当前位置:文档之家› 确定性系统中的混沌现象

确定性系统中的混沌现象

确定性系统中的混沌现象
确定性系统中的混沌现象

(三)中的的研究

1.古代“浑沌”思想和牛顿的决定论

不论中国还是西方,“混沌”(chaos,又称“浑沌”)概念古已有之。面对浩瀚无垠的宇宙和繁纷多变的自然现象,古人只能凭借直觉对它进行模糊、整体的想象和猜测,逐步产生了混沌的概念。中国古代所说的“混沌”,一般是指、阴阳未分、渺蒙、万物相混的那种整体状态。它既含有错综复杂、混乱无序、模糊不清的意思,又有内在地蕴涵着同一和差异、规则和杂乱、通过演化从“元气未分”的状态产生出五光十色、多姿多彩的现实世界的丰富内涵。中所说“,先天地生”,其实就是混沌。汉代王充的《论衡·谈天篇》说:“元气未分,浑沌为一”;汉代《易纬·乾凿度》云:“混沌者,言万物相混成而未相离”;又云:“太易者,未见气也;太初者,气之始也;太始者,形之始也;太素者,质之始也;气、形、质具而未相离,谓之混沌”。这些论述都强调了混沌是宇宙初始物质未被分化的一种无序的元气统一体。战国时期的伟大诗人屈原在他的中精彩地描绘了这种混沌状态:

曰遂古之初,谁传道之?上下未形,何由考之?,谁能极之?冯翼惟象,何以识之?明明暗暗,惟时何功?阴阳三合,何本何化?……

这也把宇宙的初始状态描绘为天地未形、浑浑沌沌、动荡不定、明暗不分、阴阳渗合的形象。

但是,在古人看来,浑沌并不简单地等同于混乱和无序,它是万物混成尚未分离的状态,它是统一的整体,它本身就包含着差异和多样性,是秩序和无秩序、和谐与不和谐的统一体。浑沌先于宇宙,浑沌孕育着宇宙,浑沌产生出宇宙。按照《易纬·乾凿度》的说法,这个演化过程就是

太易→太初→太始→太素→混沌→天地……

“天地”才是现实的宇宙。

在古埃及和巴比伦的传说里,都提出了世界起源于混沌的思想。古希腊称“原始混沌”为“”,说卡俄斯生于万物之先,它生下大地(“该亚”)、地狱(“塔尔塔洛斯”)和爱情(“”),大地又生出天(“乌利诺斯”)和海(“”)。这也是说世界万物都是从混沌中分离出来的。在《圣经》“创世纪”中说,起初神创造了天地,大地是空虚混沌,神灵运行于黑暗的深渊中,神说“要有光”,于是就有了光;神把光暗分开,于是就有了晨昏昼夜。这就是“创世”的第一天。这里借“神”的外衣所编织的动人神话,都反映了古人关于世界起源的共同思想:世界产生之前的自然状态是混沌,万物借分离之力从混沌中演化出来。但是,即使古人,也力图揭开浩阔苍茫的,寻找变幻莫测的大自然背后的秩序,从混沌中发现规则性。世界各地的古文明中,都产生了计算季节的精奥历法,都出现了预测日月食的天文律条。

伟大的和的提出,激发起人们的勇气和信心,诞生了。1687年,伟大的牛顿(Newton,Isaac 1642~1727)出版了他的巨著《》,以的三个基本定律和为公理基础,确立了一个揭示“万物的至理”、结构“世界的体系”的严整的经典力学理论体系。这个理论简单而精确,普适而优美,对地面物体的各种复杂运动和太阳系内各个天体的长短周期运动做出了统一的解释,

包括落体运动,,波的传播,光的折射,,流体涡旋,行星轨道,月球岁差,彗星的行踪,双星的光变等等。牛顿的理论获得了意想不到的成功,世界一下子变得秩序井然。

以牛顿力学为旗帜的科学革命,导致了把宇宙看作是一个巨大的精密机械,或者说就像一架精确运行的“钟表机构”。因为牛顿力学的核心是,它是一个二级微分方程;这个方程的解,即物体的运动轨道,完全由两个初始条件唯一地决定。就是说,只要知道了物体在某一时刻的运动状态以及作用于这个物体的外部的力,就可以准确地确定这个物体以往和未来的全部运动状态。

()

1楼

2005-05-01 19:06

|

本吧精品

本吧精品

新近纪

3

这样,牛顿力学必然导致一个的结构,即认为所有的自然现象和自然过程,都只能按照机械的必然性发生和进行。根据物体间的相互作用和力学的基本定律,从运动的初始条件出

分岔与混沌理论与应用作业

分岔与混沌理论与应用 学院: 专业: 姓名: 学号:

我对混沌理论的认识 1、混沌理论概述 混沌是指发生在确定性系统中的貌似随机的不规则运动,一个确定性理论描述的系统,其行为却表现为不确定性--不可重复、不可预测,这就是混沌现象。混沌现象起因于物体不断以某种规则复制前一段的运动状态,而产生无法预测的随机效果。所谓“差之毫厘,失之千里”正是此一现象的最佳批注。具体而言,混沌现象发生于易变动的物体或系统,该物体在行动之初极为简单,但经过一定规则的连续变动之后,却产生始料所未及的后果,也就是混沌状态。但是此种混沌状态不同于一般杂乱无章的混乱状况,此一混沌现象经过长期及完整分析之后,可以从中理出某种规则出来。混沌现象虽然最先用于解释自然界,但是在人文及社会领域中因为事物之间相互牵引,混沌现象尤为多见。 混沌理论,是近三十年才兴起的科学革命,它与相对论与量子力学同被列为二十世纪的最伟大发现和科学传世之作。混沌的发现揭示了我们对规律与由此产生的行为之间--即原因与结果之间--关系的一个基本性的错误认识。我们过去认为,确定性的原因必定产生规则的结果,但它们可以产生易被误解为随机性的极不规则的结果。我们过去认为,简单的原因必定产生简单的结果(这意昧着复杂的结果必然有复杂的原因),但简单的原因可以产生复杂的结果。我们认识到,知道这些规律不等于能够预言未来的行为。这一思想已被一群数学家和物理学家,其中包括威廉·迪托(William Ditto)、艾伦·加芬科(Alan Garfinkel)和吉姆·约克(Jim Yorke),变成了一项非常有用的实用技术,他们称之为混沌控制。实质上,这一思想就是蝴蝶效应。初始条件的小变化产生随后行为的大变化,这可以是一个优点;你必须做的一切,是确保得到你想要的大变化。对混沌动力学如何运作的认识,使我们有可能设计出能完全实现这一要求的控制方案。这个方法已取得若干成功。 2、分叉的概述 分叉理论研究动力系统由于参数的改变而引起解的拓扑结构和稳定性变化的过程。在科学技术领域中,许多系统往往都含有一个或多个参数。当参数连续改变时,系统解的拓扑结构或定性性质在参数取某值时发生突然变化,这时即产

混沌理论及其应用

混沌理论及其应用 摘要:随着科学的发展及人们对世界认识的深入,混沌理论越来越被人们看作是复杂系统的一个重要理论,它在各个行业的广泛应用也逐渐受到人们的青睐。本文给出了混沌的定义及其相关概念,论述了混沌应用的巨大潜力,并指明混沌在电力系统中的可能应用方向。对前人将其运用到电力系统方面所得出的研究成果进行了归纳。 关键词:混沌理论;混沌应用;电力系统 Abstract: With the development of science and the people of the world know the depth, chaos theory is increasingly being seen as an important theory of complex systems, it also gradually by people of all ages in a wide range of applications in various industries. In this paper, the definition of chaos and its related concepts, discusses the enormous application potential chaos, and chaos indicate the direction of possible applications in the power system. Predecessors applying it to respect the results of power system studies summarized. Keywords:Chaos theory;Application of ChaosElectric ;power systems 1 前言 混沌理论(Chaos theory)是一种兼具质性思考与量化分析的方法,用以探讨动态系统中(如:人口移动、化学反应、气象变化、社会行为等)无法用单一的数据关系,而必须用整体、连续的数据关系才能加以解释及预测之行为。混沌理论是对确定性非线性动力系统中的不稳定非周期性行为的定性研究(Kellert,1993)。混沌是非线性系统所独有且广泛存在的一种非周期运动形式,其覆盖面涉及到自然科学和社会科学的几乎每一个分支。近二三十年来,近似方法、非线性微分方程的数值积分法,特别是计算机技术的飞速发展, 为人们对混沌的深入研究提供了可能,混沌理论研究取得的可喜成果也使人们能够更加全面透彻地认识、理解和应用混沌。 2 混沌理论概念 混沌一词原指宇宙未形成之前的混乱状态,中国及古希腊哲学家对于宇宙之源起即持混沌论,主张宇宙是由混沌之初逐渐形成现今有条不紊的世界。混沌现象起因于物体不断以某种规则复制前一阶段的运动状态,而产生无法预测的随机效果。所谓“差之毫厘,失之千里”正是此一现象的最佳批注。具体而言,混沌现象发生于易变动的物体或系统,该物体在行动之初极为单纯,但经过一定规则的连续变动之后,却产生始料所未及的后果,也就是混沌状态。但是此种混沌状态不同于一般杂乱无章的的混乱状况,此一混沌现象经过长期及完整分析之后,可以从中理出某种规则出来。混沌现象虽然最先用于解释自然界,但是在人文及社会领域中因为事物之间相互牵引,混沌现象尤为多见。如股票市场的起伏、人生的平坦曲折、教育的复杂过程。 2.1 混沌理论的发展 混沌运动的早期研究可以追溯到1963年美国气象学家Lorenz对两无限平面间的大气湍流的模拟。在用计算机求解的过程中, Lorenz发现当方程中的参数取适当值时解是非周期的且具有随机性,即由确定性方程可得出随机性的结果,这与几百年来统治人们思想的拉普拉斯确定论相违背(确定性方程得出确定性结果)。随后, Henon和Rossler等也得到类似结论Ruelle,May, Feigenbaum 等对这类随机运动的特性进行了进一步研究,从而开创了混沌这一新的研究方向。 混沌理论解释了决定系统可能产生随机结果。理论的最大的贡献是用简单的模型获得明确的非周期结果。在气象、航空及航天等领域的研究里有重大的作用。混沌理论认为在混沌系统中,初始条件十分微小的变化,经过不断放大,对其未来状态会造成极其巨大的差别。在没

蔡氏电路MATLAB混沌仿真

蔡氏电路的Matlab混沌 仿真研究 班级: 姓名: 学号:

摘要 本文首先介绍非线性系统中的混沌现象,并从理论分析与仿真计算两个方面细致研究了非线性电路中典型混沌电路,即蔡氏电路反映出的非线性性质。通过改变蔡氏电路中元件的参数,进而产生多种类型混沌现象。最后利用软件对蔡氏电路的非线性微分方程组进行编程仿真,实现了双涡旋和单涡旋状态下的同步,并准确地观察到混沌吸引子的行为特征。 关键词:混沌;蔡氏电路;MATLAB仿真 Abstract This paper introduce s the chaos phenomenon in nonlinear circuits. Chua’s circuit was a typical chaos circuit, thus theoretical analysis and simulation was made to research it. Many kinds of chaos phenomenon on would generate as long as one component parameter was altered in C hua’s circuit.On the platform of Matlab, mathematical model of Chua’s circuit was programmed and simulated to acquire the synchronization of dual and single cochlear volume. Meanwhile, behavioral characteristics of chaos attractor were observed. Key words:chaos phenomenon;Chua’s circuit;Simulation

浅谈“蝴蝶效应”在网络传播中的应用及其对策

浅谈“蝴蝶效应”在网络传播中的应用及其对策 蝴蝶效应,即上世纪六十年代,“气象学家洛仑兹(E.N.Lorenz)在他的计算机上计算一个热力场中热对流问题的简化模型。”结果发现,初始条件的微小变化使“系统自任意初始状态出发的相轨线成蝴蝶形态,既不重复也无规律。”为了形象地说明这种现象,洛仑兹打了个比方:南美洲亚马逊河流域热带雨林中的一只蝴蝶,偶尔扇动几下翅膀,可能在两周后引起美国得克萨斯州的一场龙卷风。这就是广为人知的“蝴蝶效应”比喻。而后它作为混沌理论的一个核心概念被引入经济学,构成了行为金融学的重要分支,并广泛应用于各个领域。 本文借助混沌理论分析了网络传播中的“蝴蝶效应”,认为网络是一个混沌系统,网络传播是由有序到无序、再到新的有序的循环过程,其结局具有不可预测性,而网络环境恰恰都具备了混沌理论的性质:即有界性、非周期性、非线性、敏感初条件。 一、比比皆是的“蝴蝶效应”事件 “蝴蝶效应”反应在网络传播中通常呈现为公共性群体事件。近年来,随着互联网的发展,网络成为影响社会的一个重要力量。尤其以微博、SNS网站、BBS论坛等网络新兴媒体的崛起,为新闻媒体提供了一个丰厚的新闻来源集中地。细心观察,我们发现这两年出现的很多公共性事件、贪官落马、揭黑揭丑的新闻爆发地都来源于网络,而这些事件都以非线性地爆炸方式传播开来,有的引来民愤导致群体事件的爆发,有的引来看客们的围观和指点,有的在舆论的压迫中亟需解决。“蝴蝶效应”呈现出它的优势,同时暴露了某些弊端。 1.“虐婴门” 2012年6月,实习护士微博@小考拉avi 发布多张虐待婴儿照片,还称“2B孩纸”“小孩装死”,让脖子脆弱的新生儿处于危险姿势,极易折伤颈椎,甚至窒息。捉弄婴儿,在刚出生没多久的宝宝鼻子上贴猪鼻子。甚至还用手玩新生儿眼睛。为逃避责任已删了微博,但网友保留了截图。而后当事人在微博道歉。据了解,首先曝光它的是一位网名为“若馨守护神”的年轻母亲,自称在一名为“@小考拉avi”的微博上发现了多批含有虐待初生婴儿的自爆博文,言语轻佻,行为恶劣,使身为母亲的自己无法忍受,便“冒着被报复”的可能将之公之于众。而没想到的是,这条微博在短短时间内转发量达上万,引起网络的轩然大波。大多数网友表现得很激进和愤怒,公然指责当事人肖诗雨和浙江中医药大学的行为。而很多极端的网友开始“人肉搜索”,翻出当事人的所有资料和照片,并且放入各大论坛网站,设置头版头条来博取看客和哄客们的围观。一时事件失去控制,当事人和校方也随即发表道歉的声明。 而后,某些网友利用近几年紧张的医患关系现状做文章,通过不断地放大虐婴门事件,招来更多“同伴”,引得大家的同感。这在一定程度上激化社会矛盾,破坏社会的稳定秩序,有可能招致更大的社会动荡行为。 2.“房叔”事件、“表哥”事件 2012年10月8日,天涯社区的一个网帖曝出蔡彬及妻子、儿子名下共有21套房产,消息一出,即引起疯狂转发,网民纷纷要求纪检部门介入调查,各路媒体也跟进追问。事件发生2天后,即2012年10月10日,广州市纪委就迅速反应。当天上午9时许,市纪委即通过官方微博作出回应,“有关部门正在核查”。随后不久,番禺区政府新闻办公室官方微博发布也表示,“已关注到相关内容,目前,已成立了调查组,正在展开调查。”当天晚上,@廉洁广州发布微博称,网帖反映情况基本属实。10月11日,番禺区委已决定对其停职,并作进一步调查。2012年10月22日,蔡彬因涉嫌受贿被宣布“双规”。@廉洁广州也同时发布了这一最新消息。 又比如,因在特大交通事故中走红的的“微笑局长”杨达才,被网民人肉搜索出在五个不同的场合,杨达才佩戴了五款不同的名牌手表。随后,杨达才年公开称自己收入17、8万元,这些表都是自己合法收入买的,不过网友并不买账,又有人称杨达才有11块表,眼镜和腰带都是名牌,随后网友要求公开杨达才的工资收入。评论称,“表哥”一事经公共关

混沌现象的通俗解释

混沌现象的通俗解释 非线性,俗称“蝴蝶效应”。 什么是蝴蝶效应?先从美国麻省理工学院气象学家洛伦兹(Lorenz)的发现谈起。为了预报天气,他用计算机求解仿真地球大气的13个方程式。为了更细致地考察结果,他把一个中间解取出,提高精度再送回。而当他喝了杯咖啡以后回来再看时竟大吃一惊:本来很小的差异,结果却偏离了十万八千里!计算机没有毛病,于是,洛伦兹(Lorenz)认定,他发现了新的现象:“对初始值的极端不稳定性”,即:“混沌”,又称“蝴蝶效应”,亚洲蝴蝶拍拍翅膀,将使美洲几个月后出现比狂风还厉害的龙卷风! 这个发现非同小可,以致科学家都不理解,几家科学杂志也都拒登他的文章,认为“违背常理”:相近的初值代入确定的方程,结果也应相近才对,怎么能大大远离呢! 线性,指量与量之间按比例、成直线的关系,在空间和时间上代表规则和光滑的运动;而非线性则指不按比例、不成直线的关系,代表不规则的运动和突变。如问:两个眼睛的视敏度是一个眼睛的几倍?很容易想到的是两倍,可实际是6-10倍!这就是非线性:1+1不等于2。 激光的生成就是非线性的!当外加电压较小时,激光器犹如普通电灯,光向四面八方散射;而当外加电压达到某一定值时,会突然出现一种全新现象:受激原子好象听到“向右看齐”的命令,发射出相位和方向都一致的单色光,就是激光。 非线性的特点是:横断各个专业,渗透各个领域,几乎可以说是:“无处不在时时有。”如:天体运动存在混沌;电、光与声波的振荡,会突陷混沌;地磁场在400万年间,方向突变16次,也是由于混沌。甚至人类自己,原来都是非线性的:与传统的想法相反,健康人的脑电图和心脏跳动并不是规则的,而是混沌的,混沌正是生命力的表现,混沌系统对外界的刺激反应,比非混沌系统快。由此可见,非线性就在我们身边,躲也躲不掉了。 1979年12月,洛伦兹(Lorenz)在华盛顿的美国科学促进会的一次讲演中提出:一只蝴蝶在巴西扇动翅膀,有可能会在美国的德克萨斯引起一场龙卷风。他的演讲和结论给人们留下了极其深刻的印象。从此以后,所谓“蝴蝶效应”之说就不胫而走,名声远扬了。 “蝴蝶效应”之所以令人着迷、令人激动、发人深省,不但在于其大胆的想象力和迷人的美学色彩,更在于其深刻的科学内涵和内在的哲学魅力。混沌理论认为在混沌系统中,初始条件的十分微小的变化经过不断放大,对其未来状态会造成极其巨大的差别。我们可以用在西方流传的一首民谣对此作形象的说明。这首民谣说: 丢失一个钉子,坏了一只蹄铁; 坏了一只蹄铁,折了一匹战马; 折了一匹战马,伤了一位骑士; 伤了一位骑士,输了一场战斗; 输了一场战斗,亡了一个帝国。 马蹄铁上一个钉子是否会丢失,本是初始条件的十分微小的变化,但其“长期”效应却是一个帝国存与亡的根本差别。这就是军事和政治领域中的所谓“蝴蝶效应”。有点不可思议,但是确实能够造成这样的恶果。一个明智的领导人一定要防微杜渐,看似一些极微小的事情却有可能造成集体内部的分崩离析,那时岂不是悔之晚矣? 横过深谷的吊桥,常从一根细线拴个小石头开始。 莫以恶小而为之,莫以善小而不为。 千里之堤,毁于蚁穴。 混沌现象在自然界所经历的途径及是普遍存在的,近些年来,人们不仅从实验室观察到了许多混沌现象,而且认识到混沌产生的条件,其特征,在理论上发现了一些有关混沌产生的普遍规律,混沌理论的研究已经不仅仅局限于物理学方面,而且成为跨学科的十分活跃的研究方向,比如在生命,意识,社会发展变化上的研究。有人甚至认为混沌理论是继量子论,相对论以后的第三大革命。所以对混沌与牛顿定律的内在随机性的研究,不仅是在物理学上,

用Matlab观察分岔与混沌现象

M a t l a b 实验报告 实验目的:用Matlab 观察分岔与混沌现象。 题目:Feigenbaum 曾对超越函数sin()y x λπ=(λ为非负实数)进行了分岔与混沌的研究,试利用迭代格式1sin()k k x x λπ+=,做出相应的Feigenbaum 图 算法设计: 1、因为λ为非负实数,所以试将λ的范围限制在[0,3],制图时x 的坐标限制在[0,3],考虑到y 的值有正有负,所以把y 的坐标限制在 [-3,3]。 2、根据课本上给的例题,编写程序代码来绘图。 程序代码: clear;clf; hold on axis([0,3,-3,3]); grid for a=0:0.005:3 x=[0.1]; for i=2:150 x(i)=a*sin(pi*x(i-1)); end pause(0.1) for i=101:150 plot(a,x(i),'k.'); end end 图像: 结果分析:在λ取值在[0,0.3]区间内时,y 的值保持在0,然后开始上升,在λ取值在0.75附近时,开始分岔为两支。从整体上看,随着λ的值越来越大,所产生的迭代序列越来越复杂,可能会随机地落在区间(-3,3)的任一子区间内。并可能重复,这就是混沌的遍历性。 进一步分析:由于λ的取值空间偏小,考虑扩大其取值范围

到[0,6],再进一步观察图像。程序代码如下: clear;clf; hold on axis([0,6,-6,6]); grid for a=0:0.05:6 x=[0.1]; for i=2:150 x(i)=a*sin(pi*x(i-1)); end pause(0.1) for i=101:150 plot(a,x(i),'k.'); end end 图像: 分析:由图像可见,随着 取值范围的增大,图像呈现出周期性的特点。 总结:1、当取值范围比较小,不足以发现图像规律时,可以考虑扩大变量的取值范围。 2、由于图像是由大量点构成的,所以在编程的时候注意循环 语句的应用。

浅谈混沌理论

目录 引言 说起“混沌”这个词,我们中国人首先想到的是我国古代传说中宇宙形成以前模糊一团的景象,即古哲学中认为盘古开天辟地之前,天地处于混沌状态。“太易者,未见气也;太初者,气之始也;太始者,形之似也;太素者,质之始也。气似质具而未相离,谓之混沌。”!!!(出自《庄子》)这里的混沌是指元气已具有物质的性质还没有进一步分化的状态。在国外,“混沌”这个词同样渊流悠久,《圣经》《创世纪》甚至埃及的神话故事中都有关于“混沌”的不同解释,这里我们不一一赘述。而在当代,混沌正在成为一种具有严格定义的科学概念,成为一门新科学的名字,它正在促使整个现代知识体系成为新科学。

不断的去探索大自然的规律是科学家的天职,无数的科学家在探索着这些规律,也终他们一生在挑战着人类未知的领域。物理学家要弄清楚物质的基本粒子,化学家则研究物质的构成、探索新的化学元素,天文学家探索宇宙的奥秘,生物学家则研究生物的演变与进化……他们的努力解决了一个个人类所遇到的难题,也创造出了人类发展史上的一个又一个奇迹。然而,还是会有很多复杂的问题在困扰着人们。人们总是思考,为什么天气变化存在着不可预测性,气体和流体在从平稳向湍流变化的过程中存在着哪些中间步骤等等各种所有在确定性系统中出现的貌似随机的不规则运动的问题,也慢慢的有人预感到,这些深奥的问题极可能揭示了大自然更深一层的规律。 早在公元前560年,我国的老子提出了宇宙起源于混沌的哲学思想;公元前450年左右,中国的古哲学家庄子也说过这样一句话:南海之地为倏,北海之帝为忽,中央天帝为浑沌。这里庄子最早把混沌理论引入到政治学的研究中。他的“中央之帝为混沌” 下面就让我们一起走进这个当代前沿科学“混沌”的世界。 一、混沌理论的提出——由线性科学到非线性科学 线性科学的成就 线性是指量与量之间的正比关系;在直角坐标系里,它是用一根直线表征的关系。 由于人的认识的发展总是从简单事物开始的,所以在科学发展的早期,首先从线性关系来认识自然事物,较多地研究了事物间的线性相互作用,这是很自然的。 例如:经典物理学中,首先考察的是没有摩擦的理想摆,没有粘滞性的理想流体,温度梯度很小的热流等;数学家们首先研究的是线性函数、线性方程等。 理论家们在对大自然中的许多现象进行探索时,总是力求在忽略非线性因素的前提下建立起线性模型,至少是力求对非线性模型做线性化处理,用线性模型近似或局部地代替非线性原型,或者借助于对线性过程的微小扰动来讨论非线性效应。 经过长期的发展,在经典科学中就铸造出一套处理线性问题的行之有效的方法,如牛顿经典力学等;就是设计物理实验,也主要是做那些可以做线性分析的实验。从这个特点看来,经典科学实质上是线性科

非线性电路中混沌现象的研究实验

非线性电路中混沌现象的研究实验 长期以来人们在认识和描述运动时,大多只局限于线性动力学描述方法,即确定的运动必然有一个确定的解析解。但是在自然界中相当多的情况下,非线性现象却有着非常大的作用。1963年美国气象学家Lorenz 在分析天气预报模型时,首先发现空气动力学中的混沌现象,这一现象只能用非线性动力学来解释。于是,1975年混沌作为一个新的科学名词首先出现在科学文献中。从此,非线性动力学得到迅速发展,并成为有丰富内容的研究领域。该学科涉及到非常广泛的科学范围,从电子学到物理学,从气象学到生态学,从数学到经济学等。混沌通常相应于不规则或非周期性,这是非由非线性系统产生的本实验将引导学生自已建立一个非线性电路。 【实验目的】 1.测量非线性单元电路的电流--电压特性,从而对非线性电路及混沌现象有一深刻了解。 2.学会测量非线性器件伏安特性的方法。 【实验仪器】 非线性电路混沌实验仪 【实验原理】 图1 非线性电路 图2 三段伏安特性曲线 1.非线性电路与非线性动力学: 实验电路如图1所示,图1中只有一个非线性元件R ,它是一个有源非线性负阻器件。电感器L 和电容器2C 组成一个损耗可以忽略的振荡回路:可变电阻21W W +和电容器1C 串联将振荡器产生的正弦信号移相输出。较理想的非线性元件R 是一个三段分段线性元件。图2所示的是该电阻的伏安特性曲线,从特性曲线显示加在此非线性元件上电压与通过它的电流极性是相反的。由于加在此元件上的电压增加时,通过它的电流却减小,因而将此元件称为非线性负阻元件。图1 电路的非线性动力学方程为: 11211Vc g )Vc Vc (G dt dVc C ?--?=L 2122 i )Vc Vc (G dt dVc C +-?=

(完整版)基于MATLAB的混沌序列图像加密程序

设计题目:基于MATLAB的混沌序列图像加密程序 一.设计目的 图像信息生动形象,它已成为人类表达信息的重要手段之一,网络上的图像数据很多是要求发送方和接受都要进行加密通信,信息的安全与保密显得尤为重 要,因此我想运用异或运算将数据进行隐藏,连续使用同一数据对图像数据两次异或运算图像的数据不发生改变,利用这一特性对图像信息进行加密保护。 熟练使用matlab运用matlab进行编程,使用matlab语言进行数据的隐藏加密,确保数字图像信息的安全,混沌序列具有容易生成,对初始条件和混沌参数敏感等特点,近年来在图像加密领域得到了广泛的应用。使用必要的算法将信息进行加解密,实现信息的保护。 .设计内容和要求 使用混沌序列图像加密技术对图像进行处理使加密后的图像 使用matlab将图像信息隐藏,实现信息加密。 三.设计思路 1. 基于混沌的图像置乱加密算法 本文提出的基于混沌的图像置乱加密算法示意图如图1所示 加密算法如下:首先,数字图像B大小为MX N( M是图像B的行像素数,N是图像B的列像素数),将A的第j行连接到j-1行后面(j=2,3, A,M,形成长度为MX N的序列C。其次,用Logistic混沌映射产生一个长度为的混沌序列{k1,k2,A,kMX N},并构造等差序列D: {1,2,3, A,MX N-1,MX N}。再次,将所

产生的混沌序列{kl, k2. A, kMX N}的M N个值由小到大排序,形成有序序列{k1', k2'. A' kMX N' },确定序列{k1, k2, A, kMX N}中的每个ki在有序序列{k1', k2', A , kMX N' }中的编号,形成置换地址集合 {t1 , t2 , A, tM X N},其中ti为集合{1 , 2, A, MX N}中的一个;按置换地址集合{t1 , t2 , A, tM X N}对序列C进行置换,将其第i个像素置换至第ti列, i=1 , 2, A, MX N,得到C'。将等差序列D做相同置换,得到D'。 最后,B'是一个MX N 的矩阵,B' (i ,j)=C ' ((i-1) X M+j),其中i=1 , 2, A, M j=i=1 , 2, A, N,则B'就是加密后的图像文件。 解密算法与加密算法相似,不同之处在于第3步中,以序列C'代替随机序列{k1, k2, A, kMX N},即可实现图像的解密。 2. 用MATLAB勺实现基于混沌的图像置乱加密算法 本文借助MATLAB^件平台,使用MATLAB!供的文本编辑器进行编程实现加密功能。根据前面加密的思路,把加密算法的编程分为三个主要模块:首先,构造一个与原图a等高等宽的矩阵b加在图像矩阵a后面形成复合矩阵c: b=zeros(m1, n1); ifm1>=n1 ifm1> n1 fore=1: n1 b=(e,e); end else fore=1: n1 end fore=1:( n1-m1) b((m1+e-1),e)=m1+e-1 end end c=zeros(m1*2, n1); c=zeros(m1*2,1); c=[b,a]; 然后,用Logitic映射产生混沌序列:

-非线性电路混沌现象的探究以及基于Multisim的仿真设计

非线性电路混沌现象的探究以及基于Multisim的仿真设计

摘要 本文从非线性电路中的混沌现象着手,详细回顾了混沌电路的实验原理、实验方法以及实验现象,并通过一元线性回归对有源非负阻的伏安特性曲线实进行了拟合。此外,本文也着重通过MultiSim软件,对实验中的混沌电路进行了仿真,仔细记录了仿真下来的各个波形。同时,也利用该软件,通过搭建电路,用示波器获得了有源非线性负阻的伏安特曲。 关键词 混沌电路有源非线性负阻MultiSim软件

一、引言 混沌是二十世纪最重要的科学发现之一,被誉为继相对论和量子力学之后的第三次物理革命,它打破了确定性与随机性之间不可逾越的分界线,将经典力学研究推进到一个崭新的时代。由于混沌信号是一种貌似随机而实际却是由确定信号系统产生的信号,使得混沌在许多领域(如保密通信,自动控制,传感技术等)得到了广泛的应用[1]。 20多年来混沌一直是举世瞩目的前沿课题和研究热点,它揭示了自然界及人类社会中普遍存在的复杂性、有序性和无序的统一,大大拓宽了人们的视野,加深了人们对客观世界的认识。目前混沌控制与同步的研究成果已被用来解决秘密通信、改善和提高激光器性能以及控制人类心律不齐等问题。 混沌(chaos)作为一个科学概念,是指一个确定性系统中出现的类似随机的过程。理论和实践都证明,即使是最简单的非线性系统也能产生十分复杂的行为特性,可以概括一大类非线性系统的演化特征。混沌现象出现在非线性电路中是极为普遍的现象,通过改变电路中的参数可以观察到倍周期分岔、阵法混乱和奇异吸引子等现象。 二、混沌电路简介 对电路系统来说,在有些二阶非线性非自治电路或三阶非线性自治电路中,出现电路的解既不是周期性的也不是拟周期的,但在状态平面上其相轨迹始终不会重复,但是有界的,而且电路对初始条件十分敏感,这便是非线性电路中的混沌现象。 根据Li-York定义,一个混沌系统应具有三种性质: (1)存在所有阶的周期轨道; (2)存在一个不可数集合,此集合只含有混沌轨道,且任意两个轨道既不趋向远离也不趋向接近,而是两种状态交替出现,同时任一轨道不趋于任一周期轨道,即此集合不存在渐近周期轨道; (3)混沌轨道具有高度的不稳定性。 可见,周期轨道与混沌运动有密切关系,表现在两个方面: 第一,在参数空间中考察定常的运动状态,系统往往要在参量变化过程中先经历一系列周期制度,然后进入混沌状态; 第二,一个混沌吸引子里面包含着无穷多条不稳定的周期轨道,一条混沌轨道中有许许多多或长或短的片段,它们十分靠近这条或那条不稳定的周期轨道。 根据文献[2][3],混沌主要特征表现在: (1)敏感依赖于初始条件; (2)伸长与折叠; (3)具有丰富的层次和自相似结构; (4)在非线性耗散系统中存在混沌吸引子。 同时,混沌运动还具有如下特征: (1)存在可数无穷多个稳定的周期轨道; (2)存在不可数无穷多个稳定的非周期轨道; (3)至少存在一个不稳定的非周期轨道。 非线性电路是指电路中至少包含一个非线性元件的电路。事实上一切实际元件都是非线性的。因为给任何元件上加足够大的电压或电流后都将破坏其线性。

混沌现象研究

实验二十九混沌现象研究 长期以来,人们在认识和描述运动时,大多只局限于线性动力学描述方法,即确定的运动有一个完美确定的解析解。但是自然界在相当多情况下,非线性现象却起着很大的作用。1963年美国气象学家Lorenz在分析天气预报模型时,首先发现空气动力学中的混沌现象,该现象只能用非线性动力学来解释。于是,1975年混沌作为一个新的科学名词首次出现在科学文献中。从此,非线性动力学迅速发展,并成为有丰富内容的研究领域。该学科涉及非常广泛的科学范围,从电子学到物理学,从气象学到生态学,从数学到经济学等。混沌通常相应于不规则或非周期性,这是由非线性系统本质产生的。本实验将引导学生自己建立一个非线性电路,该电路包括有源非线性负阻、LC振荡器和RC移相器三部分;采用物理实验方法研究LC振荡器产生的正弦波与经过RC移相器移相的正弦波合成的相图(李萨如图),观测振动周期发生的分岔及混沌现象;测量非线性单元电路的电流—电压特性,从而对非线性电路及混沌现象有一深刻了解;学会自己制作和测量一个实用带铁磁材料介质的电感器以及测量非线性器件伏安特性的方法。【实验原理】 1、非线性电路与非线性动力学 实验电路如图30-1所示,图30-1中只有一个非线性元件R,它是一个有源非线性负阻器件。电感器L和电容器C2组成一个损耗可以忽略的谐振回路;可变电阻R0和电容器C1串联将振荡器产生的正弦信号移相输出。本实验所用的非线性元件R是一个五段分段线性元件。图30-2所示的是该电阻的伏安特性曲线,可以看出加在此非线性元件上电压与通过它的电流极性是相反的。由于加在此元件上的电压增加时,通过它的电流却减小,因而将此元件称为非线性负阻元件。 C2 R0 R C1 L 图29-2 非线性元件伏安特性 图29-1 非线性电路原理图 V(R)

混沌原理与应用

课程论文课程系统科学概论 学生姓名 学号 院系 专业 二O一五年月日

混沌理论与应用 摘要:本文首先介绍了混沌理论的产生与背景。接着由混沌理论的产生引出了理解混沌系统需要注意的几个基本概念,并就两个容易混淆的概念进行了区分。然后本文对混沌系统的几个基本特征进行了阐述,而且详细解释了每个具体特征含义。在结尾部分本文简要叙述了混沌理论的应用前景。 关键词:混沌理论;混沌系统;基本特征;应用 1混沌理论的产生与背景 混沌一词很早就出现在人类的历史中,在世界的几个较为发达的古代文明中基本上都用自己的方式对混沌进行过描述,混沌基本就等同于未知。同时这些文明有一个对混沌有一个共同的观点,那就是:宇宙起源于混沌[1],这种观点可以说在某些方面与现代的理论不谋而合。虽然古人的这些观点大部分是基于自己的想象而且其含义也局限于哲学方面,但是可以说这是人类早期对混沌状态的一种探索。 在此后的上千年中,一代又一代的研究者们探索了无数未知的领域。以至于在混沌理论之前,没有人怀疑过精确预测的能力是可以实现的,一般认为只要收集够足够的信息就可以实现。十八世纪法国数学家拉普拉斯甚至宣称,如果已知宇宙中每一个粒子的位置与速度,他就能预测宇宙在整个未来的状态。然而混沌现象的发现彻底打破了这一假设。混沌系统对初始条件的敏感性使得系统在其运动轨迹上几乎处处不稳定,初始条件的极小误差都会随着系统的演化而呈现指数形式的增长,迅速达到系统所在空间的大小,使得预测能力完全消失[2]。例如,著名的蝴蝶效应:上个世纪70年代,美国一个名叫洛伦兹的气象学家在解释空气系统理论时说,亚马逊雨林一只蝴蝶翅膀偶尔振动,也许两周后就会引起美国得克萨斯州的一场龙卷风[3],可以说对天气的精准预测一直是人类未曾解决的问题。面对这样的问题,科学家们又用到了混沌这个词,看似又回到了起点,实际上今天的混沌理论与过去的说法已经有了天壤之别。 1903年,美国数学家J.H.Poincare在《科学与方法》一书中提到Poincare猜想,他把动力系统和拓扑学两大领域结合起来指出了混沌存在的可能性[4]。1963年美国气象学家爱德华·诺顿·洛伦茨提出混沌理论(Chaos),非线性系统具有的多样性和多尺度性。混沌理论解释了决定系统可能产生随机结果[5]。混沌也被认为是继量子力学和相对论之后,20世纪物理学界第三次重大革命,混沌也一样冲破了牛顿力学的教规。从此,混沌系统理论开始飞速发展,气象学、生理学、经济学中都发现了一种关于混沌的有序性。混沌理论正式诞生。

用Matlab观察分岔与混沌现象

Matlab 实验报告 实验目的:用Matlab 观察分岔与混沌现象。 题目:Feigenbaum 曾对超越函数sin()y x λπ=(λ为非负实数)进行了分岔与混沌的研究,试利用迭代格式1sin()k k x x λπ+=,做出相应的Feigenbaum 图 算法设计: 1、因为λ为非负实数,所以试将λ的范围限制在[0,3],制图时x 的坐标限制在[0,3],考虑到y 的值有正有负,所以把y 的坐标限制在[-3,3]。 2、根据课本上给的例题,编写程序代码来绘图。 程序代码: clear;clf; hold on axis([0,3,-3,3]); grid for a=0:0.005:3 x=[0.1]; for i=2:150 x(i)=a*sin(pi*x(i-1)); end pause(0.1) for i=101:150 plot(a,x(i),'k.'); end end 图像:

结果分析:在λ取值在[0,0.3]区间内时,y的值保持在0,然后开始上升,在λ取值在0.75附近时,开始分岔为两支。从整体上看,随着λ的值越来越大,所产生的迭代序列越来越复杂,可能会随机地落在区间(-3,3)的任一子区间内。并可能重复,这就是混沌的遍历性。 进一步分析:由于λ的取值空间偏小,考虑扩大其取值范围到[0,6],再进一步观察图像。程序代码如下: clear;clf; hold on axis([0,6,-6,6]); grid for a=0:0.05:6 x=[0.1]; for i=2:150 x(i)=a*sin(pi*x(i-1)); end

浅谈混沌理论的意义

浅谈混沌理论的哲学意义 姓名:文小刀

浅谈混沌理论的哲学意义 文小刀 摘要:本文首先介绍了混沌理论的内含和产生,在此基础上介绍了它对自然科学和哲学思维的影响,最后提出了混沌理论的几种应用,以期探寻混沌理论的哲学意义。 关键字:混沌理论影响应用哲学意义 混沌理论被认为是与相对论和量子力学齐名的震惊世界的第三大理论,是系统科学的重要组成部分。混沌理论这个迷人的“奇异吸引子”,吸引着人们去探索混沌奥秘的科学前沿,而且像极具生命力的种子,撒遍自然科学和社会科学各个领域的沃土。它将简单与复杂、有序与无序、确定与随机、必然与偶然的矛盾统一在一幅美丽的自然图景之中,推动了人类自然观与科学观的发展;也通过一系列崭新的范畴、语言和思维方式,充实了科学方法内容并促进了方法论的进步,对科学的发展和人类社会的发展必将产生深远的影响。 一、混沌理论的含义及其产生 混沌学是当代系统科学的重要组成部分,与相对论和量子力学的产生一样,混沌理论的出现对现代科学产生了深远的影响。混沌运动的本质特征是系统长期行为对初值的敏感依赖性,所谓混沌的内在随机性就是系统行为敏感地依赖于初始条件所必然导致的结果。我们可把混沌理解为:在一个非线性动力学系统中,随着非线性的增强,系统所出现的不规则的有序现象。这些现象可以通过对初值的敏感依赖性、奇异吸引子、费根鲍姆常数、分数维、遍历性等来表征。 混沌有如下的本质特征: 1.混沌产生于非线性系统的时间演化,作为系统基础的动力学是决定论的,无须引进任何外加噪声。因而混沌是非线性确定系统的内禀行为。 2.混沌行为对初始条件极具敏感,导致长期行为具有不可预测性,也即我们所说的确定系统产生的不确定性或随机性。这一特征不同于概率论中的随机过程,随机过程中的随机性是指演化的下一次结果无法准确预知,短期内无法预测,但长期演化的总体行为却呈确定的统计规律,混沌行为刚好相反,短期行为可确知,长期行为不确定。

心脏中的混沌现象

心脏中的混沌现象 刘 芳 魏建西 综述 杨福生* 审 白求恩国际和平医院(050082) *清华大学电机系(100084) 摘要 近年来混沌和分形理论被广泛用于研究复杂的生命现象,本文简要介绍了混沌和分形理论的一般概念以及常用的非线性动力学方法,着重介绍了上述理论在心脏病学中的应用。 关键词 混沌 分形 心脏病 1 引言 混沌,是非线性行为的理论学说。混沌提供了一种了解很多生物现象的新工具[1,2],随着各种成功的非线性动力学概念和技术被用于人体生理过程中的非线性行为,使人们已能更好地理解复杂的心律失常、浦肯野氏纤维传导、房室传导类型等等[3,4]。讲到混沌就离不开分形,本文将就混沌与分形概念、两者在心脏病学中的应用,以及常用的非线性动力学方法进行综述。 2 一般概念 2.1 混沌理论 混沌定义为一个非周期似随机行为的确定系统。比较两个我们熟悉的行为——随机和周期。随机行为绝对不重复自己,它是内在特有的不可预测和非组织的。从生理上讲,遗传易位、受精、受体结合是基本随机的。周期行为是高度可预测的,它总是以一个有限的时间间隔重复自己如数学上的正弦波,妇女的月经也被定义为周期行为。混沌不同于周期和随机,但又具有两者的特点,虽然混沌行为看上去无组织像随机行为,但它实际上是可以确定的。目前的研究已经证实,麻疹流行、心脏行为模式、心肺相互作用、血细胞生成、脑电图等均是呈混沌的[4,5]。 混沌的特点如下: (1)混沌是确定性和随机性两者的结合。在牛顿物理学中,如果知道了方程(例如抛物线)和初始状态(例如X和K),就可以准确预测系统行为。不象牛顿物理学,混沌行为永不准确重复自己,没有可辨别的周期使它在规则的间隔返回。 (2)混沌系统表现为敏感地依赖初始状态。这句话的意思是非常小的初始状态的差别将导致巨大的结果差别。 (3)混沌行为被约束在比较窄的范围内。虽然表现为随机的,系统行为实际是有界限的,而非无界限的漫游。 (4)混沌行为有确定的形式。混沌行为不但是受约束的,而且有特定的行为模式[5]。2.2 分形 分形是以几何学的观点去观察一些看起来毫无规律的图形,如云团、海岸线、血管结构等。分形的突出特点是分数维和自相似。所谓分数维是指维数在日常所见的一维、二维、三维之间,其值不是一个整数。如一个正方形是二维,一本杂志是三维;但我们无法断定人体的血管组织其整个组织到底是处于一维、二维、还是三维空间,因为无法在长度、面积或体积上找到共有意义的表达,也即用整数维表达血管组织没有意义,因此整数维不能准确刻划出它的性质,但我们可用分数维(分形维,简称分维)的概念来定义这些形体。有 100

连续时间混沌系统MATLAB程序和SIMULINK模型

第6章连续时间混沌系统 本章讨论连续时间混沌系统的基本特点与分析方法,主要包括混沌数值仿真和硬件实验方法简介、混沌系数平衡点的计算、平衡点的分类与性质、相空间中的轨道、几类典型连续混沌系统的介绍、混沌机理的分析方法、用特征向量空间法寻找异宿轨道、Lorenz系统及混沌机理定性分析、Lorenz映射、Poincare截面、Chua系统及其混沌机理定性分析、时间序列与相空间重构等内容。 6.1 混沌数值仿真和硬件实验方法简介 混沌的数值仿真主要包括MA TLAB编程、SIMULINK模块构建、EWB仿真以及其他一些相关的软件仿真或数值计算等方法,从而获取混沌吸引子的相图、时域波形图、李氏指数、分叉图和功率谱等。混沌的硬件实验主要包括模拟/数字电路设计与硬件实验、现场可编程门阵列器件(FPGA)、数字信号处理器(DSP)等硬件实现方法来产生混沌信号。本节仅对各种数值仿真方法作简单介绍。 1)混沌系统的MA TLAB数值仿真 该方法主要根据混沌系统的状态方程来编写MA TLAB程序。现举二例来说明这种编程方法。(1)已知Lorenz系统的状态方程为 dx/dt=-a(x-y) dy/dt=bx-xz-y dz/dt=-cz+xy 式中a=10,b=30,c=8/3。 MA TLAB仿真程序如下: >> %************************************************** Function dxdt=lorenz(t,x) %除符号dxdt外,还可用其他编程者习惯的有意义的符号 A=10; B=30; C=8/3; dxdt=zeros(3,1); dxdt(1)=-A*(x(1)-x(2)); dxdt(2)=B*x(1)-x(1).*x(3)-x(2); dxdt(3)=x(1)*x(2)-C*x(3); %************************************************* options=odeset('RelTol',1e-6,'AbsTol',[ 1e-6 1e-6 1e-6]); t0=[0 200]; x0=[0.02,0.01,0.03]; [t,x]=ode45('lorenz',t0,x0,options); %************************************************** n=length(t) n1=round(n/2) %n1=1; %************************************************** figure(1); plot(t(n1:n,1),x(n1:n,1));

非线性电路中的混沌现象11011079

非线性电路中的混沌现象实验指导及操作说明书 北航实验物理中心 2013-03-09 教师提示:混沌实验简单,模块化操作,但内容较多,需要课前认真预习。

5.2 非线性电路中的混沌现象 二十多年来混沌一直是举世瞩目的前沿课题和研究热点,它揭示了自然界及人类社会中普遍存在的复杂性,有序与无序的统一,确定性与随机性的统一,大大拓宽了人们的视野,加深了对客观世界的认识。许多人认为混沌的发现是继上世纪相对论与量子力学以来的第三次物理学革命。目前混沌控制与同步的研究成果已被用来解决秘密通讯、改善和提高激光器性能以及控制人类心律不齐等问题。 混沌(chaos)作为一个科学概念,是指一个确定性系统中出现的类似随机的过程。理论和实验都证实,即使是最简单的非线性系统也能产生十分复杂的行为特性,可以概括一大类非线性系统的演化特性。混沌现象出现在非线性电路中是极为普遍的现象,本实验设计一种简单的非线性电路,通过改变电路中的参数可以观察到倍周期分岔、阵发混沌和奇导吸引子等现象。实验要求对非线性电路的电阻进行伏安特性的测量,以此研究混沌现象产生的原因,并通过对出现倍周期分岔时实验电路中参数的测定,实现对费根鲍姆常数的测量,认识倍周期分岔及该现象的普适常数 费根鲍姆(Feigenbaum)常数、奇异吸引子、阵发混沌等非线性系统的共同形态和特征。此外,通过电感的测量和混沌现象的观察,还可以巩固对串联谐振电路的认识和示波器的使用。 5.2.1 实验要求 1.实验重点 ①了解和认识混沌现象及其产生的机理;初步了解倍周期分岔、阵发混沌和奇异吸引子等现象。 ②掌握用串联谐振电路测量电感的方法。 ③了解非线性电阻的特性,并掌握一种测量非线性电阻伏安特性的方法。熟悉基本热学仪器的使用,认识热波、加强对波动理论的理解。 ④通过粗测费根鲍姆常数,加深对非线性系统步入混沌的通有特性的认识。了解用计算机实现实验系统控制和数据记录处理的特点。 2.预习要点 (1)用振幅法和相位法测电感 ①按已知的数据信息(L~20mh,r~10Ω,C0见现场测试盒提供的数据)估算电路的共振频率f。 ②串联电路的电感测量盒如图5.2-7所示。J1和J2是两个Q9插座,请考虑测共振频率时应如何连线?你期望会看到什么现象? ③考虑如何用振幅法和相位法测量共振频率并由此算得电感量?当激励频率小于、等于和大于电路的共振频率时,电流和激励源信号之间的相位有什么关系?

相关主题
文本预览
相关文档 最新文档