当前位置:文档之家› 电磁场0绪论

电磁场0绪论

工程电磁场复习基本知识点

第一章 矢量分析与场论 1 源点是指 。 2 场点是指 。 3 距离矢量是 ,表示其方向的单位矢量用 表示。 4 标量场的等值面方程表示为 ,矢量线方程可表示成坐标形 式 ,也可表示成矢量形式 。 5 梯度是研究标量场的工具,梯度的模表示 ,梯度的方向表 示 。 6 方向导数与梯度的关系为 。 7 梯度在直角坐标系中的表示为u ?= 。 8 矢量A 在曲面S 上的通量表示为Φ= 。 9 散度的物理含义是 。 10 散度在直角坐标系中的表示为??=A 。 11 高斯散度定理 。 12 矢量A 沿一闭合路径l 的环量表示为 。 13 旋度的物理含义是 。 14 旋度在直角坐标系中的表示为??=A 。 15 矢量场A 在一点沿l e 方向的环量面密度与该点处的旋度之间的关系 为 。 16 斯托克斯定理 。 17 柱坐标系中沿三坐标方向,,r z αe e e 的线元分别为 , , 。 18 柱坐标系中沿三坐标方向,,r θαe e e 的线元分别为 , , 。 19 221111''R R R R R R ?=-?=-=e e

20 0(0)11''4() (0)R R R R R πδ≠???????=??=? ? ?-=????? 第二章 静电场 1 点电荷q 在空间产生的电场强度计算公式为 。 2 点电荷q 在空间产生的电位计算公式为 。 3 已知空间电位分布?,则空间电场强度E = 。 4 已知空间电场强度分布E ,电位参考点取在无穷远处,则空间一点P 处的电位P ?= 。 5 一球面半径为R ,球心在坐标原点处,电量Q 均匀分布在球面上,则点,,222R R R ?? ??? 处的电位等于 。 6 处于静电平衡状态的导体,导体表面电场强度的方向沿 。 7 处于静电平衡状态的导体,导体部电场强度等于 。 8处于静电平衡状态的导体,其部电位和外部电位关系为 。 9 处于静电平衡状态的导体,其部电荷体密度为 。 10处于静电平衡状态的导体,电荷分布在导体的 。 11 无限长直导线,电荷线密度为τ,则空间电场E = 。 12 无限大导电平面,电荷面密度为σ,则空间电场E = 。 13 静电场中电场强度线与等位面 。 14 两等量异号电荷q ,相距一小距离d ,形成一电偶极子,电偶极子的电偶极矩 p = 。 15 极化强度矢量P 的物理含义是 。 16 电位移矢量D ,电场强度矢量E ,极化强度矢量P 三者之间的关系 为 。 17 介质中极化电荷的体密度P ρ= 。 18介质表面极化电荷的面密度P σ= 。

工程电磁场学习心得

《工程电磁场》学习心得 班级:姓名:学号: 在开始学习“工程电磁场”之前,当我听到其学科名称的时候就产生了一种高深莫测的感觉,觉得电磁场应该是比较难的。但是出于对知识的渴望我怀着一颗求知的心投入了这个“新奇的”知识海洋。工程电磁场是电气专业的必修课程,对于我们电气专业的学生而言,其重要意义不言而喻。 电磁场是一门技术基础课,在我们的培养计划中起到很重要的作用。但由于电磁现象的抽象性和工程电磁场问题的复杂性,所以定性分析与定量计算都不易为我们所掌握。因此,这往往会造成我们的畏难情绪,缺乏兴趣,学习被动。为克服我们的上述问题,我觉得教材能起很大作用。教材的编排是我心目中的好教材。 1)教材能在我们已有的理沦基础上由浅人深,及时总结提 高,让我们感到经过努力可以掌握所学内容,从而增加我们的学习信心。 2)教材能从各个不同角度反复强调基本理论和计算公式的 适用条件,帮助我们建立清晰的物理概念和培养我们良好的科学习惯,避免我们盲目套用公式。 3)教材能处处以基本理论为指导,对现象和问题进行定性分

析和定量计算,则能培养我们正确的思维方法和分析问题的方法,提高我们运用理论知识解决实际问题的能力。4)教材能紧密联系实际,让我们能够学以致用,从而重视课 程内容,提高学习兴趣。 5)教材能帮助我们掌握“类比”这一科学的分析方法,既能 使我们复习和巩固已学的知识内容,又可缩短新内容的学习过程。 6)教材内容的安排,既有从特殊到一般的归纳方法,又有从 一般到特殊的演绎方法,则既能使我们易于接受新内容,又能培养我们的抽象思维能力。 7)教材注重吐故纳新,及时调整教学内容,使教材紧跟时代 的步伐,使我们看到科学技术的不断发展,产生努力学习的紧迫感。 8)教材能安排多种环节的配合,使我们完成一定深度的认知 过程,避免我们“考试完毕,知识归师”的走过场的现象。 下面是我从书中具体的内容来阐明我学到的东西: 1)在静电场的编排中,从电场强度的基本定义出发,利用我 已有的电场力做功的物理概念和线积分、面积分的数学概念,结合介绍电介质极化的物理过程,在很自然的情况下得出了静电场的两个基本规律;又从梯度、散度和旋度的基本定义出发推导出了它们在直角坐标系下的数学表达

工程电磁场论文

工程电磁场在电力系统中的应用 【摘要】:现代大量应用的电力设备和发电机、变压器等都与电磁感应作用有紧密联系。由于这个作用。时变场中的大块导体内将产生涡流及趋肤效应。电工中感应加热、表面淬火、电磁屏蔽等,都是这些现象的直接应用。时变电磁场还可以进一步分为周期变化的交变电磁场及非周期性变化的瞬变电磁场。对它们的研究在目的上和方法上有一些各自的特点。交变电磁场在单一频率的正弦式变化下,可采用复数表示以化简计算,在电力技术及连续波分析中应用甚多。瞬变电磁场又称脉冲电磁场,覆盖的频率很宽,介质或传输系统呈现出色散特性,往往需要采取频域、或时序展开等方法进行分析。 【关键词】:工程电磁场电力系统应用 工程电磁场的相关定义 工程电磁场,是面向工程的电磁场内容体系,内容主要是库仑定律、电荷守恒定律、安培定律、法拉第定律和麦克斯韦位移电流假设、静电场、恒定电场、恒定磁场和时变电磁场的基本方程及其边值问题、镜像法的基本原理、基于加权余量的工程中常用的有限元法和边界元法、电磁场的能量和力、平面电磁波和电路参数计算原理、电气工程中典型的电磁场问题(包括变压器的磁场、电机的磁场、绝缘子的电场、三相输电线路的工频电磁环境以及三相输电线路的电容和电感参数)。 场产生电场,两者互为因果,形成电磁场。电磁场可由变速运动的带电粒子引起,也可由强弱变化的电流引起,不论原因如何,电磁场总是以光速向四周传播,形成电磁波。电磁场是电磁作用的媒递物,具有能量和动量,是物质存在的一种形式。电磁场的性质、特征及其运动变化规律由麦克斯韦方程组确定。 交变电磁场与瞬变电磁场。时变电磁场还可以进一步分为周期变化的交变电磁场及非周期性变化的瞬变电磁场。对它们的研究在目的上和方法上有一些各自的特点。交变电磁场在单一频率的正弦式变化下,可采用复数表示以化简计算,在电力技术及连续波分析中应用甚多。瞬变电磁场又称脉冲电磁场,覆盖的频率很宽,介质或传输系统呈现出色散特性,往往需要采取频域、或时序展开等方法进行分析。 电力系统的定义 由发电、变电、输电、配电和用电等环节组成的电能生产与消费系统。它的功能是将自然界的一次能源通过发电动力装置(主要包括锅炉、汽轮机、发电机及电厂辅助生产系统等)转化成电能,再经输、变电系统及配电系统将电能供应到各负荷中心,通过各种设备再转换成动力、热、光等不同形式的能量,为地区经济和人民生活服务。 工程电磁场在电力系统中的应用 现代大量应用的电力设备和发电机、变压器等都与电磁感应作用有紧密联系。由于这个作用。时变场中的大块导体内将产生涡流及趋肤效应。电工中感应

工程电磁场论文

电涡流缓速器制动力矩的计算方法 班级:11电化x班班序号:xx 姓名:xx 学号:2011xxxxxxxxx 1 前言 随着车辆发动机功率和运行速度的不断提高,在保证高速运行车辆的安全性、舒适性方面,摩擦片式制动器已经很难满足车辆使用要求。同时频繁减速制动造成制动鼓过热而引起热衰退,制动鼓和制动衬片磨损严重等问题也严重地威胁到车辆运行的安全性。而在车辆上安装使用缓速器后,行车制动器较少使用,制动器的寿命大大延长,使汽车安全性和完好率显著提高。缓速器常见有两种类型:电涡流缓速器和液力缓速器。 早在20世纪60年代法国等国家就开始汽车用缓速器的研究和应用开发工作。实践证明,电涡流缓速器在技术上是可行的,它是解决车辆(特别是大型客车及载货汽车)制动系统负荷过大问题的一种比较完美的方案。目前主要有法国的TELMA公司、西班牙的KLAM公司、德国的KLOFT、ZF和VOITH公司以及日本有关公司在生产电涡流缓速器和液力缓速器。现在欧、美、日等发达国家已经把缓速器作为标准件在多种级别的客车和中型、重型汽车上装用,作为现有汽车制动系统的必要补充装置。 国内已有部分大客车上装用电涡流缓速器,但大都选装进口件。可以预见,国内电涡流缓速器也将会在客车和重型载货汽车上得到广泛应用。研制和开发电涡流缓速器在国内将有广阔的市场。 2 电涡流缓速器的结构 电涡流缓速器是由定子、转子及固定架等部件 组成(见图1)。电涡流缓速器定子上一般有8个高 导磁材料制成的铁心,呈圆周分布,均匀地安装在 高强度的固定架上。8个励磁线圈套于铁心上,共 同构成磁极。圆周上相对两个励磁线圈串联或并联 成组磁极,并且相邻两个磁极均为N、S相间,形 成相互独立的4组磁极。转子通常由前、后转子盘 和转子轴构成。前、后转子盘均为圆环状,一般用 导磁性能高且剩磁率低的铁磁材料制成,常选用电工纯铁或低碳钢等材料。 3 制动力矩的计算 设垂直穿过转子盘的磁通密度为B,转子盘的旋转角速度为Wn。将转子盘看作为无数个长 度为(r1 一r2)。且过圆心的钢杆组成。转子盘转动时,这些钢杆切割磁力线而产生电动势,于是在转子盘表面产生了涡电流,如图2所示。 转子盘由r1至r2 的电动势为:

工程电磁场教本-国家精品课华北电力学院崔翔-第1节文档

绪论 1.电磁学与电磁场理论 电磁学:麦克斯韦方程组的积分形式。它概括了全部已有的宏观电磁现象的实验事实,给出了用积分量描述宏观电磁场的全部规律。 电磁场理论:麦克斯韦方程组的微分形式。是在电磁学的基础上,进一步研究宏观电磁现象和电磁过程的基本规律及其计算方法的理论,是用数学方法描述空间任意一点、任意时刻电磁现象变化规律的理论。 2.在电气工程与电子工程中的地位 电路理论和电磁场理论是电气工程与电子工程学科基础课程。 电路理论:提供了计算由集总元件联接起来的网络和系统行为的方法和理论。 电磁场理论:提供了解决所有电气工程与电子工程问题的根本计算方法和理论,如集总元件伏安关系的建立和难以用电路理论解决的电磁问题等。 电气工程领域:能量的转换、传输、分配和利用,旋转电机、变压器、输电线路与电缆、电容器、电抗器、开关设备、互感器等。 电子工程领域:信息的发送、传输、接收与转换,电波设备、天线、雷达、卫星、光纤、遥感、遥测、遥控等。 其他工程领域:电磁兼容、生物电磁场、无损电磁探伤、磁悬浮、超导等。 电磁场理论是理解、发展和实现一切与电磁现象与电磁效应相关技术必不可少的知识本源。 3.课程的特色与学习方法建议 课程学时:48学时。 课程的特色:体系完整、逻辑性强、内容抽象。 教材的特色:电气工程与电子工程相结合、理论与工程的结合,突出理论应用、提高学习兴趣。 学习方法建议:注重物理概念,强调数学方法,培养抽象思维能力,通过例题和习题充分理解电磁场理论。

第一章 电磁场的数学物理基础 1.1 电磁场物理模型的构成 1.源量 点电荷:q 、单位:C 。 电荷体密度:ρ、单位:C/m 3。 电荷面密度:σ、单位:C/m 2。 电荷线密度:τ、单位:C/m 。 如果已知上述各种电荷的分布规律,则对应的q 、ρ、σ 和τ 都应是已知的空间坐标变量的函数。又若已知电荷均匀分布,则意味着这些源量都将是某个已知的常量。 电流:i 、单位:A 。 电流密度(面积电流):J 、单位:A/m 2。 面电流密度:K 、单位:A/m 。 2.场量 电场强度:E 、单位:V/m 。 磁感应强度(磁通密度):B 、单位:T 。 3.电磁性能参数 电介质:介电常数ε、单位:F/m 。真空中, 12-9-0108.85410361 ?≈?π = ε (F/m) 磁介质:磁导率μ、单位:H/m 。真空中, -70104?π=μ (H/m) 导电媒质:电导率γ、单位:S/m 4.媒质的构成方程(本构关系) 电位移矢量:D 、单位:C/m 2。 磁场强度:H 、单位:A/m 。 构成方程(本构关系): E D ε=

工程电磁场基本知识点

第一章矢量分析与场论 1 源点是指。 2 场点是指。 3 距离矢量是,表示其方向的单位矢量用表示。 4 标量场的等值面方程表示为,矢量线方程可表示成坐标形式,也可表示成矢量形式。 5 梯度是研究标量场的工具,梯度的模表示,梯度的方向表示。 6 方向导数与梯度的关系为。 7 梯度在直角坐标系中的表示为u?=。 8 矢量A在曲面S上的通量表示为Φ=。 9 散度的物理含义是。 10 散度在直角坐标系中的表示为??= A。 11 高斯散度定理。 12 矢量A沿一闭合路径l的环量表示为。 13 旋度的物理含义是。 14 旋度在直角坐标系中的表示为??= A。 15 矢量场A在一点沿 e方向的环量面密度与该点处的旋度之间的关 l 系为。 16 斯托克斯定理。

17 柱坐标系中沿三坐标方向,,r z αe e e 的线元分别为 , , 。 18 柱坐标系中沿三坐标方向,,r θαe e e 的线元分别为 , , 。 19 221111''R R R R R R ?=-?=-=e e 20 0(0)11''4()(0)R R R R R πδ≠???????=??=? ? ?-=????? 第二章 静电场 1 点电荷q 在空间产生的电场强度计算公式为 。 2 点电荷q 在空间产生的电位计算公式为 。 3 已知空间电位分布?,则空间电场强度E = 。 4 已知空间电场强度分布E ,电位参考点取在无穷远处,则空间一点P 处的电位P ?= 。 5 一球面半径为R ,球心在坐标原点处,电量Q 均匀分布在球面上,则点,,222R R R ?? ???处的电位等于 。 6 处于静电平衡状态的导体,导体表面电场强度的方向沿 。 7 处于静电平衡状态的导体,导体内部电场强度等于 。 8处于静电平衡状态的导体,其内部电位和外部电位关系为 。 9 处于静电平衡状态的导体,其内部电荷体密度为 。 10处于静电平衡状态的导体,电荷分布在导体的 。

工程电磁场论文

工程电磁场论文 工程电磁场在电力系统中的应用 【摘要】:现代大量应用的电力设备和发电机、变压器等都与电磁感应作用有紧密联系。由于这个作用。时变场中的大块导体内将产生涡流及趋肤效应。电工中感应加热、表面淬火、电磁屏蔽等,都是这些现象的直接应用。时变电磁场还可以进一步分为周期变化的交变电磁场及非周期性变化的瞬变电磁场。对它们的研究在目的上和方法上有一些各自的特点。交变电磁场在单一频率的正弦式变化下,可采用复数表示以化简计算,在电力技术及连续波分析中应用甚多。瞬变电磁场又称脉冲电磁场,覆盖的频率很宽,介质或传输系统呈现出色散特性,往往需要采取频域、或时序展开等方法进行分析。 【关键词】:工程电磁场电力系统应用 工程电磁场的相关定义 工程电磁场,是面向工程的电磁场内容体系,内容主要是库仑定律、电荷守恒定律、安培定律、法拉第定律和麦克斯韦位移电流假设、静电场、恒定电场、恒定磁场和时变电磁场的基本方程及其边值问题、镜像法的基本原理、基于加权余量的工程中常用的有限元法和边界元法、电磁场的能量和力、平面电磁波和电路参数计算原理、电气工程中典型的电磁场问题(包括变压器的磁场、电机的磁场、绝缘子的电场、三相输电线路的工频电磁环境以及三相输电线路的电容和电感参数)。 场产生电场,两者互为因果,形成电磁场。电磁场可由变速运动的带电粒子引起,也可由强弱变化的电流引起,不论原因如何,电磁场总是以光速向四周传播,形成电磁波。电磁场是电磁作用的媒递物,具有能量和动量,是物质存在的一种形式。电磁场的性质、特征及其运动变化规律由麦克斯韦方程组确定。 交变电磁场与瞬变电磁场。时变电磁场还可以进一步分为周期变化的交变电磁场及非周期性变化的瞬变电磁场。对它们的研究在目的上和方法上有一些各自的特点。交变电磁场在单一频率的正弦式变化下,可采用复数表示以化简计算,在电力技术及连续波分析中应用甚多。瞬变电磁场又称脉冲电磁场,覆盖的频率很宽,介质或传输系统呈现出色散特性,往往需要采取频域、或时序展开等方法进行分析。 电力系统的定义 由发电、变电、输电、配电和用电等环节组成的电能生产与消费系统。它的功能是将自然界的一次能源通过发电动力装置(主要包括锅炉、汽轮机、发电机及电厂辅助生产系统等)转化成电能,再经输、变电系统及配电系统将电能供应到各负荷

《工程电磁场》复习提纲

《工程电磁场》复习提纲 2010-2 一、课程的教学目标与任务 目标:通过本课程的学习,掌握电磁场理论的基础知识,为后续课程的学习打好基础。 任务:课程主要内容包括:静电场,恒定电场和恒定磁场,静态场的解,时变电磁场,平面电磁波。 二、课程内容及基本要求 (一) 静电场 具体内容:静电场的基本方程,泊松方程和拉普拉斯方程,电偶极子的电场,电介质中的场方程,静电场的边界条件,静电场中的导体,静电场的能量,电场力。 1.基本要求 (1)掌握静电场的基本理论和表征方法。 (2)掌握泊松方程和拉普拉斯方程。 2.重点、难点 重点:静电场,泊松方程。 难点:电容,静电场能量。 3.说明:在该部分内容开始阶段,应该用1小时左右讲述电磁场理论的概述 (二)恒定电场和恒定磁场 具体内容:恒定电场的基本概念,恒定电场的基本方程和边界条件,恒定电场与静电场,磁场、磁感应强度,恒定磁场的基本方程,矢量磁位,磁偶极子,磁介质中的场方程,恒定磁场的边界条件,标量磁位,电感,恒定磁场的能量,磁场力。 1.基本要求 (1)掌握恒定电磁场的基本概念,磁场、磁感应强度。 (2)掌握电场和磁场之间的关系。 (3)掌握恒定电场和恒定磁场的方程。 2.重点、难点 重点:恒定电磁场,磁场、磁感应强度, 恒定磁场的基本方程。 难点:磁偶极子,标量磁位,磁场力。 3.说明:该部分为时变电磁场奠定基础。 (三)静态场的解 具体内容:边值问题的分类,唯一性定理,镜像法,直角坐标系中的分离变量法,圆柱坐标系中的分离变量法,球坐标系中的分离变量法,复变函数法,格林函数法,有限差分法。 1.基本要求 (1)了解边值问题的分类,静态场的一般求解方法。 (2)掌握分离变量法,有限差分法。 2.重点、难点 重点:边值问题,分离变量法,有限差分法。 难点:分离变量法,有限差分法。 3.说明:该内容为学生讲述如何得到静态场的解析解和数值解。 (四)时变电磁场

工程电磁场知识点总结

工程电磁场知识点总结 第一章矢量分析与场论 1 源点是指。 2 场点是指。 3 距离矢量是,表示其方向的单位矢量用表示。 4 标量场的等值面方程表示为,矢量线方程可表示成坐标形式,也可表示成矢量形式。 5 梯度是研究标量场的工具,梯度的模表示梯度的方向表示。 6 方向导数与梯度的关系为 7 梯度在直角坐标系中的表示为?u?。 8 矢量A在曲面S上的通量表示为?? 9 散度的物理含义是 10 散度在直角坐标系中的表示为??A?。 11 高斯散度定理。 12 矢量A沿一闭合路径l的环量表示为。 13 旋度的物理

含义是 14 旋度在直角坐标系中的表示为??A?。 15 矢量场A在一点沿el方向的环量面密度与该点处的旋度之间的关 系为。 16 斯托克斯定理 17 柱坐标系中沿三坐标方向er,e?,ez的线元分别为, 18 柱坐标系中沿三坐标方向er,e?,e?的线元分别为, 19 ?1111???'??2eR?2e'R RRRR ???20 ??????'??'???????4??(R)?R??R??11?0(R?0)( R?0) 第二章静电场 1 点电荷q在空间产生的电场强度计算公式为。 2 点电荷q 在空间产生的电位计算公式为。 3 已知空间电位分布?,则空间电场强度E。

4 已知空间电场强度分布E,电位参考点取在无穷远处,则空间一点P处的电位?P。 5 一球面半径为R,球心在坐标原点处,电量Q均匀分布在球面上,?则点?,,??处的电位等于。 222??RRR 6 处于静电平衡状态的导体,导体表面电场强度的方向沿 7 处于静电平衡状态的导体,导体内部电场强度等于 8处于静电平衡状态的导体,其内部电位和外部电位关系为 9 处于静电平衡状态的导体,其内部电荷体密度为 10处于静电平衡状态的导体,电荷分布在导体的。 11 无限长直导线,电荷线密度为?,则空间电场E。 12 无限大导电平面,电荷面密度为?,则空间电场E。 13 静电场中电场强度线与等位面 14 两等量异号电荷q,相距一小距离d,形成一电偶极子,电偶极子的电偶极矩p= 。 15 极化强度矢量P的物理含义是

工程电磁场教案

工程电磁场教案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

衢州学院 教案 课程名称:工程电磁场 课程类型:□理论课□理论、实践课□实践课 总学时数: 34 周学时数: 3 授课教师: 授课年级、专业、班级: 授课学期:至学年第学期 教材名称:工程电磁场导论 2016年 9 月 10 日

2、梯度的定义 注意:此处重点引导学生理解梯度方向和大小的物理意义。 (3)哈密尔顿算子的定义 引入汉密尔顿算子有: 则梯度可表示为: 讨论、练习 与作业 课后反思

授课内容第零章矢量分析和场的概念0.4 矢量场的散度与旋度; 0.5 矢量积分定理 教学时数 2 授课类型课堂讲学 教学目标要求熟练掌握矢量场的散度与旋度; 理解矢量场的通量与环量以及三个常用矢量积分定理和亥姆霍兹定理。 教学重点散度与旋度意义及坐标表达式;高斯散度定理、斯托克斯定理以及亥姆霍兹定理的意义。 教学难点散度与旋度的几何与物理意义。 教学方法与 手段 多媒体教学与板书相结合 教学过程按以下内容逐个讲授: 一、矢量场的散度 1、矢量场的通量 通量是一个标量。 当场矢量与曲面法线方向之间夹角为锐角时,dΦ>0; 当场矢量与曲面法线方向之间夹角为钝角时,dΦ<0; 当场矢量与曲面法线方向垂直时,dΦ=0 若Φ>0,则表示流出闭合面的通量大于流入的通量,说明有矢量线从闭合面内散发出来。 若Φ<0,则表示流入闭合面的通量大于流出的通量,说明有矢量线被吸收到闭合面内。 若Φ=0,则表示流出闭合面的通量与流入的通量相等,说明矢量线处于某种平衡状态。

2、散度的定义 应用散度概念可以分析矢量场中任一点的情况。 在M点,若divA>0,则表明M点有正源; 若divA<0,则表明M点有负源。 divA为正值时,其数值越大,正源的发散量越大;divA为负值时,其绝对值越大,表明这个负源吸收量越大。若divA=0,则表明该点无源。如果在场中处处有divA=0,则称此场为无源场,或称为无散场。 3、散度的计算 4、散度的运算 5、高斯散度定理 又称为高斯-奥斯特洛格拉特斯基公式。它的意义在于给出了闭合曲面积分与体积分之间的等价互换关系。 二、矢量场的旋度 1、矢量场的环量 环量是描述矢量场特征的量,是一个标量。由定义式可知,它

工程电磁场未来发展方向及前景

工程电磁场相关理论在多个领域的成功应用,促进了各领域的突破性发展。在未来的各领域的发展中,也离不开电磁场的研究与运用。在电磁场的诸多应用领域中,以下简单叙述其中的几个应用方面。 1、新型电磁材料 科学技术是推动社会进步和经济繁荣的强大动力,而材料科学是科学技术发展得重要基石,新材料的发现和运用是推动科学技术发展的根本动力之一。人工电磁材料作为一种新型材料,具有天然材料所不具备的独特电磁特性,近年来迅速成为国际上的一个研究热点。电磁特性的研究在人工电磁材料领域必不可少,电磁学的发展与新型电磁材料的研究也密切相关。 2、磁悬浮技术 磁悬浮技术是通过将传感器、控制器、电磁铁以及功率放大器等多个元件进行有效组合从而产生电磁力将物体无机械接触地悬浮起来的一门技术。其是一门很复杂的多学科综合的技术。近年来,随着科学家对于电子技术、控制工程、电磁理论以及新型电磁材料的研究,磁悬浮技术取得了突破性的进展,该项技术已经广泛应用于航空、铁路、仪表、机械制造等多个领域,而电磁学在磁悬浮技术中毫无疑问是极为关键的一环。 3、新型电机研究 现代电机设计质量要求越来越高,随着应用领域的扩展,各种新型电机应运而出。电机设计师一个非常复杂的过程,需要考虑多种因素,并不断进行综合和分析,是一个反复调整设计方案和对设计方案进行评价的过程,而电磁设计则是其中非常关键的一步。 4、生命科学领域 目前,强磁场生命科学的研究是重要的交叉学科前沿,具有重要的学术研究意义,并且存在重大突破的可能性。强磁场下新的生物学效应、大梯度强磁场抗磁悬浮技术及应用、强磁场下的铁代谢及其相关疾病研究、强磁场应用于肿瘤治疗的基础与转化研究、强磁场下生命科学和健康医疗研究技术等课题都是基于强磁场在生命科学领域的研究,对未来的生命科学与健康医疗研究具有重要意义。

相关主题
文本预览
相关文档 最新文档