当前位置:文档之家› CPU知识全面讲解

CPU知识全面讲解

CPU知识全面讲解
CPU知识全面讲解

CPU知识全面讲解

CPU,全称“Central Processing Unit”,中文名为“中央处理器”,在大多数网友的印象中,CPU只是一个方形配件,正面是金属盖,背面是一些密密麻麻的针脚或触点,可以说毫无美感可言。但在这个小块头的东西上,却是汇聚了无数的人类智慧在里面,我们今天能上网、工作、玩游戏等全都离不开这个小小的东西,它可谓是小块头有大智慧。

作为普通用户、网友,我们并不需要解读CPU里的所有“大智慧”,但CPU 既然是电脑中最重要的配件、并且直接决定电脑的性能,了解它里面的部分知识还是有必要的。下面笔者将给大家介绍CPU里最重要的基础知识,让大家对CPU 有新的认识。

1、CPU的最重要基础:CPU架构

CPU架构:

采用Nehalem架构的Core i7/i5处理器

CPU架构,目前没有一个权威和准确的定义,简单来说就是CPU核心的设计方案。目前CPU大致可以分为X86、IA64、RISC等多种架构,而个人电脑上的CPU架构,其实都是基于X86架构设计的,称为X86下的微架构,常常被简称为CPU架构。

更新CPU架构能有效地提高CPU的执行效率,但也需要投入巨大的研发成本,因此CPU厂商一般每2-3年才更新一次架构。近几年比较著名的X86微架构有Intel的Netburst(Pentium 4/Pentium D系列)、Core(Core 2系列)、Nehalem (Core i7/i5/i3系列),以及AMD的K8(Athlon 64系列)、K10(Phenom系列)、K10.5(Athlon II/Phenom II系列)。

Intel以Tick-Tock钟摆模式更新CPU

自2006年发布Core 2系列后,Intel便以“Tick-Tock”钟摆模式更新CPU,简单来说就是第一年改进CPU工艺,第二年更新CPU微架构,这样交替进行。目前Intel正进行“Tick”阶段,即改进CPU的制造工艺,如最新的Westmere架构其实就是Nehalem架构的工艺改进版,下一代Sandy Bridge架构将是全新架构。AMD方面则没有一个固定的更新架构周期,从K7到K8再到K10,大概是3-4年更新一次。

制造工艺:

更新制作工艺,使同一面积的晶圆可切割出更多CPU芯片我们常说的CPU制作工艺是指生产CPU的技术水平,改进制作工艺,就是通

过缩短CPU内部电路与电路之间的距离,使同一面积的晶圆上可实现更多功能或更强性能。制作工艺以纳米(nm)为单位,目前CPU主流的制作工艺是45nm和32nm。对于普通用户来说,更先进的制作工艺能带来更低的功耗和更好的超频潜力。

32位与64位CPU:

2003年AMD发布第一款X86的64位CPU,开创民用64位先河

32/64位指的是CPU位宽,更大的CPU位宽有两个好处:一次能处理更大范围的数据运算和支持更大容量的内存。对于前者,普通用户暂时没法体验到其优势,但对于后者,很多用户都碰到过,一般情况下32位CPU只支持4GB以内的内存,更大容量的内存无法在系统识别(服务器级除外)。于是就有了64位CPU,然后就有了64位操作系统与软件。

64位CPU的优势,需要64位操作系统和64软件支持

目前所有主流CPU均支持X86-64技术,但要发挥其64位优势,必须搭配64位操作系统和64位软件。遗憾的是目前主流的软件和游戏均是基于32位开发的,采用64位系统难免会有一些兼容性问题,而直接采用64位开发的风险较高,这也是64位在过去7年一直不能普及的原因,但未来64位一定会取代32位成为主流的。

2、决定CPU性能的参数:频率、核心数、缓存

除了CPU架构外,决定CPU性能的几个重要参数还有频率、核心数、线程数以及缓存。TDP热设计功耗也是网友关注的参数,下面将为大家介绍这几样参数。

主频、倍频、外频、超频:

CPU盒装会标出主频、缓存等重要参数

CPU主频,就是CPU运算时的工作频率,在单核时代它是决定CPU性能的最重要指标,一般以MHz和GHz为单位,如Phenom II X4 965主频是3.4GHz。说到CPU主频,就不得不提外频和倍频,由于CPU发展速度远远超出内存、硬盘等配件的速度,于是便提出外频和倍频的概念,它们的关系是:主频=外频x倍频。而我们常说的超频,就是通过手动提高外频或倍频来提高主频。

核心数、线程数:

目前最强CPU拥有4个物理核心、8个逻辑核心

虽然提高频率能有效提高CPU性能,但受限于制作工艺等物理因素,早在2004年,提高频率便遇到了瓶颈,于是Intel/AMD只能另辟途径来提升CPU性能,双核、多核CPU便应运而生。目前主流CPU有双核、三核和四核,六核也将在今年发布。

其实增加核心数目就是为了增加线程数,因为操作系统是通过线程来执行任务的,一般情况下它们是1:1对应关系,也就是说四核CPU一般拥有四个线程。但Intel引入超线程技术后,使核心数与线程数形成1:2的关系,如四核Core i7支持八线程(或叫作八个逻辑核心),大幅提升了其多任务、多线程性能。关于超线程技术,后面将有详细介绍。

缓存:

拥有三级缓存(L3 Cache)的CPU

缓存,Cache,它也是决定CPU性能的重要指标之一。为什么要引入缓存?在解释之前必须先了解程序的执行过程,首先从硬盘执行程序,存放到内存,再给CPU运算与执行。由于内存和硬盘的速度相比CPU实在慢太多了,每执行一个程序CPU都要等待内存和硬盘,引入缓存技术便是为了解决此矛盾,缓存与CPU 速度一致,CPU从缓存读取数据比CPU在内存上读取快得多,从而提升系统性能。当然,由于CPU芯片面积和成本等原因,缓存都很小。目前主流级CPU都有一级和二级缓存,高端的甚至有三级缓存。

TDP热设计功

以前的盒装CPU标有TDP热设计功耗

TDP的是“Thermal Design Power”的简称,即“热设计功耗”,它指的是CPU达到负荷最大的时候释放出的热量,单位是瓦特,它主要是给散热器厂商的参考标准。高性能CPU同时也带来了高发热量,例如Phenom II X4 965,其TDP 达到了140W,而主流级的Athlon II X2 250只有65W,对散热器的要求显然不同。

值得注意的是,CPU的TDP并不是CPU的实际功耗,CPU的实际功耗是通过初中学的物理知识来计算的:功率(P,单位W)=电流(I,单位A)x 电压(U,单位V)。不要把TDP看成CPU的实际功耗,CPU的实际功耗必然小于TDP的。

3、提高工作效率:多媒体指令和虚拟化技术

多媒体指令集:

通过CPU-Z等工具可查看CPU支持的指令集

MMX、3DNOW!和SSE均是CPU的多媒体扩展指令集,它们对CPU的运算有加速作用,前提是需要软件支持。如果软件对CPU的多媒体指令集有优化,那么CPU的运算速度会有进一步提升。对于普通用户而言,目前用得最多的多媒体指令是SSE系列,现在已经发展到SSE4(分为SSE4.1和SSE4.2两个部分)了。

多媒体指令需要软件支持才能体现它的优势

虽然多媒体指令的普及速度相对较慢,但随着时间的推移,支持新指令的软件和游戏会越来越多,例如现在大部分游戏和软件均需要SSE、甚至SSE2指令

支持,否则是运行不了。值得一提的是,AMD CPU支持的SSE4A和Intel CPU支持的SSE4是不完全相同的,可以这样简单理解:AMD SSE4A是Intel SSE4的简化版,主要是精简了为Intel CPU优化的部分。

虚拟化技术:

Windows 7中安装XP模式,需要CPU的虚拟化技术支持

CPU的虚拟化技术(Virtualization Technolegy,简称VT)就是单CPU模拟多CPU,并允许一个平台同时运行多个操作系统,而应用程序都可以在相互独立的空间内运行而互不影响,从而显著提高工作效率。在Windows 7中安装XP 模式就是一个很好的例子,当需要使用XP时直接调用,不需要重启切换系统,这点对于程序员来说是非常有用的。

虽然虚拟化可以通过软件实现,但是CPU硬件支持的话,执行效率会大大提升,也可以支持64位操作系统,其中Windows 7的XP模式则是必须要CPU的虚拟化技术支持。目前Intel/AMD绝大部分CPU都支持虚拟化技术,但对于普通用户而言,虚拟化技术没有实质作用。如果要用到虚拟化技术,需要先在BIOS开启该技术。

节能技术:

CPU节能技术,空闲时自动降低频率

随着CPU的性能越来越强大,也带来了更高的功耗,为减少CPU在闲置时的能量浪费,Intel和AMD均不约而同地为CPU添加节能技术。Intel方面,采用的节能技术叫“Enhance Intel SpeedStep Technology”,简称EIST,虽然经过多次增强优化,但名字始终没变。而AMD的节能技术则是“Cool 'n' Quiet”,现在已经发展到3.0版。简单来说,它们均是在CPU空闲时自动降低CPU的主频,从而降低CPU功耗与发热量,达到节能目的。

节能技术需要在BIOS开启

无论是Intel还是AMD的节能技术,均需要在BIOS开启才有效,找到类似EIST(Intel CPU)或C'n'Q(AMD CPU)的选项进行开启即可。

4、两大特色技术:超线程和睿频加速

超线程技术和睿频加速技术可以说是Intel CPU两大特色技术,下面我们为大家介绍两种技术。

Hyper-Threading,超线程技术:

Hyper-Threading,超线程技术

在前面我们已提到过超线程技术,本节我们将作详细介绍。超线程技术(Hyper-Threading,简称HT),最早出现在2002年的Pentium 4上,它是利用特殊的硬件指令,把单个物理核心模拟成两个核心(逻辑核心),让每个核心都能使用线程级并行计算,进而兼容多线程操作系统和软件,减少了CPU的闲置时间,提高CPU的运行效率。Core i7/i5/i3再次引入超线程技术,使四核的Core i7可同时处理八个线程操作,而双核的Core i5 600、Core i3也可同时处理四线程操作,大幅增强它们多线程性能。

超线程技术使Core i7四核CPU拥有八个逻辑内核

超线程技术只需要消耗很小的核心面积代价,就可以在多任务的情况下提供显著的性能提升,比起完全再添加一个物理核心来说要划算得多。相比Pentium 4的第一代HT,Core i7/i5/i3的优势是有更大的缓存和更大的内存带宽,能更有效地发挥多线程的作用。根据评测结果显示,支持Core i7/i5/i3开启HT后,多任务性能提升20-30%。

Turbo Boost,睿频加速技术:

Turbo Boost,睿频加速技术

Turbo Boost是一种动态加速技术,基于Nehalem架构的电源管理技术,通过分析当前CPU的负载情况,智能地完全关闭一些用不上的核心,把能源留给正在使用的核心,并使它们运行在更高的频率,进一步提升性能;相反,需要多个核心时,动态开启相应的核心,智能调整频率。这样,在不影响CPU的TDP(热设计功耗)情况下,能把各核心的频率调得更高。

单核渲染时,Turbo Boost使主频从2.93G提升到3.2G 举个简单的例子,如果某个游戏或软件只用到一个核心,Turbo Boost技术

就会自动关闭其他三个核心,把正在运行游戏或软件的那个核心的频率提高,从而获得最佳性能。但与超频不同,Turbo Boost是自动完成,也不会改变CPU的最大功耗。反观Core 2时代,即使是运行只支持的程序,其他核心仍会全速运行,得不到性能提升的同时,也造成了能源的浪费。目前只有Intel的Core i7/i5支持睿频加速技术,有消息指AMD今年发布的Phenom II X6六核也会引入类似技术。

笔记本电脑CPU基础知识

笔记本电脑CPU基础知识 一、英特尔CPU型号尾部字母 (1)M代表标准电压CPU,是可以拆卸的; (2)U代表低电压节能的,可以拆卸的; (3)H是高电压的,是焊接的,不能拆卸; (4)X代表高性能,可拆卸的; (5)Q代表至高性能级别; (6)Y代表超低电压的,除了省电,没别的优点的了,是不能拆卸的; 也有两个字母的,属于上面这些字母的组合。 (7)HQ高电压至高性能处理器。 从性能上看,HQ,XM,应该都不错 二、CPU调频(Governor) ondemand(按需响应模式):系统默认的超频模式,会在你设置的最大最小频率之间自动调整。 interactive(交流循环模式):只要负荷加大,频率直接调到最高值,如果发现CPU够用,将CPU负荷慢慢降低(系统响应速度快,相对耗电多一些)。 conservative(保守模式):CPU负荷加大,逐步提升频率到最高,然后降至最

低(系统响应较快,升频较慢,耗电比I模式省)。 smartass:是I和C模式的组合体,cpu不会降到最低,响应快,待机略微多耗电。 performance(高性能模式):高性能模式,CPU直接锁定在最高频率(因为CPU 保持固定频率,不需调整,响应最速度,耗电也最大)。 userspace(用户隔离模式):当控制器处于非工作状态时控制cpu速度的一种方法,建议无视这个选项。 powersave(省电模式):按设定最小频率运行(省电但系统响应速度慢)。 lagthree(不受延迟模式):倾向于节省电量,据说看电影时效果不错。 三、I/O调度(I/O Scheduler) CFQ(完全公平排队I/O调度程序): CFQ试图均匀地分布对I/O带宽的访问,避免进程停止响应并实现较低的延迟(在最新的内核中,都选择CFQ做为默认的I/O调度器,多媒体应用表现良好)。 NOOP(电梯式调度程序):早器系统版本的唯一调度算法,倾向饿死读而利于写.(NOOP对于需频繁访问SD卡的应用是最好的模式,因为SD卡写入速度远小于读出速度)。 Deadline(截止时间调度程序):NOOP的改良版本,Deadline确保默认读期限短于写期限.这样就防止了造成写入操作被饿死。(对数据库环境是最好的选择)AS(预料I/O调度程序):本质上与Deadline一样,但在最后一次读操作后,要等待6ms,才能继续进行对其它I/O请求进行调度(AS适合于写入较多的环境)。 (资料来自互联网和百度贴吧,题目是编者加的。)

IC卡技术简介

IC卡技术简介 一、什么是IC卡 IC卡(Integrated Circuit card),中文名为集成电路卡,是将一个专用的集成电路芯片镶嵌于塑料基片中,封装成卡的形式。 IC卡的概念是在70年代初提出来的。1974年法国人罗兰德.莫瑞诺(Roland Moreno)第一次将IC芯片放在卡片中。1976年法国BULL公司首先制造出IC卡产品,并将此技术应用到金融、交通、医疗、身份证等多个行业。 截止到90年代初,世界上先后有德国的西门子Siemens、G&D,美国的摩托罗拉Motorola 和Atmel,法国的Gemplus和Thomson等相继投入了IC卡芯片的开发生产。 二、IC卡应用范围 IC卡的功能可归结为最基本的两点: 身份证明:例如用个人身份证卡,组织机构身份证卡,驾驶执照卡,门锁卡,仪器设备使用卡,医疗证卡,员工考勤卡和各种优惠卡以及用于工商的企业服务卡等。 金融卡应用:例如用IC卡作为信用卡,储蓄卡,付款卡,电子钱包,社会保障卡,交通自动交费卡,电子车票,收费卡(水、电、煤气等)。 IC卡能在如此广泛的领域应用的前提是:IC卡具有很高的安全可靠性。 三、IC卡芯片的分类 按所嵌的芯片类型的不同,IC卡可分为三类: 存储器卡:卡内的集成电路是可用电擦除的可编程只读存储器EEPROM,它仅具有数据存储功能,没有数据处理能力。 逻辑加密卡:卡内的集成电路包括加密逻辑电路和可编程只读存储器EEPROM,加密逻辑电路在一定程度上保护着卡和卡中数据的安全。 CPU卡:卡内的集成电路包括中央处理器CPU、可编程只读存储器EEPROM、随机存储器RAM以及固化在只读存储器ROM中的卡内操作系统COS(Chip Operating System)。CPU卡相当于一台微型计算机,只是没有显示器和键盘,因此CPU卡一般称为智能卡(Smart Card)。CPU卡中数据可分为外部读取和内部处理(不许外部读取) 部

CPU知识全面讲解

CPU知识全面讲解 CPU,全称“Central Processing Unit”,中文名为“中央处理器”,在大多数网友的印象中,CPU只是一个方形配件,正面是金属盖,背面是一些密密麻麻的针脚或触点,可以说毫无美感可言。但在这个小块头的东西上,却是汇聚了无数的人类智慧在里面,我们今天能上网、工作、玩游戏等全都离不开这个小小的东西,它可谓是小块头有大智慧。 作为普通用户、网友,我们并不需要解读CPU里的所有“大智慧”,但CPU 既然是电脑中最重要的配件、并且直接决定电脑的性能,了解它里面的部分知识还是有必要的。下面笔者将给大家介绍CPU里最重要的基础知识,让大家对CPU 有新的认识。 1、CPU的最重要基础:CPU架构 CPU架构: 采用Nehalem架构的Core i7/i5处理器 CPU架构,目前没有一个权威和准确的定义,简单来说就是CPU核心的设计方案。目前CPU大致可以分为X86、IA64、RISC等多种架构,而个人电脑上的CPU架构,其实都是基于X86架构设计的,称为X86下的微架构,常常被简称为CPU架构。

更新CPU架构能有效地提高CPU的执行效率,但也需要投入巨大的研发成本,因此CPU厂商一般每2-3年才更新一次架构。近几年比较著名的X86微架构有Intel的Netburst(Pentium 4/Pentium D系列)、Core(Core 2系列)、Nehalem (Core i7/i5/i3系列),以及AMD的K8(Athlon 64系列)、K10(Phenom系列)、K10.5(Athlon II/Phenom II系列)。 Intel以Tick-Tock钟摆模式更新CPU 自2006年发布Core 2系列后,Intel便以“Tick-Tock”钟摆模式更新CPU,简单来说就是第一年改进CPU工艺,第二年更新CPU微架构,这样交替进行。目前Intel正进行“Tick”阶段,即改进CPU的制造工艺,如最新的Westmere架构其实就是Nehalem架构的工艺改进版,下一代Sandy Bridge架构将是全新架构。AMD方面则没有一个固定的更新架构周期,从K7到K8再到K10,大概是3-4年更新一次。 制造工艺:

CPU卡与SAM卡原理

CPU卡与SAM卡原理 第一部分CPU基础知识 一、为什么用CPU卡 IC卡从接口方式上分,可以分为接触式IC卡、非接触式IC卡及复合卡。从器件技术上分,可分为非加密存储卡、加密存储卡及CPU卡。非加密卡没有安全性,可以任意改写卡内的数据,加密存储卡在普通存储卡的基础上加了逻辑加密电路,成了加密存储卡。逻辑加密存储卡由于采用密码控制逻辑来控制对EEPROM的访问和改写,在使用之前需要校验密码才可以进行写操作,所以对于芯片本身来说是安全的,但在应用上是不安全的。它有如下不安全性因素: 1、密码在线路上是明文传输的,易被截取; 2、对于系统商来说,密码及加密算法都是透明的。 3、逻辑加密卡是无法认证应用是否合法的。例如,假设有人伪造了ATM,你无法知道它的合法性,当您插入信用卡,输入PIN的时候,信用卡的密码就被截获了。再如INTENET网上购物,如果用逻辑加密卡,购物者同样无法确定网上商店的合法性。 正是由于逻辑加密卡使用上的不安全因素,促进了CPU卡的发展。CPU卡可以做到对人、对卡、对系统的三方的合法性认证。 二、CPU卡的三种认证 CPU卡具有三种认证方法: 持卡者合法性认证——PIN校验 卡合法性认证——内部认证 系统合法性认证——外部认证 持卡者合法性认证: 通过持卡人输入个人口令来进行验证的过程。 系统合法性认证(外部认证)过程: 系统卡, 送随机数X [用指定算法、密钥]对随机数加密 [用指定算法、密钥]解密Y,得结果Z 比较X,Z,如果相同则表示系统是合法的; 卡的合法性认证(内部认证)过程: 系统卡 送随机数X [用指定算法、密钥]对随机数加密 [用指定算法、密钥]解密Y,得结果Z 比较X,Z,如果相同则表示卡是合法的; 在以上认证过程中,密钥是不在线路上以明文出现的,它每次的送出都是经过随机数加密的,而且因为有随机数的参加,确保每次传输的内容不同。如果截获了没有任何意义。这不单单是密码对密码的认证,是方法认证方法,就象早期在军队中使用的密码电报,发送方将报文按一定的方法加密成密文发送出去,然后接收方收到后又按一定的方法将密文解密。

CPU卡入门教程

CPU卡入门教程 1绪言: 说起CPU卡,人们肯定不禁要问,什么是CPU卡,CPU卡长什么样的呢? 想起卡,一般人接触最多的是银行卡,相信现在大家每个人的钱包里都有好几张磁卡。比如说:有工商行、建行的储蓄卡。 但我们所说的CPU卡,是卡上面有个芯片的卡,现实生活中接触最多的应该是IC卡电话卡、买电的卡。 但以上的卡都不是CPU卡,长得和电话卡、买电的卡一样。但卡的芯片里有CPU,我们手机里用的SIM卡就是CPU卡的一种。 我们可以把CPU卡想象成一个极小的个人计算机,但这个计算机没有显示器,没有电源,没有输入设备。要使用CPU卡的时候,必须由外部提供电源、显示屏和输入设备。 比如说现在我要往手机的SIM卡内存入一个电话号码. 1、我的手机必须有电---提供电源 2、我的手机必须有提供输入电话号码的手机按键--提供输入 3、我的手机必须能有显示电话号码的显示屏---提供显示 以上我们对CPU卡有了大概的了解,有可能比喻不是很恰当。 2.我们为什么要使用CPU卡呢? 先谈谈银行磁卡的不安全性,经常去ATM取钱的必须注意如下事项: 1、输入密码的时候必须防止被别人看到,最好能用手遮着。 2、取完钱一定要取走打印的单据,或者不打印单据也行。 看看犯罪分子怎样窃取你卡片里头的钱: 1、在你取钱的时候凑在你旁边,偷偷得记下你的密码,或者在很远的地方用望远镜窥视你的密码。

2、你取完钱走后,有可能安全意识不高,没有取走打印的单据,犯罪分子就乘机取走单据,取走单据的目的是为了知道你的卡号。 有了上面两点, 首先:犯罪分子先复制一张和你的银行卡一摸一样的银行卡。并且复制的成本非常低,只要有一台PC,一个磁卡写卡器(价格很便宜),一个小软件。 其次:犯罪分子又已经有了你的密码。 这样,犯罪分子就可以拿着你的卡去潇洒地消费、取钱了,而你却还蒙在鼓里。直到某一天,当你发现你的卡里的钱突然变少了,或者没了,但一切为时已晚。 为什么会出现这种情况呢? 那就是磁卡太容易就可以被复制。那我们必须去寻找一种不能被复制的卡,什么卡呢?这就是CPU卡。而CPU卡又属于IC卡的一种。 什么是IC卡呢?IC卡分为几种呢? IC卡是英文"集成电路卡"的缩写,是近年来传入中国的一项新技术。它是把具有存储、运算等功能的集成电路芯片压制在塑料片上,使其成为能存储、转载、传递、处理数据的载体。 IC卡从其功能上分为三种: 1) 存储器卡。 2) 带加密逻辑存储器卡:内有COS(卡操作系统)的一种存储器卡。 3) CPU智能卡:内有CPU(中央处理单元)的一种存储器卡。 以上三种卡只有CPU卡被证实是最安全的。 CPU卡在实际情况中是怎么使用的呢? CPU卡使用的简单情况举例:(如图) 硬件:一台PC+一个读卡器+一张CPU卡读卡器和PC是通过串口进行通讯,这种做法比较常见。 软件: 一个在PC上运行能读写CPU卡的小程序(一般读卡器提供商都会提供开发CPU卡的函数接口和读写CPU卡的小工具) 对CPU卡的操作的流程是怎样的呢?

cpu知识介绍

1,Intel篇 从奔腾3代开始,intel开始以频率的高低来区分CPU的性能高低。就当时的技术来说,的确高频的cpu的性能更优秀。 但是,从奔腾4 2.8G的cpu出现以后,对于频率的提升出现了困难。无法将频率进一步提升。因此新一代的cpu改变了cpu的工作架构,将cpu的流水线简短,即抛弃了以往cpu的超长流水线的架构,变成了类似于amd的短流水线架构,由此,获得了较小的功率和性能的提高。但是,cpu的频率便因此降了下来,所以,新的cpu命名变成了类似于奔腾d 915,820等。第一位数字代表系列,比如3系列是赛扬,经济型(所谓的赛扬M);5系列,移动型; 8、9系列,烧钱的高性能(或许还有高功耗)。 自从双核开始普及,intel采用了新的名称,酷睿,命名如e4300,e2050,qx6700,分别应用于台式机,笔记本,和高性能个人计算机(烧钱用机器)。 以上只是台式机和笔记本,不包括服务器用的xeon啊。 2,amd篇 从97年开始,amd便作为低端杀手占领的低端市场,虽然当时amd的cpu的发热量十分惊人,但是由于超频性能好,便宜(主要的),占领了相当部分市场。 从p3时候开始,amd使用slot a架构,采用了新的命名,分为duron毒龙, althon速龙,分别对应低端和高端。此时,intel仍采用频率命名,而此时虽然amd的cpu性能上开始有了优势,但是频率不及intel(核心不一样,所以自然没办法比),所以采用新的命名,如1600,1800等,表示这些cpu具有与intel的1.6GHZ,1.8GHZ的cpu具有相同的性能。实际上的运行频率只有1.2~1.3GHz。 ---------------------------------------- 这里有个官方的换算,1800是PR值, -- Athlon 系列PR值的换算法 PR标值= (3 X CPU运行频率)/ 2 - 500 EX:XP 1800+ = (3 X 1.53GHz) / 2 - 500 频率与PR标值的转换如下 频率= (2 X PR标值)/ 3 + 333 EX:1.53GHz = (2 X 1800) / 3 +333 闪龙有区别,PR值均高出以前的20% ----------------------------------- 在后来的双强争斗中,duron作为过气选手被t,而sempron闪龙则取代了它的地位继续与赛扬争斗。 现在amd的产品线有sempron闪龙/经济,althon速龙/性能,althon x2/双核,opetron皓龙/服务器。 ================================ 现在你的问题应该就可以解决了,1G CPU就是指cpu的频率是1GHz,2600+则是amd的cpu,指该cpu能达到intel 2.6GHz的水平。 但是,现在由于两个牌子都改了标注方式,所以单纯来以名字来看性能不可取(同一个系列

CPU知识科普

CPU知识科普:主频、核心、线程、缓存、架构 我们都说CPU相当于人类的大脑,在日常生活中,人脑是术业有专攻,有人天生适合搞艺术,有人天生适合搞科学。CPU作为计算机的大脑,其实也是这样的。下面就带大家了解一下CPU知识以及怎么选择合适的CPU。 CPU有几个重要的参数:主频、核心、线程、缓存、架构。那么他们到底是什么意思,又有啥联系呢。 一、主频 我们常在CPU的参数里看到3.0GHz、3.7GHz等就是CPU的主频,严谨的说他是CPU内核的时钟频率,但是我们也可以直接理解为运算速度。 举个有趣的例子:CPU的主频相当于我们胳膊的肌肉(力量),主频越高,力量越大。 二、核心 我们更多听到的是,这个CPU是几核几核的,如2核、4核、6核、8核、16核等等。 这个核心可以理解为我们人类的胳膊,2核就是两条胳膊,4核就是4条胳膊,6核就是6条胳膊。 三、线程 光有胳膊(核心)和肌肉(频率)是干不了活的,还必须要有手(线程)才行。 一般来说,单核配单线程、双核配双线程或者双核四线程、四核八线程等等,就相当于一条胳膊长一只手。后来由于技术越来越厉害,造出了一条胳膊长两只手的情况,这样干活的效率就大大的提高了。 |四、架构 现在胳膊有了,肌肉有了,手也有了,就差一个工具就可以干活了,这个工具就是CPU的架构,架构对性能的影响巨大。 新老架构区别很大 所以说有句话叫“抛开架构看核心、频率都是耍流氓!”这就是为啥以前AMD的CPU虽然核心数量和频率都比同时期的英特尔高,但是依然流传着“i3战A8,i5秒全家、i7轰成渣”这样的说法了。 这个时候可能有的人不理解了,怎么看架构呢?这个其实不用担心,因为一般来说,每一代CPU的架构都是一样的,比如i3-8100、i5-8500、i7-8700都是8 代的CPU,使用的架构也是一样的,现在官方店在售的也都是最新款,因此架构主要看最一代处理器就够了。 五、缓存 缓存也是CPU里一项很重要的参数。由于CPU的运算速度特别快,在内存条的读写忙不过来的时候,CPU就可以把这部分数据存入缓存中,以此来缓解CPU的运算速度与内存条读写速度不匹配的矛盾,所以缓存是越大越好。 参数就算是说完了。 既然开头就说了“CPU也跟人脑一样,术业有专攻。” 就像AMD的架构名字那样,挖掘机适合挖东西,推土机适合推土,那接下来就分析一波,什么样的U适合干什么样的工作。你拿挖掘机去运输泥土,肯定效率是很低的。 需求:游戏 由于游戏运行需要的是粗暴直接的计算工作,所以主频高的CPU会更有优势。这就好比我的工作是要搬个砖,肌肉强点,力气大才是硬性需求。就算我有8 条胳膊16只手,看起来张牙舞爪的很厉害,但是我搬砖的时候根本用不到,而

CPU卡消费系统功能要求,技术参数详细说明

多奥CPU卡消费系统功能要求,技术参数详细说明 消费系统功能要求 在食堂,会所等地方采用多奥CPU卡消费系统,代替现金交易,杜绝员工徇私舞弊,提升物业的形象与服务效率。 系统需具备以下功能要求: 系统设备组成 系统由管理软件、标准消费机、后台管理工作站等组成 系统功能要求 系统操作员通过权限分级控制,防止系统非法授权使用。 能自动记录操作员操作日志,包括:操作员、操作时间、操作对象、操作内容、操作结果。 系统提供多种消费方式 充值消费:先交押金并充值,后消费 记账消费:不需要充值,先消费,月底结算 菜单方式:消费项目以菜单形式提供选择,并纪录消费明细

定额方式:消费项目为固定的金额 支持卡片分类、消费折扣、最大消费次数、每次最大消费额、挂失等功能。 当持卡人在POS上读卡消费后,系统实时记录读卡信息、时间、消费金额、累积使用情况等流水帐信息。 归类、汇总后系统将数据进行各种稽核,生成各类统计报表,便于财务对各消费点收入情况核算或监督。 统计报表包括个人日报、个人月报、部门日报、部门月报、单位日报、消费机报表以及充值报表、补助报表、退款报表、综合报表等信息进行统计。 可多奥梯控,门禁,停车场,通道,巡更等智能一卡通 多奥消费机技术参数要求 型号:DAIC-XF-MB 通讯方式:TCP/IP通讯 工作电压:12VDC±5% 功耗:≤120mA 显示:双面8位LED显示屏 键盘:30个按键

读写时间小于0.2秒。 读卡距离20-50 mm 发卡量:不限 脱机信息存贮量:≥20000 黑名单:≥20000 数据保存:FLASH 保存数据,掉电不丢失工作温度:-10℃-- +70℃

IC卡基础知识培训教材428

第一章IC卡基础知识 一、射频卡的一些基础知识 (一)频率(f) 1、物理中频率的单位是赫兹(Hz),简称赫。 2、频率单位:赫(Hz)、千赫(KHz)、兆赫(MHz)、吉赫(GHz)等。 3、单位换算: 1KHz=1000Hz 1MHz=1000KHz=1000000Hz 1GHz=1000000KHz (二)常见射频卡的频率 1、射频卡,学名叫“非接触式卡”。虽然有的人把射频卡叫做IC卡,但因为接触式IC卡也叫IC卡,同时射频IC卡一般指指高频卡,而ID卡习惯叫低频卡,所以还是把非接触式的芯片卡叫为射频卡或非接触式卡来得直接一些。 2、典型的射频卡按戴波频率分为低频射频卡、高频射频卡、超高频射频卡和微波射频卡。 ①、低频射频卡的频率为125~134.2KHz(单位:千赫),也称低频率(LF),如EM4100 型号的ID卡、T5557卡、EM4305、TI的RI-TRP-R4FF低频只读卡、TI的RI-TEP-W4FF 低频读写卡、HID1326低频薄卡等。一般为无源被动卡(卡内没有装电池)。 ②、高频射频卡的频率为13.56MHz(单位:兆赫),也称高频率(HF),如MF1卡、I-CODE-II 卡。一般为无源卡。一般为无源被动卡(卡内没有装电池)。 ③、超高频射频卡的频率为433.92MHz(单位:兆赫),也称超高频的频率(超高频),如UCODE卡。433.92MHz一般为有源主动卡(卡内装电池),860~960MHz一般为无源被动卡(卡内没有电池)。[备注:国内超高频卡与无线电频带的叫法有一定区别。] ④、微波卡的频率为2.45GHz、5.8GHz(单位:吉赫或千兆赫兹),也称微波(uW),如EM4122中的一种微波卡。2.45GHz、5.8GHz一般为有源主动卡(卡内装电池)。[备注,微波卡与无线电频带的叫法有一定区别。] ⑤、另有些实验性的射频卡频率:27.125Hz、40.68MHz、24.125GHz等。 (三)储存容量单位的含义 b:bit,位,计算机中表示信息的最小单位,1位即一个二进制基本元素(0或1)。如字母“A”在电脑中用二进制表示就是1000001,共有8个二进制位。

CPU主要的性能指标有以下几点

CPU主要的性能指标有以下几点: (1)主频,也就是CPU的时钟频率,简单地说也就是CPU的工作频率。 一般说来,一个时钟周期完成的指令数是固定的,所以主频越高,CPU的速度也就越快了。不过由于各种CPU的内部结构也不尽相同,所以并不能完全用主频来概括CPU的性能。至于外频就是系统总线的工作频率;而倍频则是指CPU 外频与主频相差的倍数。用公式表示就是:主频=外频×倍频。我们通常说的赛扬433、PIII 550都是指CPU的主频而言的。 (2)内存总线速度或者叫系统总路线速度,一般等同于CPU的外频。 内存总线的速度对整个系统性能来说很重要,由于内存速度的发展滞后于CPU的发展速度,为了缓解内存带来的瓶颈,所以出现了二级缓存,来协调两者之间的差异,而内存总线速度就是指CPU与二级(L2)高速缓存和内存之间的工作频率。 (3)工作电压。工作电压指的也就是CPU正常工作所需的电压。 早期CPU(386、486)由于工艺落后,它们的工作电压一般为5V,发展到奔腾586时,已经是3.5V/3.3V/2.8V了,随着CPU的制造工艺与主频的提高,CPU 的工作电压有逐步下降的趋势,Intel最新出品的Coppermine已经采用1.6V的工作电压了。低电压能解决耗电过大和发热过高的问题,这对于笔记本电脑尤其重要。 (4)协处理器或者叫数学协处理器。在486以前的CPU里面,是没有内置协处理器的。 由于协处理器主要的功能就是负责浮点运算,因此386、286、8088等等微机CPU的浮点运算性能都相当落后,自从486以后,CPU一般都内置了协处理器,协处理器的功能也不再局限于增强浮点运算。现在CPU的浮点单元(协处理器)往往对多媒体指令进行了优化。比如Intel的MMX技术,MMX是“多媒体扩展指令集”的缩写。MMX是Intel公司在1996年为增强Pentium CPU在音像、图形和通信应用方面而采取的新技术。为CPU新增加57条MMX指令,把处理多媒体的能力提高了60%左右。 (5)流水线技术、超标量。流水线(pipeline)是 Intel首次在486芯片中开始使用的。 流水线的工作方式就象工业生产上的装配流水线。在CPU中由5~6个不同功能的电路单元组成一条指令处理流水线,然后将一条X86指令分成5~6步后再由这些电路单元分别执行,这样就能实现在一个CPU时钟周期完成一条指令,因此提高了CPU的运算速度。超流水线是指某型 CPU内部的流水线超过通常的5~6 步以上,例如Pentium pro的流水线就长达14步。将流水线设计的步(级)数越多,其完成一条指令的速度越快,因此才能适应工作主频更高的CPU。超标量是指在一个时钟周期内CPU可以执行一条以上的指令。这在486或者以前的CPU

cpu卡基本知识

第一部分CPU基础知识 一、为什么用CPU卡 IC卡从接口方式上分,可以分为接触式IC卡、非接触式IC卡及复合卡。从器件技术上分,可分为非加密存储卡、加密存储卡及CPU卡。非加密卡没有安全性,可以任意改写卡内的数据,加密存储卡在普通存储卡的基础上加了逻辑加密电路,成了加密存储卡。逻辑加密存储卡由于采用密码控制逻辑来控制对EEPROM 的访问和改写,在使用之前需要校验密码才可以进行写操作,所以对于芯片本身来说是安全的,但在应用上是不安全的。它有如下不安全性因素: 1、密码在线路上是明文传输的,易被截取; 2、对于系统商来说,密码及加密算法都是透明的。 3、逻辑加密卡是无法认证应用是否合法的。例如,假设有人伪造了ATM,你无法知道它的合法性,当您插入信用卡,输入PIN的时候,信用卡的密码就被截获了。再如INTENET网上购物,如果用逻辑加密卡,购物者同样无法确定网上商店的合法性。 正是由于逻辑加密卡使用上的不安全因素,促进了CPU卡的发展。CPU卡可以做到对人、对卡、对系统的三方的合法性认证。 二、CPU卡的三种认证 CPU卡具有三种认证方法: 持卡者合法性认证——PIN校验 卡合法性认证——内部认证 系统合法性认证——外部认证 持卡者合法性认证: 通过持卡人输入个人口令来进行验证的过程。 系统合法性认证(外部认证)过程: 系统卡, 送随机数X [用指定算法、密钥]对随机数加密 [用指定算法、密钥]解密Y,得结果Z 比较X,Z,如果相同则表示系统是合法的; 卡的合法性认证(内部认证)过程: 系统卡 送随机数X 用指定算法、密钥]对随机数加密 [用指定算法、密钥]解密Y,得结果Z 比较X,Z,如果相同则表示卡是合法的; 在以上认证过程中,密钥是不在线路上以明文出现的,它每次的送出都是经过随机数加密的,而且因为有随机数的参加,确保每次传输的内容不同。如果截获了没有任何意义。这不单单是密码对密码的认证,是方法认证方法,就象早期在军队中使用的密码电报,发送方将报文按一定的方法加密成密文发送出去,然后接收方收到后又按一定的方法将密文解密。 通过这种认证方式,线路上就没有了攻击点,同时卡也可以验证应用的合法性; 但是因为系统方用于认证的密钥及算法是在应用程序中,还是不能去除系统商的攻击性。

《 智能卡与RFID技术》教学大纲

《智能卡与RFID技术》教学大纲 一、课程的性质与任务 课程的性质:本课程是电子信息工程技术专业必修的核心专业课,是一门以培养学生技术应用能力为主的课程,也是理论与实践紧密联系的课程。 课程的任务:以智能卡与RFID产品的核心技术和开发方法为主要内容,以分组完成产品的完整制作过程为教学过程,目标是:使学生掌握智能卡与RFID应用产品的技术基础知识与软、硬件设计技能,达到能根据实际产品需求,设计、开发和维护各类智能卡与RFID读写设备的要求。 通过本课程的学习,使学生掌握智能卡与RFID应用系统的基础知识与核心技术;并能根据系统应用需求设计、开发和维护各类智能卡与RFID读写设备。 前导课程:《模拟电子技术》、《数字电子技术》、《单片机应用技术》 后续课程:《创新制作》、《毕业设计与顶岗实习》 二、教学基本要求 通过本课程教学,除了要求学生掌握智能卡与RFID技术基础知识和产品开发技技能外,全课程以提高学生的全面素质和培养学生的各项能力为核心组织教学。其中包括: 1. 技能要求: 通过对智能卡与RFID行业四个典型产品对应的项目训练,培养学生以下基本技能: (1)常用智能卡与RFID标签的选型、测试和应用能力。 (2)常用智能卡与RFID读写设备的硬件开发、制作、调试和维护能力。 (3)常用智能卡与RFID读写设备的软件开发、调试能力。 通过课程设计环节的项目训练,培养学生技术综合运用能力: (1)具备完成一个电子产品完整的软、硬件设计和制作过程的能力。 (2)了解智能卡与RFID应用产品在一个完整的智能卡与RFID应用系统中的作用和互联技术,培养系统集成能力。 2. 知识要求: 使学生理解和掌握以下基本原理与应用技术: (1)智能卡与RFID的基本概念 (2)接触式逻辑加密卡存储结构、安全特性与读写接口技术 (3)非接触式IC卡及高频RFID工作原理、卡片特性、读写接口技术及国际标准 (4)智能(CPU)卡的COS、安全特性与读写接口技术 (5)超高频RFID工作原理、标签特性、读写接口技术及国际标准 (6)智能卡与RFID应用系统的构成与应用模式 3. 素质要求: (1)培养良好的分析问题和解决问题的能力。

笔记本CPU基础知识

笔记本CPU基础知识 笔记本CPU基础知识 中央处理器即CPU是一块超大规模的集成电路,是一台计算机的运算核心和控制核心。下面是关于笔记本CPU的相关知识,希望对 大家认识CPU有帮助,更多内容请关注应届毕业生网! 随着英特尔全新32nm移动处理器的推出,英特尔移动处理器大 军的规模进一步膨胀。粗略地计算一下,现在市场上可以买到的Corei、酷睿2、奔腾双核、赛扬双核、凌动处理器几大家族的成员 已经超过了80款,即使是经常关注笔记本技术的达人,也很难记住 每一款处理器的技术规格。 首先简述以上几类处理器的特点,凌动处理器即ATOM处理器主 要应用于目前的上网本中,按性能由低到高基本为:N270、N280、 N450,注意它们都是单核处理器,可想而知它们的性能非常弱,除 了简单的Office软件、上网也就是看看普通电影了。相对的赛扬双 核及奔腾双核均为入门级的处理器,目前市售主要以奔腾双核为主,基本型号T4200、T4300及新的T4400,我们从型号也可以看出,递 增的序号性能也有一定提升。 酷睿2处理器可以说是目前比较主流的,处理器型号以T5以上 及P开头,主流的T系列有T6500、T6600及T6670,这类处理器对 于用户的基本应用足以满足;以P开头的酷睿2处理器性能相对T开 头性能要强,相应价格也会高。用户购本是要看清自己的需求,预 算有限的话T6600处理器足够使用。 对于酷睿i系列处理器,想必一部分用户并不熟悉,i3及i5处 理器今年年初才发布,不过市面搭载i3、i5处理器的本陆续“登场”了。i7处理器虽然在09年年末已推出,不过由于其定位于高端, 很多用户并未直观体验过其性能表现。i7不再多言,通俗来讲就是 运行速度快。i3、i5处理器是面向大众化的“双核”处理器,i3、

电脑配置基础知识

电脑硬件知识扫盲菜鸟提升必看电脑配置知识 原文标题:硬件知识扫盲,防止被JS忽悠,菜鸟提升请看(附作者照片) 先给大家亮亮原文作者照片,这里先亮一张,下面文章内容中还会附加上一些,应原作者要求,望大家照片尽量不要到处发,谢谢。 笔名:微微 下面正式进入正文了,这里先简单写下文章主要大纲,主要对电脑硬件包括cpu,显卡,主板,内存等DIY硬件进行一些简单通俗易懂的介绍,新手必看,高手飘过。 一、处理器CPU知识 ①CPU的分类 CPU品牌有两大阵营,分别是Intel(英特尔)和AMD,这两个行业老大几乎垄断了CPU市场,大家拆开电脑看看,无非也是Intel和AMD的品牌(当然不排除极极少山寨的CPU)。

而Intel的CPU又分为Pentium(奔腾)、Celeron(赛扬)和Core(酷睿)。其性能由高到低也就是Core>Pentium>Celeron。AMD 的CPU分为Semporn(闪龙)和Athlon(速龙),性能当然是Athlon优于Semporn的了。 Intel与AMD标志认识 ②CPU的主频认识 提CPU时,经常听到、等的CPU,这些到底代表什么这些类似于的东东其实就是CPU 的主频,也就是主时钟频率,单位就是MHZ。这时用来衡量一款CPU性能非常关键的指标之一。主频计算还有条公式。主频=外频×倍频系数。 单击“我的电脑”→“属性”就可以查看CPU类型和主频大小如下图:

我的电脑-属性查看cpu信息 ③CPU提到的FSB是啥玩意? FSB就是前端总线,简单来说,这个东西是CPU与外界交换数据的最主要通道。FSB的处理速度快慢也会影响到CPU的性能。提及的高速缓存指的又是什么呢高速缓存指内置在CPU中进行高速数据交换的储存器。分一级缓存(L1Cache)、二级缓存(L2Cache)以及三级缓存(L3Cache)。 一般情况下缓存的大小为:三级缓存>二级缓存>一级缓存。缓存大小也是衡量CPU性能的重要指标。 ④常提及的45nm规格的CPU又是什么东西 类似于45nm这些出现在CPU的字样其实就是CPU的制造工艺,其单位是微米,为秘制越小,制造工艺当然就越先进了,频率也越高、集成的晶体管就越多!现在的CPU制造工艺从微米到纳米,从90纳米---65

CPU卡详解

CPU卡详解 (2011-08-02 13:13:42) 转载▼ 第一部分 CPU基础知识 一、为什么用CPU卡 IC卡从接口方式上分,可以分为接触式IC卡、非接触式IC卡及复合卡。从器件技术上分,可分为非加密存储卡、加密存储卡及CPU卡。非加密卡没有安全性,可以任意改写卡内的数据,加密存储卡在普通存储卡的基础上加了逻辑加密电路,成了加密存储卡。逻辑加密存储卡由于采用密码控制逻辑来控制对EEPROM的访问和改写,在使用之前需要校验密码才可以进行写操作,所以对于芯片本身来说是安全的,但在应用上是不安全的。它有如下不安全性因素: 1、密码在线路上是明文传输的,易被截取; 2、对于系统商来说,密码及加密算法都是透明的。 3、逻辑加密卡是无法认证应用是否合法的。例如,假设有人伪造了ATM,你无法知道它的合法性,当您插入信用卡,输入PIN的时候,信用卡的密码就被截获了。再如INTENET网上购物,如果用逻辑加密卡,购物者同样无法确定网上商店的合法性。 正是由于逻辑加密卡使用上的不安全因素,促进了CPU卡的发展。CPU卡可以做到对人、对卡、对系统的三方的合法性认证。 二、CPU卡的三种认证 CPU卡具有三种认证方法: 持卡者合法性认证——PIN校验 卡合法性认证——内部认证 系统合法性认证——外部认证 持卡者合法性认证: 通过持卡人输入个人口令来进行验证的过程。 系统合法性认证(外部认证)过程: 系统卡, 送随机数X [用指定算法、密钥]对随机数加密 [用指定算法、密钥]解密Y,得结果Z 比较X,Z,如果相同则表示系统是合法的; 卡的合法性认证(内部认证)过程: 系统卡 送随机数X 用指定算法、密钥]对随机数加密 [用指定算法、密钥]解密Y,得结果Z 比较X,Z,如果相同则表示卡是合法的;

CPU主要的性能指标有

CPU主要的性能指标有: 1.主频 主频也叫时钟频率,单位是MHz,用来表示CPU的运算速度。CPU的主频=外频×倍频系数。很多人认为主频就决定着CPU的运行速度,这不仅是个片面的,而且对于服务器来讲,这个认识也出现了偏差。至今,没有一条确定的公式能够实现主频和实际的运算速度两者之间的数值关系,即使是两大处理器厂家Intel和AMD,在这点上也存在着很大的争议,我们从Intel的产品的发展趋势,可以看出Intel很注重加强自身主频的发展。像其他的处理器厂家,有人曾经拿过一快1G的全美达来做比较,它的运行效率相当于2G的Intel处理器。 所以,CPU的主频与CPU实际的运算能力是没有直接关系的,主频表示在CPU内数字脉冲信号震荡的速度。在Intel的处理器产品中,我们也可以看到这样的例子:1 GHz Itanium 芯片能够表现得差不多跟2.66 GHz Xeon/Opteron一样快,或是1.5 GHz Itanium 2大约跟4 GHz Xeon/Opteron一样快。CPU的运算速度还要看CPU的流水线的各方面的性能指标。 当然,主频和实际的运算速度是有关的,只能说主频仅仅是CPU性能表现的一个方面,而不代表CPU的整体性能。 2.外频外频是CPU的基准频率,单位也是MHz。CPU的外频决定着整块主板的运行速度。说白了,在台式机中,我们所说的超频,都是超CPU的外频(当然一般情况下,CPU的倍频都是被锁住的)相信这点是很好理解的。但对于服务器CPU来讲,超频是绝对不允许的。前面说到CPU决定着主板的运行速度,两者是同步运行的,如果把服务器CPU超频了,改变了外频,会产生异步运行,(台式机很多主板都支持异步运行)这样会造成整个服务器系统的不稳定。 目前的绝大部分电脑系统中外频也是内存与主板之间的同步运行的速度,在这种方式下,可以理解为CPU的外频直接与内存相连通,实现两者间的同步运行状态。外频与前端总线(FSB)频率很容易被混为一谈,下面的前端总线介绍我们谈谈两者的区别。 3.前端总线(FSB)频率前端总线(FSB)频率(即总线频率)是直接影响CPU与内存直接数据 交换速度。有一条公式可以计算,即数据带宽=(总线频率×数据带宽)/8,数据传输最大带宽取决于所有同时传输的数据的宽度和传输频率。比方,现在的支持64位的至强Nocona,前端总线是800MHz,按照公式,它的数据传输最大带宽是6.4GB/秒。 外频与前端总线(FSB)频率的区别:前端总线的速度指的是数据传输的速度,外频是CPU 与主板之间同步运行的速度。也就是说,100MHz外频特指数字脉冲信号在每秒钟震荡一千万次;而100MHz前端总线指的是每秒钟CPU可接受的数据传输量是 100MHz×64bit÷8Byte/bit=800MB/s。 其实现在“HyperTransport”构架的出现,让这种实际意义上的前端总线(FSB)频率发生了变化。之前我们知道IA-32架构必须有三大重要的构件:内存控制器Hub (MCH) ,I/O控制器Hub和PCI Hub,像Intel很典型的芯片组Intel 7501、Intel7505芯片组,为双至强处理器

CPU基本参数知识详解

CPU基本参数知识详解 在电子技术中,脉冲信号是一个按一定电压幅度,一定时间间隔连续发出的脉冲信号。脉冲信号之间的时间间隔称为周期;而将在单位时间(如1秒)内所产生的脉冲个数称为频率。频率是描述周期性循环信号(包括脉冲信号)在单位时间内所出现的脉冲数量多少的计量名称;频率的标准计量单位是Hz(赫)。电脑中的系统时钟就是一个典型的频率相当精确和稳定的脉冲信号发生器。频率在数学表达式中用“f”表示,其相应的单位有:Hz(赫)、kHz(千赫)、MHz (兆赫)、GHz(吉赫)。其中1GHz=1000MHz,1MHz=1000kHz, 1kHz=1000Hz。计算脉冲信号周期的时间单位及相应的换算关系是:s (秒)、ms(毫秒)、μs(微秒)、ns(纳秒),其中:1s=1000ms,1 ms=1000μs,1μs=1000ns。 CPU的主频,即CPU内核工作的时钟频率(CPU Clock Speed)。通常所说的某某CPU是多少兆赫的,而这个多少兆赫就是“CPU的主频”。很多人认为CPU的主频就是其运行速度,其实不然。CPU的主频表示在CPU内数字脉冲信号震荡的速度,与CPU实际的运算能力并没有直接关系。主频和实际的运算速度存在一定的关系,但目前还没有一个确定的公式能够定量两者的数值关系,因为CPU的运算速度还要看CPU的流水线的各方面的性能指标(缓存、指令集,CPU的位数等等)。由于主频并不直接代表运算速度,所以在一定情况下,很可

能会出现主频较高的CPU实际运算速度较低的现象。比如AMD公司的AthlonXP系列CPU大多都能已较低的主频,达到英特尔公司的Pentium 4系列CPU较高主频的CPU性能,所以AthlonXP系列CPU 才以PR值的方式来命名。因此主频仅是CPU性能表现的一个方面,而不代表CPU的整体性能。 CPU的主频不代表CPU的速度,但提高主频对于提高CPU运算速度却是至关重要的。举个例子来说,假设某个CPU在一个时钟周期内执行一条运算指令,那么当CPU运行在100MHz主频时,将比它运行在50MHz主频时速度快一倍。因为100MHz的时钟周期比50MHz的时钟周期占用时间减少了一半,也就是工作在100MHz主频的CPU执行一条运算指令所需时间仅为10ns比工作在50MHz主频时的20ns缩短了一半,自然运算速度也就快了一倍。只不过电脑的整体运行速度不仅取决于CPU运算速度,还与其它各分系统的运行情况有关,只有在提高主频的同时,各分系统运行速度和各分系统之间的数据传输速度都能得到提高后,电脑整体的运行速度才能真正得到提高。 提高CPU工作主频主要受到生产工艺的限制。由于CPU是在半导体硅片上制造的,在硅片上的元件之间需要导线进行联接,由于在高频状态下要求导线越细越短越好,这样才能减小导线分布电容等杂散干扰以保证CPU运算正确。因此制造工艺的限制,是CPU主频发展的最大障碍之一。

CPU卡COS系统文件结构详解

MF 2 3F00 字节数 注释 注 释

字节 注 释

ADF 文件

2 2 1 00 1 1 2 2 1 1 File_ID LNG RFU ACr ACw Read_Right Write_Right RT_KID WT_KID ACr 文件的读控制属性 Read PMK CMK CER CIPH 0 0 PINL MPIN PMK ,认证当前环境主控密钥(MK )。PMK=‘1’时,在执行读命令前,必须通过当前环境(MF/DDF )主控密钥(MK )的认证 CMK ,认证当前应用主控密钥(MK )。CMK=‘1’时,执行读命令前,需要通过当前应用主控密钥(MK )的认证。在MF/DDF 下执行读命令,该位无意义 PINL ,PIN 权限和读权限的逻辑关系。PINL=‘0’时,为‘与’的关系;PINL=‘1’时,为‘或’的关系. MPIN ,认证PIN 。MPIN=‘1’时,在执行读命令前,需要通过PIN 的认证 Read-Right:文件的读权限。和ACr 一起控 制文件的读操作。高字节为全局读权限,低字节为局部读权限 ACw 文件的写控制属性 Update PMK CMK CER CIPH DISA DISU PINL MPIN PMK 、CMK 、PINL 、MPIN 同上把“读”改为“写”即可。 DISA ,禁止添加。DISA=‘1’时,禁止向文件添加数据 DISU ,禁止修改。DISU=‘1’时,禁止修改文件内的数据 Write-Right: 文件的写权限。和ACw 一起控制文件的写操作。高字节为全局写权限,低字节为局部写权限 RT-KID 读密钥的短标识符。执行读命令时,加密数据和计算校验码(MAC )所用密钥的短标识符。该密钥的用途为传输密钥或主控密钥 WT-KID 写密钥的短标识符。执行写命令时,加密数据和计算校验码(MAC )所用密钥的短标识符。该密钥的用途为传输密钥或主控密钥

智能卡基础知识

《智能卡基础知识》 发展历史 智能卡是IC卡的一种,是集成电路卡(Integrated CircuitCard)的英文简称,在有些国家也称之为智慧卡、微芯片卡等。将一个专用的集成电路芯片镶嵌于符合ISO7816标准的PVC(或ABS等)塑料基片中,封装成外形与磁卡类似的卡片形式,即制成一张IC卡。当然也可以封装成纽扣、钥匙、饰物等特殊形状。 IC卡的最初的设计构想是由日本人提出来的。1969年12月,日本的有村国孝(KunitakaArimura)提出一种制造安全可靠的信用卡方法,并于1970年获得专利,那时叫ID卡(IdentificationCard)。1974年,法国的罗兰·莫雷诺(RolandMoreno)发明了带集成电路芯片的塑料卡片,并取得了专利权,这就是早期的IC卡。1976年法国布尔(Bull)公司研制出世界第一枚IC卡。1984年,法国的PTT(Posts,Telegraphs andTelephones)将IC卡用于电话卡,由于IC卡良好的安全性和可靠性,获得了意想不到的成功。随后,国际标准化组织(ISO,International StandardizationOrganization)与国际电工委员会(IEC,International ElectrotechnicalCommission)的联合技术委员会为之制订了一系列的国际标准、规范,极大地推动了智能卡的研究和发展。 智能卡介绍 智能卡(Smart Card),内嵌有微芯片的塑料卡(通常是一张信用卡的大小)的通称。 一些智能卡包含一个RFID芯片,所以它们不需要与读写器的任何物理接触就能够识别持卡人。 智能卡配备有CPU和RAM,可自行处理数量较多的数据而不会干扰到主机CPU的工作。 智能卡还可过滤错误的数据,以减轻主机CPU的负担。适应于端口数目较多且通信速度需求较快的场合。卡内的集成电路包括中央处理器CPU、可编程只读存储器EEPROM、随机存储器RAM和固化在只读存储器ROM中的卡内操作系统COS(Chip Operating System)。卡中数据分为外部读取和内部处理部分。 1、什么是智能卡? 智能卡是IC卡的一种,按所嵌的芯片类型的不同,IC卡可分为三类: 1.存储器卡:卡内的集成电路是可用电擦除的可编程只读存储器EEPROM,它仅具数据存储功能,没有数据处理能力;存储卡本身无硬件加密功能,只在文件上加密,很容易被破解。 2.逻辑加密卡:卡内的集成电路包括加密逻辑电路和可编程只读存储器EEPROM,加密逻辑电路可在一定程度上保护卡和卡中数据的安全,但只是低层次防护,无法防止恶意攻击。 3.智能卡(CPU卡) 国际标准

相关主题
文本预览
相关文档 最新文档