结泥饼问题 盾构机穿越粘土地层时,如掘进参数不当,则刀盘和土仓会产生很高的温度,这样粘土在高温、高压作用下易压实固结成泥饼,特别是刀盘的中心部位。当泥饼产生,最终会导致盾构无法掘进。 施工中采取的主要技术措施为:1)施工前分析隧道范围内的地层情况,在到达此地层前把刀盘上的部分滚刀换成齿刀,增大刀盘的开口率。3)合理增加刀盘前方泡沫的注入量,增大碴土的流动性,减小碴土的黏附性,降低泥饼产生的几率。5)必要时螺旋输送机内也要加入泡沫,以增加渣土的流动性,利于渣土的排出。6)如果刀盘产生泥饼,可空转刀盘,使泥饼在离心力的作用下脱落,施工过程中确保开挖面稳定。7)如上述方法均未能奏效,则可采用人工进仓处理的方式清除泥饼,人工进仓处理前如掌子面地层软弱,则需进行预加固。 二、桩基侵入盾构隧道 城市地铁线路规划设计应避开重要建(构)筑物、避开建筑物的桩基,但城市中心区内房屋建筑较为密集,要求线路选线时避开所有的建筑物是不现实的,因此难免会有一些建筑物桩基侵入隧道,由于许多桩基为钢筋混凝土结构,盾构机无法通过,需要对桩基进行拆除。针对侵入盾构隧道的桩基,采取的措施为:1)具有承载力的桩基,采取桩基托换方法。2)大竖井暗挖拆除桩基方法。3)小竖井开挖分区拆除桩基方法。4)人工挖孔+暗挖横通道拆除桩基方法。 深圳市地铁龙岗线西延段3153标盾构区间下穿燕南人行天桥,开工前该桥地表以上部分已经拆除,但桩基并没有拆除。调查资料显示共有8根直径为1.2m 的人工挖孔桩侵入右线隧道,盾构机无法安全、顺利通过。为了使侵入隧道的桩基不对盾构施工造成影响,采用比原桩基直径大的人工挖孔桩自地表而下来破除侵入隧道范围内的桩基。燕南人行天桥与盾构区间隧道位置关系如图所示。侵入隧道桩基与隧道纵面位置关系如图1和图2所示。 图1 燕南人行天桥与盾构区间隧道位置关系图 图2 侵入隧道桩基与隧道纵面位置关系图

盾构法隧道结构防水

盾构法隧道结构防水 8.1.1 (原规范6.1.1,修改条文) 原条文对盾构法隧道防水作了总体规定,故予以保留。其中“工程处于侵蚀性介质时,应采用……耐侵蚀性附加防水层”一句,因这种防水层为涂于管片外背面的防水涂料而非防水卷材、防水砂浆类材料,故明确地改写为“外防水涂料”。 8.1.2 (增加条文) 针对不同防水等级的盾构隧道确定相应的防水措施。表8.1.2主要依据国内多年盾构隧道防水的实践总结,同时参照了盾 构隧道建设实践较多的上海市的市标“盾构法隧道防水技术规程”而制定;考虑到“阴极保护与金属埋露件防腐”等主要是关于防腐蚀措施,“回填注浆”措施主要是控制盾构推进,防止地面沉降,它们虽与防水也有关系,但不直接影响防水等级,故不予列入。 对嵌缝密封的意义与功效国内外评价不尽相同,因此即使防水等级为一级的工程也不要求“必选”,而用“应选”。混凝土内衬往往也是加强初次衬砌的防水措施,它可以按要求全断面或局部(如底部)采用,但考虑到造价、工期等因素,对防水等级为一级的工程用“宜选”,二级的工程为“局部宜选”。应该指出的是,随着盾构法施工技术的发展,除了二次衬砌(内衬)在减少,嵌缝作业也有减少的趋势。 外防水涂料采用与否,虽然由地层中是否有侵蚀性介质为主要确定因素,隧道防水等级为次要因素。但外防水涂料不仅有防腐蚀作用,也能起到防渗作用,故仍列入。在一级防水等级中用“宜选”,在二、三级防水等级中,因并非隧道经过的全部地段都有侵蚀性介质,并且各地段埋深差异也可能很大,因而要求也不尽相同,故规定“部分区段宜选”。 8.1.3 (原规范6.1.2,修改条文) 管片的精度直接影响拼装后隧道衬砌接缝缝隙的防水,应予列入。考虑到精度不高的砌块可用于防水等级4级的隧道工程, 因此,原6.1.2条对管片尺寸精度规定为“不应大于1.5mm”,就欠妥当了。本条对钢筋混凝土管片的制作钢模及管片本身的尺寸误差作了相应规定,以保证管片拼装后隧道衬砌接缝缝隙的防水性能。

沉管法修建水下隧道

项目五沉管法修建水下隧道 习题 一、填空 1.修建水下隧道的方法有、、、。2.挖浚基槽最常用的挖泥船有、、、。3.沉管隧道最大的特点是。 4.钢筋混凝土管段通常为矩形,最长为。 5.管节沉放的辅助设备有、、、、。6.如果沉管管节底面以下的地基过于软弱,则其解决办法有、、、。 7.沉放作业除了应具有四只的方形浮箱和四艘小型方驳船外还必须配有发电机组、台定位卷扬机。 8.与沉管隧道在抗浮层设置上有较大差异。 9.用水力压接法进行连接的主要施工顺序为:、、、。 10.刮铺法分为、。 11.在基槽开挖时,需往下超挖 cm。 12.后填法分为:、、、。 13.基础处理方法有、。 14.世界上沉管隧道管节沉放、对接普遍采用的定位设施。 15.测量塔的设计一般考虑两种工况:、。 二、单项选择 1.管节下沉过程一般分为三个阶段,以下属于的是() A、水速的控制 B、浮运停止 C、精确就位 D、即时安装2.以下方法中,不属于各国的沉管隧道中曾采用的方法的是() A、中桩紧压法 B、灌囊传力法 C、水下混凝土传力法 D、活动桩顶法 3.以下()情况不是解决软弱土层上的沉管段基础的方法。 A、以粗砂置换软土层 B、打砂桩并加载预压 C、减轻管节重量 D、筑水下墙体

4.在压浆法中,以下不属于压浆所使用的混凝土砂浆的材料是() A、水泥 B、蒙脱土 C、石料 D、适量的缓凝剂5.在后填法中,灌囊法在一些准备中先铺垫层,垫层与管片底面之间,要留出多少()距离。 A、15~20cm B、20~25cm C、25~30cm D、30~35cm 6.以下不属于管节沉放的辅助设备的是() A、管节沉放的浮力计 B、管节沉放用的测量塔 C、管节微调对中系统 D、拉合千斤顶 7.在估算浮运沉放作业时最大风速一般应小于( ) A、5m/s B、10m/s C、15m/s D、20m/s 8.喷砂完毕后,竣工通车后的最终沉降量,一般在() A、15mm B、20mm C、25mm D、30mm 9.以下不是沉管隧道最大优点的是() A、施工工期短 B、整体工序相对总工期比较短 C、其工程项目对外部没有什么影响 D、施工简单 10.现在管段的制作中,管节最长的是() A、150m B、256m C、268m D、270m 11、在驳运中,要考虑自然条件:风速小于10m/s,波浪小于0.5m,能见度大于1000m,流速应小于() A、0.5~0.7m/s B、0.6~0.8m/s C、0.7~0.9m/s D、0.8~1.0m/s 三、判断 1.矿山法一般适用于地下工程。( ) 2.圆形钢壳混凝土结构的管节,在浮态时干弦高度较小。( ) 3.每节管节长度越来越长,每节管中的车道数越来越少。( ) 4.若水深超过40米,则矩形钢筋混凝土管节的沉放、对接很困难。( ) 5.沉管隧道对地基承载能力要求不高,所以很多沉管都是修建在软弱的地基上,但不能忽视软弱地基的河床稳定性。( ) 6.压浆所用混合沙浆是由水泥、蒙脱土、砂和适量缓凝剂配成。( ) 7.压砂法亦称为砂流法,与压浆法颇为相似,两种工法研究目的相同。( ) 8.为了保证管节在干坞内顺利起浮,根据需要可在干坞周边设置系缆柱及必要的系缆铰车。( )

地铁盾构隧道下穿铁路安全控制分析

地铁盾构隧道下穿铁路安全控制分析 发表时间:2018-09-07T16:01:58.857Z 来源:《防护工程》2018年第9期作者:谭帅[导读] 针对施工过程的安全性提出了地铁盾构隧道下穿铁路的安全施工策略,建议对施工过程中出现的各种意外和突发情况做好预案,制定科学的解决方案,保障了盾构工法的顺利施行。谭帅 中国水利水电第七工程局有限公司摘要:本文对以往的地铁盾构隧道下穿铁路案例进行分析,探讨各个单位的施工情况及安全控制问题。根据地层变化的规律,分析了地层沉降、轨道差异及盾构推力对铁路工程的不良影响,为此提出不同情况下是否采取地基加固及线路加固的举措来保证列车运行的安全性问题。同时也针对施工过程的安全性提出了地铁盾构隧道下穿铁路的安全施工策略,建议对施工过程中出现的各种意外和突发情况做好预案,制定科学的解决方案,保障了盾构工法的顺利施行。关键词:地铁盾构隧道;下穿铁路;地层沉降;轨道差异 1、引言 城市化规模的不断扩张推动着地面建筑的发展,地下管线等构筑物也越来越多的出现在大众视野,大大提高了地面空间的使用面积,做到了空间利用的合理规划。最早盾构法隧道的第一次使用出现在英国伦敦,著名工程师Brunel利用一台矩形盾构打造了一条隧道供行人们的方便出行,至今这条隧道还保留在泰晤河下。盾构法的优势在于其对地面的占用率小、在土层的适用范围方面广、施工方面安全性高,另外盾构法机械化程度较高,其已成为打造隧道的主流方法。本文分析了铁路路基的总体沉降以及差异沉降,探究了盾构法在施工过程中地层的变化规律,从而对可能产生的沉降进行准确的预判并对其进行有效控制,对今后的地铁盾构隧道工程具有现实指导意义。 2、地层变化规律的影响因素 利用盾构法来打造地铁隧道无疑对地层结构产生了一定的影响,这种地层上结构发生的变化是存在一定规律的。例如对于土性分布简单、土层适宜的穿铁路施工来说,盾构姿态控制也相对简单,而对于土层较薄、且土性呈不均匀分布的盾构来说,则很难对其进行良好的控制。因此研究此规律可以解决不同土层情况下所出现的问题以及能够提出更科学更有效的解决方案。分析和运用这种土层变化的规律,要注意方式方法,最重要的不能忽略其关键的影响因素。 (1)盾构过度超挖情况严重的话会造成土地资源的大量损失,还需注意盾构与衬砌之间间隙,不宜过大或过小,否则也会造成土体资源损失及浪费。 (2)掌子面关乎着支护压力,需要严格控制掌子面的支护压力,避免盾构本身的变形以及盾构在工作过程对地下水位的不利影响而导致地层固结沉降。一旦地层出现固结沉降,就会大大增加施工过程的事故概率,影响工作进程,列车的出行轨道设置安全性无法的到保障。 (3)盾构工法在使用的过程中要考虑盾壳与周围土体的摩擦力,摩擦力的大小与施工过程的安全性联系紧密,需要严格把控,过大过小都会阻碍施工进程。明确施工过程中地层变形规律,才能对施工过程采取行之有效的举措,进而提高施工效率,今后列车的出行安全性问题也可以得到有力的保障。 3、地铁盾构隧道掘进对铁路的影响 铁路是我国重要的公共交通设施,其安全性的问题已经成为当代社会关注的焦点。不可置疑的是,列车运行过程中的每一个环节都不可轻视,这也对底层沉降以及轨道差异沉降问题提出着更严格的高标准,从而保证列车的正常运行,避免的灾害问题产生。因此对地铁盾构工法应予以更高的重视,对其的研究分析直接影响着铁路事业的蓬勃发展。 3.1地层沉降的不良影响 轨枕支座是具有弹性,原因在于其需要在承受较大压力时通常会产生沉陷,弹性力可以使沉陷自动恢复到初始稳定的状态,从而保证列车运行的安全性问题。地少数情况下会遇到土地沉降的问题,严重的会导致轨枕所处的位置状态也会不断下降。由于软枕支座是属于超镇定系统环节的构件,因此,上述遇到的偶发情况会严重破坏轨道多支座超镇定系统,土地沉降导致轨道断裂,进而对列车的安全运行造成强烈的冲击,情况轻则导致列车产生连续振动,严重时会导致列车发生出轨翻车大型事故。另外动不可忽视的是列车的载荷作用,通常轨枕所产生的严重变形会提升轨道自身的应力。根据底层沉降的不良影响判断,列车运行的速度与列车出轨率成正比。 3.2轨道差异沉降的不良影响 一般情况下,地铁盾构工法的不足之处在于施工过程中会出现差异性沉降。若铁路的轴线和盾构掘进轴线所呈夹角越与土地沉降量呈现差异的明显程度是成正比的,即夹角越大土地沉降量的差异越明显,与铁轨是否处于同一断面无关。极少数情况下,由于沉降差异明显的情况下列车自镇相互作用会造成严重的侧翻事故。 3.3盾构推力的不良影响 将土仓压力设置为水土压力可以有效避免盾尾推力过大引起的地层沉降现象,保证了地铁盾构工法在施工过程中的质量与效率。土仓压力关系着土体状态的稳定性,当然也影响着铁路轨道的稳定性。土仓压力把控不到位,土体自身产生表面隆起或断裂的概率大大上升,对列车运行的安全性产生了极大的威胁。因此严格控制土仓压力进而控制地面与轨道的稳定状态十分重要。 4、地铁盾构隧道下穿铁路安全施工策略 4.1地基加固 在盾构隧道穿铁路施工过程中的重要举措是根据地质情况以及隧道的埋深度情况对地基进行分块加固。通常情况下有两种方法可以采用,分别是铁路两侧建设旋喷桩以及旋喷浆。旋喷桩能够避免浆液由于大面积扩散而造成的土体资源浪费,也能起到一定的对土体压力的隔断作用,从而控制好地面的变形,进而保证了地基加固的效果。旋转浆的采用使得地基加固主次分明,有利于加固强度的有效过渡以及对线路变形的良好控制。最后,在盾构工法的推进过车中需要引起重视的是对施工速度的严格把控以及对施工过程监管工作和养护工作的顺利进行。

盾构隧道施工方法及技术措施

盾构隧道施工方法及技术措施 § 1端头加固 1.1 端头加固概述 盾构进出洞门外土体为软弱含水的土层,盾构机在进出洞时,工作面将处于开放状态,这种开放状态将持续较长时间。若不提前加固处理,地下水、涌水等就会进入工作井,就会导致软弱地层不稳定,严重情况下会引起洞门塌方。为确保施工安全及盾构机顺利始发及出洞,必须对洞门外土体进行加固处理。 本标段盾构始发及到达共有4个端头需要加固,具体加固方法见表8-1-1 1.1.1加固的原则 (1)根据隧道埋深及盾构隧道穿越地层情况,确定加固方法和范围。 (2)在充分考虑洞门破除时间和方法的基础上,选择合适的加固方法和范围, 确保洞门破除和盾构机进、出洞的安全。 1.1.2加固要求 根据始发及到达端头地层性质及地面条件,选择加固方法,加固后的土体应有良 好的自立性,密封性、均质性,采用搅拌桩加固的土体无侧限抗压强度不小于0.8MPa, 8 渗透系数k < 1 x 10- cm/sec。 (2)渗透系数v 1.0 x 10-5cm/s。 1.2 端头的施工 1.2.1施工原理 旋喷法施工是利用钻机把带有特殊喷嘴的注浆管钻进至土层的预定位置后,用高压脉冲泵,将水泥浆液通过钻杆下端的喷射装置,向四周以高速水平喷入土体,借助流体的冲击力切

削土层,使喷流射程内土体遭受破坏,与此同时钻杆一面以一定的速度旋转,一面低速徐徐提升,使土体与水泥浆充分搅拌混合,胶结硬化后即在地基中形成直径比较均匀,具有一定强度的桩体,从而使地层得到加固。 1.2.2机械设备 旋喷法施工主要机具设备包括:高压泵、泥浆泵、钻机、浆液搅拌器、空压机、旋喷管和高压胶管等;辅助设备包括操纵控制系统、高压管路系统、材料储存系统以及各种管材、阀门、接头安全设施等。浆液搅拌采用污水泵自循环式的搅拌罐,钻机采用XY-100型振动钻机,空压机采用SA-5150W空压机,参数为20mVmin。 1.2.3材料要求 旋喷使用的水泥应采用新鲜无结块42.5R普通硅酸盐水泥,浆液水灰比为1:1。稠度要适合,水泥掺入量250kg/m,粘土粉50kg/m,为消除离析,加入0.9 %的碱。浆液宜在旋喷前lh以内配制,使用时滤去〉0.5mm的颗粒,以免堵塞管路和喷嘴。 1.3 端头地层加固施工工艺 1.3.1三轴搅拌桩施工工序 ①定位 三轴搅拌机开行到指定桩位,对中。当地面起伏不平,应注意调整机架的垂直度;搅拌桩的桩位偏差不得大于50mm垂直度不得大于1.5%。 ②制备水泥浆 在搅拌机定位的同时即开始按设计确定的配合比拌制水泥浆,水泥浆的搅拌采用二次搅拌方式,灰浆拌和时间不少于2mi n,保证拌和均匀,不发生沉淀,放置水泥浆的时间不超过2个小时,搅拌好的水泥浆须在一个小时内用完。外渗剂可根据工程需要选用具有早强、缓凝、减水、节省水泥等性能的材料,为增强流动性可掺入水泥重量0.20%?0.25%的木质磺酸钙,1%勺硫酸钠和2%勺石膏,但应避免污染环境。 ③预搅下沉 检查无误后开动搅拌机,以正循环方式钻进,为避免搅拌过程中喷浆口的堵塞,边喷射水泥浆边搅拌下沉,下沉速度控制在0.8m/min。 ④喷浆搅拌提升 为保证水泥搅拌桩桩端、桩顶及桩身质量,第一次提钻喷浆时应在桩底部停留30 秒,进行磨桩端,然后以反循环方式提升,余浆上提过程中全部喷入桩体,且在桩顶部位进行磨桩头,停留时间为30s,提升速度要保持均匀,控制在0.5m/min。

水下交通隧道的设计与施工(王梦恕)

[收稿日期] 2009-03-16 [作者简介] 王梦恕(1938-),男,河南温县人,中国工程院院士,北京交通大学教授,博士生导师、研究方向为隧道及地下工程设计、施工新 技术;E-mail:wms3273@263.net 水下交通隧道的设计与施工 王梦恕 (北京交通大学,北京100044) [摘要] 综合论述了水下隧道在穿越江河湖海时所有的优势,介绍了水下交通隧道的设计与施工概况,讨论了水下隧道勘察设计、施工的几项关键技术,详细介绍了水下隧道施工的常用方法。[关键词] 水下隧道;设计;施工 [中图分类号] U459.5 [文献标识码] A [文章编号] 1009-1742(2009)07-0004-07 就跨越江河湖海的可选方式而言,目前主要有 轮渡、水下隧道与桥梁。轮渡方式虽然投资少,但由于其受交通运输量小、等候时间长、气候影响大等不利因素的限制,与现代城市快节奏交通运输不相适应,所以现在选用较少。跨越江河湖海的方式越来越多地在水下隧道与桥梁之间做出选择。 1 水下隧道穿越江河湖海的综合优势 选择水下隧道还是选择桥梁,主要依据航运、水文、地质、生态环境以及工程成本等具体建设条件进行全面的比较、论证而定。经过论证得出水下隧道与桥梁相比有以下几项显而易见的优势。a.很强的抵抗战争破坏和自然灾害的能力。b.不侵占航道净空,不影响航运,不干扰岸上航务设施。c.水下隧道能全天候越江通车,不受气候变化的影响,有稳定、畅通无阻的通行能力。d.具有很强的超载能力,不像桥梁通行车辆载重受设计荷载的限制。e.结构耐久性好,维护保养费用比桥梁低很多。f.建设时钢用量比桥梁少,且只需普通建筑钢,比桥梁造价更低。g.在建设时能做到不拆迁或少拆迁,占地少,不破坏环境,从而降低建设成本。h.设计可以做到一洞多用,可以把城市供水、供电、供气和通讯等设施安排在比较安全稳定的环境中。i.对生态环境影响小,能避免噪声尘土对周围环境的影响。 近20年来,国外有优先考虑采用水下隧道作 为跨越江河湖海方式的趋势。随着我国经济的高速发展、隧道修建技术的日臻完善以及人们环保意识的不断增强,水下隧道也逐渐被国人所接受,并付诸建设。 2 国内外水下隧道技术发展现状 据不完全统计,国外近百年来已建的跨海和海峡交通隧道已逾百座,其中挪威所建跨海隧道占大多数。国外著名的跨海隧道有:日本青函海峡隧道、英吉利海峡隧道、日本东京湾水下隧道、丹麦斯特贝尔海峡隧道、挪威的莱尔多隧道等。这些已建的跨海隧道对我国类似工程的建设具有很好的参考作用。 我国建成的水下隧道有很多条,但跨海隧道只有6条,均集中在港澳台地区,大陆建成的水下隧道均为跨越江域的水下隧道,它们主要集中在上海、南京、武汉及厦门等地,有多条隧道穿越黄浦江、长江。建设中的水下隧道有:厦门翔安海底隧道(中国大陆第一条跨海隧道)、胶州湾湾口海底隧道以及广州生物岛———大学城隧道等。拟建的水下隧道有:琼州海峡跨海工程、渤海湾(大连—蓬莱)跨海工程(含隧道和海中悬浮隧道桥方案)、杭州湾(上海—宁波)外海工程、大连湾水下隧道、台湾海峡跨海隧道(实施尚有待时日)等。表1至表4为部分国内外建成、在建、拟建的水下隧道一览表。 4 中国工程科学

相关主题
文本预览
相关文档 最新文档