当前位置:文档之家› 分子生物学实验报告

分子生物学实验报告

分子生物学实验报告
分子生物学实验报告

分子生物学实验报告

专业:****** 班级:*** 指导老师:** 学生姓名:***

目录:

实验一质粒DNA的小量制备

实验二DNA的含量、纯度与分子量的电泳法测定实验三感受态细胞的制备及转化

实验四PCR扩增技术与琼脂糖凝胶电泳检测

2010.05.29

分子生物学基础实验

分子生物学实验技术已成为生物化学及分子生物学以及相关学科院系教学科研不可缺少的一部分。为提高学生在分子生物学技术方面的动手能力,生物技术综合实验室主要开设常用而基本的分子生物学实验技术。它的内容包括质粒DNA的制备;DNA的重组;PCR基因扩增等等。

实验一质粒DNA的小量制备

一、实验原理

要把一个有用的外源基因通过基因工程手段,送进细胞中去进行繁殖和表达,需要运载工具,携带外源基因进入受体细胞的这种工具就叫载体(vector)。载体的设计和应用是DNA体外重组的重要条件。作为基因工程的载体必须具备下列条件:(1)是一个复制子,载体有复制点才能使与它结合的外源基因复制繁殖;(2)载体在受体细胞中能大量增殖,只有高复制率才能使外源基因在受体细胞中大量扩增;(3)载体DNA链上有1到几个限制性内切酶的单一识别与切割位点,便于外源基因的插入;(4)载体具有选择性的遗传标记,如有抗四环素基因(Tc r),抗新霉素基因(Ne r)等,以此知道它是否已进入受体细胞,也可根据这个标记将受体细胞从其他细胞中分离筛选出来。细菌质粒具备上述条件,它是基因工程中常用的载体之一。

质粒(plasmid)是一种染色体外的稳定遗传因子,大小在1~120kb之间,具有双链闭合环状结构的DNA分子,主要发现于细菌、放线菌和真菌细胞中。质粒具有自主复制和转录能力,能使子代细胞保持它们恒定的拷贝数,可表达它携带的遗传信息。它可独立游离在细胞质内,也可以整合到细菌染色体中,它离开宿主的细胞就不能存活,而它控制的许多生物学功能也是对宿主细胞的补偿。

质粒在细胞内的复制,一般分为两种类型:严密控制型(stringent control)和松弛控制型(relaxed control)。前者只在细胞周期的一定阶段进行复制,染色体不复制时,它也不复制。每个细胞内只含有1个或几个质粒分子。后者的质粒在整个细胞周期中随时复制,在细胞里,它有许多拷贝,一般在20个以上。通常大的质粒如F因子等,拷贝数较少,复制受到严格控制。小的质粒,如ColE Ⅰ质粒(含有产生大肠杆菌素E1基因),拷贝数较多,复制不受严格控制。在使用蛋白质合成抑制剂-氯霉素时,染色体DNA复制受阻,而松弛型ColEⅠ质粒继续复制12-16h,由原来20多个拷贝可扩增至1000-3000个拷贝,此时质粒DNA占总DNA的含量由原来的2%增加到40%-50%。本实验分离提纯化的质粒pBR322、pUC19就是由ColE Ⅰ衍生的质粒。

所有分离质粒DNA的方法都包括三个基本步骤:培养细菌使质粒扩增;收集和裂解细菌;分离和纯

化质粒DNA。采用溶菌酶可破坏菌体细胞壁,十二烷基硫酸钠(SDS)可使细胞壁解,经溶菌酶和阴离子去污剂(SDS)处理后,细菌染色体DNA缠绕附着在细胞壁碎片上,离心时易被沉淀出来,而质粒DNA则留在清液中。用乙醇沉淀、洗涤,可得到质粒DNA。

质粒DNA的相对分子量一般在106-107范围内,如质粒pBR322的相对分子质量为2.8×106,质粒pUC19的相对分子质量为1.7×106。在细胞内,共价闭环DNA(covalently closed circular DNA,简称cccDNA)常以超螺旋形式存在。如果两条链中有一条链发生一处或多处断裂,分子就能旋转而消除链的张力,这种松弛型的分子叫做开环DNA(open circular DNA,简称ocDNA)。在电泳时,同一质粒如以cccDNA形式存在,它比其开环和线状DNA的泳动速度快,因此在本实验中,自制质粒DNA在电泳凝胶中呈现3条区带。

二、实验目的

1.掌握最常用的提取质粒DNA的方法和检测方法。

2.了解制备原理及各种试剂的作用。

三、实验材料和试剂

材料:大肠杆菌E.coli,含pBR322质粒。

试剂:

1.LB培养基:10g/L胰蛋白胨,5g/L酵母提取物,10g/L NaCl,用NaOH调pH至7.3左右。如

固体培养基则添加15g/L琼脂。

2.溶液Ⅰ(pH8.0G.E.T缓冲液):50 mmol/L葡萄糖,25mmol/LTris-HCl,10mmol/L EDTA。

灭菌后存放。

3.溶液Ⅱ(0.2mol/LNaOH(内含1%SDS)):预先配制1%SDS母液,临用前一天晚上加入

0.2mol/LNaOH,4℃保存。

4.溶液Ⅲ(pH4.8乙酸钾溶液):5mol/L乙酸钾60mL、冰乙酸11.5mL、双蒸馏水28.5mL。

5.酚/氯仿液(V/V=1/1):酚为重蒸酚,配制时,先将氯仿中加入异戊醇,使其体积比为24:1,然后

等量的加入重蒸酚,混匀,并用0.1mol/LTris-HCl (pH7.6)抽提几次以平衡这一混合物,于棕色瓶中存放,并在上面覆盖等体积的0.01 mol/LTris-HCl(pH7.6),4℃保存。

6.无水乙醇

7.70%乙醇

8.pH8.0 TE缓冲液:10mmol/LTris-HCl、1mmol/LEDTA,其中含RNA酶20μg/mL。

仪器:

恒温培养箱、恒温摇床、超净工作台、高压蒸汽灭菌锅、台式高速离心机、台式小型振荡器、EP 管(1.5mL微量离心管)、加样器(20uL~lmL)、吸头。

四、操作步骤

(一)培养细菌

将带有质粒pBR322的大肠杆菌接种在含50μg/mL氨苄青霉素(Amp)的LB液体培养基中,37℃振荡培养过夜。注意:添加Amp时,须待LB培养基冷却到50℃左右方可加入。

(二)从菌落中快速提取制备质粒DNA

1.取1.4mL菌液置于1.5mL Ep管中,7500rpm离心1min。

2.弃上清,加入150μL GET缓冲液,在涡旋混合器上充分混匀,在室温下放置10min。

3.加入200μL新配制的0.2mol/L NaOH(内含1%SDS),加盖,颠倒(不要振荡)2~3次,使之混匀,冰上放置4min,最多不能超过5min。

4.加入150μL冰冷的乙酸钾溶液。加盖后,颠倒数次使之混匀,冰上放置15min。

5.4℃,10000rpm离心5min,上清液吸至另一干净的1.5mL Ep中,如上清液浑浊则需重新离心一次。

6.于上清液中加等体积酚/氯仿液,振荡混匀,4℃,12000rpm离心2min,小心吸取上清液,转移至另一1.5mL Ep管中,注意勿将两液相中间的白色蛋白薄层吸出。

7.向上清液加入2倍体积无水乙醇,混匀,室温放置3min。用离心机于10000rpm离心5min。小心吸去上清液,将离心管倒置于一张纸巾上,以使所有液体流出。

8.用0.5mL 70%乙醇洗涤沉淀一次,10000rpm离心3min,除尽乙醇,室温自然干燥(将离心管倒置于一张纸巾上),备用。

9.用25uL含无DNA酶的胰RNase(20 ug/mL)的TE重新溶解DNA,置于4℃保存,供下午电泳使用。贮存于-20℃备用,可长期保存。

五、注意事项

1.收集菌体提质粒前,培养基要去除干净,同时保证菌体在悬浮液中充分悬浮。

2.在添加溶液Ⅱ与溶液Ⅲ后溶液的混合一定要柔和,采用上下颠倒的方法,千万不能在旋转器上剧烈振荡。其中加入溶液Ⅱ后,溶液变成澄清,并有黏性;加入溶液Ⅲ后,出现絮状沉淀。

3.苯酚具有腐蚀性,能造成皮肤的严重烧伤及衣物损坏,使用时应注意。如不小心皮肤上碰到苯酚则应用碱性溶液、肥皂及大量的清水冲洗。

4.苯酚可以用于抽提纯化DNA,由于苯酚的氧化产物可以使核酸链发生断裂。所使用的苯酚在使用前必须经过重蒸,且都必须用0.1mol/LTris-HCl (pH7.6)进行平衡。所以取酚/氯仿/异戊醇时应取下层溶液,因为上层是Tris-HCl液隔绝空气层。

5.酚/氯仿/异戊醇抽提时,应充分混匀。经酚/氯仿/异戊醇抽提后,吸取上清液时注意不要把中间的白色层吸入,其中含有蛋白质等杂质。

6.实验中,涉及酚/氯仿溶液的操作要格外小心,而且与之接触的吸头、Ep管,全部弃用,不回收。

7.有些质粒本身可能在某些菌种中稳定存在,但经过多次移接有可能造成质粒丢失。因此不要频繁转接,每次接种时应挑单菌落。

六、思考题

1.裂解细菌时需注意的事项有哪些?

答:注意不能震荡,防止细菌DNA断裂,混到质粒里面去,导致提取的质粒不纯。

2.质粒的基本性质有哪些?

答:质粒的性质:原指一切独立于染色体外的遗传因子,但目前一般指微生物细胞中的染色体外遗传因子。它们是能自主复制的共价、闭合、环状的DNA分子,整个质粒通常编码若干个基因。由于质粒的存在往往可以使宿主细胞具有某些性状,而质粒的丢失并不影响宿主在正常条件下的生存。由质粒授予宿主的表型有抗生素耐药性的、产抗生素的、降解芳香族化合物的、产溶血素的、糖发酵的、对重金属耐受性的、产杆菌素的、植物肿瘤诱发的和产硫化氢的。根据质粒的复制类型分为松弛型复制(胞内维持高拷贝数,从几个到几十个)和严聚紧型复制(胞内仅1~3个拷贝)。一部分质粒可通过细菌细胞的接触而转移,使一些对药物敏感的细胞获得对某些药物、金属离子的耐受性或使受体细胞获得另一些特性。在基因重组技术中,有些质粒可用作基因载体。现在应用的载体基本上是在质粒的基础上改造而成的。

3、碱裂解法提取质粒DNA中各溶液的作用是什么?

答:各溶液的作用如下:

溶液Ⅰ 葡萄糖增稠,使悬浮后的大肠杆菌不会快速沉积到管子的底部;EDTA 抑制DNase的活性。这一步溶液中还可以加入RNase,不受EDTA影响,并且可以在后续步骤中被除去

溶液Ⅱ 0.2M NaOH / 1% SDS破细胞的主要是碱,而不是SDS,所以才叫碱法抽提。

溶液Ⅲ 3M 醋酸钾 / 2M 醋酸这一步的K置换了SDS(十二烷基磺酸钠)中的Na,得到PDS(十二烷基磺酸钾)沉淀;SDS易与蛋白质结合,平均两个氨基酸上结合一个SDS分子,钾钠离子置换所产生的大量沉淀自然就将绝大部分蛋白质也沉淀了,同时基因组DNA也被PDS共沉淀

4、抽提质粒DNA的方法包括哪几个步骤?

答:DNA提取分为三个基本步骤:

1、破碎细胞,并通过加入去污剂以除掉膜脂。

2、醋酸盐沉淀,或者酚/氯仿抽提,以除掉细胞内的蛋白,如与DNA结合的组蛋白。

3、将DNA在冷乙醇或异丙醇中沉淀,因为DNA在醇中不可溶而黏在一起,这一步也能除掉盐分。5.如何提高质粒DNA的产量?

答:提取方法都是大同小异的,只要操作上注意量都不会差别很大。所以主要还是看菌液的状态。如果想抽多一些,就摇多些菌液,一般如果是大质粒,用5ml以上菌液摇,多次离心用一管收集,相应增加溶液一二三的量即可。另外,一般认为,一般摇16个小时菌的生长状态比较好。

6.为什么质粒DNA不能反复在4℃、-20℃、室温中放置?为达到这一目的,需要注意些什么?

答:将质粒DNA反复在4℃、-20℃、室温中放置会导致环状的DNA的断裂成线性的分子,不能得到环状的DNA分子。所以为了避免这一问题对于提取的DNA因根据使用其的时间不同而作区别地处理:对于近段时间就要用的质粒DNA应置于4℃冰箱中放置;而对于长时间不用的质粒DNA,则应保存在-20℃的冰箱中,因为在相对低的温度下质粒可以保存较长的时间。

实验二 DNA含量、纯度与分子量的电泳法测定一、实验原理

测定核酸通常采用两种方法:即紫外分光光度法与琼脂糖凝胶电泳法。

1.紫外分光光度法

DNA或RNA定量时,应在260nm和280nm两个波长下读数。根据计算在260nm波长下,每1ug/mL DNA 钠盐的A值为0.20,即在A260=1时,双链DNA含量为50ug/mL,单链DNA与RNA含量为40ug/mL,单链寡核苷酸的含量为33 ug/mL。

双链DNA含量=A260×50×稀释倍数(ug/mL)

RNA含量=A260×40×稀释倍数(ug/mL)

单链DNA含量=A260×33×稀释倍数(ug/mL)

此外还可以根据260nm和280nm的读数间的比值(A260/A280)估计核酸的纯度。

2.琼脂糖凝胶电泳法

根据DNA分子量不同,采用外加电场使其分开,用EB嵌入DNA分子后在紫外下显荧光。而荧光强度正比于DNA的含量,如将已知浓度的标准样品表2-1作为电泳对照,就可以估计出待测样品的浓度。电泳后的琼脂凝胶糖直接在紫外灯下拍照,只需要5-10ngDNA,就可以从照片上比较鉴别。

由于电泳时所用的样品量非常少,只要将浓度控制在几十纳克即可,所以在基因工程中经常被用做检测DNA样品。

表2-1 λDNA/ Hind Ⅲ中DNA片断

片段碱基对数目/kb 相对分子质量DNA含量/ % DNA含量/(ng/mg)

1 23.130 15.0×10647.7 476.9

2 9.419 6.12×10619.4 194.1

3 6.557 4.26×10613.5 135.2

4 4.371 2.84×1069 89.9

5 2.322 1.51×10

6 4.8 47.9

6 2.028 1.32×106 4.2 41.8

7 0.564 0.37×106 1.1 11.6

8 0.125 0.08×1060.3 2.6

二、实验目的

1.从以上实验中提取到的质粒DNA,为了能作下一步的酶切,连接及转化实验,必须测定DNA的纯度、含量以及分子量大小。

2.本实验旨在学习水平式琼脂糖凝胶电泳,学习检测DNA、含量与相对分子质量大小。

三、实验材料和试剂

材料:自制的质粒DNA、λDNA/ Hind Ⅲ、。

试剂:

1.标准DNAmarker(λDNA/ Hind Ⅲ)

2.限制性内切酶E co RⅠ或HindⅢ和10X缓冲液

3.酶反应中止液:0.2 5%溴酚蓝(含40%蔗糖),已配好。

4.溴化乙锭染液(EB):使用前稀释1000倍,母液已配好。注意:EB是一种诱变剂,配制和使用时应戴好手套,并且不能将该染液洒在桌面或地面上!使用后立即用大量的水冲洗干净。

5.0.5×TBE缓冲液:Tris 2.18g、硼酸1.10g、EDTA-Na20.14g用蒸馏水定容至400mL。可配成5×TBE母液,使用时稀释10倍即可。

6.0.7%琼脂糖

仪器:

37℃水浴锅、微波炉、稳压电泳仪、凝胶成像系统、电泳槽、Eppendorf架、恒温摇床、台式小型振荡器、Ep管(1.5mL)、加样器(20uL~lmL)、吸头。

四、实验操作

(一)质粒DNA的酶解

1.新提的质粒,在10uL的体系中用单一酶(如E co RⅠ)进行处理,即:

质粒DNA 5μL

10×缓冲液 1μL

E co RⅠ 0.5μL

ddH2O 4μL

2.37℃,保温30min。

3.加入1/10体积的酶反应终止液,混匀以停止酶解反应。各酶解样品于冰箱中贮存备用。

(二)琼脂糖凝胶板的制备

1.琼脂糖凝胶的制备

称取1.0g琼脂糖,置于锥形瓶中,加入100mL TBE缓冲液,瓶口倒扣一小烧杯,于电炉上加热,注意:防止溢出,由于琼脂糖较难溶解,如果水分损失较大,则补充一定量的蒸馏水,使其终浓度为1%。2.胶板的制备

将有机玻璃内槽洗净、晾干。取胶带纸将有机玻璃内槽的两端边缘封好,形成一个边脚模子。注意:将橡皮膏紧贴在有机玻璃内槽两端边上,不能留空隙。

将有机玻璃内槽置于水平位置,放好样品槽模板(一般称之为梳子),将冷却至65℃左右的琼脂糖凝胶,小心地倒在内槽上,控制灌胶速度,使胶液缓慢地展开,直到整个有机玻璃板表面形成均匀的胶层。室温下静置1h左右,待凝固完全后,轻轻拔出样品槽模板,撕去胶带纸,胶板上即形成相互隔开的样品槽。

将有机玻璃内槽放入电泳槽中,加入0.5×TBE电泳缓冲液,以盖过胶板为宜。

胶板内的样品小槽

3.加样

用微量加样器将上述样品分别加入胶板的样品小槽内,每次加完一个样品为了避免交叉污染,各样品用不同的吸头,以免造成限制酶被污染。加样时,吸头不要插入胶板内,防止碰坏样品槽周围的凝胶面,每个样品槽的加样量不宜过多,本实验加样为10uL左右。(每块胶板需点一个Marker,这里即为λDNA/ Hind Ⅲ)

4.电泳

加完样品后应立即通电,进行恒压电泳。在低压条件下,线形DNA片段的迁移速度与电压成比例

关系,为了获得电泳分离DNA片段的最大分辨率,电场强度不应高于5V/cm。

当溴酚蓝染料(蓝色)移动到距离胶板下沿约1~2cm处,停止电泳。

5.染色

将电泳后的凝胶浸入EB染液中,进行染色以观察在琼脂糖凝胶中的DNA带。染色20min后,用大量水冲洗。

6.观察

在波长为254nm的紫外灯下,观察染色后的电泳凝胶。DNA存在处显示出红色荧光条带。

用凝胶自动成像仪处理代替。

五、注意事项

1.基因工程是微量操作技术,DNA样品与限制性内切酶的用量都极少,必须严格注意吸样量的正确性,确认样品确实被加入反应体系。

2.酶应在-20℃冰箱中保存,取酶的操作必须严格在冰浴条件下进行,用完后立即放回-20℃冰箱,不要将酶在冰浴中放置过久,或放在高于0℃以上的环境中,以防止酶失活。

3.酶切加样次序为水、缓冲液和DNA,然后混匀。酶永远是最后加入的,如将酶直接加入浓缩的缓冲液中会引起严重的失水。酶切反应体系的溶液加完后,用手指轻弹管壁使溶液混匀,也可用微量离心机甩一下,使溶液集中在管底,不要用振荡器。此步操作是整个实验成败的关键,注意防止错加、漏加。4.为了避免交叉污染,各样品用不同的吸头,且每次取酶时务必换吸头,以免造成限制酶被污染。5.溴化乙锭是一种强烈的诱变剂,有毒性,使用含有这种染料的溶液时,应戴手套进行操作。勿将溶液滴洒在台面或地面上,用后用水彻底冲洗干净。

六、思考题

1.简述EB显色的原理。

答:琼脂糖凝胶中DNA最常用的方法是利用荧光染料溴化乙锭进行染色,溴化乙锭含有一个可以嵌入DNA堆积碱基之间的一个三环平面基团。它与DNA的结合几乎没有碱基序列特异性。在高离子强度的饱和溶液中,大约每2.5个碱基插入一个溴化乙锭分子。当染料分子插入后,其平面基团与螺旋的轴线垂直并通过范德华力与上下碱基相互作用。这个基团的固定位置及其与碱基的密切接近,导致与DNA结合的染料呈现荧光,其荧光产率比游离溶液中染料有所增加。

DNA吸收254nm处的紫外辐射并传递给染料,而被结合的染料本身吸收302nm和366nm的光辐射。这两种情况下,被吸收的能量在可见光谱红橙区的590nm处重新发射出来。由于溴化乙锭-DNA复合物的荧光产率比没有结合DNA的染料高出20-30倍,所以当凝胶中含有游离的溴化乙锭(0.5ug/ml)时,可以检测到少至10ng的DNA条带。

溴化乙锭可以用来检测单链或双链核酸(DNA或RNA)。但是染料对单链核酸的亲和力相对较小,所以其荧光产率也相对较低。事实上,大多数对单链DNA或RNA染色的荧光时通过染料结合到分子内形成较短的链内螺旋产生的。

2.使用溴化乙锭时应注意什么?

答:溴化乙锭是强诱变剂,具有高致癌性!没办法的,只能带手套和自己小心 ,而且做完之后要做如下处理实验结束后,应对含EB的溶液进行净化处理再行弃置,以避免污染环境和危害人体健康。

(1) 对于EB含量大于0.5mg/ml的溶液,可如下处理:

①将EB溶液用水稀释至浓度低于0.5mg/ml;

②加入一倍体积的0.5mol/L KMnO4,混匀,再加入等量的25mol/L HCl,混匀,置室温数小时;

③加入一倍体积的2.5mol/L NaOH,混匀并废弃。

(2) EB含量小于0.5mg/ml的溶液可如下处理:

① 按1mg/ml的量加入活性炭,不时轻摇混匀,室温放置1小时;

② 用滤纸过滤并将活性碳与滤纸密封后丢弃。

3.说明不同电压对电泳结果的影响是什么

答:在低电压时,线状DNA片段的迁移速率与所加电压成正比。但是随着电场强度的增加,不同分子量的DNA片段的迁移率将以不同的幅度增长,片段越大,因场强升高引起的迁移率升高幅度也越大,因此电压增加,琼脂糖凝胶的有效分离范围将缩小,也会产生拖尾现象。但电压过低,DNA移动速度会很慢,电泳时间较长。所以实际做电泳实验时应根据不同DNA片段和实验要求选择合适的电压。通常使用的电泳电压为90~120V。

4.如何判断DNA的纯度?

答:测定DNA浓度与纯度利用紫外可见分光光度计分别测定在波长260nm处、280nm处DNA的吸光率,然后计算其浓度与纯度。

对于纯的核酸溶液,测定A260,即可利用核酸的比吸光系数计算溶液中核酸的量。核酸的比吸光系数是指浓度为1ug/ml的核酸水溶液在260nm处的吸光率,天然状态的双链DNA的比吸光系数为0.020,变性DNA(即单链DNA)和RNA的比吸光系数均采用0.022。

DNA纯度可以A260/A280的比值表示:纯的DNA样品比值为1.8,纯的RNA样品比值为2.0。核酸样品中若含有蛋白质或苯酚等杂质,此比值则显著降低。

实验三感受态细胞的制备及转化

一、实验原理

感受态就是细菌吸收转化因子的生理状态,只有发展为感受态的细胞才能稳定摄取外来的DNA分子。转化是将外源DNA分子引入受体细胞,使之获得新的遗传性状的一种手段。转化的基本原理是细胞处于0℃,CaCl2低渗溶液中,细胞膨胀成球形,转化混合物中的DNA形成抗DNase的羟基-钙磷酸混合物粘附于细胞表面,经42℃短时间热冲击处理,促使细胞吸收DNA复合物,在选择性培养基平板上培养,可选出所需的转化子。

二、实验目的

1.学习和理解影响细胞感受态的因素,掌握感受态细胞的制备方法。

2.掌握质粒的转化方法。把体外DNA引入受体细胞,使受体菌具有新遗传性,并从中选择出转化子。

三、实验材料和用具

材料:自制的质粒DNA、大肠杆菌(E.coli)菌种(DH5α菌株)。

试剂:

LB琼脂平板(无抗生素)、

LB琼脂平板(含50μg/L氨苄青霉素)、

LB液体培养基5mL(无抗生素)、

LB液体培养基100mL(无抗生素)、

LB液体培养基5mL(含50μg/L氨苄青霉素)、

0.1mol/LCaCl2溶液(灭菌备用)。

仪器:

恒温培养箱、恒温摇床、接种环、涂布器、冷冻离心机、离心管、超净工作台、高压蒸汽灭菌锅。

四、操作步骤

(一)大肠杆菌感受态细胞的制备

1.从新活化的E.coli DH5α菌平板上挑取一单菌落,接种于5mL液体培养基中,37℃振荡培养过夜,直至对数生长期。将该菌悬液以1:50接种于50mL LB液体培养基中,37℃快速振荡培养3~4h。2.取5mL培养液放入离心管中,在冰上放置10min,于4℃5000rpm离心10min。

3.可用加样器将残余液体尽量去净,用1mL预冷的0.1mol/LCaCl2溶液轻轻悬浮细胞,冰上放置15~30min。

4.于4℃,5000rpm离心10min。

5.弃上清,加入200μL预冷的0.1mol/LCaCl2溶液,小心悬浮细胞,冰上放置片刻,即制成了感受态细胞悬液。

6.制好的感受态细胞可在冰上放置,24h内直接用于转化实验,也可加入占总体积95%左右高压灭菌过的甘油,混匀后分装于Ep管中,-70℃条件下可保存半年至一年。

(二)细胞转化

编号质粒感受态细胞无菌水0.1mol/LCaCl2

样品 2 100 / /

对照1 / 100 2 /

对照2 2 / / 100

取200μL摇匀后的感受态细胞悬液,进行下一步的转化,转化如下(单位:μL):

样品组即为我们的转化组:100μL感受态细胞+2μL质粒DNA

对照1为受体菌对照组:100μL感受态细胞+2μL无菌水

对照2为质粒DNA对照组:100μL0.1mol/LCaCl2+2μL质粒DNA

将以上各样品轻轻摇匀,冰上放置30min后,于42℃水浴中保温90s,然后迅速在冰上冷却3~5min。上述各管中分别加入400μL LB液体培养基,使总体积为500μL,该溶液称为转化反应原液,摇匀后于37℃振荡培养30min,使受体细胞恢复正常生长状态,并使转化体产生抗药性。

(三)平板培养

取各样品培养液100μL分别接种于含氨苄青霉素和不含氨苄青霉素的LB平板培养基上(分别记为Amp—和Amp+),涂匀。37℃培养24h,待菌落生长良好且未相互重叠时停止培养。

(四)检出转化体

不含抗生素培养基- 含抗生素培养基+ 结果分析

受体菌对照组A 有大量菌落长出无菌落长出本实验未产生抗药性菌株质粒对照组B 无菌落长出无菌落长出质粒DNA不含杂菌转化实验组C 有大量菌落长出有菌落长出质粒进入受体菌中产生抗药性

五、注意事项

1.这一个实验中的所有操作均要为无菌操作,在超净工作台内进行。

2.细胞转化中,42℃水浴90s要准确操作。

3.制备感受态细胞过程中,需要在冰上放置的一定不要在室温中放置。

思考题

1.感受态细胞制备好后,为什么在转化前还要在冰上放置?

答:细菌处于0℃,CaCl2 的低渗溶液中,菌细胞会膨胀成球形,转化混合物中的DNA形成抗DNase的羟基-钙磷酸复合物粘附于细胞表面(因为DNase会消化外源DNA,如形成抗DNase的物质有利外源DNA的生存),从低温突然提高到42℃短时间热刺激,应激反应下可产生大量cAMP,而cAMP可改变细胞膜通透性,促使细胞吸收DNA复合物,从而大大提高转化率。

2.思考转化后平板培养应有的结果、分析自己培养的情况。

答:实验涉及两种菌体,一为不含氨苄抗性基因的细胞,二为含有氨苄抗性基因的细胞。细胞一因为不含苄抗性基因,所以会被氨苄杀死或抑制生长,所以这种细胞只能在不含有氨苄的培养基上生长。细胞二为含有氨苄抗性基因的细胞,能对氨苄产生抗性,故而这种细胞既能在不含有氨苄的培养基上生长,又能在含有氨苄的培养基上生长。

A组中只有菌体和CaCL2而无抗性基因,所以只有在不含氨苄的培养基上才能看到菌落,而在含有氨苄的培养基上不可能有菌落,否则为培养基染菌。

B组中只有CaCL2和含有抗性基因的质粒而没有细胞,所以不管在那种培养基上都不应该长出菌落,否则即为染菌。

C组中含有CaCL2、含有抗性基因的质粒和不含氨苄抗性基因的大肠杆菌细胞。在CaCL2的作用下,细菌细胞壁结构发生变化,导致含有抗性基因的质粒进入细胞,此过程即为转化。此时的细胞即为细胞二,所以不管是在含有氨苄的培养基上还是在不含有氨苄的培养基上都能观察到菌落。且在含有氨苄的培养基上观察到的菌落数应该比在不含有氨苄的培养基上都能观察到菌落数少,因为转化这个过程的效率不是100%,没有转入抗性基因的细胞就不能在含有氨苄的培养基上生长。

观察平板,结果与理论结果完全一致。

附录:

1. pH8.0 G.E.T.缓冲液(灭菌后使用) :

葡萄糖0.991g

EDTA-Na20.372g

Tris-HCl 0.303g

H2O 100mL

2. 5mol/L KAc:49.08g KAc溶于100mL H2O。

3. PH

4.8乙酸钾溶液:取60mL 5mol/L KAc,11.5mL 冰醋酸,28.5mL H2O即可。

4. 0.2mol/LTris-Cl:2.422g溶于100mL H2O。

5. 0.2mol/LHCl:取1.724mL浓HCl稀释到100mL。

6. pH8.0 0.1mol/L Tris-HCl:取0.2mol/LTris-Cl 50mL加入29.2mL 0.2mol/LHCl,补H2O至

100mL即可。

7.pH8.0 10mmol/LEDTA-Na2:3.722g EDTA-Na2溶于一定量的H2O中,用固体NaOH调节其pH值,最后定容至100mL。

8.pH8.0TE:取10mL pH8.0 0.1mol/L Tris-HCl,10mL pH8.0 10mmol/L EDTA -Na2,最后定容至100mL,调节pH至8.0。含RNA酶(RNaseA)20ug/mL。

9.pH7.6 0.1mol/L Tris-HCl:取0.2mol/LTris-Cl 50mL加入38.5mL 0.2mol/L HCl,补H2O 至100mL即可。用于饱和酚/仿混合物。

10.酚/仿溶液(按如下体积和顺序加入试剂)

饱和酚:重蒸酚12.5mL

三氯甲烷12mL

异戊醇0.5mL

用pH7.6 0.1mol/L Tris-Cl平衡2~3次,在饱和酚/仿上,加入等体积的pH7.6 0.01mol/L Tris-Cl保护,棕色瓶保存,4℃存放。

11.5×TBE:称取Tris-Cl 21.8g,硼酸11.0g和EDTA-Na2 1.4g用蒸馏水溶解,定容至400mL。

临用时稀释为0 .5×TBE。

12.0.1 mol/LCaCl2:5.5g CaCl2溶于500mL H2O。灭菌后备用。

13.无菌水。

实验四PCR扩增技术与琼脂糖凝胶电泳检测【实验目的】

?掌握PCR扩增技术的基本原理

?掌握PCR的常规操作

?熟悉PCR反应体系中六种主要成分的作用

?了解PCR技术的应用

?掌握琼脂糖凝胶电泳检测PCR产物的方法

?熟悉DNA在电泳过程中迁移率的决定因素

【实验原理】

1. PCR基本原理

聚合酶链式反应(Polymerase Chain Reaction),简称PCR,是一种分子生物学技术,用于在体外快速扩增DNA,类似DNA的细胞内复制过程:由一对引物介导,通过温度的调节,使双链DNA变性为单链DNA、单链DNA能与引物复性(退火)成为引物-DNA 单链复合物、以及在dNTPs存在下DNA聚合酶能使引物沿单链模板延伸成为双链DNA (引物的延伸);这种热变性-复性-延伸的过程,就是一个PCR循环;一般通过20-30个循环之后,就可获得大量(106倍)的要扩增的DNA片段。

PCR技术的基本原理类似于DNA的天然复制过程,其特异性依赖于与靶序列两端互补的寡核苷酸引物。PCR由变性--退火--延伸三个基本反应步骤构成:

①模板DNA的变性:模板DNA经加热至93℃左右一定时间后,使模板DNA双链或经PCR扩增形成的双链DNA解离,使之成为单链,以便它与引物结合,为下轮反应作准备;

②模板DNA与引物的退火(复性):模板DNA经加热变性成单链后,温度降至55℃左右,引物与模板DNA单链的互补序列配对结合;

③引物的延伸:DNA模板--引物结合物在TaqDNA聚合酶的作用下,以dNTP为反应原料,靶序列为模板,按碱基互补配对与半保留复制原理,合成一条新的与模板DNA链互补的半保留复制链。

重复循环“变性—退火—延伸”三个过程就可获得更多的“半保留复制链”,而且这种新链又可成为下次循环的模板。每完成一个循环需2~4分钟,2~3小时就能将待扩目的基因扩增放大几百万倍。

2. PCR反应体系

标准的PCR反应体系本实验所用的PCR反应体系(50 μl)10×扩增缓冲液10μl ddH2O 38.75 ul

4种dNTP混合物200μl10×PCR Buffer (含Mg2+) 5 ul

引物10~100μl10mM dNTPs 1.25 ul

模板DNA 0.1~2μg引物 1.25 +1.25 Taq DNA聚合酶 2.5 μl模板(质粒DNA) 2 ul

Mg2+ 1.5mmol/L Taq酶0.5 ul 加双或三蒸水100 μl

3、琼脂糖凝胶电泳

琼脂糖凝胶电泳是分离、纯化、鉴定DNA片断的典型方法,其特点为简便、快速。DNA片断琼脂糖凝胶电泳的原理与蛋白质的电泳原理基本相同,DNA分子在高于其等电点的pH溶液中带负电荷,在电场中向正极移动。DNA分子在电场中通过介质而泳动,除电荷效应外,凝胶介质还有分子筛效应,与分子大小及构想有关。对于线形DNA分子,其电场中的迁移率与其分子量的对数值成反比。在凝胶中加入少量溴化乙锭(有毒!),其分子可插入DNA的碱基之间,形成一种光络合物,在254~365nm波长紫外光照射下,呈现桔红色的荧光,因此可对分离的DNA进行检测。电泳时以溴酚蓝及二甲苯氰(蓝)作为双色电泳指示剂。其目的有:①增大样品密度,确保DNA均匀进入样品孔内;②使样品呈现颜色,了解样品泳动情况,使操作更为便利;③以0.5×TBE做电泳液时溴酚蓝的泳动率约与长700bp的双链DNA相同,二甲苯氰(蓝)则与2Kbp的DNA相同。

【实验仪器、材料和试剂】

1、仪器:微量移液器,枪头(10μL,200μL)枪头盒,离心管(200μL),PCR仪,电泳仪,电泳槽,凝胶成像系统。

2、材料:模板DNA 引物

3、试剂:dNTP TaqDNA聚合酶

【实验步骤】

? 1. 按照以下顺序,依次添加入PCR管内。

ddH2O 38.75 ul

10×Buffer 5 ul

dNTP 1.25 ul

引物 1.25 +1.25 ul

模板 2 ul

Taq酶0.5 ul

? 2. 将配制好的PCR体系充分混匀后,离心。

? 3. 盖紧PCR管的盖子,插入PCR仪的孔内。

? 4. 设定好程序,开始PCR反应。

? 5. PCR反应结束后,对PCR产物进行琼脂糖凝胶电泳检测。

【注意事项】

1. 换枪头,避免污染试剂

2. 酶置于冰上,且最后加入体系中

3. PCR管的盖子一定要盖紧,以防蒸干

4. PCR仪由指导老师操作

5. 琼脂糖凝胶电泳时,电泳方向为阴极→阳极

6. EB是强诱变剂,一定要戴手套保护自己

【思考题】

?PCR反应体系中主要成分有哪些?它们分别起什么作用?

答:主要成分及其作用如下:

1、NDA聚合酶将单个dNTP连接到NDA链上,其延长链的作用

2、dNTP 为新NDA链的合成提供原料

3、缓冲液为PCR反应提供适宜的离子环境和恰当的pH值,保证

反应的有效性和效率

4、双蒸水提供液体环境

5、模板提供NDA复制的母链

6、引物识别复制起始点,与模板相结合,开始NDA的复制

?为什么在PCR过程要使用三个不同的温度?

答:PCR由变性--退火--延伸三个基本反应步骤构成:①模板DNA的变性:模板DNA经加热至93℃左右一定时间后,使模板DNA双链或经PCR 扩增形成的双链DNA解离,使之成为单链,以便它与引物结合,为下轮反应作准备;②模板DNA与引物的退火(复性):模板DNA经加热变性成单链后,温度使引物与模板DNA单链的互补序列配对结合;③引物的延伸:DNA 模板--引物结合物在TaqDNA聚合酶的作用下,以dNTP为反应原料,靶序列为模板,按碱基配对与半保留复制原理,合成一条新的与模板DNA 链互补的半保留复制链。这三个过程所需的温度都不相同,所以完整的PCR反应需要三个不同的温度。

?用PCR扩增目的基因,如何提高产物的特异性?

答:可以从以下几个方面考虑

1,镁离子浓度过高会降低pcr扩增特异性

2,引物的设计是否存在问题,用软件分析下引物的特异性好不好。

3, 可以考虑用高保真聚合酶,如pfu,特异性极高,错误率低.

4、当模板是自己提取的时候,可能残留有乙醇,EDTA等影响pcr酶活性的物质。

DNA在电泳过程中的迁移率取决于哪些因素?

答:DNA在电泳过程中的迁移率取决于DNA分子特性和电泳条件。

⑴DNA分子大小DNA分子越大在胶中的摩擦阻力就越大,泳动也

越慢,迁移速率与线状DNA分子质量的对数值成反比。

⑵DNA分子构型对于质粒DNA分子即使具有相同分子质量,因

构型不同也会造成电泳时受到的阻力不同,最终造成泳动速率的不同。常规电泳中质粒DNA分子的3种构型泳动速率:超螺旋最快、线状分子次之,开环分子最慢。

⑶不同的胶浓度对于同种DNA分子胶浓度越高,电泳速率越慢。

不同胶浓度对于DNA片段呈线性关系有所区别,浓度较稀的胶线性范围较宽,而浓的胶对小分子DNA片段呈现较好的线性关系。所以常规实验中对于小片段DNA分子的分离采用高浓度的胶分离(有时甚至用2%的凝胶),而对于分离大片段则用低浓度的凝胶。

⑷溴化乙锭简称EB,电泳中的染色剂,具有扁平结构,能嵌入到

DNA碱基对间,对线状分子与开环分子影响较小而对超螺旋态的分子影响较大。当DNA分子中嵌入的EB分子逐渐增多时,原来为负超螺旋状态的分子开始向共价闭合环状转变,电泳迁移速度由快变慢;当嵌入的EB分子进一步增加时,DNA分子由共价闭合环状向正超螺旋状态转变,这时电泳迁移速率又由慢变快。这个临界点的游离EB质量浓度为

0.1g/ml~0.5g/ml,即电泳时所加的浓度。因此一般电泳可以忽略此因素,

而对于特殊电泳,消除此因素影响可采用电泳后染色。

⑸电场强度

⑹电泳缓冲液

生化及分子生物学复习资料

生化及分子生物学复习资料(15天15题) 一、变性蛋白质的性质改变 ①结晶及生物活性丧失是蛋白质变性的主要特征。 ②硫水侧链基团外露。 ③理化性质改变,溶解度降低、沉淀,粘度增加,分子伸展。 ④生理化学性质改变。分子结构伸展松散,易被蛋白酶水解。 蛋白质一、二、三、四级结构;β-折叠、α-螺旋 二、B型双螺旋DNA的结构特点 1. 两条反向平行的多核苷酸链围绕一个“中心轴”形成右手双螺旋结构,螺旋表面有一条大沟和小沟; 2.磷酸和脱氧核糖在外侧,通过3’,5 ’-磷酸二酯键相连形成DNA的骨架,与中心轴平行。碱基位于内侧,与中心轴垂直; 3. 两条链间存在碱基互补:A与T或G与C配对形成氢键,称为碱基互补原则(A与T为两个氢键,G与C为三个氢键); 4. 螺旋的稳定因素为碱基堆集力和氢键; 5. 螺旋的直径为2nm,螺距为,相邻碱基对的距离为,相邻两个核苷酸的夹角为36度。 DNA变性(复性)、增色(减色)效应 三、酶催化作用特点 一般特点(同普通的催化剂):1、只催化热力学上允许的化学反应(G<0);2、降低活化能,但不改变化学反应的平衡点;3、加快化学反应速度,但催化剂本身反应前后不发生改变。 特殊之处:1.催化具有高效性;2.高度的专一性(只能催化一种底物或一定结构的底物); 3.易失活; 4.催化活性受到调节和控制; 5.催化活性与辅助因子有关 (全酶=酶蛋白+辅助因子) 维生素;酶促反应速度;抑制剂;酶原 四、生物氧化的特点 1.反应条件温和。

2.生物氧化并非代谢物与氧直接结合,而是以脱氢为主的逐步反应。 3.生物氧化是逐步进行的,能量释放也是逐步的,一部分生成ATP。 4.终产物CO2为有机物氧化成有机酸进而脱羧生成。 呼吸链;氧化磷酸化;底物水平磷酸化;解偶联剂 五、磷酸戊糖途径的生理意义 1. 是体内生成NADPH的主要代谢途径 2. 该途径的中间产物为许多化合物的生物合成提供原料。 3. 与光合作用联系起来,实现某些单糖间的互变。 糖酵解;三羧酸循环;糖异生(掌握反应历程) 六、软脂酸β-氧化和从头合成的比较 β-氧化;α-氧化作用;ω-氧化作用 七、如何判断蛋白质的营养价值

建立一个分子生物学实验室所需的仪器

分子生物学技术信息 关于筹建一个分子生物学实验室所需的仪器 一、上游分子克隆 分子克隆技术是分子生物学的核心技术,这项技术的主要目的是获得某一基因或DNA片段的大量拷贝,从而可以深入分析基因结构与功能,并可达到人为改造细胞及物种个体的遗传性状的目的。 1. 分子克隆的基本技术路线: 1) 分离制备目的基因或DNA片段; 2) 目的DNA与载体在体外进行连接; 3) 重组DNA分子转入宿主细胞; 4) 筛选及鉴定阳性重组体; 5) 重组体的扩增。 2. 分子克隆常用仪器:

二、核酸分子杂交 核酸分子杂交技术是分子生物学领域中最常用的技术之一。其基本原理是具有一定同源性的两条核酸单链在一定的条件下可按碱基互补原则形成双链。由于核酸分子杂交的高度特异性及检测方法的高度灵敏性,使其在分子生物学领域中被广泛应用于分子克隆的筛选,基因组中特定基因序列的定量定性检测,基因表达和基因突变分析及疾病的基因诊断等。根据核酸种类分为Southern印迹法和Northern印迹法。 核酸分子杂交中常用的仪器: 三、下游蛋白的表达及分离纯化 目的基因能否发挥其效应,只能通过其表达有功能的蛋白质来实现,因此蛋白质的表达及分析方法成为分子生物学中必不可少的组成部分。 1. 蛋白的表达 大肠杆菌是自然界中最为人知的生物体之一。由于其具有操作简易,产量高和成本低廉等优点,使其成为蛋白质表达的首选宿主。缺点是:表达缺乏翻译后加工,得到的蛋白可能缺乏某些天然蛋白所具有的活性。 酵母作为单细胞低等真核生物,具有易培养,繁殖快,便于基因操作等优点,渐渐被开发作为目的基因的表达系统。其中甲基酵母作为外源基因的表达

(完整版)分子生物学试题及答案(整理版)

分子生物学试题及答案 一、名词解释 1.cDNA与cccDNA:cDNA是由mRNA通过反转录酶合成的双链DNA;cccDNA是游离于染色体之外的质粒双链闭合环形DNA。 2.标准折叠单位:蛋白质二级结构单元α-螺旋与β-折叠通过各种连接多肽可以组成特殊几何排列的结构块,此种确定的折叠类型通常称为超二级结构。几乎所有的三级结构都可以用这些折叠类型,乃至他们的组合型来予以描述,因此又将其称为标准折叠单位。 3.CAP:环腺苷酸(cAMP)受体蛋白CRP(cAMP receptor protein ),cAMP与CRP结合后所形成的复合物称激活蛋白CAP(cAMP activated protein ) 4.回文序列:DNA片段上的一段所具有的反向互补序列,常是限制性酶切位点。 5.micRNA:互补干扰RNA或称反义RNA,与mRNA序列互补,可抑制mRNA的翻译。 6.核酶:具有催化活性的RNA,在RNA的剪接加工过程中起到自我催化的作用。 7.模体:蛋白质分子空间结构中存在着某些立体形状和拓扑结构颇为类似的局部区域 8.信号肽:在蛋白质合成过程中N端有15~36个氨基酸残基的肽段,引导蛋白质的跨膜。 9.弱化子:在操纵区与结构基因之间的一段可以终止转录作用的核苷酸序列。 10.魔斑:当细菌生长过程中,遇到氨基酸全面缺乏时,细菌将会产生一个应急反应,停止全部基因的表达。产生这一应急反应的信号是鸟苷四磷酸(ppGpp)和鸟苷五磷酸(pppGpp)。PpGpp与pppGpp的作用不只是一个或几个操纵子,而是影响一大批,所以称他们是超级调控子或称为魔斑。 11.上游启动子元件:是指对启动子的活性起到一种调节作用的DNA序列,-10区的TATA、-35区的TGACA 及增强子,弱化子等。 12.DNA探针:是带有标记的一段已知序列DNA,用以检测未知序列、筛选目的基因等方面广泛应用。13.SD序列:是核糖体与mRNA结合序列,对翻译起到调控作用。 14.单克隆抗体:只针对单一抗原决定簇起作用的抗体。 15.考斯质粒:是经过人工构建的一种外源DNA载体,保留噬菌体两端的COS区,与质粒连接构成。16.蓝-白斑筛选:含LacZ基因(编码β半乳糖苷酶)该酶能分解生色底物X-gal(5-溴-4-氯-3-吲哚-β-D-半乳糖苷)产生蓝色,从而使菌株变蓝。当外源DNA插入后,LacZ基因不能表达,菌株呈白色,以此来筛选重组细菌。称之为蓝-白斑筛选。 17.顺式作用元件:在DNA中一段特殊的碱基序列,对基因的表达起到调控作用的基因元件。18.Klenow酶:DNA聚合酶I大片段,只是从DNA聚合酶I全酶中去除了5’→3’外切酶活性 19.锚定PCR:用于扩增已知一端序列的目的DNA。在未知序列一端加上一段多聚dG的尾巴,然后分别用多聚dC和已知的序列作为引物进行PCR扩增。 20.融合蛋白:真核蛋白的基因与外源基因连接,同时表达翻译出的原基因蛋白与外源蛋白结合在一起所组成的蛋白质。 二、填空 1. DNA的物理图谱是DNA分子的(限制性内切酶酶解)片段的排列顺序。 2. RNA酶的剪切分为(自体催化)、(异体催化)两种类型。 3.原核生物中有三种起始因子分别是(IF-1)、(IF-2)和(IF-3)。 4.蛋白质的跨膜需要(信号肽)的引导,蛋白伴侣的作用是(辅助肽链折叠成天然构象的蛋白质)。5.启动子中的元件通常可以分为两种:(核心启动子元件)和(上游启动子元件)。 6.分子生物学的研究内容主要包含(结构分子生物学)、(基因表达与调控)、(DNA重组技术)三部分。7.证明DNA是遗传物质的两个关键性实验是(肺炎球菌感染小鼠)、( T2噬菌体感染大肠杆菌)这两个实验中主要的论点证据是:(生物体吸收的外源DNA改变了其遗传潜能)。 8.hnRNA与mRNA之间的差别主要有两点:(hnRNA在转变为mRNA的过程中经过剪接,)、 (mRNA的5′末端被加上一个m7pGppp帽子,在mRNA3′末端多了一个多聚腺苷酸(polyA)尾巴)。 9.蛋白质多亚基形式的优点是(亚基对DNA的利用来说是一种经济的方法)、(可以减少蛋白质合成过程中随机的错误对蛋白质活性的影响)、(活性能够非常有效和迅速地被打开和被关闭)。 10.蛋白质折叠机制首先成核理论的主要内容包括(成核)、(结构充实)、(最后重排)。 11.半乳糖对细菌有双重作用;一方面(可以作为碳源供细胞生长);另一方面(它又是细胞壁的成分)。所以需要一个不依赖于cAMP—CRP的启动子S2进行本底水平的永久型合成;同时需要一个依赖于cAMP—CRP的启动子S1对高水平合成进行调节。有G时转录从( S2)开始,无G时转录从( S1)开

分子生物学实验指导(精)

分子生物学实验指导 生物技术教学室编 宁夏大学生命科学学院 2008年8月

实验一分子生物学实验技术多媒体演示 [目的要求] 通过多媒体试验录像进一步掌握分子生物学基本操作技术。 [教学方式] 多媒体光盘演示。 [实验内容] 基本的分子生物学实验操作技术包括核酸凝胶电泳技术;质粒提取;转化;重组体的筛选;PCR技术等。

实验二琼脂糖凝胶电泳检测DNA [目的要求] 通过本实验学习琼脂糖凝胶电泳检测DNA的方法和技术 [实验原理] 琼脂糖凝胶电泳是分离鉴定和纯化DNA片段的常用方法。DNA分子在琼脂糖凝胶中泳动时有电荷效应和分子筛效应,DNA分子在高于等电点的pH溶液中带负电荷,在电场中向正极移动。由于糖磷酸骨架在结构上的重复性质,相同数量的双链DNA几乎具有等量的净电荷,因此它们能以同样的速度向正极方向移动。不同浓度琼脂糖凝胶可以分离从200bp至50 kb的DNA片段。在琼脂糖溶液中加入低浓度的溴化乙锭(Ethidum bromide ,EB),在紫外光下可以检出 10ng的DNA条带,在电场中,pH8.0条件下,凝胶中带负电荷的DNA向阳极迁移。 琼脂糖凝胶有如下特点: (1) DNA的分子大小在凝胶基质中其迁移速率与碱基对数目的常用对数值成反比,分子越大迁移得越慢。 (2) 琼脂糖浓度一个特定大小的线形DNA分子,其迁移速度在不同浓度的琼脂糖凝胶中各不相同。DNA电泳迁移率(u)的对数与凝胶浓度(t)成线性关系。 (3) 电压低电压时,线状DNA片段迁移速率与所加电压成正比。但是随着电场强度的增加,不同分子量DNA片段的迁移率将以不同的幅度增长,随着电压的增加,琼脂糖凝胶的有效分离范围将缩小。要使大于2kb的DNA片段的分辨率达到最大,所加电压不得超过5v/cm。 (4) 电泳温度DNA在琼脂糖凝胶电泳中的电泳行为受电泳时的温度影响不明显,不同大小的DNA片段其相对迁移速率在4℃与30℃之间不发生明显改变,但浓度低于0.5%的凝胶或低熔点凝胶较为脆弱,最好在4℃条件下电泳。 (5) 嵌入染料荧光染料溴化乙锭用于检测琼脂糖凝胶中的DNA,染料嵌入到堆积的碱基对间并拉长线状和带缺口的环状DNA,使其刚性更强,还会使线状迁移率降低15%。 (6) 离子强度电泳缓冲液的组成及其离子强度影响DNA电泳迁移率。在没有离子存在时(如误用蒸馏水配制凝胶,电导率最小,DNA几乎不移动,在高离子强度的缓冲液中(如误加10×电泳缓冲液),则电导很高并明显产热,严重时会引起凝胶熔化。

生物化学基本概念

生物化学基本概念

————————————————————————————————作者:————————————————————————————————日期: ?

生物化学基本概念(280) 一、绪论 1生物化学 2 分子生物学(狭义、广义) 3 结构生物学 4 基因组学 5蛋白质组学 6 糖生物学 7生物工程 8 基因工程 9酶工程 10 蛋白质工程 11 细胞工程 12 发酵工程 13生化工程 14 模式生物 二、核酸化学 1 核酸 2 拟核区 3质粒 4 沉降系数 5N-C糖苷键 6第二信使 7 转化现象 8 类病毒 9沅病毒(蛋白质侵染因子) 10 核酸的一级结构 11 DNA的一级结构 12 RNA的一级结构 13 寡核苷酸 14 多核苷酸 15 DNA的二级结构 16DNA的三级结构 17 正超螺旋

18负超螺旋 19 RNA的二级结构 20RNA的三级结构 21发夹结构 22 多顺反子 23 单顺反子 24减色效应 25 增色效应 26核酸的变性 27 核酸的复性 28DNA的熔点(Tm、熔解温度) 29 退火 30 分子杂交 31 Southern 印迹法 32Nouthern 印迹法 三、蛋白质化学 1激素 2抗体 3 补体 4 干扰素 5 糖蛋白 6蛋白质氨基酸 7非蛋白质氨基酸 8等电点(PI) 9肽 10生物活性肽 11 双缩脲反应 12构型 13 构象 14蛋白质的一级结构 15蛋白质的二级结构 16蛋白质的三级结构 17蛋白质的四级结构 18二面角

19β-折叠 20 β-转角 21 无规则卷曲 22超二级结构 23 结构域 24分子病 25 可变残基 26 不变残基 27电泳 28 透析 29 相对迁移率 30盐析 31 盐溶 32 蛋白质的变性作用 33 变性蛋白 34 蛋白质的复性 35 简单蛋白 36 结合蛋白 37糖蛋白 38脂蛋白 39色蛋白 40 核蛋白 41 磷蛋白 42 金属蛋白 43可逆沉淀 44 不可逆沉淀 四、酶学 1 酶 2 单纯酶 3 结合酶 4 酶蛋白 5 辅因子 6全酶 7 辅酶

612生物化学与分子生物学

中科院研究生院硕士研究生入学考试 《生物化学与分子生物学》考试大纲 一、考试内容 1.蛋白质化学 考试内容 ●蛋白质的化学组成,20种氨基酸的简写符号 ●氨基酸的理化性质及化学反应 ●蛋白质分子的结构(一级、二级、高级结构的概念及形式) ●蛋白质一级结构测定的一般步骤 ●蛋白质的理化性质及分离纯化和纯度鉴定的方法 ●蛋白质的变性作用 ●蛋白质结构与功能的关系 考试要求 ●了解氨基酸、肽的分类 ●掌握氨基酸与蛋白质的物理性质和化学性质 ●了解蛋白质一级结构的测定方法(目前关于蛋白质一级结构测定的新方法和新思路很多,而教科书和教学中 涉及的可能不够广泛,建议只让学生了解即可) ●理解氨基酸的通式与结构 ●理解蛋白质二级和三级结构的类型及特点,四级结构的概念及亚基 ●掌握肽键的特点 ●掌握蛋白质的变性作用 ●掌握蛋白质结构与功能的关系 2.核酸化学 考试内容 ●核酸的基本化学组成及分类 ●核苷酸的结构 ●DNA和RNA一级结构的概念和二级结构要特点;DNA的三级结构 ●RNA的分类及各类RNA的生物学功能 ●核酸的主要理化特性 ●核酸的研究方法 考试要求 ●全面了解核酸的组成、结构、结构单位以及掌握核酸的性质 ●全面了解核苷酸组成、结构、结构单位以及掌握核苷酸的性质 ●掌握DNA的二级结构模型和核酸杂交技术 ●了解microRNA的序列和结构特点(近年来针对非编码RNA的研究越来越深入,建议增加相关考核) 3. 糖类结构与功能 考试内容 ●糖的主要分类及其各自的代表 ●糖聚合物及其代表和它们的生物学功能 ●糖链和糖蛋白的生物活性 考试要求 ●掌握糖的概念及其分类 ●掌握糖类的元素组成、化学本质及生物学功用 ●理解旋光异构 ●掌握单糖、二糖、寡糖和多糖的结构和性质 ●掌握糖的鉴定原理 4. 脂质与生物膜 考试内容

分子生物学实验技术考试题库

一、名词解释 1.分配常数:又称分配系数,是指一种分析物在两种不相混合溶剂中的平衡常数。 2.多肽链的末端分析:确定多肽链的两末端可作为整条多肽链一级结构测定的标志,分为氨基端分析和羧基端分析。 3.连接酶:指能将双链DNA中一条单链上相邻两核苷酸连接成一条完整的分子的酶。 4.预杂交:在分子杂交实验之前对杂交膜上非样品区域进行封闭,用以降低探针在膜上的非特异性结合。 5.反转录PCR:是将反转录RNA与PCR结合起来建立的一种PCR技术。首先进行反转录产生cDNA,然后进行常规的PCR反应。 6.稳定表达:外源基因转染真核细胞并整合入基因组后的表达。 7.基因敲除:是指对一个结构已知但功能未知或未完全知道的基因,从分子水平上设计实验,将该基因从动物的原基因组中去除,或用其它无功能的DNA片断取代,然后从整体观察实验动物表型,推测相应基因的功能。 8.物理图谱:人类基因组的物理图是指以已知核苷酸序列的DNA片段为“路标”,以碱基对(bp,kb,Mb)作为基本测量单位(图距)的基因组图。 9.质谱图:不同质荷比的离子经质量分析器分开后,到检测器被检测并记录下来,经计算机处理后所表示出的图形。 10.侧向散射光:激光束照射细胞时,光以90度角散射的讯号,用于检测细胞内部结构属性。

11.离子交换层析:是以离子交换剂为固定相,液体为流动相的系统中进行的层析。 12.Edman降解:从多肽链游离的N末端测定氨基酸残基的序列的过程。 13.又称为限制性核酸内切酶(restriction endonuclease):是能够特异识别双链DNA序列并进行切割的一类酶。 14.电转移:用电泳技术将凝胶中的蛋白质,DNA或RNA条带按原位转移到固体支持物,形成印迹。 15.多重PCR:是在一次反应中加入多对引物,同时扩增一份模板样品中不同序列的PCR 过程。 16.融合表达: 在表达载体的多克隆位点上连有一段融合表达标签(Tag),表达产物为融合蛋白(有分N端或者C端融合表达),方便后继的纯化步骤或者检测。 17.同源重组:发生在DNA同源序列之间,有相同或近似碱基序列的DNA分子之间的遗传交换。 18.遗传图谱又称连锁图谱(linkage map),它是以具有遗传多态性的遗传标记为“路标”,以遗传学距离为图距的基因组图。 19.碎片离子:广义的碎片离子为由分子离子裂解产生的所有离子。 20.前向散射光:激光束照射细胞时,光以相对轴较小角度向前方散射的讯号用于检测细胞等离子的表面属性,信号强弱与细胞体积大小成正比。 21.亲和层析:利用共价连接有特异配体的层析介质分离蛋白质混合物中能特异结合配体的目的蛋白或其他分子的一种层析法。(利用分子与其配体间特殊的、可逆性的亲和结合

分子生物学综合实验报告

分子生物学综合试验报告

综合实验Ⅰ.Southern杂交 (质粒DNA提取、PCR技术体外扩增DNA、质粒载体和外源DNA的连接反应、 地高辛标记的Southern杂交) 一.实验目的 1.学习Southern杂交的原理及操作方法。 2.学习碱裂解法提取质粒的原理。 3.学习PCR反应的基本原理和实验技术;了解引物设计的一般要求。 4.掌握DNA体外连接的基本技能,了解连接反应的注意事项。 二.实验原理 利用染色体DNA与质粒DNA的变性与复性的差异而达到分离的目的。在碱变性条件下,染色体DNA的氢键断裂,双螺旋解开而变性,质粒DNA氢键也大部分断裂,双螺旋也有部分解开,但共价闭合环状结构的两条互补链不会完全分离,当pH=的乙酸钠将其pH调到中性时,变性的质粒DNA又恢复到原来的碱裂解法提取质粒的主要原理是:利用染色体DNA与质粒DNA的变性与复性的差异而构型,而染色体DNA不能复性,形成缠绕的致密网状结构,离心后,由于浮力密度不同,染色体DNA与大分子RNA、蛋白质-SDS复合物等一起沉淀下来而被除去。 聚合酶链反应(PCR)是体外酶促合成DNA片段的一种技术,PCR 进行的基本条件:DNA模板(在RT-PCR中模板是RNA)、引物、dNTP (dATP、dTTP、dGTP、dCTP)、Taq DNA聚合酶、反应缓冲体系。 PCR循环由三个步骤组成:变性、退火、延伸。每一个循环的产物可作为下一个循环的模板,通过30个左右循环后,目的片段的扩增可达106倍。

DNA片段之间的连接是通过DNA连接酶的催化实现的。DNA连接酶催化具有平末端或互补粘性末端的DNA片段间相邻碱基通过3’,5’磷酸二酯键连接起来。最常用的来源于T4噬菌体的T4DNA连接酶。对于平末端或互补的粘性末端可直接进行连接反应。一个片段是平末端,另一片段为粘性末端或两个片段都是粘性末端但不配对,则需要通过各种方式使其可一匹配或通过平末端进行连接。通常采用末端补平、加同聚物尾、加接头等方式是目的片段之间能够匹配。 地高辛随机引物法标记的原理:在随机引物法标记的反应液中,有随机合成的六聚核苷酸作为引物,dATP、dCTP、dGTP、dTTP和D1G-11-dUTP作为合成底物,以单链DNA作为模板,在Klenow酶的作用下,合成插入地高辛的DNA链。以地高辛标记的探针与靶基因DNA链杂交后,再通过免疫反应进行检测。一般通过酶标记地高辛抗体检测,就可以肯定杂交反应的存在。免疫检验一般用碱性磷酸酶系统,BClP/NBT显色,敏感性很高。 三.实验准备 1.实验材料: 含质粒的大肠杆菌DH5α,LB液体培养基, LB平板培养基 2.实验试剂: Taq DNA聚合酶,10×反应缓冲液(含25mmol MgCl2),dNTP,引物(P1、P2),溴乙啶 (EB) ,点样缓冲液Loading buffer(10×):%溴酚蓝,40%甘油,目的基因及载体, 2×ligation 缓冲液,T4 DNA连接酶, L CaCl2,氨苄青霉素(100mg/mL), TBE电泳缓冲液(5×), DIG Random Labeling Mix(高效),Anti-DIG-AP Conjugate, BCIP/NBT Stock Solution,Blocking Reagent。 20×SSC:柠檬酸钠,3M NaCl,2×SSC:柠檬酸钠, NaCl, EDTA,变性液: NaOH, NaCl,中和度: Tris-HCl、、3M NaCl,Standard buffer:5×SSC、%(w/v) N-Lauroylsarcosine, % (w/v) SDS, 1% Blocking Reagent,Standard buffer+50% formamide,Anti-DIG-AP 碱性磷酸酶标记抗地高辛单抗体,BCIP/NBT储备液,冲洗液:0. 1M

生物化学、化学生物学、分子生物学,三者联系与区别

一、生物化学、化学生物学、分子生物学,三者联系与区别 欧洲化学生物学的一个专门刊名为ChemBioChem刊物,这部刊物在我所阅读的文献中被反复提及,我查到该文献的两位主编分别是Jean-Marie Lehn教授和Alan R. Fersht教授,他们在诠释刊物的宗旨[1]时指出:ChemBioChem意指化学生物学和生物化学,其使命是涵盖从复杂的碳水化合物、多肽蛋白质到DNA/RNA,从组合化学、组合生物学到信号传导,从催化抗体到蛋白质折叠,从生物信息学和结构生物学到药物设计,这一范围宽广而欣欣向荣的学科领域。既然化学生物学涵盖面这么广泛,它到底和其它学科之间怎么区分呢? 想到拿这个题目出来介绍是因为这是我在第一节课课堂讨论中的内容,我们小组所参考的文献主要是关于对化学生物学这门学科的认识,化学生物学的分析手段以及一些新的研究进展,比如药物开发和寻找药物靶点。当时课堂上对于题目中三者展开过热烈讨论,作为新兴学科的化学生物学,研究的是小分子作为工具解决生物学问题的学科,它如何从生物化学和分子生物学中分别出来,这也是我自己最开始产生过矛盾的问题,这里我结合所查阅的文献谈一下自己的理解。 1.1 生物化学(Biological Chemistry) 生物化学是研究生命物质的化学组成、结构、化学现象及生命过程中各种化学变化的生物学分支学科[1]。根据一些生物化学的书我归纳了一下,其研究的基本内容包括对生物体的化学组成的鉴定,对

新陈代谢与代谢调节控制,生物大分子的结构与功能测定,以及研究酶催化,生物膜和生物力学,激素与维生素,生命的起源与进化。 生物化学对其他各门生物学科的深刻影响首先反映在与其关系比较密切的细胞学、微生物学、遗传学、生理学等领域。通过对生物高分子结构与功能进行的深入研究,揭示了生物体物质代谢、能量转换、遗传信息传递、光合作用、神经传导、肌肉收缩、激素作用、免疫和细胞间通讯等许多奥秘,使人们对生命本质的认识跃进到一个崭新的阶段。(摘自https://www.doczj.com/doc/f03954445.html,/view/253496.htm) 1.2 化学生物学(Chemical Biology) 化学生物学是使用小分子作为工具解决生物学的问题或通过干扰/调节正常过程了解蛋白质的功能[1]。曾看到过一篇关于介绍化学生物学的奠基人Schreiber的文章,他曾经指出:“化学生物学是对分子生物学的有力补充,分子生物学采用定点突变的方法来改变生物分子如蛋白质和核酸的功能;而化学生物学是采用化学的手段,如运用小分子或人工设计合成的分子作为配体来直接改变生物分子的功能[2]。” 化学生物学是近年来出现的新兴研究领域,它融合了化学、生物学、物理学、信息科学等多个相关学科的理论、技术和研究方法,是一个有活力、有应用前景的新学科。它主要研究的内容包括[3]:1化学遗传学—采用小分子活性化合物作为探针,探索和调控细胞过程 (1)基因表达的小分子调控

生物化学与分子生物学问答题

机体是如何维持血糖平衡的(说明血糖的来源、去路及调节过程)? 血液中的葡萄糖称为血糖,机体血糖平衡是糖、脂肪、氨基酸代谢协调的结果,也是肝、肌、脂肪组织等器官代谢协调的结果(由于血糖的来源与去路保持动态平衡,血糖是组织、中枢神经、脑能量来源的主要保证)。 A.血糖来源(3分) 糖类消化吸收:食物中的糖类经消化吸收入血,这是血糖最主要的来源;肝糖原分解:短期饥饿后,肝中储存的糖原分解成葡萄糖进入血液;糖异生作用:在较长时间饥饿后,氨基酸、甘油等非糖物质在肝内异生合成葡萄糖;其他单糖转化成葡萄糖。 B.血糖去路(4分) 氧化供能:葡萄糖在组织细胞中通过有氧氧化和无氧酵解产生ATP,为细胞供给能量,此为血糖的主要去路。合成糖原:进食后,肝和肌肉等组织将葡萄糖合成糖原以储存。转化成非糖物质:可转化为甘油、脂肪酸以合成脂肪;可转化为氨基酸、合成蛋白质。转变成其他糖或糖衍生物(戊糖磷酸途径),如核糖、脱氧核糖、氨基多糖等。血糖浓度高于肾阈时可随尿排出一部分。 C.血糖的调节(2分) 胰岛素是体内唯一降低血糖的激素,但胰岛素分泌受机体血糖的控制(机体血糖升高胰岛素分泌减少)。胰岛素分泌增加,糖原合酶活性提高、糖原磷酸化酶活性降低,糖原分解降低、糖原合成提高,血糖降低。否则相反(胰岛素分泌减少,糖原合酶活性降低、糖原磷酸化酶活性提高,糖原分解提高、糖原合成降低,血糖提高)。胰高血糖素、肾上腺素作用是升高机体血糖。胰高血糖素、肾上腺素分泌增加,糖原合酶活性降低、糖原磷酸化酶活性提高,糖原分解提高、糖原合成降低,血糖提高。否则相反。 老师,丙酮酸被还原为乳酸后,乳酸的去路是什么 这个问题很重要。 肌组织产生的乳酸的去向包括:大量乳酸透过肌细胞膜进入血液,在肝脏进行糖异生转变为葡萄糖。大量乳酸进入血液,在心肌中经LDH1催化生成丙酮酸氧化供能;部分乳酸在肌肉内脱氢生成丙酮酸而进入到有氧氧化供能。大量乳酸透过肌细胞膜进入血液,在肾脏异生为糖或经尿排出体外。 下面问题你能回答出来不 1说明脂肪氧化供能的过程 (1)脂肪动员:脂肪组织中的甘油三酯在HSL的作用下水解释放脂酸和甘油。 (2)脂酸氧化:经脂肪酸活化、脂酰CoA进入线粒体、β-氧化、乙酰CoA进入三羧酸循环彻底氧化成H2O 和CO2并释放能量。 (3)甘油氧化:经磷酸化、脱氢、异构转变成3-磷酸甘油醛,3-磷酸甘油醛循糖氧化分解途径彻底分解生成H2O 和CO2并释放能量。 1.丙氨酸异生形成葡萄糖的过程 答:(1)丙氨酸经GPT催化生成丙酮酸。(2)丙酮酸在线粒体内经丙酮酸羧化酶催化生成草酰乙酸,后者经苹果酸脱氢酶催化生成苹果酸出线粒体,在胞液中经苹果酸脱氢酶催化生成草酰乙酸,后者在磷酸烯醇式丙酮酸羧激酶作用下生成磷酸烯醇式丙酮酸。(3)磷酸烯醇式丙酮酸循糖酵解途径至1,6-双磷酸果糖。1,6-双磷酸果糖经果糖双磷酸酶催化生成6-磷酸果糖,再异构成6-磷酸葡萄糖。6-磷酸葡萄糖在葡萄糖-6-磷酸酶作用下生成葡萄糖。

关于分子生物学试题及答案

分子生物学试题(一) 一.填空题(,每题1分,共20分) 一.填空题(每题选一个最佳答案,每题1分,共20分) 1. DNA的物理图谱是DNA分子的()片段的排列顺序。 2. 核酶按底物可划分为()、()两种类型。 3.原核生物中有三种起始因子分别是()、()和()。 4.蛋白质的跨膜需要()的引导,蛋白伴侣的作用是()。5.真核生物启动子中的元件通常可以分为两种:()和()。6.分子生物学的研究内容主要包含()、()、()三部分。 7.证明DNA是遗传物质的两个关键性实验是()、()。 8.hnRNA与mRNA之间的差别主要有两点:()、()。 9.蛋白质多亚基形式的优点是()、()、()。 10.蛋白质折叠机制首先成核理论的主要内容包括(成核)、(结构充实)、(最后重排)。 11.半乳糖对细菌有双重作用;一方面(可以作为碳源供细胞生长);另一方面(它又是细胞壁的成分)。所以需要一个不依赖于cAMP-CRP的启动子S2进行本底水平的永久型合成;同时需要一个依赖于cAMP-CRP的启动子S1对高水平合成进行调节。有G时转录从(S2 )开始,无G时转录从(S1 )开始。 12.DNA重组技术也称为(基因克隆)或(分子克隆)。最终目的是(把一个生物体中的遗传信息DNA转入另一个生物体)。典型的DNA重组实验通常包含以下几个步骤: ①提取供体生物的目的基因(或称外源基因),酶接连接到另一DNA分子上(克隆载体),形一个新的重组DNA分子。 ②将这个重组DNA分子转入受体细胞并在受体细胞中复制保存,这个过程称为转化。 ③对那些吸收了重组DNA的受体细胞进行筛选和鉴定。 ④对含有重组DNA的细胞进行大量培养,检测外援基因是否表达。 13、质粒的复制类型有两种:受到宿主细胞蛋白质合成的严格控制的称为(严紧型质粒),不受宿主细胞蛋白质合成的严格控制称为(松弛型质粒)。 14.PCR的反应体系要具有以下条件: a、被分离的目的基因两条链各一端序列相互补的 DNA引物(约20个碱基左右)。 b、具有热稳定性的酶如:TagDNA聚合酶。 c、dNTP d、作为模板的目的DNA序列 15.PCR的基本反应过程包括:(变性)、(退火)、(延伸)三个阶段。 16、转基因动物的基本过程通常包括: ①将克隆的外源基因导入到一个受精卵或胚胎干细胞的细胞核中; ②接种后的受精卵或胚胎干细胞移植到雌性的子宫;

分子生物学实验报告

分子生物学实验 院系:生命科学与技术学院 专业:生物科学(基地) 班级: 201101班 学号: 姓名: 分子生物学基础实验 分子生物学实验技术已成为生物化学及分子生物学以及相关学科院系教学科研不可缺少的一部分。为提高学生在分子生物学技术方面的动手能力,生物技术综合实验室主要开设常用而基本的分子生物学实验技术。它的内容包括质粒DNA的制备;DNA的重组;PCR基因扩增等等。 实验一质粒DNA的小量制备 一、实验原理 要把一个有用的外源基因通过基因工程手段,送进细胞中去进行繁殖和表达,需要运载工具,携带外源基因进入受体细胞的这种工具就叫载体(vector)。载体的设计和应用是DNA体外重组的重要条件。作为基因工程的载体必须具备下列条件:(1)是一个复制子,载体有复制点才能使与它结合的外源基因复制繁殖;(2)载体在受体细胞中能大量增殖,只有高复制率才能使外源基因在受体细胞中大量扩增;(3)载体DNA链上有1到几个限制性内切酶的单一识别与切割位点,便于外源基因的插入;(4)载体具有选择性的遗传标记,如有抗四环素基因(Tc r),抗新霉素基因(Ne r)等,以此知道它是否已进入受体细胞,也可根据这个标记将受体细胞从其他细胞中分离筛选出来。细菌质粒具备上述条件,它是基因工程中常用的载体之一。 质粒(plasmid)是一种染色体外的稳定遗传因子,大小在1~120kb之间,具

有双链闭合环状结构的DNA分子,主要发现于细菌、放线菌和真菌细胞中。质粒具有自主复制和转录能力,能使子代细胞保持它们恒定的拷贝数,可表达它携带的遗传信息。它可独立游离在细胞质内,也可以整合到细菌染色体中,它离开宿主的细胞就不能存活,而它控制的许多生物学功能也是对宿主细胞的补偿。 质粒在细胞内的复制,一般分为两种类型:严密控制型(stringent control)和松弛控制型(relaxed control)。前者只在细胞周期的一定阶段进行复制,染色体不复制时,它也不复制。每个细胞内只含有1个或几个质粒分子。后者的质粒在整个细胞周期中随时复制,在细胞里,它有许多拷贝,一般在20个以上。通常大的质粒如F因子等,拷贝数较少,复制受到严格控制。小的质粒,如ColE Ⅰ质粒(含有产生大肠杆菌素E1基因),拷贝数较多,复制不受严格控制。在使用蛋白质合成抑制剂-氯霉素时,染色体DNA复制受阻,而松弛型ColEⅠ质粒继续复制12-16h,由原来20多个拷贝可扩增至1000-3000个拷贝,此时质粒DNA占总DNA的含量由原来的2%增加到40%-50%。本实验分离提纯化的质粒pBR322、pUC19就是由ColE Ⅰ衍生的质粒。 所有分离质粒DNA的方法都包括三个基本步骤:培养细菌使质粒扩增;收集和裂解细菌;分离和纯化质粒DNA。采用溶菌酶可破坏菌体细胞壁,十二烷基硫酸钠(SDS)可使细胞壁解,经溶菌酶和阴离子去污剂(SDS)处理后,细菌染色体DNA 缠绕附着在细胞壁碎片上,离心时易被沉淀出来,而质粒DNA则留在清液中。用乙醇沉淀、洗涤,可得到质粒DNA。 质粒DNA的相对分子量一般在106-107范围内,如质粒pBR322的相对分子质量为2.8×106,质粒pUC19的相对分子质量为1.7×106。在细胞内,共价闭环DNA(covalently closed circular DNA,简称cccDNA)常以超螺旋形式存在。如果两条链中有一条链发生一处或多处断裂,分子就能旋转而消除链的张力,这种松弛型的分子叫做开环DNA(open circular DNA,简称ocDNA)。在电泳时,同一质粒如以cccDNA形式存在,它比其开环和线状DNA的泳动速度快,因此在本实验中,自制质粒DNA在电泳凝胶中呈现3条区带。 二、实验目的 1.掌握最常用的提取质粒DNA的方法和检测方法。 2.了解制备原理及各种试剂的作用。 三、实验材料和试剂

生化和分子生物学

华中科技大学生物学硕士研究生入学考试《生化与分子生物学》 考试大纲 第一部分考试说明 一、考试性质 全国硕士研究生入学考试是为高等学校招收硕士研究生而设置的。其中,生物学(专业部分)由我校自行出题。它的评价标准是高等学校优秀本科毕业生能达到的及格或及格以上水平,以保证被录取者具有基本的生物学知识而有利于我校在录取时择优选拔。 二、评价目标 生物学(专业部分)考试在重点考查生物化学和分子生物学的基础知识、基本理论的基础上,注重考查理论联系实际的能力,说明、提出、分析和解决这些学科中出现的现象和问题。 ?正确地理解和掌握有关的基本概念、理论、假说、规律和论断 ?运用掌握的基础理论知识和原理,可以就某一问题设计出实验方案 ?准确、恰当地使用专业术语,文字通顺、层次清楚、有论有据、合乎逻辑地表述 三、考试形式和试卷结构 o答卷方式:闭卷,笔试,所列题目全部为必答题 o答题时间:180分钟 o题型比例:名词解释约15%;填空题约25%;简答和计算约30%;分析论述约30% 第二部分考查要点 一、分子生物学 (一)DNA 1、DNA的结构 DNA的构成,DNA的一级结构、二级结构、高级结构 2、DNA的复制 DNA的半保留复制,复制起点、方向和速度,复制的几种主要方式 3、原核生物和真核生物DNA复制特点 原核生物DNA复制特点,真核生物DNA复制特点,DNA的复制调控 4、DNA的修复 四种修复方式

5、DNA的转座 转座子的分类和结构特征,转座机制,转座作用的遗传学效应,真核生物的转座子 (二)生物信息的传递(上)——从DNA到RNA 1、RNA的转录 转录的基本过程,转录机器的主要成分 2、启动子与转录起始 启动子的基本结构,启动子的识别,酶与启动子的结合,-10区和-35区的最佳间距,增强子及其功能,真核生物启动子对转录的影响 3、原核生物与真核生物mRNA的特征比较 原核生物mRNA的特征,真核生物mRNA的特征 4、终止和抗终止 不依赖于ρ因子的终止,依赖于ρ因子的终止,抗终止 5、内含子的剪接、编辑及化学修饰 RNA中的内含子,RNA的剪接,RNA的编辑和化学修饰 (三)生物信息的传递(下)——从DNA到蛋白质 1.遗传密码 三联子密码及其破译,遗传密码的性质 2.tRNA tRNA的结构、功能及种类,氨酰-tRNA合成酶 3.核糖体 核糖体的结构,rRNA,核糖体的功能 4.蛋白质合成的生物学机制 氨基酸的活化,肽链的起始、延伸和终止,蛋白质前体的加工,蛋白质合成抑制剂,RNA分子在生物进化中的地位 5.蛋白质运转机制 翻译-运转同步机制,翻译后的运转机制,核定位蛋白的运转机制,蛋白质的降解 (四)分子生物学研究法 1、重组DNA技术发展史上的重大事件 略 2、DNA操作技术 核酸的分离、提纯和定量测定的方法,核酸的凝胶电泳,分子杂交,细菌转化,核苷酸序列分析,基因扩增,DNA与蛋白质相互作用研究 2、基因克隆的主要载体系统 质粒DNA及其分离纯化,重要的大肠杆菌质粒载体,λ噬菌体载体,柯斯质粒载体,pBluescript噬菌体载体

生物化学与分子生物学试题库完整

“生物化学与分子生物学” 题库 第二军医大学基础医学部 生物化学与分子生物学教研室编制 2004年7月

第一篇生物大分子的结构与功能 第一章蛋白质的结构与功能 一、单项选择题(A型题) 1.蛋白质的一级结构是指下面的哪一种情况?( ) A、氨基酸种类的数量 B、分子中的各种化学键 C、氨基酸残基的排列顺序 D、多肽链的形态和大小 E、氨基酸的连接方式 2.关于蛋白质分子三级结构的描述,其中错误的是:( ) A、天然蛋白质分子均有这种结构 B、具有三级结构的多肽链都有生物学活性 C、三级结构的稳定性主要是次级键维系 D、亲水基团多聚集在三级结构的表面 E、骨架链原子的空间排布 3、学习“蛋白质结构与功能”的理论后,我们认识到错误概念是()。 A、蛋白质变性是肽键断裂所致 B、蛋白质的一级结构决定其空间结构 C、肽键的键长较单键短,但较双键长 D、四级结构蛋白质必定由二条或二条以上多肽链组成 E、蛋白质活性不仅取决于其一级结构,还依赖于高级结构的正确 4、通过“蛋白质、核酸的结构与功能”的学习,认为错误的概念是()。 A、氢键是维系多肽链β-折叠的主要化学键 B、DNA分子的二级结构是双螺旋,维系其稳定的重要因素是碱基堆积力 C、蛋白质变性后可以恢复,但DNA变性后则不能恢复 D、谷氨酸、半胱氨酸和甘氨酸三者组成GSH E、蛋白质亚基具有三级结构,而tRNA三级结构呈倒L形 5、“蛋白质分子结构与功能”一章学习,告之我们以下概念不对的是()。 A、氢键不仅是维系β-折叠的作用力,也是稳定β-转角结构的化学键 B、活性蛋白质均具有四级结构 C、α-螺旋的每一圈包含3.6个氨基酸残基 D、亚基独立存在时,不呈现生物学活性的 E、肽键是不可以自由旋转的 6、关于蛋白质分子中α-螺旋的下列描述,哪一项是错误的?() A、蛋白质的一种二级结构 B、呈右手螺旋

分子生物学复习题(有详细答案)

绪论 思考题:(P9) 1.从广义和狭义上写出分子生物学的定义? 广义上讲的分子生物学包括对蛋白质和核酸等生物大分子结构与功能的研究,以及从分子水平上阐明生命的现象和生物学规律。 狭义的概念,即将分子生物学的范畴偏重于核酸(基因)的分子生物学,主要研究基因或DNA结构与功能、复制、转录、表达和调节控制等过程。其中也涉及与这些过程相关的蛋白质和酶的结构与功能的研究。 2、现代分子生物学研究的主要内容有哪几个方面?什么是反向生物学?什么是 后基因组时代? 研究内容: DNA的复制、转录和翻译;基因表达调控的研究;DNA重组技术和结构分子生物学。 反向生物学:是指利用重组DNA技术和离体定向诱变的方法研究已知结构的基因相应的功能,在体外使基因突变,再导入体内,检测突变的遗传效应,即以表型来探索基因结构。 后基因组时代:研究细胞全部基因的表达图式和全部蛋白质图式,人类基因组研究由结构向功能转移。 3、写出三个分子生物写学展的主要大事件(年代、发明者、简要内容) 1953年Watson和Click发表了?脱氧核糖核苷酸的结构?的著名论文,提出了DNA的双螺旋结构模型。 1972~1973年,重组DNA时代的到来。H.Boyer和P.Berg等发展了重组DNA 技术,并完成了第一个细菌基因的克隆,开创了基因工程新纪元。 1990~2003年美、日、英、法、俄、中六国完成人类基因组计划。解读人类遗传密码。 4、21世纪分子生物学的发展趋势是怎样的? 随着基因组计划的完成,人类已经掌握了模式生物的所有遗传密码。又迎来了后基因组时代,人类基因组的研究重点由结构向功能转移。相关学说理论相应诞生,如功能基因组学、蛋白质组学和生物信息学。生命科学又进入了一个全新的时代。 第四章 思考题:(P130) 1、基因的概念如何?基因的研究分为几个发展阶段? 概念:基因是原核、真核生物以及病毒的DNA和RNA分子中具有遗传效应的核苷酸序列,是遗传的基本单位和突变单位以及控制形状的功能单位。 发展阶段:○120世纪50年代以前,主要从细胞的染色体水平上进行研究,属于基因的染色体遗传学阶段。 ○220世纪50年代以后,主要从DNA大分子水平上进行研究,属于分

医学分子生物学实验报告

医学分子生物学实验报告

日期:2012-04-14 医学分子生物学实验报告 一、实验名称: 1、质粒的提取 2、质粒DNA的限制性内切酶酶切 3、DNA琼脂糖凝胶电泳 二、实验目的: 1、掌握碱裂解法分离质粒DNA的基本原理和操作要点 2、了解限制性内切酶作用的原理、特点和酶切质粒DNA的试验方法 3、学习琼脂糖凝胶电泳检测DNA的方法和技术 三、实验原理: 质粒是一种染色体外能够稳定遗传的因子,具有双链共价闭环结构的DNA分子。是染色体外小型(1-200kb)的共价、闭合、环状的双链DNA分子(cccDNA),能自主复制并能稳定遗传的遗传因子。 碱裂解法利用宿主菌巨大线状染色体DNA与相对较小的闭环双链质粒DNA的结构的差异来提取质粒DNA。碱变性DNA时,线状基因组DNA变性充分而质粒DNA处于拓扑缠绕的自然状态而不能彼此分开。当去除变性条件时(酸中和),质粒DNA迅速准确配置重新形成完全天然超螺旋状分子,而难于复性的长链线状的基因组DNA则与破裂的细胞壁、细菌蛋白相互缠绕成大型复合物,被SDS包盖,当K+取代Na+时这些复合物会从溶液中沉淀下来,附在细胞碎片上一起被离心除去。 质粒检测:(1)电泳检测:质粒电泳一般有三条带,分别为质粒的超螺旋、开环、线型三种构型;(2)吸光值检测:采用分光光度计检测260nm、280nm波长吸光值,若吸光值260nm/280nm的比值介于1.7-1.9之间,说明质粒质量较好,1.8为最佳,低于1.8说明有蛋白质污染,大于1.8说明有RNA污染。 Ⅱ型酶识别的DNA序列一般含有4~6个核苷酸。有的在识别顺序的对称轴上对双链DNA 同时切割产生平末端;有的在识别顺序的双侧末端DNA双链产生粘性末端。Ⅱ型限制性内切酶需要Mg2+激活,大部分Ⅱ型酶所识别的序列具有反向对称的结构,或称为回文结构。质粒DNA通常都具有一个或多个限制性内切酶酶切识别序列,可被相应限制性内切酶切出相应数量的切口,从而产生相应数量的酶切片断。本实验采用的EcoRⅠ和Hind的识别序列和酶切位点分别为 GAATTC 和AAGCTT CTTAAG TTCGAA DNA在琼脂糖凝胶中泳动时有电荷效应和分子筛效应。 核酸为两性分子,在pH3.5时,整个分子带正电; pH8左右时,整个分子带负电。 在碱性环境下,核酸分子之糖-磷酸骨架中的磷酸基团,是呈离子化状态的,把这些核酸分

相关主题
文本预览
相关文档 最新文档