当前位置:文档之家› 丝杆皮带运行速度计算公式

丝杆皮带运行速度计算公式

D=A*B\C(mm/s)

A 高速脉冲的频率100kHz(即PLC最快每秒发出10万(100,000)个脉冲)

B 导程(即电机转一圈负载直线走的长度,10mm/r)

C 电机细分(及电机每圈需要4000个脉冲)

D 速度(PLC控制下负载运行速度)

D=100000*10/4000=250mm/s

三角皮带的型号和长度的计算公式

三角皮带长度的计算公式 三角皮带长度的计算公式正常三角皮带的计算长度精度要求不高,大多数三角带传动都有空间留给皮带调整。当有现成的三角轮的时候就拿跟线直接套在两个三角轮上面就知道长度了。三角皮带的长度计算原理是三角带长度为与大轮相贴的部分 + 与小轮相贴的部分。 三角皮带长度的计算公式 正常三角皮带的计算长度精度要求不高,大多数三角带传动都有空间留给皮带调整。当有现成的三角轮的时候就拿跟线直接套在两个三角轮上面就知道长度了。 三角皮带的长度计算原理是三角带长度为与大轮相贴的部分+与小轮相贴的部分+悬空长度。 现场工人有的就用2倍的中心距加上两个带轮的一半周长之和来粗略的估算三角皮带的长度。 精确一点的计算公式有: (1)L=π(R+r)+2a+(R-r)^2/a (2)L=π(R+r)+2a+(R-r)^2/4a 其中L为皮带长度,R与r分别为两皮带轮半径,a为两皮带轮中心距离; 计算出来的尺寸不是三角带上标的尺寸。三角带上标的尺寸是三角带基准长度尺寸。你要选用接近计算长度数值的基准长度尺寸。 皮带型号: 三角皮带的规格是由背宽(顶宽)与高(厚)的尺寸来划分的,根据不同的背宽(顶宽)与高(厚)的尺寸,国家标准规定了三角带的O 、A、B、C、D、E等多种型号,每种型号的三角带的节宽、顶宽、高度都不相同,所以皮带轮也就必须根据三角带的形状制作出各种槽型;这些不同的槽型就决定了皮带轮的O型皮带轮、A型皮带轮、B型皮带轮、C型皮带轮、D型皮带轮、E型皮带轮等多种型号。 三角带的型号有:普通型O A B C D E 3V 5V 8V,普通加强型AX BX CX DX EX 3VX 5VX 8VX,窄V带SPZ SPA SPB SPC,强力窄V带XPA XPB XPC;三角带的每一个型号规定了三角带的断面尺寸,A型三角带的断面尺寸是:顶端宽度13mm、厚度为8mm;B型三角带的断面尺寸是:顶端宽度17MM,厚度为10.5MM;C型三角带的断面尺寸是:顶端宽度22MM,厚度为13.5MM;D型三角带的断面尺寸是:顶端宽度21.5MM,厚度为19MM;E 型三角带的断面尺寸是:顶端宽度38MM,厚度为25.5MM。对应尺寸(宽*高):O(10*6)、A(12.5*9)、B(16.5*11)、C(22*14)、D(21.5*19)、E(38*25.5)。 国家标准规定了三角皮带的型号有O、A、B、C、D、E、F七种型号,相应的皮带轮轮槽角度有三种34°、36°、

力学计算公式

? 常用力学计算公式统计 一、材料力学: 1.轴力(轴向拉压杆的强度条件) σmax=N max/A≤[σ] 其中,N为轴力,A为截面面积 2.胡克定律(应力与应变的关系) σ=Eε或△L=NL/EA @ 其中σ为应力,E为材料的弹性模量,ε为轴向应变, EA为杆件的刚度(表示杆件抵抗拉、压弹性变形的能力) 3.剪应力(假定剪应力沿剪切面是均匀分布的) τ=Q/A Q 其中,Q为剪力,A Q为剪切面面积 4.静矩(是对一定的轴而言,同一图形对不同的坐标轴 的静矩不同,如果参考轴通过图形的形心,则x c=0, y c=0,此时静矩等于零) 对Z轴的静矩S z=∫A ydA=y c A 其中:S为静矩,A为图形面积,y c为形心到坐标轴的 距离,单位为m3。 5.惯性矩 … 对y轴的惯性矩I y=∫A z2dA

其中:A为图形面积,z为形心到y轴的距离,单位为m4 常用简单图形的惯性矩 矩形:I x=bh3/12,I y=hb3/12 圆形:I z=πd4/64 空心圆截面:I z=πD4(1-a4)/64,a=d/D (一)、求通过矩形形心的惯性矩 " 求矩形通过形心,的惯性矩I x=∫Ay2dA dA=b·dy,则I x=∫h/2-h/2y2(bdy)=[by3/3]h/2-h/2=bh3/12(二)、求过三角形一条边的惯性矩

I x=∫Ay2dA,dA=b x·dy,b x=b·(h-y)/h 》 则I x=∫h0(y2b(h-y)/h)dy=∫h0(y2b –y3b/h)dy =[by3/3]h0-[by4/4h]h0=bh3/12 6.梁正应力强度条件(梁的强度通常由横截面上的正应 力控制) σmax=M max/W z≤[σ] 其中:M为弯矩,W为抗弯截面系数。 7.超静定问题及其解法 对一般超静定问题的解决办法是:(1)、根据静力学平衡条件列出应有的平衡方程;(2)、根据变形协调条件列出变形几何方程;(3)、根据力学与变形间的物理关系将变形几何方程改写成所需的补充方程。 8.抗弯截面模量

皮带规格及长度计算

皮带规格及长度计算 理论长度=(半径1+半径2)*3,14 +(圆中心距*2) 怎样计算三角皮带的长度(大轮直径350小轮直径180中心距420) 计算长度 L=2×A+[π×(D1+D2)÷2]+[(D2-D1)×(D2-D1)÷(4×A)] A=420 D1=180 D2=350 L=1689.7 皮带的规格: 一、O带/M带: 皮带面宽度为9.5mm~10mm,皮带厚度为8 mm,长度20英寸~70英寸长,即500 mm~1775 mm长,其余长度很少用到。皮带分为带齿和不带齿两种。 二、A带 皮带面宽度为12.5~13mm,皮带厚度为9mm,长度为23英寸~100英寸长,即580 mm~2300mm长,其余长度很少用到。皮带分为带齿和不带齿两种。 三、B带 皮带面宽度为15mm~17mm,皮带厚度为11 mm,长度24英寸~99英寸长,即600 mm~2540 mm长,其余长度很少用到。皮带带齿。 四、C带 皮带面宽度为20mm~22mm,皮带厚度为13 mm,长度28英寸~98英寸长,即725 mm~2500 mm长,其余长度很少用到。皮带带齿。 五、其它特殊工程汽车带为25mm~38mm宽,皮带长度、厚度,均可按皮带样板订做。 注:皮带表面有“recmf”字母为带齿切边三角带,remf为无齿切边三角带 三角带长度计算1(inch)英寸=25.4mm 一、O带/M带:外周长la=内周长(li)+50 mm ,或外周长=节线长(lw/le)+8 mm。 二、A带:外周长la=内周长li+56 mm,或外周长=节线长(lw/ le)+10 mm。 三、B带:外周长la=内周长li﹢70 mm,或外周长=节线长(lw /le)﹢13 mm。 四、C带:外周长la=内周长li﹢81 mm,或外周长=节线长(lw / le)﹢16 mm。 注:la-表示v带外周长le(lw)-表示v带拉力线长度li表示v带内周长多楔带(pk)型(multi-rib)肋距为3.56mm- belt长度mm:一:汽车用pk 带:肋距为3.56 mm ,厚度为5.5mm :二: 肋距为第一个肋中间到第二个肋中间的直线距离。三:3pk-31pk 时规带:主要经营欧美日名厂时规带

力学计算公式

力学计算公式 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

常用力学计算公式统计 一、材料力学: 1.轴力(轴向拉压杆的强度条件) σmax=N max/A≤[σ] 其中,N为轴力,A为截面面积 2.胡克定律(应力与应变的关系) σ=Eε或△L=NL/EA 其中σ为应力,E为材料的弹性模量,ε为轴向应变,EA 为杆件的刚度(表示杆件抵抗拉、压弹性变形的能力) 3.剪应力(假定剪应力沿剪切面是均匀分布的) τ=Q/A Q 其中,Q为剪力,A Q为剪切面面积 4.静矩(是对一定的轴而言,同一图形对不同的坐标 轴的静矩不同,如果参考轴通过图形的形心,则 x c=0,y c=0,此时静矩等于零) 对Z轴的静矩S z=∫A ydA=y c A 其中:S为静矩,A为图形面积,y c为形心到坐标轴的 距离,单位为m3。 5.惯性矩 对y轴的惯性矩I y=∫A z2dA 其中:A为图形面积,z为形心到y轴的距离,单位为 m4

常用简单图形的惯性矩 矩形:I x=bh3/12,I y=hb3/12 圆形:I z=πd4/64 空心圆截面:I z=πD4(1-a4)/64,a=d/D (一)、求通过矩形形心的惯性矩 求矩形通过形心,的惯性矩I x=∫Ay2dA dA=b·dy,则I x=∫h/2-h/2y2(bdy)=[by3/3]h/2-h/2=bh3/12 (二)、求过三角形一条边的惯性矩 I x=∫Ay2dA,dA=b x·dy,b x=b·(h-y)/h 则I x=∫h0(y2b(h-y)/h)dy=∫h0(y2b –y3b/h)dy =[by3/3]h0-[by4/4h]h0=bh3/12 6.梁正应力强度条件(梁的强度通常由横截面上的正 应力控制) σmax=M max/W z≤[σ] 其中:M为弯矩,W为抗弯截面系数。 7.超静定问题及其解法 对一般超静定问题的解决办法是:(1)、根据静力学平衡条件列出应有的平衡方程;(2)、根据变形协调条件列出变形几何方程;(3)、根据力学与变形间的物理关系将变形几何方程改写成所需的补充方程。8.抗弯截面模量 W x=I x/y c

皮带输送机计算公式

一条平皮带输送机,皮带两侧辊子,中间搭在托板上运行,输送工件4KG,满载20件,皮带宽0.7米,输送速度16m/min,请问电机功率如何计算得出呀? 方法如下: 1、先计算传动带的拉力=总载重量*滚动摩擦系数 2、拉力*驱动轮的半径=驱动扭矩 3、根据传送速度,计算驱动轮的转速=传送速度/驱动轮的周长 4、电机的功率(千瓦)=扭矩(牛米)*驱动轮转速(转/分)/9550 5、计算结果*安全系数*减速机构的效率,选取相应的电动机。 追问 【一】公式 1. p=(kLv+kLQ+_0.00273QH)K KW 其中第一个K为空载运行功率系数,第二个K为水平满载系数,第三个K为附加功率系数。L为输送机的水平投影长度。Q为输送能力T/H.向上输送取加号向下取负号。 2. P=[C*f*L*( 3.6Gm*V+Qt)+Q t*H]/367 公式中P-电动滚筒轴功率(KW) f-托辊的阻力系数,f=0.025-0.03 C-输送带、轴承等处的阻力系数,数值可从表1中查到;

L-电动滚筒与改向滚筒中心的水平投影(m) Gm-输送带、托辊、改向滚筒等旋转零件的重量,数值可从表2中查到; V-带速(m/s); Qt-输送量(t/h),Qt=IV*输送物料的密度,有关数值可从表3中查到; IV-输送能力,数值可从表4中查到; H-输送高度(m); B-带宽(mm) 【二】皮带输送机如何选择适合的电机功率 电机功率,应根据所需要的功率来选择,尽量使电机在额定负载下运行。 1、如果皮带输送机电机功率选得过小,就会出现“小马拉大车”现象,造成电机长期过载。 2、如果皮带输送机电机功率选得过大。就会出现“大马拉小车”现象,其输出机械功率不能得到充分利用,造成电能浪费。 3、一般情况下是根据皮带带宽、输送距离、倾斜角度、输送量、以及物料的特性、湿度来综合计算的。如果不知道皮带输送机该如何选择电机功率,可拨打机械服务热线。

角带的计算公式

皮带规格及长度计算理论长度=(半径1+半径2)*3,14 +(圆中心距*2) 怎样计算三角皮带的长度(大轮直径350小轮直径180中心距420)计算长度L=2×A+[π×(D1+D2)÷2]+[(D2-D1)×(D2 -D1)÷(4×A)] A=420 D1=180 D2=350 L= 皮带的规格: 一、O带/M带: 皮带面宽度为~10mm,皮带厚度为8 mm,长度20英寸~70英寸长,即500 mm~1775 mm长,其余长度很少用到。皮带分为带齿和不带齿两种。 二、A带皮带面宽度为~13mm,皮带厚度为9mm,长度为23英寸~100英寸长,即580 mm~2300mm长,其余长度很少用到。皮带分为带齿和不带齿两种。 三、B带皮带面宽度为15mm~17mm,皮带厚度为11 mm,长度24英寸~99英寸长,即600 mm~2540 mm长,其余长度很少用到。皮带带齿。 四、C带皮带面宽度为20mm~22mm,皮带厚度为13 mm,长度28英寸~98英寸长,即725 mm~2500 mm长,其余长度很少用到。皮带带齿。 五、其它特殊工程汽车带为25mm~38mm宽,皮带长度、厚度,均可按皮带样板订做。 注:皮带表面有“recmf”字母为带齿切边三角带,remf为无齿切 边三角带三角带长度计算1(inch)英寸= 一、O带/M带:外周长la=内周长(li)+50 mm ,或外周长=节线长(lw/le)+8 mm。 二、A带:外周长la=内周长li+56 mm,或外周长=节线长(lw/ le)+10 mm。三、B带:外周长la=内周长li﹢70 mm,或外周长=节线

长(lw /le)﹢13 mm。四、C带:外周长la=内周长li﹢81 mm,或外周长=节线长(lw / le)﹢16 mm。注:la-表示v带外周长le(lw)-表示v带拉力线长度li表示v带内周长多楔带(pk)型(multi-rib)肋距为belt长度mm:一:汽车用pk带:肋距为mm ,厚度为:二: 肋距为第一个肋中间到第二个肋中间的直线距离。三:3pk-31pk 时规带:主要经营欧美日名厂时规带

皮带计算

一段强力皮带提升能力核定 一、核算输送能力 1、ρSvk Q 6.3= 由α=45°查表5-2-2、表5-2-3得θ'=20°,S=0.07472 m 根据θ=22°,查表5-2-4得K=0.81 则41.42590081.017.20747.06.3=????=Q h t />120h t /(设计运输能力) 故满足要求 2、计算提升能力 2 .1101876.09.017.28.04003301033042142???????= =k Ct v kB A γ(万t∕a )=188万t∕a 式中: A ——年运输量,万t∕a ; k ——输送机负载断面系数;取400 B ——输送机带宽, 800mm v ——输送机带速,2.17m∕s ; γ——松散煤堆容积重,t∕m 3。取0.85—0.9; C ——输送机倾角系数;0.76坡度 1k ——运输不均匀系数,取1.2; t ——日提升时间,16h 或18h ,按《标准》第十二条规定选取。 2、按实测胶带运输状况计算公式: 1 710330 3600k qvt A ?=(万t∕a ) 式中: q ——单位输送机长度上的负载量,kg∕m ; 其它符号及单位同上式。 胶带单位长度内货载重量q 最大运输生产率为 小时吨/21.12118 33010602.14 =???=A

小时吨/51.156 .317.221.121t v q =?=?= A 年万吨/67.672 .11018 17.25.17330360010330 3600717=????=?=k qvt A 二、电动机校核 1、传动滚筒的圆周驱动力U F 的计算 t S S S H U F F F CF F +++=21 (1) 式中:H F ——主要阻力,物料、输送带及托辊等运行引起的阻力,N; 1S F ——主要特种阻力,托辊前倾及导料槽引起的阻力,N ; 2S F ——附加特种阻力,清扫器、犁式卸料器等引起的阻力,N ; t S F ——输送机倾斜阻力,N ; C ——附加阻力系数。(据:矿山固定设备选型使用手册表998页5-2-7选1.09) 2、主要阻力H F 的计算 []θcos )2(G B RU RO H q q q q fLg F +++= (2-0) H F ——可分为承载分支主要阻力HS F 和回程分支主要阻力Hx F ,N ; f ——模拟摩擦因数,(据:矿山固定设备选型使用手册表999页5-2-8选0.022) L ——输送机头、尾滚筒中心之间的长度,m ;取1080m g ——重力加速度,g =9.812/s m ; θ——输送机倾角, (22°); RO q ——承载分支托辊组每米长度转动部分质量,m kg /; RU q ——回程分支托辊组每米长度转动部分质量,m kg /; G q ——输送带上每米长度物料的质量,实际测量17.5m kg /; B q ——每米长度输送带的质量,30.61m kg /; 1)输送机托辊转动部分每米质量的计算 托辊转动部分质量1G 、2G 由手册表5-2-10查得1G =7.74kg 、2G =7.15kg 1G 、2G ——上、下托辊转动部分质量,kg ;

压杆稳定计算

第16章压杆稳定 16.1 压杆稳定性的概念 在第二章中,曾讨论过受压杆件的强度问题,并且认为只要压杆满足了强度条件,就能保证其正常工作。但是,实践与理论证明,这个结论仅对短粗的压杆才是正确的,对细长压杆不能应用上述结论,因为细长压杆丧失工作能力的原因,不是因为强度不够,而是由于出现了与强度问题截然不同的另一种破坏形式,这就是本章将要讨论的压杆稳定性问题。 当短粗杆受压时(图16-1a),在压力F由小逐渐增大的过程中,杆件始终保持原有的直线平衡形式,直到压力F达到屈服强度载荷F s(或抗压强度载荷F b),杆件发生强度破坏时为止。但是,如果用相同的材料,做一根与图16-1a所示的同样粗细而比较长的杆件(图16-1b),当压力F比较小时,这一较长的杆件尚能保持直线的平衡形式,而当压力F逐渐增大至某—数值F1时,杆件将突然变弯,不再保持原有的直线平衡形式,因而丧失了承载能力。我们把受压直杆突然变弯的现象,称为丧失稳定或失稳。此时,F1可能远小于F s (或F b)。可见,细长杆在尚未产生强度破坏时,就因失稳而破坏。 图16-1 失稳现象并不限于压杆,例如狭长的矩形截面梁,在横向载荷作用下,会出现侧向弯曲和绕轴线的扭转(图16-2);受外压作用的圆柱形薄壳,当外压过大时,其形状可能突然变成椭圆(图16-3);圆环形拱受径向均布压力时,也可能产生失稳(图16-4)。本章中,我们只研究受压杆件的稳定性。

图16-3 所谓的稳定性是指杆件保持原有直线平衡形式的能力。实际上它是指平衡状态的稳定性。我们借助于刚性小球处于三种平衡状态的情况来形象地加以说明。 第一种状态,小球在凹面内的O点处于平衡状态,如图16-5a所示。先用外加干扰力使其偏离原有的平衡位置,然后再把干扰力去掉,小球能回到原来的平衡位置。因此,小球原有的平衡状态是稳定平衡。 第二种状态,小球在凸面上的O点处于平衡状态,如图16-5c所示。当用外加干扰力使其偏离原有的平衡位置后,小球将继续下滚,不再回到原来的平衡位置。因此,小球原有的干衡状态是不稳定平衡。 第三种状态,小球在平面上的O点处于平衡状态,如图16-5b所示,当用外加干扰力使其偏离原有的平衡位置后,把干扰力去掉后,小球将在新的位置O1再次处于平衡,既没有恢复原位的趋势,也没有继续偏离的趋势。因此。我们称小球原有的平衡状态为随遇平衡。 图16-5 图16-6 通过上述分析可以认识到,为了判别原有平衡状态的稳定性,必须使研究对象偏离其原有的平衡位置。因此。在研究压杆稳定时,我们也用一微小横向干扰力使处于直线平衡状态的压杆偏离原有的位置,如图16-6a所示。当轴向压力F由小变大的过程中,可以观察到: 1)当压力值F1较小时,给其一横向干扰力,杆件偏离原来的平衡位置。若去掉横向干扰力后,压杆将在直线平衡位置左右摆动,最终将恢复到原来的直线平衡位置,如图16-6b所示。所以,该杆原有直线平衡状态是稳定平衡。 2)当压力值F2超过其一限度F cr时,平衡状态的性质发生了质变。这时,只要有一轻微的横向干

皮带计算标准公式

皮带计算标准公式 一、 条件,皮带长度L ,巷道倾角β,运输能力(一般取350或400)A ,带 速V (一般取1.6,2,2.5,3.15,常用2),松散度γ(一般取1),煤的堆积角度a ,倾角系数C ,最大块度Amax (一般为300-400之间),货断面系数K ,上托辊间距L ’(1-1.5m 一般取1.2m ),下托辊间距L ”(2-3,一般2.5或3),上托单位重量q G ’(一般取9.2kg/m ) ,下托单位重量q G “(2.5m 时4.4kg/m ;3m 时为3.7kg/m ),胶带每米重量q d ,(1000mm 取11.4kg ,800mm 取10.8),运行阻力系数ω′胶带抗拉强度BGX (一般1000mm 取14000N/cm , 10000 N/cm ),输送带安全系数M ′ 2、胶带宽度计算 0.43 )m ==( 运输能力A=350-400 载货断面系数K=458 松散度γ=1 倾角系数C=0.9 带速V=2 3、对皮带进行块度效验 B ≥2Amax+200

4、胶带运行阻力与胶带张力计算 ①运行阻力计算:取运行阻力系数ω′=0.05,ω″=0.025 每米物料重量q=Q/(3.6×V)= Wzh=g(q+q d + qg′) Lω′cosβ+g(q+q d ) L sinβ = (N) W K =g (q d + qg″) Lω″cosβ± g q d L sinβ(上运为加,下运为减) = (N) ②胶带张力计算ˋ 1 1′用逐点计算法求胶带个点张力 S 2≈S 1 S 3=1.04S 2 S 4=1.04S 3 =1.042S 1 =1.08 S 1 S 5=S 4 +W k =1.042S 1 +W K =1.08 S 1 +W K S 6=1.04S 5 =1.043S 1 +1.04W k =1.12 S 1 +1.04W k S 7=S 6 +W zh =1.043S 1 +1.04W k +W zh =1.12 S 1 +1.04W k +W zh S 8≈S 9 =1.04S 7 =1.044S 1 +1.042W k +1.04W zh =1.17S 1+1.08W k +1.04W zh 2′、按摩擦传动条件考虑摩擦力备用系数列方程,得: S 9=S 1 (1+((e uα-1)/m″)) =S 1 (1+((e0.2×8.225-1)/1.15)) =4.663 S 1 S 9 =1.17 S 1 +1.08WK+1.04W ZH 3′联立1′2′ S 9=4.663S 1

怎样推导压杆的临界力和临界应力公式.

06、基本知识 怎样推导压杆的临界力和临界应力公式(供参考) 同学们学习下面内容后,一定要向老师回信(849896803@https://www.doczj.com/doc/f071271.html, ),说出你对本资料的看法(收获、不懂的地方、资料有错的地方),以便考核你的平时成绩和改进我的工作。回信请注明班级和学号的后面三位数。 1 * 问题的提出及其对策 (1) 1.1 问题的提出及其对策 ........................................................................................................ 1 1.2 压杆稳定分析概述——与强度、刚度分析对比 ............................................................ 2 2 压杆临界压力F cr 的计算公式 ................................................................................................. 3 2.1 压杆稳定的力学模型——弯曲平衡 ................................................................................ 3 2.2梁的平衡理论——梁的挠曲微分方程 ............................................................................. 4 2.3 按梁的平衡理论分析两端铰支的压杆临界压力 ............................................................ 6 2.4 按梁的平衡理论分析一端固定一端自由的压杆临界压力 ............................................ 8 2.5 按梁的平衡理论分析一端固定一端铰支的压杆临界压力 .......................................... 10 2.6 按梁的平衡理论分析两端固定的压杆临界压力 .......................................................... 14 2.7 将四种理想压杆模型的临界力公式及其推导分析图示的汇总 .. (18) 1 * 问题的提出及其对策 1.1 问题的提出及其对策 试计算长度为400mm ,宽度为10mm ,厚度为1mm 的钢锯条,在一端固定、一端铰支的情况下,许用的轴向压力。材料的许用应力为160MPa 。 解:1、按轴向拉压强度计计算 []2/160160120mm N MPa mm mm F A F N N ==≤?== σσ 2、按压杆稳定临界力公式计算 ()43 33 5120121121mm mm mm bh I Z =??== ()()N mm mm MPa l EI F CR 28.123 4002102000002 4 222=????==πμπ 分析:1、按轴向拉压杆的强度条件计算结果,该钢板尺可以安全承压 3.2kN 。这是一 个什么概念呢?一袋水泥重50kg ,对应重力N s m kg mg W 500/10502 =?==,即该钢 kN N mm N mm mm F N 2.33200/1601202==??≤

皮带机计算说明

带式输送机选择设计 火力发电厂广泛采用DTII 型带式输送机。 1基本参数确定 (1)输送带速度v s m v /15.3;5.2;0.2;6.1=。带速选为s m /5.2。 (2)三节托滚槽角λ ?=35λ; (3)倾角α 根据任务书取?=15α (4)输送带宽度B B 由下式计算并圆整到标准值: )/(20h t v KB Q ρ= (2-16) 式中:K ——断面系数,查表可得; ρ——煤的堆密度,取3/9.0m t =ρ。 由下表:带宽与适用的最大物料粒度(单位均为mm ) 带宽 650 800 1000 1200 1400 1600 1800 2000 已筛分全为块料 130 160 200 240 280 320 360 400 未筛分全(10%)为块 料 200 270 330 400 460 530 600 670 任务书中给定的原煤粒度最大为300mm ,储煤场到原煤仓有筛分,故可初选带宽为 mm B 10000=,则断面系数可查表得530=K 所以)(97.09 .05.2530900 0m Kv Q B =??== ρ 圆整为标准值,则mm B 1000=,根据相关标准,选定上托辊间距为mm a 12000=,下托辊间距mm a u 3000=。 由《物流系统自动化专业课程设计指导书》中表2-13 DTII 型带式输送机槽型托辊参数可查得选用的带式输送机的槽型托辊参数如下: 带 宽 辊 子 槽型托辊 D (mm ) L (mm ) 轴 承 重 量(kg ) 旋转部分质量(kg) 1000 108 380 4G205, 4G305, 24.3,26.2 4.07,4.19 由《物流系统自动化专业课程设计指导书》中表2-14 DTII 型带式输送机平形托辊参数可查得选用的带式输送机的平形托辊参数如下: 带 宽 辊 子 槽型托辊 D (mm ) L (mm ) 轴 承 重 量(kg ) 旋转部分质量(kg) 1000 108 1150 4G205,4G305 19.2,20.8 8.4,10.56 至此,皮带参数已经确定。

材料力学的基本计算公式

材料力学的基本计算 公式 Revised on November 25, 2020

材料力学的基本计算公式外力偶矩计算公式(P功率,n转速) 1.弯矩、剪力和荷载集度之间的关系式 2.轴向拉压杆横截面上正应力的计算公式(杆件 横截面轴力F N,横截面面积A,拉应力为正) 3.轴向拉压杆斜截面上的正应力与切应力计算公式(夹 角a 从x轴正方向逆时针转至外法线的方位角为正) 4.纵向变形和横向变形(拉伸前试样标距l,拉伸后试 样标距l1;拉伸前试样直径d,拉伸后试样直径d1) 5.纵向线应变和横向线应变 6.泊松比 7.胡克定律

8.受多个力作用的杆件纵向变形计算公式 9.承受轴向分布力或变截面的杆件,纵向变形计算公式 10.轴向拉压杆的强度计算公式 11.许用应力,脆性材料,塑性 材料 12.延伸率 13.截面收缩率 14.剪切胡克定律(切变模量G,切应变g ) 15.拉压弹性模量E、泊松比和切变模量G之间关 系式 16.圆截面对圆心的极惯性矩(a)实心圆 (b)空心圆 17.圆轴扭转时横截面上任一点切应力计算公式(扭 矩T,所求点到圆心距离r)

18.圆截面周边各点处最大切应力计算公式 19.扭转截面系数,(a)实心圆 (b)空心圆 20.薄壁圆管(壁厚δ≤ R0 /10 ,R0为圆管的平均 半径)扭转切应力计算公式 21.圆轴扭转角与扭矩T、杆长l、扭转刚度GH p的 关系式 22.同一材料制成的圆轴各段内的扭矩不同或各段的 直径不同(如阶梯轴)时或 23.等直圆轴强度条件 24.塑性材料;脆性材料 25.扭转圆轴的刚度条件或 26.受内压圆筒形薄壁容器横截面和纵截面上的应力 计算公式,

压杆稳定性计算

第16章压杆稳定 压杆稳定性的概念 在第二章中,曾讨论过受压杆件的强度问题,并且认为只要压杆满足了强度条件,就能保证其正常工作。但是,实践与理论证明,这个结论仅对短粗的压杆才是正确的,对细长压杆不能应用上述结论,因为细长压杆丧失工作能力的原因,不是因为强度不够,而是由于出现了与强度问题截然不同的另一种破坏形式,这就是本章将要讨论的压杆稳定性问题。 当短粗杆受压时(图16-1a),在压力F由小逐渐增大的过程中,杆件始终保持原有的直线平衡形式,直到压力F达到屈服强度载荷F s(或抗压强度载荷F b),杆件发生强度破坏时为止。但是,如果用相同的材料,做一根与图16-1a所示的同样粗细而比较长的杆件(图16-1b),当压力F比较小时,这一较长的杆件尚能保持直线的平衡形式,而当压力F逐渐增大至某—数值F1时,杆件将突然变弯,不再保持原有的直线平衡形式,因而丧失了承载能力。我们把受压直杆突然变弯的现象,称为丧失稳定或失稳。此时,F1可能远小于F s (或F b)。可见,细长杆在尚未产生强度破坏时,就因失稳而破坏。 图16-1 失稳现象并不限于压杆,例如狭长的矩形截面梁,在横向载荷作用下,会出现侧向弯曲和绕轴线的扭转(图16-2);受外压作用的圆柱形薄壳,当外压过大时,其形状可能突然变成椭圆(图16-3);圆环形拱受径向均布压力时,也可能产生失稳(图16-4)。本章中,我们只研究受压杆件的稳定性。

图16-3 所谓的稳定性是指杆件保持原有直线平衡形式的能力。实际上它是指平衡状态的稳定性。我们借助于刚性小球处于三种平衡状态的情况来形象地加以说明。 第一种状态,小球在凹面内的O点处于平衡状态,如图16-5a所示。先用外加干扰力使其偏离原有的平衡位置,然后再把干扰力去掉,小球能回到原来的平衡位置。因此,小球原有的平衡状态是稳定平衡。 第二种状态,小球在凸面上的O点处于平衡状态,如图16-5c所示。当用外加干扰力使其偏离原有的平衡位置后,小球将继续下滚,不再回到原来的平衡位置。因此,小球原有的干衡状态是不稳定平衡。 第三种状态,小球在平面上的O点处于平衡状态,如图16-5b所示,当用外加干扰力使其偏离原有的平衡位置后,把干扰力去掉后,小球将在新的位置O1再次处于平衡,既没有恢复原位的趋势,也没有继续偏离的趋势。因此。我们称小球原有的平衡状态为随遇平衡。 图16-5

力学计算公式

常用力学计算公式统计 一、材料力学: 1.轴力(轴向拉压杆的强度条件) σ=N/A≤[σ]maxmax其中,N为轴力,A为截面面积 2.胡克定律(应力与应变的关系) σ=Eε或△L=NL/EA 其中σ为应力,E为材料的弹性模量,ε为轴向应变,EA为杆件的刚度(表示杆件抵抗拉、压弹性变形的能力) 3.剪应力(假定剪应力沿剪切面是均匀分布的) τ=Q/A Q其中,Q为剪力,A为剪切面面积Q4.静矩(是对一定的轴而言,同一图形对不同的坐标轴的静矩不同,如果参考轴通过图形的形心,则x=0,c y=0,此时静矩等于零)c对Z轴的静矩S=∫ydA=yA czA其中:S为静矩,A为图形面积,y 为形心到坐标轴的c3m。距离,单位为惯性矩5. 轴的惯性矩=∫dAy对Ay轴的距离,单位为y为形心到z为图2zI 形面积,A其中: 常用简单图形的惯性矩33/12=bh/12,I=hbI矩形:yx4=πd/64 4m 圆形:I z44(πD1-a)/64,a=d/D=空心圆截面:I z(一)、求通过矩形形心的惯性矩 ∫Ay求矩形通过形心,的惯性矩I=x3h/2h/223 2dA

/3]/12=bh=[bybdy=IdydA=b·,则∫y()-h/2-h/2x(二)、求过三角 形一条边的惯性矩 /h·(h-y,dA=b·dy,b=bAyI=∫dA xxx32h2h dy yb/h)∫b(h-y)2) /h)dy=(yb –y=则I∫(0x03h4h3=bh=[by/3]-[by/4h]/1200 梁正应力强度条件(梁的强度通常由横截面上的正应 6.力控制)[/Wσ=M≤σ]zmaxmax为抗弯截面系数。M为弯矩,W其中:超静 定问题及其解法7.根据静力学平衡1对一般超静定问题的解决 办法是:()、根据变形协调条件列出、2条件列出应有的平衡方程;()根据力学与变形间的物理关系将变3()、变形几何方程;形几何方程改写成所需的补充方程。抗弯截面模量8. W=I/y cxx其中I为对形心轴的惯性矩x9.抛物线形曲线的主要特 性

皮带选型功率计算

皮带机电机功率的简便校验及实例分析 一、皮带机电机功率校验所涉及的主要计算公式: 1、电机功率计算公式: 电机功率=(0.85*0.9*圆周驱动力*带速)/1000 2、圆周驱动力计算公式: 公式一:圆周驱动力=2*主要阻力+附加阻力+特种主要阻力 +特种附加阻力+倾斜阻力 (该公式适用于输送机小于80m的条件下) 公式二:圆周驱动力=系数*主要阻力+附加阻力+特种主要阻力 +特种附加阻力+倾斜阻力 (该公式适用于输送机大于或等于80m的条件下,系数取值参考表一)表一:圆周驱动力系数选取参考表 3、主要阻力计算公式: 主要阻力= 0.03*输送机长度(即头尾滚筒中心距)*9.81*[上托辊质量/上托辊间距+下托辊质量/下托辊间距+2*每米长度输送带质量+皮带小 时输送料量/(3.6*带速)]。 其中:上、下托辊质量数值的选取,可参考表二。 每米长度输送带质量的选取,可参考表三。 表二:上、下托辊质量选取参考表

表三:每米长度输送带质量选取参考表

注:(1)、该表为上、下胶面厚度分别小于6mm、1.5mm条件下的质量取值,当上、下胶面厚度大于或等于6mm、1.5mm时,每米长度输送带质量 需要乘以1.13系数。 (2)对于棉帆布带和尼龙芯带的每米长度输送带质量,为了简便,按上、下胶面厚度分别为4.5mm、1.5mm考虑,选取相应数值。 3、附加阻力计算公式: 附加阻力=1.15*(皮带小时输送料量*带速) 4、主要特种阻力计算公式: 主要特种阻力=0.4*槽型系数*输送机长度*[每米长度输送带质量+皮 带小时输送料量/(3.6*带速)]*9.81*0.026 其中:槽型系数的选取,30°槽角时取0.4; 35°槽角时取0.43; 40°槽角时为0.5。 5、附加特种阻力计算公式: 附加特种阻力=1470*清扫器个数+带宽(米)*1500 6、倾斜阻力计算公式: 倾斜阻力=9.81*物料提升高度(米)*皮带小时输送料量/(3.6*带速) 二、具体校验实例: 以某干选皮带的电机功率校验为例。 根据某矿皮带长度为96米,据此可计算输送机长度(即头尾滚筒中心距)为:96÷2=48米。因此,计算该皮带圆周驱动力时,根据“适用于输送机小于80m的条件下”的要求,应选取圆周驱动力的计算公式一进行计

皮带输送机输送带张紧力的计算方法

皮带输送机输送带张紧力的计算方法 皮带输送机是一种在国民经济的许多领域都得到应用的连续输送设备。在皮带输送机的设计使用中,张紧力的研究和张紧装置的选用是极其重要的。输送带张力是一个沿输送区段变化的参数。它受各种因素的影响,如皮带输送机长度和局部区段的倾角正负、传动滚筒的数量和布置、驱动装置和制动装置的性能、输送带拉紧装置的类型及布置、载荷及运动状态等。 1、张紧力的计算 在带式输送机设计过程中,通常用逐点法计算张紧力。计算公司式为: S1=KS2+W (1) S1=S2eμα(2) 式中S1——输送带最大张力; K——改向滚筒阻力系数之积; S2——输送带与传动滚筒分离点的张力; W——输送机运行总阻力; α——围包角; μ——传动滚筒摩擦系数。 由式(1)式(2)可求解出S1和S2。从式(2)中看出围包角α与S1有着密切关系,因此传动滚筒围包角的选取对输送带最大张力影响是较大的。在设计过程中应选取最优的围包角,使输送带最大张力最小。 2、最小张紧力的限制条件 虽然对于输送带张力来说应尽可能地小,但它的最小张力也是具有限制条件的。首先最小张力就要受到启动张力的限制,因为对于皮带输送机而言,一般启动张力的确定非常重要,启动张力选小了,皮带在满载启动时就要打滑,造成启车困难。启动张力选大了,则输送带张力较大,就必须提高输送带的强度,同时也要增大传动滚筒的直径,这样就增加输送机的制造和使用成本。通常启动张力取正常运转时的1.2~1.6倍,这样既能满足输送机的启动要求,也不会过于增大输送带的最大张力。通常输送带的最小张紧力一般会受到如下限制: (1)在传动滚筒和制动滚筒上,为了通过摩擦力传递启动、制动或稳定工况下出现的总的滚筒圆周力F max,需要一定的最小输送带绕入张力和绕出张力。 (2)输送带相对垂度h r的最大值与托辊间距有关,在输送机稳定工况下应限制在1%以下;在非稳定工况下可允许有较大垂度。输送速度越高,物料块度越大,垂度应该越小。因此需要限制垂度的最小输送带张力。 (3)对于皮带输送机而言,初张力值的确定非常重要,初张力值选小了,皮带输送机在满载启动时就要打滑,造成起车困难。 (4)较长皮带输送机因区段的倾角和负荷变化,输送带张力在输送机上的分布也不相同,因此应将皮带机划分区段进行计算。找出输送带张力在皮带机上的分布规律,以便确定皮带输送机的张紧力和最小张力点。 3、张紧装置的作用 (1)保证输送带在传动滚筒分离点具有足够的张力,满足传动滚筒的摩擦传动要求。 (2)保证输送带最小张力点的张力,满足输送带的垂度限制条件。 (3)满足输送带张力引起的弹性伸长要求的拉紧行程。

皮带参数

为了改进和简化设计师的工作, Megadyne已经决定简化和重组 在一个计算手册中,无穷无尽的橡胶计时带。 在接下来的几页中,你将会得到所有需要的东西 关于技术计算、大小和数据的信息 关于伊奥兰,伊索兰,伊奥兰RPP,is冉RPP DD,is诺兰 银和Isoran黄金。 我们的产品种类繁多,功率不同 一些结构允许Megadyne总是最好的 对于非常广泛的应用程序的解决方案。 由于它们的特性,Megadyne的无限橡胶计时带可以在非常广泛的应用中使用。如电力传输(或输送),如: ?设备 ?颗粒挤出机的机器 ?木材切削机 ?多比织机的机器 ?食品搅拌机 ?冷却系统 ?无线电控制的汽车 ?权力轮椅 ?exible包装机

?纸箱行业 Megadyne的异兰传动带是橡胶氯丁橡胶带,玻璃绳适用于非常广泛的范围在电力传输领域的应用。这种类型的皮带将齿轮和v带的优点最小化 两者的缺点。 这些腰带允许: ?同步传输 ?高和恒定的角速度 ?高efciency ?对高峰负荷的阻力 ?低噪声传播 ?没有润滑 ?没有维护 ?直线加速至30米/秒

1)身体由高质量的氯丁二烯化合物制成: ?高耐疲劳 ?对热和环境因子的高抗性 ?对矿物油的良好抵抗 ?按时间计算的总形状 硬度根据皮带的种类而变化: ?74?沙伊奥兰、伊奥兰德、伊奥兰?RPP和is冉RPP DD ?90?沙伊兰?西尔弗和伊奥兰?金 银和金带具有更高的质量和特点,以获得更高的性能。 2)由高模数的玻璃纤维绳、S和Z扭曲而成的拉伸构件,这是:?高强度 ?非常好的抵抗压力 ?在时间上没有延长 ?对带体化合物的附着力很好 金带有特殊的高功率k玻璃线。 3)牙齿上的尼龙织物在工作中改善润滑;这允许: ?极端的耐磨性 ?低摩擦coefcient ?高传播efciency ?长带和滑轮使用寿命 金带有两种尼龙织物,以改善上述特征。 分类 3 - 2 1

杆件的内力计算

第三章 杆件的内力计算 内力的大小及其分布规律与杆件的变形与失效密切相关,因此内力分析是解决构件承载能力的基础。本章主要研究杆件的内力及其沿杆件轴线的变化规律,以便为杆件的强度、刚度和稳定性计算提供基础。 内容提要 一、内力与截面法 1畅内力的概念 作用于杆件上的载荷和支座约束力称为外力。由外力引起的杆件内部作用力的改变量,称为附加内力,简称为内力。 机械工程力学主要研究受力杆件横截面上的内力。根据连续性假设可知,内力在横截面上是连续分布的,组成一分布内力系,通常所说的内力是指该分布内力系的简化结果。 2畅截面法 将杆件假想地截开以显示内力,并由平衡方程确定内力的方法,称为截面法,它是计算杆件内力的基本方法,其步骤可归结为: (1)截———沿欲求内力的截面假想地将杆件截为两部分; (2)取———任取其中一部分为研究对象; (3)代———用欲求的内力代替另一部分对研究对象的作用; (4)平———列出研究对象的平衡方程,确定内力的大小和方向。 应用截面法时应注意: (1)截面不能取在集中力或集中力偶的作用面上; (2)未知的内力均设为正。 二、轴向拉压杆的内力与内力图 1畅轴向拉压杆件的受力与变形特征 杆件是直杆,作用于杆件上的外力合力作用线与杆件轴线重合,杆件变形是沿轴线方向的伸长或缩短。这种变形形式称为轴向拉伸或轴向压缩,这类杆件称为拉杆或压杆。 2畅拉压杆横截面上的内力———轴力 杆件轴向拉伸或压缩时,横截面上的内力与轴线重合,这种与杆件轴线重合的内力称为轴力,用FN表示。 使杆件受拉伸时的轴力为正,此时轴力背离截面,称为拉力;使杆件受压缩时的轴力为负,此时轴力指向截面,称为压力。 ·45·

材料力学的基本计算公式

材料力学的基本计算公式

材料力学的基本计算公式 外力偶矩计算公式(P功率,n转速) 1.弯矩、剪力和荷载集度之间的关系式 2.轴向拉压杆横截面上正应力的计算公式(杆件横 截面轴力F N,横截面面积A,拉应力为正) 3.轴向拉压杆斜截面上的正应力与切应力计算公式(夹角 a 从x轴正方向逆时针转至外法线的方位角为正) 4.纵向变形和横向变形(拉伸前试样标距l,拉伸后试样 标距l1;拉伸前试样直径d,拉伸后试样直径d1) 5.纵向线应变和横向线应变 6.泊松比

7.

8.圆轴扭转时横截面上任一点切应力计算公式(扭矩T, 所求点到圆心距离r) 9.圆截面周边各点处最大切应力计算公式 10.扭转截面系数,(a)实心圆 (b)空心圆 11.薄壁圆管(壁厚δ≤ R0/10 ,R0为圆管的平均半 径)扭转切应力计算公式 12.圆轴扭转角与扭矩T、杆长l、扭转刚度GH p的关 系式 13.同一材料制成的圆轴各段内的扭矩不同或各段的 直径不同(如阶梯轴)时或 14.等直圆轴强度条件 15.塑性材料;脆性材料 16.扭转圆轴的刚度条件? 或 17.受内压圆筒形薄壁容器横截面和纵截面上的应力 计算公式,

18.平面应力状态下斜截面应力的一般公式 , 19.平面应力状态的三个主应力 , , 20.主平面方位的计算公式 21.面内最大切应力 22.受扭圆轴表面某点的三个主应力,, 23.三向应力状态最大与最小正应力 , 24.三向应力状态最大切应力 25.广义胡克定律

26.四种强度理论的相当应力 27.一种常见的应力状态的强度条件 , 28.组合图形的形心坐标计算公式, 29.任意截面图形对一点的极惯性矩与以该点为原点 的任意两正交坐标轴的惯性矩之和的关系式 30.截面图形对轴z和轴y的惯性半径? , 31.平行移轴公式(形心轴z c与平行轴z1的距离为a, 图形面积为A) 32.纯弯曲梁的正应力计算公式 33.横力弯曲最大正应力计算公式

相关主题
文本预览
相关文档 最新文档