当前位置:文档之家› 混沌原理与应用

混沌原理与应用

混沌原理与应用
混沌原理与应用

课程论文课程系统科学概论

学生姓名

学号

院系

专业

二O一五年月日

混沌理论与应用

摘要:本文首先介绍了混沌理论的产生与背景。接着由混沌理论的产生引出了理解混沌系统需要注意的几个基本概念,并就两个容易混淆的概念进行了区分。然后本文对混沌系统的几个基本特征进行了阐述,而且详细解释了每个具体特征含义。在结尾部分本文简要叙述了混沌理论的应用前景。

关键词:混沌理论;混沌系统;基本特征;应用

1混沌理论的产生与背景

混沌一词很早就出现在人类的历史中,在世界的几个较为发达的古代文明中基本上都用自己的方式对混沌进行过描述,混沌基本就等同于未知。同时这些文明有一个对混沌有一个共同的观点,那就是:宇宙起源于混沌[1],这种观点可以说在某些方面与现代的理论不谋而合。虽然古人的这些观点大部分是基于自己的想象而且其含义也局限于哲学方面,但是可以说这是人类早期对混沌状态的一种探索。

在此后的上千年中,一代又一代的研究者们探索了无数未知的领域。以至于在混沌理论之前,没有人怀疑过精确预测的能力是可以实现的,一般认为只要收集够足够的信息就可以实现。十八世纪法国数学家拉普拉斯甚至宣称,如果已知宇宙中每一个粒子的位置与速度,他就能预测宇宙在整个未来的状态。然而混沌现象的发现彻底打破了这一假设。混沌系统对初始条件的敏感性使得系统在其运动轨迹上几乎处处不稳定,初始条件的极小误差都会随着系统的演化而呈现指数形式的增长,迅速达到系统所在空间的大小,使得预测能力完全消失[2]。例如,著名的蝴蝶效应:上个世纪70年代,美国一个名叫洛伦兹的气象学家在解释空气系统理论时说,亚马逊雨林一只蝴蝶翅膀偶尔振动,也许两周后就会引起美国得克萨斯州的一场龙卷风[3],可以说对天气的精准预测一直是人类未曾解决的问题。面对这样的问题,科学家们又用到了混沌这个词,看似又回到了起点,实际上今天的混沌理论与过去的说法已经有了天壤之别。

1903年,美国数学家J.H.Poincare在《科学与方法》一书中提到Poincare猜想,他把动力系统和拓扑学两大领域结合起来指出了混沌存在的可能性[4]。1963年美国气象学家爱德华·诺顿·洛伦茨提出混沌理论(Chaos),非线性系统具有的多样性和多尺度性。混沌理论解释了决定系统可能产生随机结果[5]。混沌也被认为是继量子力学和相对论之后,20世纪物理学界第三次重大革命,混沌也一样冲破了牛顿力学的教规。从此,混沌系统理论开始飞速发展,气象学、生理学、经济学中都发现了一种关于混沌的有序性。混沌理论正式诞生。

2混沌系统的基本概念

本文上一节简要叙述了混沌理论的产生与背景,这一节本文将针对混沌系统的基本概念做一个介绍。

混沌实际上目前并没有一个通用的严格的定义,混沌现象起因于物体不断以某种规则复制前一阶段的运动状态,而产生无法预测的随机效果[4]。简单来说,混沌是指发生在确定性系统中的貌似随机的不规则运动,一个确定性理论描述的系统,其行为却表现为不确定性--不可重复、不可预测,这就是混沌现象。具体而言,混沌现象发生在易变动的物体或系统,这个物体或者系统在其初始状态非常的单纯,但经过一定规则的连续变动之后,却会产生无法预料的后果。

混沌系统虽然不可预测,但是却并不能完全等同于混乱无章,有些确定的系统也会处于混沌状态。很多人在这里会混淆确定性与可预测性,错误的将确定的系统等同为可以预测的系统[6]。在动力学系统中,确定性指的是系统在任意时刻被初始状态所决定。虽然我们可以根据物体的初始状态和运动规律推算出其在任意时刻的运动状态,但是,由于初始条件有可能不能完全被考虑到,所以很可能造成预测的失败或者完全无法被预测,就比如对天气系统的预测。一个系统即便是确定的,也有可能是不可预测的,两者并不矛盾。在现实中有许多非线性的系统,尽管系统是确定的,但是却对初始条件极为敏感,形成了一种看起来随机的不可预测的运动状态,这就是混沌状态。

3混沌系统的特征

在上一节本文描述了混沌的基本概念,这一节本文将对混沌系统的基本特征进行阐述。

通过对混沌系统的研究,人们认识到混沌的奇特之处在于它把“表现”的无序与内在的决定论机制巧妙地溶为一体。具体来讲,混沌系统有以下三个基本特征[7]:

(1)内在随机性

非平衡非线性混沌系统产生的类似无规的非周期行为,常叫做内在随机性,或称内禀随机性,意思是随机性完全是系统自身的属性,而与外在因素无关。可以从两个层面理解上述内容:其一,一个确定性系统,由于系统参数值的不同,其解的状态是不确定的;其二,在系统参数值已知的条件下,其解可能是随机的,即没有一个确定性值[8]。正如洛仑兹动力学方程体现的那样,混沌是从完全确定论的方程中出现的。洛仑兹方程是确定论方程,其中不含任何随机项,方程的系数、初始条件等都是确定的,然而确定的原因却引出来随机的结果。

内在随机性是相对于外在随机性而言的。在量子力学中,做热运动的粒子,由于其数量太大,只能用统计学的方法来寻求其规律。而单个粒子的随机性是由于观测仪器引起的。这样的随机性就看作是外在随机性,外在随机性可以通过统计学的方法把随机性去掉,揭示其内在的规律。然而混沌理论中发现的内在随机性与这样的外在随机性有本质的不同,它要求人们突破原来对随机性的认识。

(2)对初值的敏感性

系统的混沌运动,无论是离散的或连续的,低维的或高维的,保守的或耗散的。时间演化的还是空间分布的,均具有一个基本特征,即系统的运动轨道对初值的极度敏感性[5]。

例如,著名的“蝴蝶效应”理论,它的提出者洛伦茨提出一个简化的气象模型,这个模型简化到只剩3个必不可少的变量的非线性微分方程组,其中不含有任何外加随机因素,利用计算机计算天气的变化。用同一组初值输入计算机,重复计算,两次计算的差别仅在于一次采用的初值比另一次只少最后一位有效数字。在线性系统中这点微小差别也许不会影响计算结果,但是在混沌系统中随着计算进程不断前进,两次计算结果差别越来越大,最后导致两组数据完全不同。这表明个别结果对于初始条件的敏感依赖行为。因此,洛伦兹断言:长期预报注定要失败。

(3)非规则的有序

自从熵的统计解释被引入生命与社会现象之后,有序与无序的讲法日渐频繁。根据常识有序和无序是一个相对的概念,二者互不包含。而非平衡非线性混沌既不是简单的无序,也不是通常意义下的有序,科学家建议将其称为“混沌序”[7]。

混沌现象表面是无序的。但混沌区的系统行为并非真正的混乱不堪,而是不具备周期性和其他明显对称特征的有序态,确定性的非线性系统的控制参量按一定方向部断变化,当达到某种极限状态时,就会出现混沌这种非周期运动体制。但是非周期运动不是无序运动,而是另一种类型的有序运动。因此,混沌现象表面上是无序的,但这种无序不是绝对的无序,而是在无序中存在有序。当然,它的有序又不是通常意义上的有序。

而且混沌系统在不同层次上其结构具有相似性,即所谓的自相似性。混沌区的系统行为往往体现出无穷嵌套自相似结构,这种不同层次上的结构相似性是标度变换下的不变性,这种不变性体现出混沌运动的规律[9]。

4混沌理论的应用

上一节本文讲的是混沌系统的基本特征,在这一节同时也是本文最后一节我们将探讨混沌理论的应用前景。

混沌理论是一门严谨的科学,它不是一个对最基本粒子的探索,而是关于流通变迁以及模型的形成和解体的探索[10]。混沌也不是独立存在的科学,它与其它各门科学互相促进、互相依靠,由此派生出许多交叉学科,如混沌气象学、混沌经济学、混沌数学等。混沌学不仅极具研究价值,而且有现实应用价值,能直接或间接创造财富。

在过去20年中,混沌在工程系统中逐渐由被认为仅仅是一种有害的现象转变到被认为是具有实际应用价值的现象来加以探讨。近年来的大量研究工作表明,混沌与工程技术联系愈来愈密切,它在生物医药工程、动力学工程、化学反应工程、电子信息工程、计算机工程、应用数学和实验物理等领域中都有着广泛的应用前景。

混沌的具体的潜在应用可概括如下[11]:

(1)优化:利用混沌运动的随机性Z遍历性和规律性寻找最优点,可用于系统辨识、最优参数设计等众多方面。

(2)神经网络:将混沌与神经网络相融合,使神经网络由最初的混沌状态逐渐退化到一般的神经网络,利用中间过程混沌状态的动力学特性使神经网络逃离局部极小点,从而保证全局最优,可用于联想记忆、机器人的路径规划等。

(3)图像数据压缩:把复杂的图像数据用一组能产生混沌吸引子的简单动力学方程代替,这样只需记忆存储这一组动力学方程组的参数,其数据量比原始图像数据大大减少,从而实现了图像数据压缩。

(4)高速检索:利用混沌的遍历性可以进行检索,即在改变初值的同时,将要检索的数据和刚进入混沌状态的值相比较,检索出接近于待检索数据的状态。这种方法比随机检索或遗传算法具有更高的检索速度。

(5)非线性时间序列的预测:任何一个时间序列都可以看成是一个由非线性机制确定的输入输出系统,如果不规则的运动现象是一种混沌现象,则通过利用混沌现象的决策论非线性技术就能高精度地进行短期预测。

(6)模式识别:利用混沌轨迹对初始条件的敏感性,有可能使系统识别出只有微小区别的不同模式。

(7)故障诊断:根据由时间序列再构成的吸引子的集合特征和采样时间序列数据相比较,可以进行故障诊断。

随着混沌不同学科领域的广泛应用,混沌理论已经日益成熟。但是还有很多问题值得当今的研究者们去努力探寻,例如如何控制混沌就是当下热门的一个领域,不过这就涉及更深层次的问题了,本文在此暂且不予讨论。

参考文献

[1]混沌[EB/OL]. (2014-03-18)[2015-11-10]. https://www.doczj.com/doc/5f5859214.html,/link?url=T2RLaB2Ger2mwqvCT2dDd32Ej9

Ffv6gqDUn4Xga-1NgQga56v_bi5qRHUb1Meie3dcx-EaVusPDjlvPeJPXwiXtP5GPOnQufa0k544ZRmCm

[2]混沌理论简介[EB/OL]. (2014-07-30)[2015-11-10]. https://www.doczj.com/doc/5f5859214.html,/p-878036009.html

[3]什么是蝴蝶效应[EB/OL]. (2014-05-03)[2015-11-10]. https://www.doczj.com/doc/5f5859214.html,/article/2c8c281df409d40008 252a01.html

[4]混沌理论及应用[EB/OL]. (2012-12-11)[2015-11-10]. https://www.doczj.com/doc/5f5859214.html,/link?url=c8wuR12yy03jljZ7 GT5vgSRI7MZgcq8aOVpWO4OEptYZo5so79APjIrZJPFOM63fcs-YoBLXVGkmS9CnErXQUyls1CyzIcwoLjZ3 olRKpya

[5]混沌理论[EB/OL]. (2015-10-19)[2015-11-10]. https://www.doczj.com/doc/5f5859214.html,/link?url=G5kh1vpwsr77AausuglweNjO O3nh0oPhQMqqIsEIvlJ0_9xnhDwF6MGL1G3adIAQl7fnRtyO_w_QebS-GAfcvGiiV orTJMDhO09dj1EWWXi [6]混沌(非线性科学概念)[EB/OL]. (2013-07-14)[2015-11-10]. https://www.doczj.com/doc/5f5859214.html,/link?url=UdViDpWooC y3CsQcUqDvfUnTXueDEowAvhAoLVnwvDogjrtKz1FCqUvei7AOE7hnyYV-amRL8D6cEItF1o5CVq

[7]曹海英. 混沌及其哲学启示[J]. 北方工业大学报, 2001, 12(4): 45-46.

[8]混沌学中的“内在随机性”对经济发展道路多样性的启示[EB/OL]. (2013-07-14)[2011-10-19]. http://www. https://www.doczj.com/doc/5f5859214.html,/group/topic/23191678/

[9]朱严峰. 浅谈混沌理论及其在生活中的应用[D].2013.

[10]米歇尔·沃尔德罗普.复杂:诞生于秩序与混沌边缘的科学[M].北京:生活·读书·新知三联书店,1997.4.

[11]唐巍,李殿璞,陈学允. 混沌理论及其应用研究[J]. 电力系统自动化, 2000, 4(7): 68-69.

(完整word版)混沌理论要点

混沌理论要点: 1. 非线性系统的非因果性 当原因与结果间的关系并不确定时,便产生非线性现象。比如说利率提高1%(原因),市场反应(结果)就是不确定的——结果取决于人群对该消息的解释。 再如美国家森林公园,每年都由雷电引起数百起火灾(起因相同),仿佛老天爷每年都要向大地投放火星大小相同的成百上千个未熄的烟头,于是几百次火灾被引发,并蔓延、终止,有时烧毁数亩、有时蔓延数百亩,有时……1988年那次,使黄石公园全部150万亩森林片草无存(该公园去年已被世界自然遗产目录剔除)。以致其它森林公园为防止枯草积得太厚,还不得不让消防人员,每年人为制造些火灾。 量子世界、人类历史、地震、天气运行……莫不如此。远至恐龙时代的大小生态灭绝事件,近至非典、上月的北美大停电、各国证券市场,每年无数个烟头被仍向场内,引发或大或小的震动,并蔓延、终止……但到底哪个烟头,才是那颗重要的烟头? 相同的初始力,令人瞠目的结果,是所有混沌系统的基本特征。大家都不难理解,曾救了萨达姆命的藏身之所,这次偏就成了送命之处,但很多人却很难理解同样一个历史点位,并不代表同样的未来。许多历史学家在逐次的趋势和循环中,搜寻说得过去的理由与解释,显然是用错了工具。这些传统观念产生于匀衡物理和天文学中,而合适的工具,却在非线性的非匀衡物理中。新物理学家们则开始用模拟游戏代替方程式,去发现事态运行的规律。 2.对初始条件的极端敏感依赖性 伦敦气象局计算机系统每日处理覆盖全欧洲的数千个气象站的上亿条数据,一次洛伦兹将5.06127输入为5.06,万分之一的省略,提供了两份截然不同的天气预报。于是洛伦兹在美国科学促进会提出:“一只蝴蝶在巴西煽动翅膀可能会在美国德克萨斯引起一场龙卷风”,从此,令人着迷、发人深省的“蝴蝶效应”,就以其大胆的想象力与迷人美学色彩,更加之深刻科学内涵与内在哲学魅力,倾倒了不断在复杂系统中苦苦求索的芸芸众生。“蝴蝶效应”反映了混沌运动的一个基本特征:对初始条件的极端敏感依赖性。 经典动力学认为,初始条件的微小变化,对未来状态所造成的差别也微小。但混沌理论认为,初始条件的十分微小的变化经过不断放大,对其未来状态会造成极其巨大的差别。 大家不妨想像一下台球桌面:撞击母球不到1度的微小偏差,会使台面出现纵线与横折两种极端迥异的走势。一个储蓄组合的未来资产变化模拟图,也仅因规则改为不计零数,模型便立即报废。导致蝗灾的因素有不下两百种,漏算或误算其中2%,不久20%的因素都会相应改换,一切也就大相径庭。西方流传的一首民谣更是对此作了形象的说明:“醉了一个农夫,丢了一颗铁钉;丢了一颗铁钉,少安一付马掌;少了一付马掌,跛了一匹战马;跛了一匹战马,摔坏一位将军;死了一个将军,输了一场战争;输了一场战争,亡了一个国家!” 系统对无数变化,何时极度敏感,何时能消化掉而不予理会,对此人类不是无能为力,而是丝毫都无能为力——地球上每天亿万只蝴蝶上下翻飞、百万只苍鹰鼓翼、千百只大鹏展翅……初始力或相同、或不同,初始因素本身虽不大,但经时间积累后的结果,已远非人们当初之想当然。 从前我们经常听到“明年将现暖冬”“下月平均气温将低于去年同期”等说法,但拥有超乎想像的完备数据的美国家气象局去年已宣布:“从此再不对超过10天的气象做任何预测。”这是人类科学认识的又一步飞跃。 3. 能量法则 完全不同于线性代数的产物——概率论。该法则是不同国度的学者们,耗时巨大的独立研究后,最终共同发现的一项新的重要自然法则,已被证实是一个适用于上千种的模板的、普遍

现代控制理论及应用

现代控制理论及应用李嗣福教授、博士生导师 中国科学技术大学自动化系

一、现代控制理论及应用发展简介 1. 控制理论及应用发展概况 2. 自动控制系统和自动控制理论 以单容水槽水位控制和电加热器温度控制为例说明什么是自动控制、控制律(或控制策略)、自动控制系统以及自动控制系统组成结构和自动控制理论所研究的内容。 2.1自动控制:利用自动化仪表实现人的预期控制目标。 2.2自动控制系统及其组成结构 自动控制系统:指为实现自动控制目标由自动化仪表与被控对象所联接成闭环系统。 自动控制系统组成结构:是由被控对象、测量代表、控制器或调节器和执行器构成反馈闭环结构,其形式有单回路形式和串级双回路形式。 控制系统性能指标:定性的有稳(定性)、准(确性)、快(速性)。 控制律(或控制策略、控制算法):控制系统中控制器或调节器所采用的控制策略,即用系统偏差量如何确定控制量的数学表示式。 2.3自动控制系统类型主要有:按系统参数输入信号形式分:定值控制系统或调节系统和随动系统。 按系统结构形式分:前馈控制系统(即开环系统)和反馈控制系统以及复合控制系统; 按系统中被控对象的控制输入量数目和被控输出量数目分:单变量控制系统和多变量控制系统; 按被控对象特性分:线性控制系统和非线性控制系统; 按系统中的信号形式分:模拟(或时间连续)控制系统、数字(或时间离散)控制系统以及混合控制系统。 2.4自动控制理论:研究自动控制系统分析与综合设计的理论和方法。 3. 古典(传统)控制理论: 采用数学变换方法(即拉普拉斯变换和富里叶变换)按照系统输出量

与输入量之间的数学关系(即系统外部特性)研究控制系统分析和综合设计问题。具体方法有:根轨迹法;频率响应法。 主要特点:理论方法的物理概念清晰,易于理解;设计出控制律一般较简单,易于仪表实现 主要缺点: ① 设计需要凭经验试凑,设计结果与设计经验关系很大; ② 系统分析和设计只着眼于系统外部特性; ③一般只能处理单变量系统分析和设计问题,而不能处理复杂的多变量系统分析和设计。 4. 现代控制理论及其主要内容 现代控制理论:狭义的是指60年代发展起来的采用状态空间方法研究实现最优控制目标的控制系统综合设计理论。广义的是指60年代以来发展起来的所有新的控制理论与方法。 控制系统状态空间设计理论: (1) 用一阶微方程组表征系统动态特性,一般形式(连续系统)为 )()()(t BU t AX t X +=——状态方程(连续的一阶微分方程组) )()(t CX t Y =——输出方程 离散系统: )()()1(t BU t AX k X +=+——状态方程(离散的一阶差分方程组) )()(k CX k Y = k ——为大于等于零整数,表示离散时间序号; ?????? ??? ???=)() ()()(21k x k x k x k X n ——状态向量,其中)(k x i ,()n i ,,1 =为状态变量; ????? ???? ???=)() ()()(21k u k u k u k U m ——输入向量,其中)(k u i , ()m i ,,1 =为各路输入;

混沌理论及其应用

混沌理论及其应用 摘要:随着科学的发展及人们对世界认识的深入,混沌理论越来越被人们看作是复杂系统的一个重要理论,它在各个行业的广泛应用也逐渐受到人们的青睐。本文给出了混沌的定义及其相关概念,论述了混沌应用的巨大潜力,并指明混沌在电力系统中的可能应用方向。对前人将其运用到电力系统方面所得出的研究成果进行了归纳。 关键词:混沌理论;混沌应用;电力系统 Abstract: With the development of science and the people of the world know the depth, chaos theory is increasingly being seen as an important theory of complex systems, it also gradually by people of all ages in a wide range of applications in various industries. In this paper, the definition of chaos and its related concepts, discusses the enormous application potential chaos, and chaos indicate the direction of possible applications in the power system. Predecessors applying it to respect the results of power system studies summarized. Keywords:Chaos theory;Application of ChaosElectric ;power systems 1 前言 混沌理论(Chaos theory)是一种兼具质性思考与量化分析的方法,用以探讨动态系统中(如:人口移动、化学反应、气象变化、社会行为等)无法用单一的数据关系,而必须用整体、连续的数据关系才能加以解释及预测之行为。混沌理论是对确定性非线性动力系统中的不稳定非周期性行为的定性研究(Kellert,1993)。混沌是非线性系统所独有且广泛存在的一种非周期运动形式,其覆盖面涉及到自然科学和社会科学的几乎每一个分支。近二三十年来,近似方法、非线性微分方程的数值积分法,特别是计算机技术的飞速发展, 为人们对混沌的深入研究提供了可能,混沌理论研究取得的可喜成果也使人们能够更加全面透彻地认识、理解和应用混沌。 2 混沌理论概念 混沌一词原指宇宙未形成之前的混乱状态,中国及古希腊哲学家对于宇宙之源起即持混沌论,主张宇宙是由混沌之初逐渐形成现今有条不紊的世界。混沌现象起因于物体不断以某种规则复制前一阶段的运动状态,而产生无法预测的随机效果。所谓“差之毫厘,失之千里”正是此一现象的最佳批注。具体而言,混沌现象发生于易变动的物体或系统,该物体在行动之初极为单纯,但经过一定规则的连续变动之后,却产生始料所未及的后果,也就是混沌状态。但是此种混沌状态不同于一般杂乱无章的的混乱状况,此一混沌现象经过长期及完整分析之后,可以从中理出某种规则出来。混沌现象虽然最先用于解释自然界,但是在人文及社会领域中因为事物之间相互牵引,混沌现象尤为多见。如股票市场的起伏、人生的平坦曲折、教育的复杂过程。 2.1 混沌理论的发展 混沌运动的早期研究可以追溯到1963年美国气象学家Lorenz对两无限平面间的大气湍流的模拟。在用计算机求解的过程中, Lorenz发现当方程中的参数取适当值时解是非周期的且具有随机性,即由确定性方程可得出随机性的结果,这与几百年来统治人们思想的拉普拉斯确定论相违背(确定性方程得出确定性结果)。随后, Henon和Rossler等也得到类似结论Ruelle,May, Feigenbaum 等对这类随机运动的特性进行了进一步研究,从而开创了混沌这一新的研究方向。 混沌理论解释了决定系统可能产生随机结果。理论的最大的贡献是用简单的模型获得明确的非周期结果。在气象、航空及航天等领域的研究里有重大的作用。混沌理论认为在混沌系统中,初始条件十分微小的变化,经过不断放大,对其未来状态会造成极其巨大的差别。在没

分岔与混沌理论与应用作业

分岔与混沌理论与应用 学院: 专业: 姓名: 学号:

我对混沌理论的认识 1、混沌理论概述 混沌是指发生在确定性系统中的貌似随机的不规则运动,一个确定性理论描述的系统,其行为却表现为不确定性--不可重复、不可预测,这就是混沌现象。混沌现象起因于物体不断以某种规则复制前一段的运动状态,而产生无法预测的随机效果。所谓“差之毫厘,失之千里”正是此一现象的最佳批注。具体而言,混沌现象发生于易变动的物体或系统,该物体在行动之初极为简单,但经过一定规则的连续变动之后,却产生始料所未及的后果,也就是混沌状态。但是此种混沌状态不同于一般杂乱无章的混乱状况,此一混沌现象经过长期及完整分析之后,可以从中理出某种规则出来。混沌现象虽然最先用于解释自然界,但是在人文及社会领域中因为事物之间相互牵引,混沌现象尤为多见。 混沌理论,是近三十年才兴起的科学革命,它与相对论与量子力学同被列为二十世纪的最伟大发现和科学传世之作。混沌的发现揭示了我们对规律与由此产生的行为之间--即原因与结果之间--关系的一个基本性的错误认识。我们过去认为,确定性的原因必定产生规则的结果,但它们可以产生易被误解为随机性的极不规则的结果。我们过去认为,简单的原因必定产生简单的结果(这意昧着复杂的结果必然有复杂的原因),但简单的原因可以产生复杂的结果。我们认识到,知道这些规律不等于能够预言未来的行为。这一思想已被一群数学家和物理学家,其中包括威廉·迪托(William Ditto)、艾伦·加芬科(Alan Garfinkel)和吉姆·约克(Jim Yorke),变成了一项非常有用的实用技术,他们称之为混沌控制。实质上,这一思想就是蝴蝶效应。初始条件的小变化产生随后行为的大变化,这可以是一个优点;你必须做的一切,是确保得到你想要的大变化。对混沌动力学如何运作的认识,使我们有可能设计出能完全实现这一要求的控制方案。这个方法已取得若干成功。 2、分叉的概述 分叉理论研究动力系统由于参数的改变而引起解的拓扑结构和稳定性变化的过程。在科学技术领域中,许多系统往往都含有一个或多个参数。当参数连续改变时,系统解的拓扑结构或定性性质在参数取某值时发生突然变化,这时即产

非线性动力学和混沌理论

非线性动力学和混沌理论 非线性动力学 随着科学技术的发展,非线性问题出现在许多学科之中,传统的线性化方法已不能满足解决非线性问题的要求,非线性动力学也就由此产生。 非线性动力学联系到许多学科,如力学、数学、物理学、化学,甚至某些社会科学等。非线性动力学的三个主要方面:分叉、混沌和孤立子。事实上,这不是三个孤立的方面。混沌是一种分叉过程,孤立子有时也可以和同宿轨或异宿轨相联系,同宿轨和异宿轨是分叉研究中的两种主要对象。 经过多年的发展,非线性动力学已发展出了许多分支。如分叉、混沌、孤立子和符号动力学等。然而,不同的分支之间又不是完全孤立的。非线性动力学问题的解析解是很难求出的。因此,直接分析非线性动力学问题解的行为(尤其是长时期行为)成为研究非线性动力学问题的一种必然手段。 混沌理论是谁提出的? 混沌理论,是系统从有序突然变为无序状态的一种演化理论,是对确定性系统中出现的内在“随机过程”形成的途径、机制的研讨。 美国数学家约克与他的研究生李天岩在1975年的论文“周期3则乱七八糟(Chaos)”中首先引入了“混沌”这个名称。 美国气象学家洛伦茨在2O世纪 6O年代初研究天气预报中大气流动问题时,揭示出混沌现象具有不可预言性和对初始条件的极端敏感依赖性这两个基本特点,同时他还发现表面上看起来杂乱无章的混沌,仍然有某种条理性。 1971年法国科学家罗尔和托根斯从数学观点提出纳维-斯托克司方程出现湍流解的机制,揭示了准周期进入湍流的道路,首次揭示了相空间中存在奇异吸引子,这是现代科学最有力的发现之一。 1976年美国生物学家梅在对季节性繁殖的昆虫的年虫口的模拟研究中首次揭示了通过倍周期分岔达到混沌这一途径。 1978年,美国物理学家费根鲍姆重新对梅的虫口模型进行计算机数值实验时,发现了称之为费根鲍姆常数的两个常数。这就引起了数学物理界的广泛关注。 与此同时,曼德尔布罗特用分形几何来描述一大类复杂无规则的几何对象,使奇异吸引子具有分数维,推进了混沌理论的研究。20世纪70年代后期科学家们在许多确定性系统中发现混沌现象。作为一门学科的混沌学目前正处在研讨之中,未形成一个完整的成熟理论。混沌的理论 要弄明白不可预言性如何可以与确定论相调和,可以来看看一个比整个宇宙次要得多的系统——水龙头滴下的水滴。这是一个确定性系统,原则上流入水龙头中的水的流量是平稳、均匀的,水流出时发生的情况完全由流体运动定律规定。但一个简单而有效的实验证明,这一显然确定性的系统可以产生不可预言的行为。这使我们产生某种数学的“横向思维”,它向我们解释了为什么此种怪事是可能的。 假如你很小心地打开水龙头,等上几秒钟,待流速稳定下来,通常会产生一系列规则的水滴,这些水滴以规则的节律、相同的时间间隔落下。很难找到比这更可预言的东西了。但假如你缓缓打开水龙头,使水流量增大,并调节水龙头,使一连串水滴以很不规则的方式滴落,这种滴落方式似乎是随机的。只要做几次实验就会成功。实验时均匀地转动水龙头,别把龙头开大到让水成了不间断的水流,你需要的是中速滴流。如果你调节得合适,就可以在好多分钟内听不出任何明显的模式出现。 1978年,加利福尼亚大学圣克鲁斯分校的一群年青的研究生组成了一个研究动力学系统的小组。他们开始考虑水滴系统的时候,就认识到它并不像表现出来的那样毫无规则。他们用话筒记录水滴的声音,分析每一滴水与下一滴水之间的间隔序列。他们所发现的是短期的可预言性。要是我告诉你3个相继水滴的滴落时刻,你会预言下一滴水何时落下。例如,假如水滴之间最近3个间隔是0.63秒、1.17秒和0.44秒,则你可以肯定下一滴水将在0.82秒后落下这些数只是为了便于说明问题。事实上,如果你精确地知道头3滴水的滴落时刻,你就可以预言系统的全部未来。 那么,拉普拉斯为什么错了? 问题在于,我们永远不能精确地测量系统的初始状态。我们在任何物理系统中所作出的最精确的测量,对大约10位或12位小数来说是正确的。 但拉普拉斯的陈述只有在我们使测量达到无限精度即无限多位小数,当然那是办不到的时才正确。 在拉普拉斯时代,人们就已知道这一测量误差问题,但一般认为,只要作出初始测量,比如小数点后10位,所有相继的预言也将精确到小数点后10位。误差既不消失,也不放大。 不幸的是,误差确实放大,这使我们不能把一系列短期预言串在一起,得到一个长期有效的预言。例如,假设我知道精确到小数点后10位的头3滴水的滴落时刻,那么我可以精确到小数点后9位预言下一滴的滴落时刻,再下一滴精确到8位,以此类推。 误差在每一步将近放大10倍,于是我对进一步的小数位丧失信心。所以,向未来走10步,我对下一滴水的滴落时刻就一无所知

混沌的脉冲控制、滤波及其应用

混沌的脉冲控制、滤波及其应用 混沌作为非线性系统的一种运动形式普遍存在于自然界。混沌具有很多特有性质,如非周期、长期不可测性等。研究混沌系统的控制 和应用这些性质具有重要理论意义和应用价值。本文对混沌脉冲控制、混沌成型滤波、匹配滤波、混沌扩频技术、混沌探测技术等问题进行了研究,主要工作和结论如下:(1)针对混沌符号动力学通信中缺乏有 效的调制方法,分别采用了一种脉冲微扰控制调制方案和一种混沌成 型滤波器方案,其中微扰控制方案可以对任意二进制序列有效调制而 无需添加冗余码,一次脉冲微扰控制可以调制若干位比特信息。接收 端匹配滤波器由简单的电阻-电容滤波器构成,不但可以最大化接收 信号信噪比,而且设计简单,易于实现。采用一个特定的混沌基函数设计了一种混沌成型滤波器,二进制符号序列通过此混沌成型滤波器即 可得到连续的混沌信号。接收端的匹配滤波器由混沌基函数的时间逆与接收信号的卷积实现,使接收端信噪比最大,提高了通信系统性能。针对脉冲微扰控制方案,利用MSP430单片机设计了相应的微扰电路, 用电路实验验证了所提调制、解调方法。针对混沌成型滤波器方案, 采用TMS320C6713数字信号处理器(Digital Signal Processor,DSP)实现了所提调制、解调方案。所提方案在高斯信道下获得了与二进制相移键控(BPSK)相近的误码率。同时,利用该混沌信号李亚普诺夫指 数谱不变特性设计了多径抑制方案,所提方案配合多径抑制算法比BPSK加上最小均方差(MMSE)均衡算法在多径衰减信道中获得了更好 的性能表现。(2)提出了一种基于混杂系统和对应匹配滤波器的差分

混沌键控(DCSK)方案。该方案采用(1)中产生的混沌信号替代传统DCSK方案中的逻辑映射混沌信号,并在接收端增加了对应的匹配滤波器以最大化接收端信噪比。所提方案不但继承了传统DCSK优点,可以有效抑制多径传输带来的码间干扰,而且由于匹配滤波器的使用进一步降低了误码率,同时匹配滤波器具有低通滤波特性可以有效抑制加性高频干扰信号。此外,由于所采用的混沌系统可使用(1)中的调制方案,可以提供一路额外的比特流进行传输。通过蒙特卡洛仿真验证了所提方案的优越性,结果表明所提方案在高斯信道和多径衰减信道下具有更好的误码性能和更强的抗干扰能力。(3)针对DCSK系统低速率和延迟功能实现难的缺点,提出了基于混杂系统的相位分离DCSK通 信系统。此方案利用相互正交的正弦信号对分别传送参考信号和信息信号,不但获得了传统DCSK两倍的通信速率,而且避免使用延迟模块,便于实现。同时,混沌信号的调制提供了一路额外的信息比特流传输。仿真结果表明:此方案在保证设备可靠性的前提下,提高了通信速率,且实现设备与传统方案通信设备完全兼容,适用于复杂信道下的高可靠性通信。(4)为了进一步提高通信速率,提出了一种基于匹配滤波器的双比特流多元DCSK通信方案,按照信息的重要程度提供了两种传 输质量,其中高优先级(High Priority,HP)比特流用于传输重要的信息,其将多位比特映射为一个符号并由正交Walsh码矩阵的一行表示;低优先级(Low Priority,LP)比特流可用于传输具有较高容错率的信息,与之前的方案相同,由调制的混沌信号构成。该方案在接收端使用匹配滤波器和极大似然判决规则显著减小了通信方案的误码率。仿真

混沌理论

混沌理论 混沌理论是当今世界最伟大的理论之一。 它是社会科学与自然科学最完美结合的理论.它研究如何把复杂的非稳定事件控制到稳定状态的方法,它研究世界如何在不稳定的环境中稳定发展的问题。.混沌方法对于处理复杂多变、动荡不定的重大事件有特殊功效混沌世界是纷繁复杂多变的世界。 “相对论消除了关于绝对空间和时间的幻想;量子力学则消除了关于可控测量过程 的牛顿式的梦;而混沌则消除了拉普拉斯关于决定论式可预测的幻想。” 一点就是未来无法确定。如果你某一天确定了,那是你撞上了。 第二事物的发展是通过自我相似的秩序来实现的。看见云彩,知道他是云彩,看见 一座山,就知道是一座山,凭什么?就是自我相似。这是混沌理论两个基本的概念。 混沌理论还有一个是发展人格,他有三个原则,一个是事物的发展总是向他阻力最 小的方向运动。第二个原则当事物改变方向的时候,他存在一些结构。 一混沌理论(Chaos theory)是一种兼具质性思考与量化分析的方法,用以探讨 动态系统中(如:人口移动、化学反应、气象变化、社会行为等)无法用单一的数 据关系,而必须用整体、连续的数据关系才能加以解释及预测之行为。 二混沌一词原指宇宙未形成之前的混乱状态,我国及古希腊哲学家对于宇宙之源起即持混沌论,主张宇宙是由混沌之初逐渐形成现今有条不紊的世界。在井然有序的宇宙中,西方自然科学家经过长期的探讨,逐一发现众多自然界中的规律,如大家耳熟能详的地心引力、杠杆原理、相对论等。这些自然规律都能用单一的数学公式加以描述,并可以依据此公式准确预测物体的行径。 三近半世纪以来,科学家发现许多自然现象即使可化为单纯的数学公式,但是其行径却无法加以预测。如气象学家Edward Lorenz发现,简单的热对流现象居然能引起令人无法想象的气象变化,产生所谓的「蝴蝶效应」,亦即某地下大雪,经追根究底却发现是受到几个月前远在异地的蝴蝶拍打翅膀产生气流所造成的。一九六○年代,美国数学家Stephen Smale 发现,某些物体的行径经过某种规则性的变化之后,随后的发展并无一定的轨迹可寻,呈现失序的混沌状态。 四混沌现象起因于物体不断以某种规则复制前一阶段的运动状态,而产生无法预测的随机效果。所谓「差之毫厘,失之千里」正是此一现象的最佳批注。具体而言,混沌现象发生于易变动的物体或系统,该物体在行动之初极为单纯,但经过一定规则的连续变动之后,却产生始料所未及的后果,也就是混沌状态。但是此种混沌状态不同于一般杂乱无章的的混乱状况,此一混沌现象经过长期及完整分析之后,可以从中理出某种规则出来。混沌现象虽然最先用于解释自然界,但是在人文及社会领域中因为事物之间相互牵引,混沌现象尤为多见。如股票市场的起伏、人生的平坦曲折、教育的复杂过程。

智能控制理论及应用的发展现状

●专家论谈  智能控制理论及应用的发展现状 杭州浙江大学工业控制技术研究所 (310027) 许晓鸣 孙优贤上海交通大学自动化系 (200030) 熊 刚 在控制工程实践中,人们常常涉及到传感器、执行器、通信系统、计算机以及控制策略和具体算法。它们构成的控制系统可以比拟成一个人,如图1。传感器用来采集反映被控对象特性的信息,它就象人的五官;执行器用来把控制决策命令施加于被控对象,它好比人的四肢;通信技术把传感器采集到的信息及时送到控制器,就象人们的神经系统;计算机是控制器的硬件环境,就象人的脑袋。这四部分在控制系统设计中占去人们大部分精力, 但是控制策略和具体算法就好象人的大脑一样,是控制系统的“指挥中心”。设计尽量“聪明”和适用的控制算法是控制理论发展的动力和内容。 图1 控制系统的构成框图 1 智能控制的兴起 111 自动控制的发展与挫折 本世纪40~50年代,以频率法为代表的单变量系统控制理论逐步发展起来,并且成功地用在雷达及火力控制系统上,形成了今天所说的“古典控制理论”。60~70年代,数学家们在控制理论发展中占了主导地位,形成了以状态空间法为代表的“现代控制理论”。他们引入了能控、能观、满秩等概念,使得控制理论建立在严密精确的数学模型之上,从而造成了理论与实践之间的巨大分歧。70年代后,又出现了“大系统理论”。但是,由于这种理论解决实际问题的能力更弱,它很快被人们放到了一边。112 人工智能的发展 斯坦福大学人工智能研究中心的N ilsson 教授认为:“人工智能是关于知识的科学——怎样表示知识以及怎样获得知识并使用知识的科学”。M IT 的W in ston 教授指出:“人工智能就是研究如何使计算机去做过去只有人才做的智能性工作”。 1956年以前是人工智能的萌芽期。英国数学家图灵(A 1M 1T u ring 1912 ~1954)为现代人工智能作了大量开拓性的贡献;1956年~1961年是人工智能的发展期,人们重点研究了诸如用机器解决数学定义,通用问题求解程序等。1961年以后人工智能进入了飞跃期,主要内容涉及知识工程、自然语言理解等。 人们研究人工智能方法也分为结构模拟派和功能模拟派,分别从脑的结构和脑的功能入手进行研究。113 智能控制的兴起 建立于严密的数学理论上的控制理论发展受到挫折,而模拟人类智能的人工智能却迅速发展起来。 控制理论从人工智能中吸取营养求发展成为必然。 工业系统往往呈现高维、非线性、分布参数、时变、不确定性等复杂特征。特别是非线性对控制结果的影响复杂,控制工程人员很难深入理解,更谈不上设计出合适的控制算法。不确定性是最难以解决的问题,也是导致大系统理论失败的根本原因。但是,对这些问题用工程控制专家经验来解决则往往是成功的。人是最聪明的控制器,模仿人是一种途径。 萨里迪斯(Saridis )于1977年提出了智能控制的三元结构定义,即把智能控制看作为人工智能、自动控制和运筹学的交点。在智能控制发展初期,美国普渡大学的傅京孙(K 1S 1Fu )教授首先提出了学习控制的概念,引入了人工智能的直觉推理。后来在人工智能的概念模拟基础上,发展了许多智能控制方法,如自整定、参数调整P I D 等。再后来则以发展实用的智能控制算法为主,尤以专家系统和神经元网络最为突出。 2 智能控制的发展框架 图2 智能控制的发展框架 现在有关智能控制方面的论文很多,我们可以把

混沌原理与应用

课程论文课程系统科学概论 学生姓名 学号 院系 专业 二O一五年月日

混沌理论与应用 摘要:本文首先介绍了混沌理论的产生与背景。接着由混沌理论的产生引出了理解混沌系统需要注意的几个基本概念,并就两个容易混淆的概念进行了区分。然后本文对混沌系统的几个基本特征进行了阐述,而且详细解释了每个具体特征含义。在结尾部分本文简要叙述了混沌理论的应用前景。 关键词:混沌理论;混沌系统;基本特征;应用 1混沌理论的产生与背景 混沌一词很早就出现在人类的历史中,在世界的几个较为发达的古代文明中基本上都用自己的方式对混沌进行过描述,混沌基本就等同于未知。同时这些文明有一个对混沌有一个共同的观点,那就是:宇宙起源于混沌[1],这种观点可以说在某些方面与现代的理论不谋而合。虽然古人的这些观点大部分是基于自己的想象而且其含义也局限于哲学方面,但是可以说这是人类早期对混沌状态的一种探索。 在此后的上千年中,一代又一代的研究者们探索了无数未知的领域。以至于在混沌理论之前,没有人怀疑过精确预测的能力是可以实现的,一般认为只要收集够足够的信息就可以实现。十八世纪法国数学家拉普拉斯甚至宣称,如果已知宇宙中每一个粒子的位置与速度,他就能预测宇宙在整个未来的状态。然而混沌现象的发现彻底打破了这一假设。混沌系统对初始条件的敏感性使得系统在其运动轨迹上几乎处处不稳定,初始条件的极小误差都会随着系统的演化而呈现指数形式的增长,迅速达到系统所在空间的大小,使得预测能力完全消失[2]。例如,著名的蝴蝶效应:上个世纪70年代,美国一个名叫洛伦兹的气象学家在解释空气系统理论时说,亚马逊雨林一只蝴蝶翅膀偶尔振动,也许两周后就会引起美国得克萨斯州的一场龙卷风[3],可以说对天气的精准预测一直是人类未曾解决的问题。面对这样的问题,科学家们又用到了混沌这个词,看似又回到了起点,实际上今天的混沌理论与过去的说法已经有了天壤之别。 1903年,美国数学家J.H.Poincare在《科学与方法》一书中提到Poincare猜想,他把动力系统和拓扑学两大领域结合起来指出了混沌存在的可能性[4]。1963年美国气象学家爱德华·诺顿·洛伦茨提出混沌理论(Chaos),非线性系统具有的多样性和多尺度性。混沌理论解释了决定系统可能产生随机结果[5]。混沌也被认为是继量子力学和相对论之后,20世纪物理学界第三次重大革命,混沌也一样冲破了牛顿力学的教规。从此,混沌系统理论开始飞速发展,气象学、生理学、经济学中都发现了一种关于混沌的有序性。混沌理论正式诞生。

混沌理论概述

第一章混沌理论概述 引言 混沌是指确定动力系统长期行为的初始状态,或系统参数异常敏感, 却又不发散, 而且无法精确重复的现象, 它是非线性系统普遍具有的一种复杂的动力学行为。混沌变量看似杂乱的变化过程, 其实却含有内在的规律性。利用混沌变量的随机性、遍历性和规律性可以进行优化搜索, 其基本思想是把混沌变量线性映射到优化变量的取值区间, 然后利用混沌变量进行搜索。但是, 该算法在大空间、多变量的优化搜索上, 却存在着计算时间长、不能搜索到最优解的问题。因此, 可利用一类在有限区域内折叠次数无限的混沌自映射来产生混沌变量,并选取优化变量的搜索空间, 不断提高搜索精度等方法来解决此类难题。混沌是非线性科学的一个重要分支, 它是非线性动力系统的一种奇异稳态演化行为, 它表征了自然界和人类社会中普遍存在的一种复杂现象的本质特征。因此, 混沌科学倡导者Shlesinger和著名物理学家Ford 等一大批混沌学者认为混沌是20 世纪物理学第三次最大的革命, 前两次是量子力学和相对论, 混沌优化是混沌学科面对工程应用领域的一个重要的研究方向。它的应用特点在于利用混沌运动的特性, 克服传统优化方法的缺陷, 从而使优化结果达到更优。 1.混沌的特征从现象上看,混沌运动貌似随机过程,而实际上混沌运动与随机过程有着本质的区别。混沌运动是由确定性的物理规律这个内在特性引起的,是源于内在特性的外在表现,因此又称确定性混沌,而随机过程则是由外部特性的噪声引起的。混沌有着如下的特性: (1)内在随机性 混沌的定常状态不是通常概念下确定运动的三种状态:静止、周期运动和准周期运动,而是一种始终局限于有限区域且轨道永不重复的,形势复杂的运动。第一,混沌是固有的,系统所表现出来的复杂性是系统自身的,内在因素决定的,并不是在外界干扰下产生的,是系统的内在随机性的表现。第二,混沌的随机性是具有确定性的。混沌的确定性分为两个方面,首先,混沌系统是确定的系统;其次,混沌的表现是貌似随机,而并不是真正的随机,系统的每一时刻状态都受到前一状态的影响是确定出现的,而不是像随机系统那样随意出现,混沌系统的 状态是可以完全重现的,这和随机系统不同。第三,混沌系统的表现具有复杂性。混沌系统的表现是貌似随机的,它不是周期运动,也不是准周期运动,而是具有良好的自相关性和低频宽带的特点。 (2)长期不可预测性 由于初始条件仅限于某个有限精度,而初始条件的微小差异可能对以后的时间演化产生巨大的影响,因此不可长期预测将来某一时刻之外的动力学特性。即混沌系统的长期演化行为是不可预测的。在此以经典的logistic映射为例: x(n+1)=μx(n)(1-x(n)) n=0,1,2,3… 0<x0<1 0<μ≤4 (1-1)

混沌理论

混沌理论 简介 混沌理论(Chaos theory)是一种兼具质性思考与量化分析的方法,用以探讨动态系统中(如:人口移动、化学反应、气象变化、社会行为等)无法用单一的数据关系,而必须用整体、连续的数据关系才能加以解释及预测之行为。混沌理论是一种兼具质性思考与量化分析的方法。 混沌理论的主导思想是,宇宙本身处于混沌状态,在其中某一部分中似乎并无关联的事件间的冲突,会给宇宙的另一部分造成不可预测的后果。这意味着,系统具有放大作用。一个微小的运动经过系统的放大,最终影响会远远超过该运动的本身。所以,当有人说,因为英国的一只蝴蝶扇了一下翅膀,中国可能会遭受一场台风时,他的观点里就包含着混沌理论的思想。 两个基本的概念: 第一,未来无法确定。如果你某一天确定了,那是你撞上了。 第二,事物的发展是通过自我相似的规律来实现的。看见云彩,知道他是云彩,看见一座山,就知道是一座山,凭什么?就是自我相似。 有三个原则: 1、能量永远会遵循阻力最小的途径。 2、始终存在着通常不可见的根本结构,这个结构决定阻力最小的途径。 3、这种始终存在而通常不可见的根本结构,不仅可以被发现,而且可以被改变。 起因 混沌现象起因于物体不断以某种规则复制前一阶段的运动状态,而产生无法预测的随机效果。所谓「差之毫厘,失之千里」正是此一现象的最佳批注。具体而言,混沌现象发生于易变动的物体或系统,该物体在行动之初极为单纯,但经过一定规则的连续变动之后,却产生始料所未及的后果,也就是混沌状态。但是此种混沌状态不同于一般杂乱无章的的混乱状况,此一混沌现象经过长期及完整分析之后,可以从中理出某种规则出来。混沌现象虽然最先用于解释自然界,但是在人文及社会领域中因为事物之间相互牵引,混沌现象尤为多见。如股票市场的起伏、人生的平坦曲折、教育的复杂过程。 混沌理论的特性

控制理论与应用

控制理论与应用 第34卷第5期2017年5月 目次 综述与评论 果蝇优化算法研究进展·························································王凌,郑晓龙(557) 论文与报告 插电式混合动力汽车车速预测及整车控制策略·············································连静,刘爽,李琳辉,周雅夫,杨帆,袁鲁山(564)通讯信息约束下具有全局稳定性的分布式系统预测控制(英文)··············郑毅,李少远,魏永松(575)基于卡尔曼滤波器组的多重故障诊断方法研究····························符方舟,王大轶,李文博(586)考虑作动器动态补偿的飞机增量滤波非线性控制··················周池军,朱纪洪,袁夏明,雷虎民(594)不确定时滞关联大系统的全局稳定模糊容错控制··································郭涛,陈为胜(601)带相关噪声、随机观测滞后和丢失的随机不确定系统的最优线性估值器·············王欣,孙书利(609)高通量筛选系统的双子代数建模·························································李丹菁(619) N连接糖基化过程的动态图建模·························杨岱巍,王晶,周靖林,吴海燕,靳其兵(627)多端高压直流输电系统自适应无源控制···························杨博,黄琳妮,张孝顺,余涛(637)模型参数失配有界下的扩展集员估计方法·································宋莎莎,赵忠盖,刘飞(648)卫星姿态的状态转移控制································································谭天乐(655) 短文 控制饱和约束下的自主水面船编队·······························付明玉,余玲玲,焦建芳,徐玉杰(663)融合概率分布和单调性的支持向量回归算法······································张青,颜学峰(671)三类不动点与一类随机动力系统的稳定性········································王春生,李永明(677)一类3阶非线性系统的非奇异终端滑模控制································蒲明,蒋涛,刘鹏(683)带有非线性扰动的时变时滞系统的稳定性准则·····················武斌,王长龙,徐锦法,胡永江(692) 期刊基本参数:CN44–1240/TP*1984*m*A4*144*zh*P*¥15.00*1300*17*2017–05

混沌理论及其在经济学中的发展

混沌理论及其在经济学中的发展 摘要:利用数学知识来解释经济现象和经济理论历来是经济研究的热点,但经济系统本身就是由多种因素相互作用的非线性系统,时间上的不可逆性、线路上的多重因果反馈环及不确定性使其具有非常复杂的非线性特征。所以,改用非线性系统来研究经济学具有非常现实的意义。而混沌理论就是数学非线性系统中的一颗奇葩。因此,先介绍了混沌理论,并指出混沌经济系统的本质特征,然后总结了混沌经济学研究的发展及其意义。 关键词:混沌理论;混沌经济;研究;发展 1 混沌理论 混沌(chaos)是法国数学家庞加莱19世纪——20世纪之交研究天体力学时发现的,不过,由于当时牛顿力学在科学中占有统治地位,因而大多数数学家和物理学家都不理解。由于长久以来世界各地的物理学家都在探求自然的秩序,而面对无秩序的现象如大气、骚动的海洋、野生动物数目的突然增减及心脏跳动和脑部的变化,却都显得相当无知。这些大自然中不规则的部分,既不连续且无规律,在科学上一直是个谜。 1972年12月29日,美国数学家——混沌学开创人之一E.N.洛伦兹在美国科学发展学会第139次会议上发表了题为《蝴蝶效应》的论文,提出一个貌似荒谬的论断:在巴西一只蝴蝶翅膀的拍打能在美国得克萨斯州产生一个龙卷风。用混沌学的术语来表述,那就是天气对初值的敏感依赖性,即天气是不可能长期预报的。1986年,英国皇家学会在一次关于混沌的国际会议上提出了混沌的定义:数学上指在确定性系统中出现的随机状态。 混沌在之后的整个20世纪才被确定下来,有人把相对论、量子力学和混沌理论称为20世纪科学中的传世之作。混沌作为一种复杂运动形式,其影响最大的时期是20世纪80年代到90年代。从数学角度看,混沌是继不动点(平衡点、均衡点)、周期循环(极限环、周期运动)、拟周期运动(准周期运动)之后,另外一种新型的运动类型。对初值的敏感性和无序中的有序是混沌的两个特性。 2 混沌经济系统 著名的美国经济学家诺贝尔经济学奖获得者保罗.A.萨缪尔森钟指出:“经济学的规律只是在平均意义上才是对的,它们并不表现为准确的关系。”按照他的这种思想,在经济学领域里对混沌的理解和把握可以不必太拘泥于数学定义的苛刻与抽象,只需从平均意义上把握混沌的主要本质特征就可以了。所以就“平均意义”而言,我们可以从混沌经济系统所具有的本质特征入手来进行综合判断。 2.1 积累效应 积累效应俗称蝴蝶效应,即系统演化对初始条件的敏感性。在混沌出现的参数范围内,初始条件的一个微小误差在迭代过程中会不断的放大,不但使迭代结果变得极为不同,而目在近似随机的历经了整个吸引子以后,使得系统的长期预测变为不可能。刚开始,许多人认为这是由于人的能力不够所造成的。从客观上讲,在初始条件变化后的迭代过程中,确实存在两种误差:一种来自于物理量本身的测量误差。任何测量都有误差,只是仪器越精密,误差会越小,但科学技术再发展也不可能造出一台绝对没有误差的仪器;另一种来自于计算机,即使计算出一个整数,它也可能在小数点若干零后加上一个尾巴。同时在迭代过程中要把

混沌理论及其在密码学的应用

混沌理论及其在密码学的应用 摘要:由于混沌系统对初始条件和混沌参数非常敏感以及生成的混沌序列具有非周期性和伪随机性的特性,近年来混沌系统在密码学领域中得到了较多的 研究。介绍了混沌学理论和现代密码学的具体内客,通过对混沌和密码学 之间关系的分析。提出了把混沌用于密码学之中的具体方法和混沌密码系 统的框架结构,给出了数字加密中选择混沌系统的原则。 关键词:密码学;混沌;混沌加密 正文: 计算机从出现到现在,已经从用于计算机转到主要用于信息处理。Internet 每天为用户提供大量的信息服务。由于Internet的基础协议不是完全安全的协议。未经特别加密的信息在网络上传送时,会直接暴露在整个网络上。现代高性能的计算机、自动分析和截获程序每秒可以搜索数百万个底码,对传统的加密算法构成严重的压力。信息领域急切希望拥有更安全、方便、有效的信息保护手段。在过去的十年中,随着对混沌理论研究的不断深入,混沌理论的应用范围也不断扩展。混沌在密码学中的应用成了热门的研究领域,并提出了大量的混沌加密算法。大多数模拟混沌的密码使用混沌同步技术通过有噪信道实现秘密通信。许多研究者都已提出混沌和密码学的密切联系。混沌的许多基本特征,例如:混频(nlixi 峭)和对初始条件的敏感性都与好的密码的属性——混乱和扩散相联系。由于混沌理论近几十年得到了极大发展,无数混沌系统都可应用在密码学中,所阻混沌应当成为密码学中的新的丰富资源。 1、现代密码学 密码学包含两个互相对立的分支,即密码编码学和密码分析学.前者寻求保证消息保密性或真实性的方法,而后者则研究加密消息的破译或消息的伪造。一个保密系统由下述几个部分组成:明文消息空间M,密文消息空间C,密钥空间K1和K2,在单钥体制下KI=K2=K.此时密钥K需经安全的密钥信道由发方传给收方;加密变换Ek1∈E,M—C,其中kl∈K1,由加密器完成;解密变换Dk2∈D,C∈M,其中k2∈K2,由解密器实现。称总体(M,C,K1,K2,Ekl,Dk2)为一保密系统。对于给定明文消息m∈M,密钥kl∈Kl,加密变换把明文m变换为密文c,即 c=f(m,k1)=Ekl(m) (1)

控制理论在生活中的应用以及社会控制系统

控制理论在生活中的应用以及社会控制系统 摘要:在工程上为了对某个机械系统进行控制常常会对其建立模型,然后利用一些控制算法对其进行控制,从而使输出跟随输入。而对于社会管理来说,我们可以把社会看成是一个大的系统,各种政策法令便是控制算法,对社会进行控制,从而使社会和谐。本文将先介绍控制论的基本定义以及常用的控制算法,接着介绍控制论在生活中的应用,最后介绍对社会这个大系统的控制模型的建立即各种政策法令。 关键词:控制论,机械系统,社会系统,政策,法令,道德 1、概述 控制系统的基本思想是根据误差来调控被控系统,从而消除误差。在我们生活中控制理论随处可见,它广泛的应用在我们的生活中,如空调,空调会根据室内的温度来实时调控温度,当室内的温度高于设定的温度时,空调便会开启,通过压缩机来制冷,使得温度降低,当室内的温度与设定的温度相同时,或在允许的误差范围内时,空调便会停止工作,这样既能节能减排,又可以实时的监控室内的温度,使人们处于一个较舒适的温度下。类似于这样的例子很多,本文将会在第三部分进行介绍。 而当把社会比作一个大的控制系统时,我们可以对它进行建模,然后按照控制论的思想对其进行反馈控制,即根据社会中出现的问题,即社会的实际状况与我

们期望的状况之间的差别,通过制定相关的政策、法律以及运用道德来对其进行调整,从而消除差别,实现我们希望的社会状况。典型的例子如房地产的调控便是如此。房子作为人们日常社会的必需品,是每个家庭所必不可少的东西,然后,如今的房子却成了最最奢侈的奢侈品,它的价格已经完完全全超出了人们所能接受的范围,特别是对于一个刚毕业的普通大学生来说,买房子已经成为了遥不可及的梦。由于房价的过快增长已经引发了许许多多的社会问题,这些问题急需解决,房子的价格已经远远超出了人们的预期,这个系统的误差已经大到了不可不调整的地步了,此时便需要政府出面来对其进行调控,使得房子的价格回到一个合理的范围内,于是乎近年来政府相继出台了许许多多的政策来调控房价,这些政策便像是控制系统中的控制算法,本文将会在第四部分阐述社会系统中的控制算法。 2、机械控制理论 2.1 机械控制理论在工程中的应用发展 机械控制理论是在产业革命的背景下,在生产和军事需求的刺激下,自动控制、电子技术、计算机科学等多种学科相互交叉发展的产物。二次世界大战期间美国科学家维纳在研究火炮的自动控制时把火炮自动打飞机的动作与人狩猎的行为做了对比,并且提炼出了控制理论中最基本最重要的反馈概念。他提出,准确控制的方法可以把运动的结果所决定的量,作为信息再反馈回控制仪器中,这就是著名的负反馈概念。维纳等在1943年发表了《行为,目的和目的论》。同时火炮自动控制的研制获得了成功,这是控制论萌芽的重要实物标志。1948年,维纳所著《控制论》的出版,标志着这门科学的正式诞生。[1] 2.2 负反馈系统简介 如图所示,负反馈是指将系统的输出引回来与给定输入相比较,计算出输出与输入的误差,通过控制算法,使控制器的输出作为被控对象的输入,从而使被控对象的误差减小。

相关主题
文本预览
相关文档 最新文档