当前位置:文档之家› 国内外超级电容器生产企业

国内外超级电容器生产企业

国内外超级电容器生产企业
国内外超级电容器生产企业

超级电容器的生产企业

1、宁波南车能源有限公司

宁波南车新能源科技有限公司成立于2012年2月,是由中国南车集团株洲电力机车厂投资组建的控股子公司,注册资本8800万元人民币,主要从事超级电容器电极、超级电容器单体以及超级电容器储能系统的研发、制造和销售。

公司拥有超级电容核心技术,通过引进国外先进设备,组建大规模超级电容生产线,已具备最高2300V高压系列超级电容储能系统的生产能力。通过成立超级电容企业研发中心,不断引进高端人才,研发具有自主知识产权的350F及以上系列超级电容单体产品,目前公司已有发明专利4项、实用新型专利12项、外观专利3项、完成3000F、7500F及9500F单体产品与16V—125V系列标准模组的开发;并且开展多项国家科研项目,如《8000F石墨烯高比能超级电容器关键技术研究》、《方形12000F超级电容研制》等。

市场应用覆盖轨道交通、电动汽车、风力发电、智能电网及军事应用等新兴产业。

2、上海奥威科技开发有限公司

一、企业概况

上海奥威科技开发有限公司的主要产品是纽扣型和卷绕型超级电容器。发展策略:1、扩大自动化生产量并新建一个新生产基地用于大型生产。 2、与高校合作开发原材料,发展优势?产品性能稳定性好?特别针对智能和多功能电能仪表。其产品用于各种车辆、内燃机的启动,以及轻型车、电动公交车的牵引和其它领域,是国内公交车用超级电容器领域的佼佼者,所生产的超级电容器公交车已经用于世博会。

二、产品系列

1.无机超级电容

UCE系列:UCE15V50000 UCE15V80000A

UCA系列:无机超级电容单体

2.有机超级电容

UCR系列:UCR27V320有机卷绕型UCR27V3500有机卷绕型

3、北京合众汇能科技

一、企业概况

北京合众汇能科技有限公司是一家从事先进能源技术和产品的研发、生产与销售的高科技企业,主要开发与生产HCC系列有机高电压型双电层超级电容器。产品广泛应用于电动/混合动力汽车、大功率短时功能电源、太阳能储能、风力发电机变浆系统/ 储能缓冲系统、智能电表、电动自行车、电动玩具等领域。

二、产品系列

HCAP-M 15R 117 HCAP-M 15R 607 HCAP-M 30R 307

HCAP-M 30R 257 HCAP-M 30R 226 HCAP-M 30R 106

HCAP-M 30R 206 HCAP-M 30R 266 HCAP-M 60R 126

HCAP-M 125R 805 HCAP-M 250R 405 HCAP-M 600R 146

4、北京集星联合电子科技

一、企业概况

北京集星联合电子科技有限公司的主要产品——集星系列超级电容器。提供电压从~400V,容量从~10000F的各种类型超级电容器,还可根据用户需求定做其它各型超级电容器及其大功率系统。发展策略是1、增加纽扣型产品,大型产品也是重点。 2、提供产品的耐压性。发展优势:基板、电解液材料等主要原材料均自主研发和生产,成本低且可控。

二、产品系列

超级电容法拉电容超级电容器大容量电容器大功率电容器

5、哈尔滨巨容新能源

一、企业概况

哈尔滨巨容新能源有限公司自主研究、开发、生产的国家专利产品―超级电容器及配套系列产品。该产品具有充电速度快、使用寿命长、比功率高、耐低温、节能环保等特点。产品广泛应用于港口起重设备电动车的牵引电源,汽车的启动电源,电动工具,安全气囊,电磁开关电源,功率补偿系统, UPS电源,电力峰谷平衡,风力发电机的能量储存装置。

二、产品系列

VCT超级电容系列 VCS超级电容系列 VCH超级电容系列

ECT超级电容系列配套产品系列

6、锦州凯美能源

一、企业概况

国内专业生产超级电容器的高新技术企业。生产卷绕型系列、组合型系列、叠片型系列,以及大容量10V,20V,50V,100V,200V,300V,400V系列法拉电容模组、模块系列产品等。一百多个规格型号超级电容器的能力。发展策略:重点发展卷绕型。发展优势:产能充足。

二、产品系列

卷绕型系列卷绕型系列叠片型系列组合型系列

7、杭州富凯超级电容有限公司

一、企业概况

杭州富凯超级电容有限公司主要从事(双电层电容器)超级电容器的开发,生产和销售,应用领域: 无线通讯、移动电脑、工业/汽车和消费电子等。

二、产品系列

超级电容器黄金电容双层电容

8、山东神工海特电子科技有限公司

一、企业概况

山东神工海特电子科技有限公司一家集超级电容(法拉电容)、圆柱型二次可充锂离子电池、新型一次性锂铁电池的研发、制造、销售和服务于一体的高科技企业,月产超级电容器300多万只,广泛应用于汽车音响、税控机、智能“三表”、太阳能、电动汽车、电动工具、军工等领域。

二、产品系列

超级电容器法拉电容

9、安徽铜峰电子股份有限公司

一、企业概况

安徽铜峰电子股份有限公司是一家集有机薄膜电容器、晶体器件及其上游材料的研发、制造与销售于一体的专业化公司。

二、产品系列

超级电容器有机薄膜电容器

10、石家庄高达新能源科技有限公司

一、企业概况

石家庄高达新能源科技有限公司,产品种类很多,已经广泛应用在十几个行业已达十年之久。主要有:铁路、电力、化纤、化工、钢铁、新型超级启动蓄电池、大功率储能螺柱焊机、智能纺织机械等。

二、产品系列

法拉级电容器超级电容器

11、芜湖德林电子厂

一、企业概况

芜湖德林电子厂专业生产新型超级电容器的厂家,现生产的超级电容器产品多达几十种型号。

二、产品系列

新型超级电容器

12、杭州奥容电子科技有限公司

一、企业概况

杭州奥容电子科技有限公司是一家专业致力于超级电容器产品生产研究和科技开发的高新技术企业。公司是国内最先进的超级电容器研究和生产的企业之一,能够批量生产几十种规格的超级电容器产品

二、产品系列

超级电容器法拉电容

13、锦州百纳电气

一、企业概况

辽宁百纳电气有限公司专业开发、生产超级电容器储能模块和储能电源系统,可根据客户要求定制各种电压等级和容量的模块及系统。公司产品在包括混合动力汽车、电动车、太阳能光伏产品、风力发电变桨电源、车辆低温启动、军工装备、汽车电子等诸多领域得到应用,是高新技术企业。

二、产品系列

超级电容器超级电容器超级电容器

组合型超级电容器新能源汽车用超级电容器

风力发电变桨系统用超级电容器智能电网专用超级电容器

超级电容器模块定制超级电容器专用电子负载

大功率超级电容器测试系统汽车启动用超级电容器模块

风力变桨专用超级电容器电源超级电容器测试设备超级电容器

14、北京杰希康科贸有限公司

一、企业概况

北京杰希康科贸有限公司主要致力于法拉电容/超级电容的销售、技术支持等。凭借多年元器件行业的资源优势,可提供各类性价比合理的常规电容、压敏电阻、国内外军品/民用集成电路等电子元器件。二、产品系列

KOPCHIP超级电容:贴片型SM系列纽扣型DCS系列纽扣型DCLH/DCLT系列

方形DA系列圆柱型DR系列组合型DRM/HPM系列

大容量DLM系列圆柱型DL系列贴片型DM/DMS系列

大容量DTL系列超级电容

3.5F法拉电容

15、厦门法拉电子股份有限公司

一、企业概况

厦门法拉电子股份有限公司是一家专业从事薄膜电容器和薄膜电容器用金属化膜开发与生产的上市公司,产品广泛用于通信、家电、电源、绿色照明、计算机、汽车电子及工业控制等各个领域。二、产品系列

全系列薄膜电容器和薄膜电容器所用金属化膜

国内其他一些企业:

1.成都宏明电子股份有限公司(715厂)

2.北京飞行电子总公司(国营第798厂)

3.南京电子总公司

4.江苏双登集团有限公司

5.深圳市惠程高能能源科技有限公司

6.北京金正平公司

7.大庆振富科技

8.西德乐信电子有限公司

9.湖南业翔晶科新能源有限公司

10.深圳市今朝时代新能源技术有限公司

11.深圳富威康超级电容科技有限公司

12.广东省东莞宏明南方电子陶瓷有限公司

13.肇庆华兴创生电子有限公司

14.北京松下精密电容有限公司

15.无锡通容电子有限公司

16.上海飞利浦三叶电容器有限公司

17.深圳鸣曦电子有限公司

18.深圳鼎甲荣科技有限公司

19.深圳超荣电源科技有限公司

20.南京军超电子有限公司

21.天津翔驰电子有限公司

22.宁波新谷科技公司

23.杭州奥容电子有限公司

24.基美电子(苏州)有限公司

25.万裕三信电子(东莞)有限公司

26.桂林电力电容器有限责任公司

27.荣成市飞尔可电子有限公司

28.安徽飞达实业股份有限公司

29.西安ABB电力电容器有限公司

30.东莞世昕电子有限公司

31.东莞铭坤电子责任有限公司

32.智宝(苏州)有限公司

33.苏州睿尔嘉特电子有限公司

34.青岛提迪凯电子有限公司

35.保定亿普新能电子有限责任公司

36.陕西铱星科技有限公司

37.长沙巨力电子科技有限公司

38.郑州伟华电子科技有限公司

39.桂林电力电容器有限责任公司

40.荣成市飞尔可电子有限公司

国外主要生产企业:

1、美国 MAXWELL 公司

2、韩国 NESS 公司

3、俄罗斯 ELIT 公司

4、俄罗斯 ESMA 公司

5、日本 E L NA 公司

6、日本 PANASONIC 公司

7、日本 NEC-TOKIN 公司

8、韩国 K O R C H I P 公司

9、韩国 NUINTEK 公司

超级电容器与电池的优缺点对比

超级电容器比电池更好? ◆ 超级电容器不同于电池,在某些应用领域,它可能优于电池。有时将两者结合起来,将电容器的功率特性和电池的高能量存储结合起来,不失为一种更好的途径。 ◆ 超级电容器在其额定电压范围内可以被充电至任意电位,且可以完全放出。而电池则受自身化学反应限制工作在较窄的电压范围,如果过放可能造成永久性破坏。 ◆ 超级电容器的荷电状态(SOC)与电压构成简单的函数,而电池的荷电状态则包括多样复杂的换算。 ◆ 超级电容器与其体积相当的传统电容器相比可以存储更多的能量,电池与其体积相当的超级电容器相比可以存储更多的能量。在一些功率决定能量存储器件尺寸的应用中,超级电容器是一种更好的途径。 ◆ 超级电容器可以反复传输能量脉冲而无任何不利影响,相反如果电池反复传输高功率脉冲其寿命大打折扣。 ◆ 超级电容器可以快速充电而电池快速充电则会受到损害。 ◆ 超级电容器可以反复循环数十万次,而电池寿命仅几百个循环。 超级电容与电池拉平差距的机会? 尽管超级电容器的制作成本每年都在以低于10%的比例减少,但这项技术依然不能在运输行业和自然能源采集方面扩大生产规模。相比电池领域,超级电容器的技术过于落后,想要缩小两者在研发方面的差距,首要任务应解决如下问题: ■ 增加超级电容器生产厂商数量,通过市场竞争的手段刺激相关技术的研发; ■ 扩大高比功率超级电容器的生产规模,实现突破百万件的年生产量; ■将超级电容器当前的制造成本降低50%; ■ 拟定一个超级电容器可持续发展战略,主要针对更高效电极材料的探索。 要达到上述目标需要厂商对超级电容器市场有一个逐年上升的投资力度,主要用于在设备的研发和生产两方面。与此同时,政府扩大资金和技术支持也将起到至关重要的作用。 ————鸣曦电子

超级电容器综述

题目超级电容器技术综述 学号 班级_____________ 学生 _______________ 扌旨导教师_______ 杨莺_________________ ______ 2014 _______ 年

超级电容器技术综述 摘要:近年来,随着经济的迅猛发展,人们在实际应用中对储能装置各项技术指标的需求不断提高,而当前电池的标准设计能力已经逐渐无法满足人们的要求,超级电容器应运而生。超级电容器是一种新型储能装置,它具有充电时间短、使用寿命长、温度特性好、节约能源和绿色环保等特点。作为一种新的储能元件,它填补了传统电容器和电池之间的空白, 能提供比普通电容器更高的能量和比二次电池更高的功率以及更长的循环寿命, 同时还具有比二次电池耐温和免维护的 优点。本文主要针对超级电容器的储能机理、超级电容器电极材料、超级电容器的发展动态以及未来应用的展望进行了简单的论述。 关键词:超级电容器;储能机理;活性炭;发展现状;应用展望。 A Review of the technology of super capacitor Abstract :In recent years,With the rapid development of economy,People advance the need that can equip each technique index sign to continuously raise at practical application 。But the standard design ability of the current battery have already canned not satisfy people's request gradually ,The super capacitor emerges with the tide of the times 。The super capacitor is a kind of new energy storing device, it has many characteristics such as short refresh time, long service life, good temperature characteristic, energy conservation,Environment protecting.As a new kind energy storage element, it filled up traditional capacitor and the blank of battery.It can provide energy than the common capacitor higher and the power than secondary battery higher and the longer circulating life.Meanwhile it has the advantage of rating of temperature and no maintenance than secondary battery.The text mainly aims at the keeping of super capacitor development dynamic state of ability mechanism, super capacitor electrode material, super capacitor and in the future apply of the outlook carried on simple treatise. Key Words :super capacitor; The energy storage mechanism; active carbon; development trend; Application trend . 引言近几年出现的超级电容器,它兼有物理电容和电池的特性,是人们未来探索的确定方向。超级电容器是比物理电容器更好的储能元件。目前,用于超级电容器的电极材料主要是炭材料,由于一些炭材料比如氧化锰低价高能,所以受到很多科学家的青睐。超级电容器自面市以来,全球需求量快速扩大,已成为化学电源领域内新的产业亮点。超级电容器在电动汽车、混合燃料汽车、特殊载重汽车、电力、消费性电子产品等众多领域有着巨大的应用价值和市场潜力,被世界各国所广泛关注。就目前的国际形势来看,超级电容器有着很大的应用前景。 1 超级电容器概述 1.1超级电容器的定义及特点

【生产管理】铝电解电容器生产工艺流程(DOC 6页)

铝电解电容器生产工艺流程(DOC 6 页) 部门: xxx 时间: xxx 制作人:xxx 整理范文,仅供参考,勿作商业用途

铝电解电容器生产工艺流程(附图片) (2009/12/18 15:19) 铝电解电容器主要原材料: 阳极箔、阴极箔、电解纸、电解液、导箔、胶带、盖板、铝壳、华司、套管、垫片等 生产工序 切割、卷绕、含浸、装配、老化、封口、印刷、套管、测量、包装、检验等 电解电容原材料分切 小型电解电容器自动卷绕机

大型电解电容器自动卷绕机 电解电容芯子含浸 电解电容高温老化 电解电容性能测试

铝电解电容制造进程: 第一步:铝箔的腐化。 倘若拆开一个铝电解液电容的外壳,你会看到内里是几多层铝箔和几多层电解纸,铝箔和电解纸贴附在一起,卷绕成筒状的机关,这样每两层铝箔中间便是一层吸附了电解液的电解纸了。 铝箔的制造要领。为了增大铝箔和电解质的战争面积,电容中的铝箔的外观并不是平滑的,而是通过电化腐化法,使其外观形成崎岖不屈的形状,这样不妨增大7~8倍的外观积。电化腐化的工艺是较量庞杂的,此中涉及到腐化液的种类、浓度、铝箔的外观状态、腐化的速率、电压的动态均衡等等。 第二步:氧化膜形成工艺。 铝箔通过电化腐化后,就要运用化学方法,将其外观氧化成三氧化二铝——也便是铝电解电容的介质。在氧化之后,要仔细检讨三氧化二铝的外观,看是否有雀斑也许龟裂,将不足格的清除在外。 第三步:铝箔的切割。 这个措施很简单明白。便是把一整块铝箔,切割成几多小块,使其适当电容制造的必要。 第四步:引线的铆接。 电容外部的引脚并不是直连接到电容内部,而是经过内引线与电容内部连结的。因此,在这一步当中我们就必要将阳极和阴极的内引线,与电容的外引线经过超声波键正当连结在一起。外引线通常采纳镀铜的铁线也许氧化铜线以削减电阻,而内引线则直接采纳铝线

超级电容器和电池的区别.doc

超级电容器和电池的区别 超级电容器与电池的比较 超级电容器不同于电池,在某些应用领域,它可能优于电池。有时将两者结合起来,将电容器的功率特性和电池的高能量存储结合起来,不失为一种更好的途径。 超级电容器在其额定电压范围内可以被充电至任意电位,且可以完全放出。而电池则受自身化学反应限制工作在较窄的电压范围,如果过放可能造成永久性破坏。 超级电容器的荷电状态(SOC)与电压构成简单的函数,而电池的荷电状态则包括多样复杂的换算。 超级电容器与其体积相当的传统电容器相比可以存储更多的能量,电池与其体积相当的超级电容器相比可以存储更多的能量。在一些功率决定能量存储器件尺寸的应用中,超级电容器是一种更好的途径。 超级电容器可以反复传输能量脉冲而无任何不利影响,相反如果电池反复传输高功率脉冲其寿命大打折扣。 超级电容器可以快速充电而电池快速充电则会受到损害。 超级电容器可以反复循环数十万次,而电池寿命仅几百个循环。

如何选择超级电容器 超级电容器的两个主要应用:高功率脉冲应用和瞬时功率保持。高功率脉冲应用的特征:瞬时流向负载大电流;瞬时功率保持应用的特征:要求持续向负载提供功率,持续时间一般为几秒或几分钟。瞬时功率保持的一个典型应用:断电时磁盘驱动头的复位。不同的应用对超电容的参数要求也是不同的。高功率脉冲应用是利用超电容较小的内阻(R),而瞬时功率保持是利用超电容大的静电容量(C)。 两种计算公式和应用实例 C(F):超电容的标称容量; R(Ohms):超电容的标称内阻; ESR(Ohms):1KZ下等效***电阻; Uwork(V):在电路中的正常工作电压 Umin(V):要求器件工作的最小电压; t(s):在电路中要求的保持时间或脉冲应用中的脉冲持续时间; Udrop(V):在放电或大电流脉冲结束时,总的电压降; I(A):负载电流;

超级电容器的组装及性能测试实验指导书 (1)汇总

超级电容器的组装及性能测试指导书 实验名称:超级电容器的组装及性能测试 课程名称:电化学原理与方法 一、实验目的 1.掌握超级电容器的基本原理及特点; 2.掌握电极片的制备及电容器的组装; 3.掌握电容器的测试方法及充放电过程特点。 二、实验原理 1.电容器的分类 电容器是一种电荷存储器件,按其储存电荷的原理可分为三种:传统静电电容器,双电层电容器和法拉第准电容器。 传统静电电容器主要是通过电介质的极化来储存电荷,它的载流子为电子。 双电层电容器和法拉第准电容储存电荷主要是通过电解质离子在电极/溶液界面的聚集或发生氧化还原反应,它们具有比传统静电电容器大得多的比电容量,载流子为电子和离子,因此它们两者都被称为超级电容器,也称为电化学电容器。 2.双电层电容器 双电层理论由19世纪末Helmhotz等提出。Helmhotz模型认为金属表面上的净电荷将从溶液中吸收部分不规则的分配离子,使它们在电极/溶液界面的溶液一侧,离电极一定距离排成一排,形成一个电荷数量与电极表面剩余电荷数量相等而符号相反的界面层。于是,在电极上和溶液中就形成了两个电荷层,即双电层。 双电层电容器的基本构成如图1,它是由一对可极化电极和电解液组成。 双电层由一对理想极化电极组成,即在所施加的电位范围内并不产生法拉第反应,所有聚集的电荷均用来在电极的溶液界面建立双电层。 这里极化过程包括两种: (1)电荷传递极化(2)欧姆电阻极化。 当在两个电极上施加电场后,溶液中的阴、阳离子分别向正、负电极迁移,在电极表面形成双电层;撤消电场后,电极上的正负电荷与溶液中的相反电荷离子相吸引而使双电层稳定,在正负极间产生相对稳定的电位差。当将两极与外电路连通时,电极上的电荷迁移而在外电路中产生电流,溶液中的离子迁移到溶液中成电中性,这便是双电层电容的充放电原理。

电解电容器测试方法详解

电解电容器测试方法详解 1目的 为了规范电解电容器来料检验及抽样计划,并促进来料质量的提高,特制定该检验规范。 2适用范围 适用于本公司IQC对电解电容器来料的检验。 3准备设备、工具: 所需工具及其规格型号如表一所示: 表一(工具规格型号) 品名规格/型号数量品名规格/型号数量 调压器0V~450V/三相1台电流表UNI-T 1台 万用表FLUKE-117C 1台游标卡尺mm/inch 1把电桥测试仪Zen tech 1台双综示波器LM620C型1台高低温交变湿 1台温度计1支热试验箱 4外观物理检测 4.1首先需检查待测电容是否有正规的《产品规格说明书》,其中需包括产品名称、规格型号、安装尺寸、工艺要求、技术参数以及供应商名称、地址及其联系方式,以确保此批次产品是由正规厂商提供。电容器上的标识应包括:商标、工作电压、标准静电容量、极性、工作温度范围。4.2参考《产品规格说明书》的工艺参数,观察电容的外观、颜色、及其材质等参数是否与其所标注的工艺指标一致。 4.3用游标卡尺对电容的安装尺寸进行确认,确保电容的直径、高度以及引出端的直径与间距等参数在产品工艺的误差范围之内,且外观尺寸要符合本公司选用要求。 4.4 检查电容的外观,确保其外观整洁、无明显的变形、破损、裂纹、花斑、污浊、锈蚀等不良状况;且其标识清晰牢固、正确完整。 4.5检查其引出端子,保证其端子端正、无氧化、无锈蚀、无影响其导电性能等状况,且引出端子无扭曲、变形和影响插拔的机械损伤。 4.6 检查电解电容标注的生产日期不应超过半年,并作好记录。 5容量与损耗测试 5.1用电桥测试其实际容量与标称容量是否一致(电解电容一般会有±20%的误差范围),其损耗角正切值tanθ(即D值)大小是否符合国家标准(电解电容器tanθ≤0.25)。 5.2对Zen tech电桥测试仪的使用方法:正确连接电源以后,按“POWER”键开启测试仪的工作电压;按“LCR”键选择测试类型(L:电感,C:电容,R:电阻)。

超级电容器研究综述

一、超级电容器的发展与进步 (一)概述 在古代,人们发现了与琥珀及橡皮相摩擦,引起表面贮存电荷的可能性。然而这一效应的缘由直到18世纪中叶方被人们理解。140年后,人们开始对电有了分子原子级的了解。早期的有关莱顿瓶的发现和研究,开启了电容器的序幕。之后,电容器不断的发展起来,现如今,其发展起来的电化学超级电容器,已经应用于国防设备、电力设备、通讯设备、铁路设施、电子产品、汽车工业等方方面面,成为当代社会不可缺少的一部分。 电能能够以两种截然不同的方式存贮:一种间接方式是作为潜在可用的化学能,存贮在电池里。另一种直接的方式,则是以静电学形式将正负电荷置于一个电容器的不同极板之间来存贮电能。超级电容器在存贮电荷时有着两种原理,一种是通过双电层原理,以非法第模式来存贮电能;而另一种则是法拉第模式,通过发生氧化还原反应来产生赝电容。目前双电层型超级电容器一般采用碳材料做电极,通过碳材料的大的比表面积来增加双电层的面积,而赝电容型超级电容器一般采用氧化物或聚合物的材料来做为电极。同时,二者在制作超级电容器的时候也可以并用,从而使得超级电容器也可以划分为对称超级电容器和非对称超级电容器,对称即指电容器的两极的材料相同,非对称则不同。在电解质方面,超级电容器绝大多数均采用液体电解质,如水及其它有机溶剂。 超级电容器的电化学性能分析有很多方法,但通常都包括以下四种图:循环伏安曲线,恒流充放电曲线,交流阻抗谱,循环稳定性曲线。通过这四种图可以比较明确地判断出一个超级电容器的电化学性能的好坏,具体判断方法之后会详细说明。 超级电容器有着非常高的功率密度,但是其能量密度却比较低,它有着极好的循环充放电稳定性但是电压窗口却比较窄。但是人们也在对其进行着不断的研究来改善超级电容器的这些弊端。 (二)超级电容器的原理 超级电容器又称为电化学电容器,是介于传统电容器和电池之间的新型电化学储能器件,它的出现填补了Ragone图中传统电容器的高比功率和电池的高比能量之间的空白。一方面,与传统电容器相比,超级电容器的电极材料往往选用高比表面积材料,如活性碳,通过静电作用在固/液界面形成对峙的双电层存储电荷,因此超级电容器拥有比传统电容器高的能量密度,静电容量能够达到千法拉至万法拉级;另一方面,与电池能量存储机理类似,超级电容器可以通过法拉第氧化还原反应完成电荷存储和释放,由于主要依靠电极表面或近表面的活性材料存储电荷,超级电容器与电池相比,能量密度较低,但是具有高的功率密度和循环稳定性。 1 传统电容器 传统的平行板电容器是所有静电电容器储能的基础,传统电容器电能的储存来源于电荷在两极板上聚集而产生电场。平行板电容器的静电电容的计算公式为: r是两极板材料的相对介电常数,0是真空介电常数,A是电极板的正对面积,d 是两极板的距离。 2 双电层超级电容器 双电层电容器是通过静电电荷分离,依靠固/液界面的双电层效应完成能量的存储和转化。电解液离子分布可为两个区域——紧密层和扩散层。其双电层电容可视为由紧密层电容和扩散层电容串联而成。双电层电容器正是基于上述理论发展起来的。充电时,电子经外电

超级电容器原理及电特性

超级电容器原理及电特性 Principle & Electric characteristics of Ultra capacitor 辽宁工学院陈永真孟丽囡宁武 Chen Yongzhen Liao Ning Institute of Technology 摘要:叙述了超级电容器的基本结构和工作原理,比较全面地介绍了超级电容器的特点和在特定测试条件下的电特性,分析了如较大的ESR、发热等特殊电特性产生的原因,提出一些注意事项。 关键词:超级电容器 ESR 放电电流 Abstract:Basic structure & principle of ultra-capacitor are described in this paper. The characteristics about ultra-capacitor and electric characteristics in special measuring conditions are also introduced in detail. Some reasons of special electric characteristics are analyzed, such as big ESR and heat, at last some attentions are also put forward. Key words: ultra-capacitor ESR Discharging current 超级电容器是一种高能量密度的无源储能元件,随着它的问世,如何应用好超级电容器,提高电子线路的性能和研发新的电路、电子线路及应用领域是电力电子技术领域的科技工作者的一个热门课题。 1. 级电容器的原理及结构 1.1 超级电容器结构 图一为超级电容器的模型,超级电容器中,多孔化电极采用活性炭粉和活性炭和活性炭纤维,电解液采用有机电解质,如丙烯碳酸脂(propylene carbonate)或高氯酸四乙氨(tetraetry lanmmonium perchlorate)。工作时,在可极化电极和电解质溶液之间界面上形成的双电层中聚集的电容量c由下式确定: 其中ε是电解质的介电常数,δ是由电极界面到离子中心的距离,s是电极界 面的表面面积。 由图中可见,其多孔化电极是使用多孔性的活性碳有极大的表面积在电解液中吸 附着电荷,因而将具有极大的电容量并可以存储很大的静电能量,超级电容器的这一 特性是介于传统的电容器与电池之间。电池相较之间,尽管这能量密度是5%或是更 少,但是这能量的储存方式,也可以应用在传统电池不足之处与短时高峰值电流之中。 这种超级电容器有几点比电池好的特色。 图1超级电容器结构框图 1.2 工作原理 超级电容器是利用双电层原理的电容器,原理示意图如图2。当外加电压加到 超级电容器的两个极板上时,与普通电容器一样,极板的正电极存储正电荷,负极板存储负电荷,在超级电容器的两极板上电荷产生的电场作用下,在电解液与电极间的界面上形成相反的电荷,以平衡电解液的内电场,这种正电荷与负电荷在两个不同相之间的接触面上,以正负电荷之间极短间隙排列在相反的位置上,这个电荷分布层叫做双电层,因此电容量非常大。当两极板间电势低于电解液的氧化还原电极电位时,电解液界面上电荷不会脱离电解液,超级电容器为正常工作状态(通常为3V以下),如电容器两端电压超过电解液的氧化还原电极电位时,电解液将分解,为非正常状态。由于随着超级电容器放电,正、负极板上的电荷被外电路泄放,电解液的界面上的电荷响应减少。由此可以看出:超级电容器的充放电过程始终是物理过程,没有化学反应。因此性能是稳定的,与利用化学反应的蓄电池是不同的。 2.3 主要特点 由于超级电容器的结构及工作原理使其具有如下特点:

电解电容制造过程

铝电解液电容的制造过程 发布:2011-08-31 | 作者: | 来源: wanghuixiang| 查看:393次 | 用户关注: 贴片铝电解液电容的制造过程包括九个步骤,我们就按顺序逐一为大家讲解:第一步:铝箔的腐蚀。假如拆开一个铝电解液电容的外壳,你会看到里面是若干层铝箔和若干层电解纸,铝箔和电解纸贴附在一起,卷绕成筒状的结构,这样每两层铝箔中间就是一层吸附了电解液的电解纸了。因此首先我们谈谈铝箔的制造方法。为了增大铝箔和电解质的接触面积,电容中的铝箔的表面并不是光滑的,而是经过电化腐蚀法,使其表面形成凹凸不平的形状,这样 贴片铝电解液电容的制造过程包括九个步骤,我们就按顺序逐一为大家讲解:第一步:铝箔的腐蚀。 假如拆开一个铝电解液电容的外壳,你会看到里面是若干层铝箔和若干层电解纸,铝箔和电解纸贴附在一起,卷绕成筒状的结构,这样每两层铝箔中间就是一层吸附了电解液的电解纸了。 因此首先我们谈谈铝箔的制造方法。为了增大铝箔和电解质的接触面积,电容中的铝箔的表面并不是光滑的,而是经过电化腐蚀法,使其表面形成凹凸不平的形状,这样能够增大7~8倍的表面积。普通铝箔一平方米的价格在10元人民币左右,而经过这道工艺之后,它的价格将升到40~50元/平米。电化腐蚀的工艺是比较复杂的,其中涉及到腐蚀液的种类、浓度、铝箔的表面状态、腐蚀的速度、电压的动态平衡等等。我们国家目前在这方面的制造工艺还不够成熟,因此用于制造电容的经过电化腐蚀的铝箔目前还主要依赖进口。 第二步:氧化膜形成工艺。 铝箔经过电化腐蚀后,就要使用化学办法,将其表面氧化成三氧化二铝——也就是铝电解电容的介质。在氧化之后,要仔细检查三氧化二铝的表面,看是否有斑点或者龟裂,将不合格的排除在外。 第三步:铝箔的切割。 这个步骤很容易理解。就是把一整块铝箔,切割成若干小块,使其适合电容制造的需要。 第四步:引线的铆接。 电容外部的引脚并不是直接连到电容内部,而是通过内引线与电容内部连接的。因此,在这一步当中我们就需要将阳极和阴极的内引线,与电容的外引线通过超声波键合法连接在一起。外引线通常采用镀铜的铁线或者氧化铜线以减少电阻,而内引线则直接采用铝线与铝箔直接相连。大家注意这些小小的步骤无一不对精密加工要求很高。

2019超级电容器行业分析报告及技术研究现状

2012超级电容器行业分析报告及技术研究现状 一、电容器、超级电容器行业分析 超级电容器根据制造工艺和外形结构可划分为钮扣型、卷绕型和大型三种类型三者在容量上大致归类为5F以下、5F~200F、200F以上它们由于其特点的不同运用领域也有所差异。 钮扣型产品具备小电流、长时间放电的特点,可用在小功率电子产品及电动玩具产品中。而卷绕型和大型产品则多在需要大电流短时放电,有记忆存储功能的电子产品中做后备电源,适用于带CPU的智能家电、工控和通信领域中的存储备份部件。另外大型超级电容器通过串并联构成电源系统可用在汽车等高能供应装置上。 表1、表2是对三种超级电容器产业规模进行调查而得到的数据整理而成的,分别反映了世界和中国超级电容器产业的情况。从这两个表中我们不难发现三个问题: 1、超级电容器产业的发展非常迅速,无论是钮扣型还是卷绕型或是大型超级电容器,其产业规模都在高速扩展。 2、中国在钮扣型超级电容方面的竞争力不明显,在中国钮扣型市场中,海外产品几乎占据了90%以上的份额,竞争非常激烈。数据表明,近几年国内厂家的市场份额也在逐步扩大。 3、卷绕型和大型方面,中国的技术水平与国际接近,市场份额也比较理想。近几年,中国厂商的销售收人也在呈几何倍数增长。据调查,国产超级电容器已占有中国市场60%~70%的份额。 二、超级电容器技术研究现状

超级电容器是利用双电层原理的电容器。当外加电压加到超级电容器的两个极板上时,与普通电容器一样,极板的正电极存储正电荷,负极板存储负电荷,在超级电容器的两极板上电荷产生的电场作用下,在电解液与电极间的界面上形成相反的电荷,以平衡电解液的内电场,这种正电荷与负电荷在两个不同相之间的接触面上,以正负电荷之间极短间隙排列在相反的位置上,这个电荷分布层叫做双电层,因此电容量非常大。当两极板间电势低于电解液的氧化还原电极电位时,电解液界面上电荷不会脱离电解液,超级电容器为正常工作状态(通常为3V以下),如电容器两端电压超过电解液的氧化还原电极电位时,电解液将分解,为非正常状态。由于随着超级电容器放电,正、负极板上的电荷被外电路泄放,电解液的界面上的电荷响应减少。由此可以看出:超级电容器的充放电过程始终是物理过程,没有化学反应。因此性能是稳定的,与利用化学反应的蓄电池是不同的。 超级电容器因其独特的双层大容量储存结构对原材料及制作工艺提出了极高的要求。电极、电解质和隔膜的组成和质量对超级电容器的性能起着决定性的影响。下面将从原材料,制作工艺等几个方面对超级电容器的技术现状进行分析。 2.1正极材料 目前用作超级电容器电极的材料主要有三类:碳材料、金属氧化物材料和导电聚合物材料。 2.1.1 碳材料 碳是最早被用来制造超级电容器的电极材料。碳电极电容器主要是利用储存在电极与电解液界面的双电层能量,其比表面积是决定电容器容量的重要因素。尽管高比表面的碳材料比表面积越大,容量也越大,但实际利用率并不高,因为多孔碳材料中孔径一般要2nm及 以上的空间才能形成双电层,从而进行有效的能量储存,而制备的碳材料往往存在微孔(孔 径小于2nm)不足的情况。所以这个系列主要是向着提高有效比表面积和可控微孔孔径(孔径 大于2nm)的方向发展。除此之外,碳材料的表面官能团、导电率、表观密度等对电容器性 能也有影响。现在已有许多不同类型的碳材料被证明可用于制作超级电容器的极化电极,如活性炭、活性炭纤维、碳气溶胶、碳纳米管以及某些有机物的裂解碳化产物。 2.1.2 金属氧化物材料 金属氧化物作为超级电容器电极材料的研究是基于法拉第准电容储能原理,即是在氧化物电极表面及体相发生的氧化还原反应而产生的吸附电容。其电容量远大于活性炭材料的双电层电容,但双电层电容器瞬间大电流放电的功率特性比法拉第电容器好。金属氧化物作为超级电容器电极材料有着潜在的研究前景。近年来金属氧化物电极材料的研究工作主要围绕以下两个方面进行:(l)制备高比表面积的RuO2活性物质。(2) RuO2与其它金属氧化物复合。

电池和超级电容器基础知识

一、电池基础知识 1、一次电池和充电电池有什么区别? 电池内部的电化学性决定了该类型的电池是否可充,根据它们的电化学成分和电极的结构可知,真正的可充电电池的内部结构之间所发生反应是可逆的。理论上,这种可逆性是不会受循环次数的影响,既然充放电会在电极体积和结构上引起可逆的变化,那么可充电电池的内部设计必须支持这种变化,既然,一次电池仅做一放电,它内结构简单得多且不需要支持这种变化,因此,不可以将一次电池拿来充电,这种做法很危险也很不经济,如果需要反复使用,应有尽有选择真正的循环次数在1000次左右的充电电池,这种电池也可称为一次电池或蓄电池。 2、一次电池和二次电池还有其他的区别吗? 另一明显的区别就是它们能量和负载能力,以及自放电率,二次电池能量远比一次电池高,然而他们的负载能力相对要小。 3、可充电便携式电池的优缺点是什么? 充电电池寿命较长,可循环1000次以上,虽然价格比干电池贵,但如果经常使用的话,是比较划算的。充电电池的容量比同规格的碱锰电池或锌碳电池低,比如,他们放电较快。 另一缺点是由于他们几近恒定的放电电压,很难预测放电何时结束。当放电结束时,电池电压会突然降低。假如在照相机上使用,突然电池放完了电,就不得不终止。 但另一方面可充电电池能提供的容量比太部分一次电池高。 但Li-ion电池却可被广泛地用照相器材中,因为它容量高,能量密度大,以及随放电深度的增加而逐渐降低的放电电压。 4、充电电池是怎样实现它的能量转换? 每种电池都具有电化学转换的能力,即将储存的化学能直接转换成电能,就二次电子(也叫蓄电池)而言(另一术语也称可充电使携式电池),在放电过程中,是将化学能转换成电能;而在充电过程中,又将电能重新转换成化学能。这样的过程根据电化学系统不同,一般可充放电500次以上,而我司产品li-ion可重复充放电1000次以上。Li-ion是一种新型的可充电便携式电池。它的额定电

Maxwell超级电容器基本原理及性能特点

Maxwell超级电容器基本原理及性能特点Maxwell超级电容器结构 超级电容的容量比通常的电容器大得多。由于其容量很大,对外表现和电池相同,因此也有称作“电容电池”。超级电容属于双电层电容器,它是世界上已投入量产的双电层电容器中容量最大的一种,其基本原理和其它种类的双电层电容器一样,都是利用活性炭多孔电极和电解质组成的双电层结构获得超大的容量。 超级电容器原理 电化学双层电容器(EDLC)因超级电容器被我们所熟知。超级电容器利用静电极化电解溶液的方式储存能量。虽然它是一个电化学器件,但它的能量储存机制却一点也不涉及化学反应。这个机制是高度可逆的,它允许超级电容器充电放电达十万甚至数百万次。 超级电容器可以被视为在两个极板外加电压时被电解液隔开的两个互不相关的多孔板。对正极板施加的电势吸引电解液中的负离子,而负面板电势吸引正离子。这有效地创建了两个电荷储层,在正极板分离出一层,并在负极板分离出另外一层。 传统的电解电容器存储区域来自平面,导电材料薄板。高电容是通过大量的材料折叠。可能通过进一步增加其表面纹理,进一步增加它的表面积。过去传统的电容器用介质分离电极,这些介质多数为:塑料,纸或薄膜陶瓷。电介质越薄,在空间受限的区域越可以获得更多的区域。可以实现对介质厚度的表面面积限制的定义。 超级电容器的面积来自一个多孔的碳基电极材料。这种材料的多孔结构,允许其面积接近2000平方米每克,远远大于通过使用塑料或薄膜陶瓷。超级电容器的充电距离取决于电解液中被吸引到电极的带电离子的大小。这个距离(小于10埃)远远小于通过使用常规电介质材料的距离。巨大的表面面积的组合和极小的充电距离使超级电容器相对传统的电容器具有极大的优越性。 超级电容器内部结构 超级电容器结构上的具体细节依赖于对超级电容器的应用和使用。由于制造商或特定的应用需求,这些材料可能略有不同。所有超级电容器的共性是,他们都包含一个正极,一个负极,及这两个电极之间的隔膜,电解液填补由这两个电极和隔膜分离出来的两个的孔隙。

铝电解电容生产步骤(附图)

铝电解电容器生产工艺流程(附图片) (2009/12/18 15:19) 铝电解电容器主要原材料: 阳极箔、阴极箔、电解纸、电解液、导箔、胶带、盖板、铝壳、华司、套管、垫片等 生产工序 切割、卷绕、含浸、装配、老化、封口、印刷、套管、测量、包装、检验等 电解电容原材料分切 小型电解电容器自动卷绕机

大型电解电容器自动卷绕机 电解电容芯子含浸 电解电容高温老化 电解电容性能测试

铝电解电容制造进程: 第一步:铝箔的腐化。 倘若拆开一个铝电解液电容的外壳,你会看到内里是几多层铝箔和几多层电解纸,铝箔和电解纸贴附在一起,卷绕成筒状的机关,这样每两层铝箔中间便是一层吸附了电解液的电解纸了。 铝箔的制造要领。为了增大铝箔和电解质的战争面积,电容中的铝箔的外观并不是平滑的,而是通过电化腐化法,使其外观形成崎岖不屈的形状,这样不妨增大7~8倍的外观积。电化腐化的工艺是较量庞杂的,此中涉及到腐化液的种类、浓度、铝箔的外观状态、腐化的速率、电压的动态均衡等等。 第二步:氧化膜形成工艺。 铝箔通过电化腐化后,就要运用化学方法,将其外观氧化成三氧化二铝——也便是铝电解电容的介质。在氧化之后,要仔细检讨三氧化二铝的外观,看是否有雀斑也许龟裂,将不足格的清除在外。 第三步:铝箔的切割。 这个措施很简单明白。便是把一整块铝箔,切割成几多小块,使其适当电容制造的必要。 第四步:引线的铆接。 电容外部的引脚并不是直连接到电容内部,而是经过内引线与电容内部连结的。因此,在这一步当中我们就必要将阳极和阴极的内引线,与电容的外引线经过超声波键正当连结在一起。外引线通常采纳镀铜的铁线也许氧化铜线以削减电阻,而内引线则直接采纳铝线与铝箔直

近十年超级电容器领域的重大突破

近十年超级电容器领域的重大突破 中国储能网讯:与传统电容器相比,超级电容器具有更大的比电容、更高的能量密度、更长的使用寿命等特点,而与锂离子电池相比,超级电容器又具有更高的功率密度、更长的使用寿命及绿色环保等优点。超级电容器在未来储能器件领域占有绝对的优势,在军事、混合动力汽车、智能仪表等诸多领域具有广泛的应用前景。 随着社会的快速发展和人口的急剧增长,资源消耗日益增加,能源危机迫在眉睫,因此,寻找清洁高效的新能源与能源存储技术及装置已成为备受关注的研究课题。与传统电容器相比,超级电容器具有更大的比电容、更高的能量密度、更长的使用寿命等特点,而与锂离子电池相比,超级电容器又具有更高的功率密度、更长的使用寿命及绿色环保等优点。超级电容器在未来储能器件领域占有绝对的优势,在军事、混合动力汽车、智能仪表等诸多领域具有广泛的应用前景。 超级电容器是一种介于传统电容器和电池之间的新型储能

器件,通过在电极材料和电解质界面快速的离子吸脱附或完全可逆的法拉第氧化还原反应来存储能量,根据储能与转化机制的不同可将超级电容器分为双电层电容器(Electric double layer capacitors,EDLC)和法拉第准电容器(又叫赝电容器,Pseudocapacitors)。双电层电容器是建立在双电层理论基础之上的,1879年,Helmholz发现了电化学界面的双电层电容性质;1957年,Becker申请了第一个由高比表面积活性炭作电极材料的电化学电容器方面的专利(提出可以将小型电化学电容器用做储能器件);1962年,标准石油公司(SOHIO)生产了一种6V的以活性碳(AC)作为电极材料、以硫酸水溶液作为电解质的超级电容器,1969年,该公司首先实现了碳材料电化学电容器的商业化;1979年,NEC公司开始生产超级电容(Super CaPACitor),开始了电化学电容器的大规模商业应用。随着材料与工艺关键技术的不断突破,产品质量和性能不断得到稳定和提升,到了九十年代末开始进入大容量高功率型超级电容器的全面产业化发展时期。超级电容器作为电化学能源存储领域的前沿研究方向之一,近十年内有多个突破性工作,其发展也向着小型化、柔性化、平面化等方向发展。 石墨烯在实验室中是2004年被发现的,当时英国曼彻斯特

2016年国内外超级电容行发展现状及未来趋势分析

2016年国内外超级电容行发展现状及未来趋势分析 一、超级电容的定义 超级电容又名电化学电容器,双电层电容器是通过极化电解质来储能的一种电化学元件。它不同于传统的化学电源,是一种介于传统电容器与电池之间、具有特殊性能的电源,主要依靠双电层和氧化还原假电容电荷储存电能。但在其储能的过程并不发生化学反应,这种储能过程是可逆的,也正因为此超级电容器可以反复充放电数十万次。其基本原理和其它种类的双电层电容器一样,都是利用活性炭多孔电极和电解质组成的双电层结构获得超大的容量。 二、超级电容有哪些特点 (1)充电速度快,充电几秒-几分钟就可充满; (2)循环使用寿命长,深度充放电循环使用次数可达1-50万次,远高于充电电池的充放电使用寿命; (3)功率密度高,可以快速存储释放电荷,可达300W/KG-5000W/KG,相当于电池电量的5-10倍; (4)大电流放电能力强,能量转换效率高,循环过程能量损失小,循环效率≥90%; (5)贮存寿命长,因为充电过程没有化学反应,电极材料相对稳定; (6)低温特性好,温度范围宽-40℃~+70℃,随着温度的降低,锂电池放电性能显著下降;(7)可靠性高。 缺点:成本高,功率密度较高,能量密度低。 法拉(farad),简称“法”,符号是F 1法拉是电容存储1库仑电量时,两极板间电势差是1伏特1F=1C/1V 1库仑是1A电流在1s内输运的电量,即1C=1A·S。 1法拉=1安培·秒/伏特 一个12伏14安时的电瓶放电量=14×3600×1/12=4200法拉(F),图中一个30000F的超级电容的电量相当于7个12伏14安时的电瓶放电量,够大吧。 三、超级电容的种类 按储存电能的机理,超级电容器可分为以下2种:包括双电层电容器和赝电容器。 四、超级电容的用途 超级电容可以广泛应用于辅助峰值功率、备用电源、存储再生能量、替代电源等不同的应用场景,在工业控制、风光发电、交通工具、智能三表、电动工具、军工等领域具有非常广阔的发展前景,特别是在部分应用领域具有非常大的性能优势。 1、电子设备最早应用:例如我们电脑的内存系统、照相机的闪光灯,音响设备后备存储电源。 2、汽车工业中:插电式混合动力汽车中超级电容主要和电池相配合形成智能启停控制系统。(1)超级电容可以迅速高效地吸收电动汽车制动产生的再生动能; (2)加速和爬坡时超级电容为智能启停控制系统电机提供电能,延长了电池的使用寿命。 3、大尺寸超级电容器可用在火车和地铁的刹车制动系统上,可以节省30%的能量。 4、超级电容轻轨列车 超级电容轻轨列车是一种新型电力机车。2012年8月10日,世界第一列超级电容轻轨列车在湖南省株洲市下线。这种新型电力机车最多能运载320人,不再需要沿途架设高压线,停站30秒钟就能快速充满电。列车充电后能高速驶向相距2公里左右的另一个站点,再上下客并充电,如此周而复始。 5、全球首创超级电容储能式现代电车

铝电解电容器生产工艺流程

铝电解电容器生产工艺流程 (附图片) (2009/12/18 15:19) 铝电解电容器主要原材料: 阳极箔、阴极箔、电解纸、电解液、导箔、胶带、盖板、铝壳、华司、套管、垫片等 生产工序切割、卷绕、含浸、装配、老化、封口、印刷、套管、测量、包装、检验等 电解电容原材料分切 小型电解电容器自动卷绕机

大型电解电容器自动卷绕机 电解电容芯子含浸 电解电容高温老化 电解电容性能测试 铝电解电容制造进程:第一步:铝箔的腐化。 倘若拆开一个铝电解液电容的外壳,你会看到内里是几多层铝箔和几多层电解纸,铝箔和电解纸贴附在一起,卷绕成筒状的机关,这样每两层铝箔中间便是一层吸附了电

解液的电解纸了。 铝箔的制造要领。为了增大铝箔和电解质的战争面积,电容中的铝箔的外观并不是平滑的,而是通过电化腐化法,使其外观形成崎岖不屈的形状,这样不妨增大7~8倍的外观积。电化腐化的工艺是较量庞杂的,此中涉及到腐化液的种类、浓度、铝箔的外观状态、腐化的速率、电压的动态均衡等等。第二步:氧化膜形成工艺。 铝箔通过电化腐化后,就要运用化学方法,将其外观氧化成三氧化二铝——也便是铝电解电容的介质。在氧化之后,要仔细检讨三氧化二铝的外观,看是否有雀斑也许龟裂,将不足格的清除在外。 第三步:铝箔的切割。 这个措施很简单明白。便是把一整块铝箔,切割成几多小块,使其适当电容制造的必要。 第四步:引线的铆接。 电容外部的引脚并不是直连接到电容内部,而是经过内引线与电容内部连结的因此,在这一步当中我们就必要将阳极和阴极的内引线,与电容的外引线经过超声波键正当连结在一起。外引线通常采纳镀铜的铁线也许氧化铜线以削减电阻,而内引线则直接采纳铝线与铝箔直接相连。大众注意这些小小的措施无一过错细密加工要求很高。 第五步:电解纸的卷绕。 电容中的电解液并非直接灌进电容,呈液态浸泡住铝箔,而是经过吸附了电解 液的电解纸与铝箔层层贴合。这当中,选用的电解纸与平凡纸张的配方有些分 歧,是呈微孔状的,纸的外观不及有杂质,不然将影响电解液的身分与性能。 而这一步,便是将没有吸附电解液的电解纸,和铝箔贴在一块,然后卷进电容外壳,使铝箔和电解纸形成近似“ 101010”的隔断状态。 第六步:电解液的浸渍。当电解纸卷绕完毕之后,就将电解液灌进去,使电解液浸渍

超级电容器前景及应用

超级电容器发展现状及发展前景分析 超级电容器研究国世界分布图 超级电容器在新能源领域并不是一个陌生的名词。实际上,超级电容器已在该领域历经了几十年的坎坷,虽然它的应用形式同电池不同,但在实际应用上却总被电池取代,此外还面临成本高、技术难度大的劣势。然而,超级电容器在技术上一旦取得突破,将可对新能源产业的发展产生极大的推动力。因此,尽管研发过程困难重重,但攻克它的意义却很重大。 超级电容器的尴尬现状 超级电容器从诞生到现在,已经历了三十多年的发展历程。目前,微型超级电容器在小型机械设备上得到广泛应用,例如电脑内存系统、照相机、音频设备和间歇性用电的辅助设施。而大尺寸的柱状超级电容器则多被用于汽车领域和自然能源采集上,并可预见在该两大领域的未来市场上,超级电容器有着巨大的发展潜力。

超级电容器“全家福” 使用寿命久、环境适应力强、高充放电效率、高能量密度,这是超级电容器的四大显 著特点,这也使它成为当今世界最值得研究的课题之一。目前,超级电容器的主要研究国 为中、日、韩、法、德、加、美。从制造规模和技术水平来看,亚洲暂时领先。 然而,超级电容器的研发工作一直笼罩在电池(主要为镍氢电池、锂电池)的阴影之下。镍氢电池和锂电池的开发因为可以获得来自政府和大投资商的巨额资金支持,技术交流获 得极大推动,也更容易聚焦全世界的目光。相比之下,超级电容器却很难得到雄厚的资金 支持,技术的进步和发展也就受到很大程度地制约。另外,超级电容器成本高、能量密度 低的现状也与锂电池形成鲜明对比,这使它在很多领域备受冷落。 先驱EEStor公司勇于挑战却惨遭败北 尽管超级电容器已发展多年,但实际生产厂家的数量却少得可怜。一部分厂商面对超 级电容器技术上发育不完全的现状,不敢轻易投资,采取观望策略,期待市场能出现一个 涉足此领域并获得成功的例子。另外一部分厂商则坚信,只要超级电容器的生产成本实现 大幅下降,仅以当前它的快速充放电特性,就可实现快速普及。美国超级电容器生产商EEStor就属于后者。 上世纪90年代,美国超级电容器生产商EEStor为改变超级电容器的市场现状,曾用 好几年的时间将大量财力物力投向如何提高超级电容能量密度的研发上,期望能通过自身

超级电容器综述解析

电子技术查新训练文献综述报告 题目超级电容器技术综述 学号3130434055 班级微电132 学生赵思哲 指导教师杨莺 2014 年

超级电容器技术综述 摘要:近年来,随着经济的迅猛发展,人们在实际应用中对储能装置各项技术指标的需求不断提高,而当前电池的标准设计能力已经逐渐无法满足人们的要求,超级电容器应运而生。超级电容器是一种新型储能装置,它具有充电时间短、使用寿命长、温度特性好、节约能源和绿色环保等特点。作为一种新的储能元件,它填补了传统电容器和电池之间的空白,能提供比普通电容器更高的能量和比二次电池更高的功率以及更长的循环寿命,同时还具有比二次电池耐温和免维护的优点。本文主要针对超级电容器的储能机理、超级电容器电极材料、超级电容器的发展动态以及未来应用的展望进行了简单的论述。 关键词:超级电容器;储能机理;活性炭;发展现状;应用展望。 A Review of the technology of super capacitor Abstract:In recent years,With the rapid development of economy,People advance the need that can equip each technique index sign to continuously raise at practical application。But the standard design ability of the current battery have already canned not satisfy people's request gradually,The super capacitor emerges with the tide of the times。The super capacitor is a kind of new energy storing device, it has many characteristics such as short refresh time, long service life, good temperature characteristic, energy conservation,Environment protecting.As a new kind energy storage element, it filled up traditional capacitor and the blank of battery.It can provide energy than the common capacitor higher and the power than secondary battery higher and the longer circulating life.Meanwhile it has the advantage of rating of temperature and no maintenance than secondary battery.The text mainly aims at the keeping of super capacitor development dynamic state of ability mechanism, super capacitor electrode material, super capacitor and in the future apply of the outlook carried on simple treatise. Key Words:super capacitor; The energy storage mechanism; active carbon; development trend; Application trend .

相关主题
文本预览
相关文档 最新文档