当前位置:文档之家› 勾股定理与逆定理

勾股定理与逆定理

勾股定理与逆定理
勾股定理与逆定理

一勾股定理验证(等面积法)

解题思路:将所给三角形拼成大图形用等面积法:大图形面积=各小图形面积和。例1、如图所示,可以利用两个全等的直角三角形拼出一个梯形.借助这个图形,

你能用面积法来验证勾股定理吗?

例2、如图矩形是由四个直角三角形拼成,题中已给出各边长,试证明勾股定理。

例3、图中的正方形均是由Rt△ABC拼成,试验证勾股定理。

二、勾股数:满足a2+b2=c2的一组正整数叫做勾股数

类型一:如何判断勾股数

关键词:选择题、三条边、构成直角三角形、勾股数等

一眼识别勾股数:可将较小两数的个位数进行完全平方求和,将所得的新的个位数与最大数的个位数的平方所得个位数进行比较,若结果一样一般满足勾股数。

例1、判断下列哪组数是勾股数()

A、58,44,60

B、8,15,17

C、13,14,19

D、22,30,19

类型二:大题中如何估算勾股数

解题思路:先确定最高位的数字,再确定其它位数字

例1、已知直角三角形的两条直角边分别是:48、55,试求斜边长是多少?

类型三:根据勾股数关系巧设未知数求边长

例1、在直角三角形中,一条直角边为11cm,另两边是两个连续自然数,则此直角三角形的周长为多少?

例2、直角三角形的三边长是三个连续的整数,这样的三角形共有()个?

A、 1个

B、 2个

C、 3个

D、无数个

例3、△ABC的两边a,b分别为5,12,另一边c为奇数,且a+b+c是3的倍数,则c应为多少?此三角形为何种三角形?

类型四:勾股数与规律

例1、观察下列各组数:

a b c

第一组:3=2×1+1, 4=2×1×(1+1), 5=2×1×(1+1)+1,

第二组:5=2×2+1, 12=2×2×(2+1), 13=2×2×(2+1)+1,

第三组:7=2×3+1, 24=2×3×(3+1), 25=2×3×(3+1)+1,

第四组:9=2×4+1, 40=2×4×(4+1), 41=2×4×(4+1)+1

.......

观察以上各组勾股数的组成特点,你能求出第七组勾股数的a,b,c,各是多少吗?弟n组呢?

例2、观察下列每组勾股数,每行所给的三个数a,b,c 都满足a

6, 8,10 2

221086=+

8,15,17

10,24,26 2

22262410=+

12,35,37 2

22373512=+

--- ---

20, b,c 2

2220c b =+

试根据已有数的规律,写出当a=20时,b,c 的值,并把b,c 用含a 的代数式表示出来.

例3、已知:在ABC Rt ?中,ο

90=∠C ,C B A ∠∠∠,,的对边分别为a,b,c 设ABC ?的

面积为S,周长为C.

(2)如果a+b-c=m,观察上表,猜想S/C=______(用含有m 的代数式表示。 (3)证明(2)中结论。

三、最短距离问题:

类型一:立体几何中求点与点之间的最短距离

关键词:两点、两点分布在不同的面上、距离最短等

2

2217158=+

解题思路:立体图形→平面图形→点、线、面→勾股定理

例1、长方体中求线段长:

如图所示是一个长8m、宽6m、高5m的仓库,在其壁的A(长的四等分点)处有一只壁虎,B(宽的三等分点)处有一只蚊子,则壁虎爬到蚊子处的最短距离为多少米?

B

A

例2、圆柱体中求线段长:(注意所用线段与圆周之间的关系)

如图一个圆柱,底圆周长6cm,高4cm,一只蚂蚁沿外壁爬行,要从A点爬到B点,则最少要爬行多少cm?

例3、为了美化校园,学校新近植了两株雪松(如图),从地面到枝桠处高2米,树粗一周是60cm,现在要在树身(从底端到枝桠处)均匀缠绕草绳20周,那么草绳约为多长?(精确到0.1米)

类型二:点到直线的距离问题:

关键词:最短、最省钱、一动一静等

解题思路:过点做直线的垂线段,一般与30°角的直角三角形结合起来,利用30°所对的边等于斜边的一半

例1、如图,A城气象台测得台风中心在A城正西方向320km的B处,以每小时40km的速度向北偏东60°的BF方向移动,距离台风中心200km的围是受台风影响的区域.

(1)A城是否受到这次台风的影响?为什么?

(2)若A城受到这次台风影响,那么A城遭受这次台风影响有多长时间?

A

B

类型三:选址问题

关键词:两点位于物体同侧、一条河或铁路等直线型物体

解题思路:做其中一点的对称点(依据:利用中垂线上任意一点到线段两端的距离相等)→连接两点利用两点之间线段最短。

例1、在矿野上,一个人骑着马从A到B,半路上他必须在河边饮马一次,如图,他应该怎样选择饮马地点P,才能使所走的路程AP+PB最短呢?

A.

B.

M N

例2、如图所示,A、B两点在m的两侧,在m上找一点C,使C到A、B的距离之差最大。

F

E

A

B

类型四:三点组成三角形周长最短问题

关键词:角、两个点、构成三角形周长最短等

解题思路:分别做两点关于角的两边的对称点→连接两点则与三角形两边的交

点即为所求(依据:两点之间线段最短)

例1、如图,M 是∠AOB 一点,求做两点C 、D ,使点C 、D 分别在OA 、OB 上,且

使△MCD 的周长最短。

B

.M

O A

四、关于等底不等高三角形与等高不等底三角形的关系: 关键词:等底、等高、等高、等底、面积等

解题思路:①等底不等高两个三角形面积比等于高之比; ②等高不等底两个三角形面积比等于底之比。

例1、如图,已知:?=∠=∠90C ABD ,12=AD ,BC AC =,?=∠30DAB . 求:BC 的长.

五、三角形形状判定:

类型一:三边关系判断: ①若满足a 2+b 2=c 2,则此三角形为直角三角形;

②若满足a 2+b 2 小于c 2,则此三角形为锐角三角形; ③若满足a 2+b 2大于c 2,则此三角形为钝角三角形; 例1、△ABC 中,BC=a ,AC=b ,AB=c ,若∠C=90°,如图,根据勾股定理,则有a 2+b 2=c 2,若△ABC 不是直角三角形,如图所示,请你类比勾股定理,试猜想a 2+b 2

与c 2的关系,并证明你的结论

A A A

B C B B

C

C

例2、如图在△ABC中,BC=a=2n+1,AC=b=2n2+2n,AB=c=2n2+2n+1,(n为非零自然数),试证明△ABC为直角三角形。

A

C B 例3、设一个直角三角形的两条直角边分别是a、b,,斜边上的高为h,斜边为c,则以c+h、a+b、h为三边构成的三角形形状?

例4、已知a、b、c为△ABC的三边,且满足a2+b2+c2+338=10a+24b+26c,试判断△ABC的形状。

例5、已知a、b、c是△ABC的三边,且a2c2-b2c2=a2-b2,试判断△ABC的形状.

类型二:分别求各边的长,看能否满足勾股定理

例1、如图,AD⊥AB,BC⊥AB,AB=20,AD=8,BC=12,E为AB上一点, 且DE=CE,求三角形DEC是直角三角形吗?

A E B

D

C 类型三:直接求角度数(略)

六、勾股定理与乘法公式(完全平方、平方差):

例1、已知直角三角形周长为2√2+2,斜边长为2,求三角形的面积。

例2、设直角三角形的三边长分别为a、b、c,若c-b=b-a﹥0,则(c?a)/(c+a)=()

A 、1/2

B 、1?3

C 、1?4

D 、1/5

例3、边长为6、8、10的直角三角形的面积S=1/2*6*8=24,周长=6+8+10=24,这个直角三角形的面积等于周长,同样,边长为5、12、13的直角三角形

的面积等于30,周长等于30,它的面积也等于周长,试问:直角三角形

的三边长a、b、c具有怎样的数量关系它的面积和周长才相等?

结论:当直角三角形两直角边的和与斜边的差为4时,它的面积等于周长。

七、勾股定理与无理数在数轴上的做法

解题思路:找合适的直角三角形,利用勾股定理求出我们需要的无理数,然后在数轴上表示出来。

的点。

例1、怎样运用作图的方法,在数轴上找出表示10

例2、右图是由36个边长为1的小正方形拼成的,连接小正方形中的点A、B、C、

D、E、F得线段AB、BC、CD、DE、EF、FA,请说出这些线段中长度是有理

数的是哪些?长度是无理数的是哪些?并在数轴上作出表示1、2、3、

4、5的点.

八、勾股定理与格点问题:

关键词:格点、三角形、勾股定理、三角形面积、三角形形状、三角形周长等 型三:求边长、度数:

例1、如图是由边长为1m 的正方形地砖铺设的地面示意图,小明沿图中所示的

折线从A→B→C 所走的路程为________.

类型二:判断三角形的形状或面积、周长:

例1、如图,正方形网格中,每个小正方形的边长为1,则网格上的△ABC 是什

么三角形?该三角形面积是多少?

九、勾股定理判断图形面积关系:

关键词:多边形、面积、切割法、割补法、勾股数等

解题思路:通过勾股定理边与边之间的关系判断三边所引出的图形面积之间的关系

例1、是1、2、3,正放置的四个正方形的面积依次是S1、S2、S3、S4,则S1+S2+S3+S4=_______.

l

3

2

1

S 4

S 3

S 2

S 1

例2、如图①,分别以直角三角形ABC 三边为直径向外作三个半圆,其面积分别用S1、S2、S3表示,则不难证明S1=S2+S3 .

(1) 如图②,分别以直角三角形ABC 三边为边向外作三个正方形,其面积分别用S1、S2、S3表示,那么S1、S2、S3之间有什么关系?(不必证明)

(2) 如图③,分别以直角三角形ABC 三边为边向外作三个正三角形,其面积分别用S1、S2、S3表示,请你确定S1、S2、S3之间的关系并加以证明;

(3) 若分别以直角三角形ABC 三边为边向外作三个正多边形,其面积分别用S1、S2、S3表示,请你猜想S1、S2、S3之间的关系?.

十:折叠旋转问题:(数形结合与方程思想)

关键词:折叠、点与点重合、沿那条边折叠、对称等。

解题思路:角、边→设未知数列→根据勾股定理列方程→解方程。

详细解题过程:找出边与边之间关系、角与角之间关系(或哪条边与哪条边相等、哪个角与哪个角相等、边与边的和相加等于哪条边长、角与角和等于90°等),根据边角关系适当设未知数列方程求未知数。 类型一:求线段长、度数

例1、如图,折叠矩形的一边,使点D 落在BC 边的点F 处,其中cm 10,cm 8==BC AB ,

你知道FC 多长吗?

例2、如图,P 是正方形ABCD 一点,将ABP ?绕B 点顺时针旋转90°,到P BC '

?位置,若a BP =,求P P '的长.

例3、如图所示,有一块直角三角形纸片,两直角边AB =6,BC =8,将直角边

AB 折叠使它落在斜边AC 上,折痕为AD ,则BD =________.

例4、如图在等腰直角三角形ABC 中,∠BAC=90°,P 是△ABC 一点,已知PA=1,PB=3,

PC=√7,求∠CPA 的大小。

C

P

A B

类型二:求图形面积

例1、如图,在△ABC 中∠C=Rt∠ ,∠CAB=60°,AD 为∠BAC 的平分线,D 到AB 的

距离等于5.6cm,求三角形ABC 的面积是多少?

十一:等面积法求线段长:

关键词:勾股数、心、到三角形各边距离相等等 类型一:直角三角形中利用等面积法求线段长 例1、已知:在ABC ?中,?=∠90C ,且12:13:=AC AB . ABC ?的周长为30. 求

ABC ?的各边长和斜边上的高。

类型二:普通三角形中利用等面积法求线段长(常用三角形心的性质:三角形

心到三角形各边距离相等) 例2、如图所示,在ABC ?中,?=∠90B ,两条直角边24,7==BC AB ,在三角

形有一点P 到三边的距离都相等,求这个距离.(心到三角形个边的距离相等)

十二:航行问题中求线段长

关键词:方位角、直角三角形、相遇、受到影响等。

解题思路:准确找出方位角→添加辅助线构造直角三角形(构造等腰直角三角

形、30°角的特殊直角三角形)→勾股定理求线段长

例1、甲、乙两艘轮船同时离开港口,各自沿一固定方向航行,甲船每小时航行16海里,

乙船每小时航行12海里,它们离开港口一个半小时候相距30海里,如果知道甲船

沿东北方向航行,你能知道乙船沿哪个方向航行么?

十三:线与线位置关系(平行或垂直)

例1、如图,CD 是△ABC 的边AB 上的高,且CD 2=AD.DB ,求证∠ACB=90°。 C

A

D B

例2、已知:如图,在正方形ABCD 中,F 为DC 的中点,E 为CB 的四等分点且

,41CB CE =

求证:AF⊥FE.

十四:证明等式

解题思路:涉及有关线段长的关系式或计算时,常作高构造直角三角形,把已

知线段和要求的线段集中在一个三角形中,利用勾股定理来解决问题.

例1、已知:如图,△ABC 中,AB >AC ,AD 是BC 边上的高,求证:AB 2-AC 2=BC(BD-DC)。

A

B D C

例2、如图,已知:?=∠90C ,CM AM =,AB MP ⊥于P.求证:2

22BC AP BP +=.

例3、如图所示,在ABC ?中,P AC AB ,5==为BC 边上任意一点。求证:

.252=?+PC PB AP

十五:勾股定理解决实际问题:(添加辅助线:高线、垂线,构建直角三角形) 类型一:求建筑物的高度或物体长度

例1、如图,一铁塔为AB ,在离铁塔底部m 140的C 处测得?=∠30BED ,测角仪

5.1,求铁塔高度.

高为m

例2、一工厂的大门如图所示,一辆装满货物的汽车高2.5米,宽1.6米,你觉得汽车能通过大门吗?这可需要你认真考虑呀!

例3、已知路灯需安装在12.5米高的灯柱顶端,电工师傅取了一架长13米的梯子,斜靠在灯柱上(如图),这时梯子的下端距灯柱底端5米.

①你觉得电工师傅能将路灯安上去吗?

②电工师傅下来后,把梯子的底端在水平方向上向外拉了2米,那梯子的

上端沿灯柱也下降2米吗?

说说你的看法.

例4、如图,AB=5,AC=3,BC边上的中线AD=2,则△ABC的面积为________.

十六:勾股定理中常错题型:

类型一:思维定势定三边:

例1、一个直角三角形的两条边长分别是5和12,求第三边的长。

例2、在△ABC中,三边的长分别为a、b、c,且a=3,b=4,c为质数,试求c 为多少?

类型二:概念混淆一团糟:

例1、在Rt△ABC中,∠B=90°,a=1,b=√3,求c的长

类型三:定理逆定理一锅粥:

例1、在△ABC中,a=3,b=5,c=4,△ABC是直角三角形么?

类型四:生搬硬套不灵活:

例1、判断由a、b、c组成的三角形能否构成直角三角形,其中a=5,b=13,c=12.

类型五:顾此失彼想当然

例1、在△ABC中,AB=10,AC=12,BC边上的高AD=8,求BC 的边长为多少?(AB在三角形部和外部两种情况)

A A

B D

C C B D

(1)

勾股定理逆定理(2)教案

17.2 勾股定理的逆定理(2)教案 一、教学目标 1.灵活应用勾股定理及逆定理解决实际问题。 2.进一步加深性质定理与判定定理之间关系的认识。 二、重点、难点 1.重点:灵活应用勾股定理及逆定理解决实际问题。 2.难点:灵活应用勾股定理及逆定理解决实际问题。 三、例题的意图分析 例1(P33例2)让学生养成利用勾股定理的逆定理解决实际问题的意识。 例2(补充)培养学生利用方程思想解决问题,进一步养成利用勾股定理的逆定理解决实际问题的意识。 四、课堂引入 创设情境:在军事和航海上经常要确定方向和位置,从而使用一 些数学知识和数学方法。 五、例习题分析 例1(P33例2) 分析:⑴了解方位角,及方位名词; ⑵依题意画出图形; ⑶依题意可得PR=12×1.5=18,PQ=16×1.5=24,QR=30; ⑷因为242+182=302,PQ2+PR2=QR2,根据勾股定理的逆定理,知∠QPR=90°; ⑸∠PRS=∠QPR-∠QPS=45°。 小结:让学生养成“已知三边求角,利用勾股定理的逆定理”的意识。 练习: 1.请完成以下未完成的勾股数: (1)8、15、_______;(2)10、26、_____. 2.△ABC中,a2+b2=25,a2-b2=7,又c=5,则最大边上的高是_______. 3.以下各组数为三边的三角形中,不是直角三角形的是(). A , .7,24,25 C.4,7.5,8.5 D.3.5,4.5,5.5 4.一个三角形的三边长分别为15,20,25,那么它的最长边上的高是(). A.12.5 B.12 C . 2 D.9 5.已知:如图,∠ABD=∠C=90°,AD=12,AC=BC,∠DAB=30°,求BC的长. 6.已知:如图,AB=4,BC=12,CD=13,DA=3,AB⊥AD,求证:BC⊥BD. E

勾股定理及其逆定理(人教版)(含答案)

学生做题前请先回答以下问题 问题1:勾股定理的内容是什么? 问题2:勾股定理逆定理的内容是什么? 问题3:通过回忆勾股定理和勾股定理逆定理的内容,考虑勾股定理和勾股定理逆定理的使用前提分别是什么? 问题4:0.3,0.4,0.5是不是一组勾股数?勾股数的定义是什么? 以下是问题及答案,请对比参考: 问题1:勾股定理的内容是什么? 答:直角三角形两直角边的平方和等于斜边的平方,如果用a,b,c分别来表示直角三角形的两直角边和斜边,那么. 问题2:勾股定理逆定理的内容是什么? 答:如果三角形三边长a,b,c满足,那么这个三角形是直角三角形. 问题3:通过回忆勾股定理和勾股定理逆定理的内容,考虑勾股定理和勾股定理逆定理的使用前提分别是什么? 答:使用勾股定理的前提是已知三角形是直角三角形;勾股定理逆定理使用前提是在知道三角形三边关系后,证明三角形是直角三角形. 问题4:0.3,0.4,0.5是不是一组勾股数?勾股数的定义是什么? 答:0.3,0.4,0.5不是一组勾股数. 勾股数的定义:满足的三个正整数,称为勾股数. 0.3,0.4,0.5满足,但不是正整数,所以不是一组勾股数.

勾股定理及其逆定理(人教版) 一、单选题(共9道,每道10分) 1.三角形的三边,,满足,则三角形的形状是( ) A.等腰三角形 B.等边三角形 C.直角三角形 D.等腰直角三角形 答案:C 解题思路: 试题难度:三颗星知识点:勾股定理的逆定理 2.将一个直角三角形的各边都扩大或缩小相同的倍数后,得到的三角形为( ) A.可能为锐角三角形 B.不可能是直角三角形 C.仍然是直角三角形 D.可能是钝角三角形 答案:C 解题思路: 试题难度:三颗星知识点:勾股定理的逆定理 3.下列长度的三条线段:①9,12,15;②7,24,25;③32,42,52;④; ⑤(为正整数,且),其中可以构成直角三角形的有

勾股定理及其逆定理 (习题及答案)-精选学习文档

勾股定理及其逆定理(习题) 例题示范 例1:如图,强大的台风使得一棵树在离地面 3m 处折断倒下,树的顶部落在离树的底部 4m 处,这棵树折断之前有多高? 解:如图,由题意,得 AC=3,BC=4,∠ACB=90° A 在 Rt△ABC 中,∠ACB=90°, 由勾股定理,得 AC2+BC2=AB2 ∴32+42=AB2 ∴AB=5 C B ∴AB+AC=5+3=8 答:这棵树折断之前高 8m. 例 2:如图,在△ABC 中,AB=13cm,AC=5cm,BC=12cm.求证:∠C=90°. A C B 证明:如图 在△ABC 中,AB=13,AC=5,BC=12 ∵52+122=132 ∴AC2+BC2=AB2 ∴△ABC 为直角三角形,且∠C=90°.

巩固练习 1.如图,在 Rt△ABC 中,∠C=90°,若BC=8,AB=17,则AC 的长为. B C A 2.已知甲、乙两人从同一地点出发,甲往东走了 12km,乙往南 走了5km,这时甲、乙两人之间的距离为. 3.如图,分别以直角三角形的三边为直径作半圆,三个半圆的 面积从小到大依次记为S1,S2,S3,则S1,S2,S3 之间的关系是() A.S l+S2>S3 B.S l+S2

5.如图 1 是用硬纸板做成的两个全等的直角三角形,两直角边的 长分别为a 和b,斜边长为c.图 2 是以c 为直角边的等腰直角三角形.请你开动脑筋,将它们拼成一个能证明勾股定理的图形. (1)画出拼成的这个图形的示意图,并利用这个图形证明勾股定理; (2)假设图 1 中的直角三角形有若干个,你能运用图 1 中所给的直角三角形拼出另一种能证明勾股定理的图形吗?请画出拼成的图形的示意图,并利用该图形证明勾股定理. b b a a 图1 图2 6.以下列长度的三条线段为边,不能组成直角三角形的是 A.1.5,2,2.5 B.9,12,15 C.7,24,25 D.1,1,2

勾股定理的逆定理及应用

勾股定理的逆定理及应用 下面有三组数分别是一个三角形的三边长a,b,c: ①5,12,13; ②7,24,25; ③8,15,17. 回答这样两个问题: 1.这三组数都满足a2+b2=c2吗 2.分别以每组数为三边长作出三角形,用量角器量一量,你能猜测最大的角的度数吗 _______________________________________________________________ __________________ 入门测试 1.如图,湖的两端有A,B两点,从与BA方向成直角的BC方向上的点C测得CA=130 m,CB =120 m,则AB为( ) A.30 m B.40 m C.50 m D.60 m 2.一个圆柱形的油桶高120 cm,底面直径为50 cm,则桶内所能容下的最长的木棒长为( ) A.5 cm B.100 cm C.120 cm D.130 cm 3.国庆假期中,小华与同学去玩探宝游戏,按照如图所示的探宝图,他们从门口A处出发先往东走8 km,又往北走2 km,遇到障碍后又往西走3 km,再向北走到6 km处往东拐,仅走了1 km,就找到了宝藏,则门口A到藏宝点B的直线距离是( ) A.20 km B.14 km C.11 km D.10 km 4.你听说过亡羊补牢的故事吧.为了防止羊的再次丢失,牧羊人要在高m,宽m的长方形栅栏门的相对角顶点间加固一条木板,则这条木板至少需__m长. 5.历史上对勾股定理的一种证法采用了下列图形,其中两个全等的直角三角形边AE、EB在一条直线上.证明中用到的面积相等关系是( ) A.S△EDA=S△CEB B.S△EDA+S△CEB=S△CDE C.S四边形CDAE=S四边形CDEB D.S△EDA+S△CDE+S△CEB=S四边形ABCD

(完整word版)勾股定理及逆定理习题及答案

勾股定理及逆定理习题及答案 1、由于0.3,0.4,0.5不是勾股数,所以0.3,0.4,0.5为边长的三角形不是直角三角形() 2、由于0.5,1.2,1.3为边长的三角形是直角三角形,所以0.5,1.2,1.3是勾股数() 3.下列几组数据能作为直角三角形的三边的有( ) (1)9,12,15; (2)15,36,39; (3)12,35,36 ; (4)12,18,22. 4.一个三角形的三边的长分别是15cm,20cm,25cm,则这个三角形的面积是()cm2 . (A)250 (B)150 (C)200 (D)不能确定 5.如图,在△ABC中,AD⊥BC于D,BD=9,AD=12,AC=20,则△ABC是(). (A)等腰三角形(B)锐角三角形(C)钝角三角形(D)直角三角形 6.如图,在一块平地上,张大爷家屋前9 m远处有一棵大树.在一次强风中,这棵大树从离地面6 m处折断倒下,量得倒下部分的长是10 m.出门在外的张大爷担心自己的房子被倒下的大树砸到.大树倒下时会砸到张大爷的房子吗?请你通过计算、分析后给出正确的回答( ) A.一定不会B.可能会C.一定会D.以上答案都不对 7.为了迎接新年的到来,同学们做了许多拉花布置教室,准备召开新年晚会,小王搬来一架长为 2.5 m的木梯,准备把梯子架到 2.4 m高的墙上,则梯脚与墙角的距离为( ) A.0.7 m B.0.8 m C.0.9 m D.1.0 m 8.某天我国海监船驶向钓鱼岛海域执法时,海监船甲以15海里/时的速度离开港口向北航

行,海监船乙船同时以20海里/时的速度离开港口向东航行,则它们离开港口2小时后相距( )海里. 9. 在△ABC 中,∠A ,∠B ,∠C 的对边分别为a ,b ,c ,且满足c +a =2b ,c -a = 12 b , 则△ABC 是什么特殊三角形? 1x 2.x 3.(1)(2) (4) B (5)D 6.A 7.A (8)50海里 9. 解:因为c +a =2b ,c -a =12b , 所以(c +a)(c -a)=2b·12b. 所以c 2-a 2=b 2,即a 2+b 2=c 2. 所以△ABC 是∠C =90°的直角三角形.

勾股定理及其逆定理的应用常见题型

勾股定理及其逆定理的应用常见题型 利用勾股定理求线段长 1.如图,在等腰直角三角形ABC中,∠ABC=90°,D为AC边的中点,过D点作DE⊥DF,交AB于E,交BC于F,若AE=4,FC=3,求EF的长. (注:直角三角形斜边上的中线等于斜边的一半) 利用勾股定理求面积 2.如图,长方形纸片ABCD沿对角线AC折叠,设点D落在D′处,BC交AD′于点E,AB=6 cm,BC=8 cm,求阴影部分的面积. 利用勾股定理逆定理判断三角形的形状 3.在△ABC中,D为BC的中点,AB=5,AD=6,AC=13,判断△ABD的形状.

利用勾股定理解决几何体表面的最短路径问题 4.(中考·青岛)如图,圆柱形玻璃杯的高为12 cm,底面周长为18 cm.在杯内离杯底4 cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4 cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为________. 利用勾股定理解决实际问题 65如图,某港口位于东西方向的海岸线上,A,B两军舰同时离开港口O,各自沿一固定方向航行,A舰每小时航行32 n mile,B舰每小时航行24 n mile,它们离开港口一个小时后,相距40 n mile,已知A舰沿东北方向航行,则B舰沿哪个方向航行? (第6题)

几种常见的热门考点 勾股定理及其应用 1.直角三角形两直角边长分别为6和8,则连接这两条直角边中点的线段长为() A.3 B.4 C.5 D.10 (第2题) 2.如图,长方形ABCD沿着直线BD折叠,使点C落在点C′处,BC′交AD于点E,AD=8,AB=4,则DE的长为________. 3.如图,已知∠C=90°,BC=3 cm,BD=12 cm,AD=13 cm.△ABC的面积是6 cm2.求: (1)AB的长度; (2)△ABD的面积. (第3题) 勾股定理的验证 4.如图,对任意符合条件的直角三角形BAC,绕其锐角顶点逆时针旋转90°得△DAE,所以∠BAE =90°,且四边形ACFD是一个正方形,它的面积和四边形ABFE的面积相等,而四边形ABFE的面积等于Rt△BAE和Rt△BFE的面积之和,根据图形写出一种证明勾股定理的方法.

勾股定理的逆定理的应用 公开课获奖教案

第2课时 勾股定理的逆定理的应用 1.进一步理解勾股定理的逆定理;(重点) 2.灵活运用勾股定理及逆定理解决实际问题.(难点) 一、情境导入 某港口位于东西方向的海岸线上,“远望号”“海天号”两艘轮船同时离开港口,各自沿一固定的方向航行,“远望号”每小时航行16海里,“海天号”每小时航行12海里,它们离开港口1个半小时后相距30海里,如果知道“远望号”沿东北方向航行,能知道“海天号”沿哪个方向航行吗? 二、合作探究 探究点:勾股定理的逆定理的应用 【类型一】 运用勾股定理的逆定理求角度 如图,已知点P 是等边△ABC 内 一点,P A =3,PB =4,PC =5,求∠APB 的度数. 解析:将△BPC 绕点B 逆时针旋转60°得△BEA ,连接EP ,判断△APE 为直角三角形,且∠APE =90°,即可得到∠APB 的度数. 解:∵△ABC 为等边三角形,∴BA =BC .可将△BPC 绕点B 逆时针旋转60°得△BEA ,连EP ,∴BE =BP =4,AE =PC =5,∠PBE =60°,∴△BPE 为等边三角形,∴PE =PB =4,∠BPE =60°.在△AEP 中,AE =5,AP =3,PE =4,∴AE 2=PE 2+P A 2,∴△APE 为直角三角形,且∠APE =90°,∴∠APB =90°+60°=150°. 方法总结:本题考查了等边三角形的判 定与性质以及勾股定理的逆定理.解决问题 的关键是根据题意构造△APE 为直角三角形. 【类型二】 运用勾股定理的逆定理求边长 在△ABC 中,D 为BC 边上的点, AB =13,AD =12,CD =9,AC =15,求BD 的长. 解析:根据勾股定理的逆定理可判断出△ACD 为直角三角形,即∠ADC =∠ADB =90°.在Rt △ABD 中利用勾股定理可得出BD 的长度. 解:∵在△ADC 中,AD =12,CD =9,AC =15,∴AC 2=AD 2+CD 2,∴△ADC 是直角三角形,∠ADC =∠ADB =90°,∴△ADB 是直角三角形.在Rt △ADB 中,∵AD =12,AB =13,∴BD =AB 2-AD 2=5,∴BD 的长为5. 方法总结:解题时可先通过勾股定理的逆定理证明一个三角形是直角三角形,然后再进行转化,最后求解,这种方法常用在解有公共直角或两直角互为邻补角的两个直角三角形的图形中. 【类型三】 勾股定理逆定理的实际应用 如图,是一农民建房时挖地基的 平面图,按标准应为长方形,他在挖完后测量了一下,发现AB =DC =8m ,AD =BC =6m ,AC =9m ,请你运用所学知识帮他检验一下挖的是否合格? 解析:把实际问题转化成数学问题来解决,运用直角三角形的判别条件,验证它是

勾股定理及其逆定理 一

勾股定理及其逆定理 一、知识点 1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。(即:a 2+b 2=c 2) 2、勾股定理的逆定理:如果三角形的三边长:a 、b 、c 有关系a 2+b 2=c 2 ,那么这个三角形是直角三角形。 3、满足2 22c b a =+的三个正整数,称为勾股数。 二、典型题型 1、求线段的长度题型 2、判断直角三角形题型 3、求最短距离 三、主要数学思想和方法(1)面积法. 例1已知 △ABC 中,∠ACB =90°,AB =5㎝.BC =3㎝,CD ⊥AB 于点D ,求CD 的长. (2)构造法.例8、已知:如图,在△ABC 中,AB =15,BC =14,AC =13.求△ABC 的面积. (3)分类讨论思想.(易错题) 例3在Rt △ABC 中,已知两边长为3、4,则第三边的长为 . 例4. 在△ABC 中,AB=15,AC=20,BC 边上的高线AD=12。试求BC 的长。 例5、在△ABC 中,AB=17,AC=10,BC 边上的高等于8,则△ABC 的周长为 . 练习: 1、在Rt △ABC 中,已知两边长为5、12,则第三边的长为 2、等腰三角形的两边长为10和12,则周长为________,底边上的高是________,面积是_________。

(5)方程思想. 例6如图4,AB 为一棵大树,在树上距地面10米的D 处有两只猴子,它们同时发现C 处有一筐苹果,一只猴子从D 往上爬到树顶A 又沿滑绳AC 滑到C 处,另一只猴子从D 滑到B ,再由B 跑到C .已知两只猴子所经路程都是15米.试求大树AB 的高度. 例题7、如图,已知长方形ABCD 中AB=8 cm,BC=10 cm,在边CD 上取一点E ,将△ADE 折叠使点D 恰好落在BC 边上的点F ,求CE 的长. 例9. 如图,在Rt △ABC 中,CD 是斜边AB 上的高线,且AB=10,BC=8,求CD 的长。 练习: 1、如图,把矩形ABCD 纸片折叠,使点B 落在点D 处,点C 落在C ’处,折痕EF 与BD 交于点O ,已知AB=16,AD=12,求折痕EF 的长。 C ' F E O D C B A 图4 C A

勾股定理及其逆定理专题练习

勾股定理及其逆定理专题练习 (一)几何法证明勾股定理. 1、如图所示, 90=∠=∠BCE ADE ,a CE AD ==,b BC DE ==,c BE AE ==,利用面积法证明勾股定理. (二)勾股定理的应用. 一、勾股定理的简单计算: 1、直角三角形的三边长为连续偶数,则这三个数分别为__________. 2、已知一个直角三角形的两边长分别为3和4,则第三边长是__________. 3、直角三角形两直角边长分别为5和12,则它斜边上的高为_______. 4、在△ABC 中,∠C=90°,AB =5,则2AB +2AC +2BC =_______. 二、勾股定理与实际问题: 1、如图,一根树在离地面9米处断裂,树的顶部落在离底部12米处.树折断之前有_____米. 2、如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C 偏离欲到达点B 200m ,结果他在水中实际游了520m ,求该河流的宽度为____________m . 3、如图,从电线杆离地面6m 处向地面拉一条长10m 的固定缆绳,这条缆绳在地面的固定点距离电线杆底部有__________m . b c c a a b D C A E B

4、如图,在高2米,坡角为30°的楼梯表面铺地毯,地毯的长至少需___________米. 5、将一根长24cm 的筷子,置于底面直径为5cm ,高为12cm 的圆柱形水杯中(如图).设筷子露在杯子外面的长为hcm ,则h 的取值范围是___________. 三、勾股定理与图形变换: 1、如图,已知ABC ?中, 5.22=∠B ,AB 的垂直平分线交BC 于D ,26=BD ,BC AE ⊥于E ,求AE 的长. 2、如图,将长方形ABCD 沿直线AB 折叠,使点C 落在点F 处,BF 交AD 于E ,48==AB AD ,,求BED ?的面积.

勾股定理及逆定理的应用练习(含答案)

勾股定理的逆定理 1.如图所示,△ABC 中,若∠A=75°,∠C=45°,AB=2,则AC 的长等于( ) A.22 B.23 C. 6 D. 23 6 知识点:转化的数学思想、勾股定理 知识点的描述:在解决有关求线段长度问题时,常通过添加辅助线,把一般三角形的问题转化为直角三角形的问题,利用勾股定理解决问题。勾股定理的内容:直角三角形两直角边的平方和等于斜边的平方。 答案:C 详细解答:作BC 边上的高AD, △ ABC 中,∠BAC=75°,∠C=45°,那么∠B=60°,从而∠BAD=30° 在Rt △ABD 中,∠BAD=30°,AB=2,所以BD=1,AD=3 在Rt △ACD 中,∠C=45°,AD=3,所以CD=AD=3, 利用勾股定理可得AC=6。 1.已知:在Rt △ABC 中,∠C=90°,CD ⊥AB 于D ,∠A=60°,CD=3,线段AB 长为( )。 A.2 B.3 C.4 D.33 答案:C 分析:欲求AB ,可由AB=BD+AD ,分别在两个三角形中利用勾股定理和特殊角,求出BD 和AD 。或欲求AB ,可由22BC AC AB +=,分别在两个三角形中利用勾股定理和特殊角, 求出AC 和BC 。 详细解答:在Rt △ACD 中,∠A=60°,那么∠ACD=30°,又已知CD=3,所以利用勾股定理或特殊三角形的三边的比求出AD=1。 C D

在Rt △ACB 中,∠A=60°,那么∠B=30°。 在Rt △BCD 中,∠B=30°,又已知CD=3,所以BC=23,利用勾股定理或特殊三角形的三边的比求出BD=3。 因此AB=BD+CD=3+1=4, 小结:本题是“双垂图”的计算题,“双垂图”是中考重要的考点,所以要求对图形及性质掌握非常熟练,能够灵活应用。目前“双垂图”需要掌握的知识点有:3个直角三角形,三个勾股定理及推导式BC 2 -BD 2 =AC 2 -AD 2 ,两对相等锐角,四对互余角,及30°或45°特殊角的特殊性质等。 2.已知a ,b ,c 为△ABC 三边,且满足a 2c 2 -b 2c 2 =a 4 -b 4 ,则它的形状为 A .直角三角形 B .等腰三角形 C .等腰直角三角形 D .等腰三角形或直角三角形 知识点:综合代数变形和勾股定理的逆定理判断三角形的形状 知识点的描述:这类问题常常用到代数中的配方、因式分解,再结合几何中的有关定理不难作出判断。 答案:D 详细解答:∵ a 2c 2 -b 2c 2 =a 4 -b 4 ,∴左右两边因式分解得))(()(2 222222b a b a b a c -+=- ∴0))((2 2222=---b a c b a ∴022=-b a 或02 22=--b a c , 即b a =或2 22b a c +=,所以三角形的形状为等腰三角形或直角三角形。 2.若△ABC 的三边a ,b ,c 满足(c-b)2 +︱a 2 -b 2 -c 2 ︱=0,则△ABC 是( ) (A )等腰三角形 (B )直角三角形 (C )等腰直角三角形 (D )等腰三角形或直角三角形 答案:C 详细解答:∵(c-b)2 +︱a 2 -b 2 -c 2 ︱=0,∴c-b =0且a 2 -b 2 -c 2 =0 即b c =且2 22b a c +=, 所以三角形的形状为等腰直角三角形。 3.五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是( )

勾股定理逆定理实际应用

勾股定理逆定理(2)教学设计

上节课我们学习了勾股定理的逆定理,请说出它的内容及用途;并说明它与勾 组成的三角形是不 、借助三角板画出如下方位角所确定的射 . 位于东西方向的海岸线 “海天”号轮船同时离开港 号每小 12 30 号沿东北方向航行, , ABCD 学生通过思考举 手回答及总结得 出勾股定理的逆 定理。 独立思考,得出 答案后相互交流 ⑴了解方位角, 及方位名词; ⑵依题意画出图 形; ⑶依题意可得 PR=12×1.5=18, PQ=16×1.5=24, QR=30; ⑷因为 242+182=302, PQ2+PR2=QR2,根 据勾股定理的 逆定理,知∠ QPR=90°; ⑸∠PRS=∠QPR- ∠QPS=45°。 (2)教师提出你 能根据题意画出 相关图形吗? 读题是学生理 解题意的重要 环节,只有正 确接收有关信 息,才能为下 一步利用这些 信息进行分析 打好基础。 画图对学生来 说,会有一定 的难度 学生能准确的 画出也可利用 学生画的图进 行进一步的分 析(画图也是 本节课的难 点) 让学生明确, 仅仅基于测量 结果得到的结 论未必可靠, 需要进一步通 过说理等方式 使学生确信结

解:∵ AB=3,BC=4,∠B=90°, ∴ AC=5.又∵ CD=12,AD=13, ∴ AC2+CD2=52+122=169. 又∵ AD2=132=169, 即 AC2+CD2=AD2, ∴ △ACD 是直角三角形. ∴ 四边形ABCD 的面积为 问题2 通过例1及例2的学习,我们进一步学习了像18,24,30;3,4,5;5,12,13这样的勾股数,大家有没有发现18,24,30;3,4,5 这两组勾股数有什 么关系? 追问1 类似这样的关系6,8,10;9,12,15是否也是勾股数?如何验证? 追问 2 通过对以上勾股数的研究,你有什么样的猜想? 结论:若a ,b ,c 是一组勾股数,那么ak ,bk ,ck (k 为正整数)也是一组勾股数. 【活动三】巩固拓展 练习1:如图,南北向MN 为我国领域,即MN 以西为我国领海,以东为公海.上午9时50分,我反走私A 艇发现正东方向有一走私艇C 以13海里/时的速度偷偷向我领海开来,便立即通知正在MN 线上巡逻的我国反走私艇B.已知A 、C 两艇的距离是13海里,A 、B 两艇的距离是5海里;反走私艇测得离C 艇的距离是12海里.若走私艇C 的速度不变,最早会在什么时间进入我国领海? 分析:为减小思考问题的“跨度”,可将原问题分解成下述“子问题”: (1)△ABC 是什么类型的三角形? (2)走私艇C 进入我领海的最近距离是多 (在学生都尝试画了之后,教师再在黑板上或多媒体中画出示意图) 11 345123622+=????

勾股定理及其逆定理+(习题及答案)

勾股定理及其逆定理 例题示范 例1:如图,强大的台风使得一棵树在离地面3m 处折断倒下,树的顶部落在离树的底部4m 处,这棵树折断之前有多高? 解:如图,由题意,得 AC =3,BC =4,∠ACB =90° 在Rt △ABC 中,∠ACB =90°, 由勾股定理,得 AC 2+BC 2=AB 2 ∴32+42=AB 2 ∴AB =5 ∴AB +AC =5+3=8 答:这棵树折断之前高8m . 例2:如图,在△ABC 中,AB =13cm ,AC =5cm ,BC =12cm . 求证:∠C =90°. C B A 证明:如图 在△ABC 中,AB =13,AC =5,BC =12 ∵52+122=132 ∴AC 2+BC 2=AB 2 ∴△ABC 为直角三角形,且∠C =90°. 巩固练习 1. 如图,在Rt △ABC 中,∠C =90°,若BC =8,AB =17,则AC 的长为________. C B A 2. 已知甲、乙两人从同一地点出发,甲往东走了12km ,乙往南走了5km ,这时甲、乙两人之间的 距离为___________. C B A

3. 如图,分别以直角三角形的三边为直径作半圆,三个半圆的面积从小 到大依次记为S 1,S 2,S 3,则S 1,S 2,S 3之间的关系是( ) A .S l +S 2>S 3 B .S l +S 2

人教版八年级下册数学勾股定理及逆定理

勾股定理及逆定理 一、学习导航 1.有一个角是900的三角形是直角三角形; 2.两锐角互余的三角形是直角三角形; 3.两边的平方和等于第三边的平方的三角形是直角三角形; 4.一个三角形一边上的中线等于这条边的一半,这个三角形是直角三角形。 5.直角三角形两直角边的平方和等于斜边的平方。设三边长分别为a、b、c(c 为斜边),则 6.勾股定理的逆定理:若一个三角形的三边满足:两边的平方和等于第三边的平方,那么这个三角形是直角三角形。 二、知识梳理与例题精讲 知识点一勾股定理 例1.在Rt△ABC中,∠C=900 如果a=10, b=24,那么c= . 如果a=15, c=25,那么b= . 如果c=10, b=8,那么a= . 例2.有两棵树,一棵高8米,另一棵高2米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞了多少米?

例3.一架长为10米的梯子AB斜靠在墙上,若梯子的顶端距地面的垂直距离为8米。如果梯子的顶端下滑2米,那么它的底端是否也滑动2米? 知识点二勾股定理的逆定理 例4.有六根木棒,它们的长度分别为2,4,6,8,10,12,(单位:cm),从中取出三根,首尾顺次连接成一个直角三角形,则这三根木棒的长度分别为() A.2,4,8 B.4,8,10 C.6,8,10 D.8,10,12 例5.已知:△ABC的三条边长分别为a、b,、c,且a=n2-1,b=2n,c= n2+1(n>1). △ABC是直角三角形吗?为什么? 例6. 在正方形ABCD中,F为DC的中点,E为BC上一 点,且BC=4EC.小明经过测量发现∠EA=900,你认为对 吗?

19.9(4)勾股定理(勾股定理的逆定理及其应用)

19.9(4)勾股定理(勾股定理的逆定理及其应用)要点归纳 应用勾股定理时要注意:在直角三角形的三边中,首先弄清那条边是斜边。 应用勾股定理逆定理时要注意:最大边的平方等于较小两边的平方和。 疑难分析 例1 将两块三角板如图放置,其中∠C=∠EDB=90°,∠A=45°,∠E=30°,AB=DE=6.求重叠部分四边形的面积。 例2 如图,P是四边形内一点,过点P作AB、BC、CD、DA 的垂线,垂足分别为E、F、G、H,已知AH=3,HD=4,DG=1,CG=5,CF=6,FB=4,且BE-AE=1,求四边形ABCD的周长。 A B

基础训练 1. 在直角三角形中,以直角边为边长的两个正方形的面积分别为36、64,则以斜边为边长 的正方形的面积为____; 2. 在△ABC中,∠C=90°,若AB=5,则AB2+AC2+BC2=____; 3. 一根旗杆在离地面9米处断裂,旗杆顶部落在离旗杆底部12米处,则旗杆折断之前有 ____米; 4. 如果梯子的底端离建筑物8米,那么17米长的梯子可以到达建筑物的高度是____米; 5. 若直角三角形的两边长为12和5,求以第三边为边长的等边三角形的面积是____; 6. 在△ABC中,AB=15,AC=13,边BC上的高AD=12,则△ABC的周长为____; 7. 已知在Rt△ABC中,∠C=90°,若a+b=14,c=10,则Rt△ABC的面积是(). A.24 B.36 C.48 D.60 8. 等腰三角形底边上的高为6,周长为36,则三角形的面积为(). A.56 B.48 C.40 D.32 9. 若直角三角形一直角边长为9,另两边为连续自然数,则此三角形的周长为(). A.121 B.120 C.90 D.不能确定 10. 放学以后,小红和小颖从学校分手,分别沿东南方向和西南方向回家。若小红和小颖行走的速度都是40米/分,小红用15分钟到家,小颖20分钟到家,则小红和小颖家的直线距离为(). A.600米 B.800米 C.1000米 D.不能确定 11. 观察下列几组数据:①m2+n2、2mn、m2-n2(m﹥n﹥0)②三边之比为1:2:3;③△ABC 的三边长为a、b、c,满足a2-b2=c2。其中能作为直角三角形三边长的有(). A.1组 B.2组 C.3组 D.0组 12. 如图,公路上A、B两点相距25千米,C、D为两村庄,DA⊥AB于点A,CB⊥AB于点B,已知DA=15千米,CB=10千米,现要在公路AB上建一车站E。 (1)若使得C、D两村到E站的距离相等,E站建在离A站多少千米处? (2)若使得C、D两村到E站的距离和最短,E站建在离A站多 13. 如图,将一个边长分别为4、8的矩形纸片ABCD折叠,使点C与点A重合,则EF的 长是多少? D' A E

勾股定理和勾股定理逆定理例题

勾股定理和勾股定理逆 定理例题 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

勾股定理和勾股定理逆定理经典例题 题型一:直接考查勾股定理 例1 在△ABC 中,∠C=90° (1)已知AC=6,BC=8,求AB 的长; (2)已知AB=17,AC=15,求BC 的长. 题型二:利用勾股定理测量长度 1、如果梯子的底端离建筑物9m ,那么15m 长的梯子可以到达建筑物的高度是多少米 2、如图,水池中离岸边D 点米的C 处,直立长着一根芦苇,出水部分BC 的长是米,把芦苇拉倒岸边,它的顶端B 恰好落在D 点,求水池的深度AC. 题型三:勾股定理和逆定理并用 1、如图,正方形ABCD 中,E 是 BC 边的中点,F 是AB 上一点,且FB=4 1 AB ,那么△DEF 是直角三角形吗如果是,请说明理由. 题型四:勾股定理在折叠问题中的应用 1、如图,已知在长方形 ABCD 中,CD 上取一点E ,将△ADE 折叠使点D 恰好落在BC 边上的点F ,求CE 的长. 拓展延伸:求折痕的长及重叠部分的面积. 经典例题训练: A B C D B C D E D E

1、如图,在高2米,坡角为30°的楼梯表面铺地毯,地毯的长至少需 米; 212cm ,吸管放进杯里,杯口外面至少要露出,问吸管要做 cm ; 3、已知:如图,△ABC 中,∠C=90°,点O 为△ABC 的三条角平分线的交点,OD ⊥BC ,OE ⊥AC , OF ⊥AB ,点D 、E 、F 分别是垂足,且 BC=8cm ,CA=6cm ,则点O 到三边AB ,AC 和BC 的距离分别等于 cm ; 20米D 米; 5、如图是一个三级台阶,它的每一级的长宽和高分别为20dm 、3dm 、2dm ,A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿着台阶面爬到B 点最短路程是 ; 1、如图,△ABC 中,∠BAC=45的面积. 2、 如图,△ABC 中,AD 是BC 第3题 A B 第4题 第5 C

勾股定理及逆定理 课件

勾股定理 【知识点介绍】 1、勾股定理:直角三角形的两直角边的平方和等于斜边的平方。即: 222c b a =+。 2、勾股数 满足22b a +=2c 的三个正整数,称为勾股数。 如(1)3,4,5; (2)5,12,13; (3)6,8,10; (4)8,15,17 (5)7,24,25 (6)9, 40, 41 【考点解析】 考点一:勾股定理的直接应用 例1.一个直角三角形,有两边长分别为6和8,下列说法中正确的是( ) A 、第三边一定为10 B.三角形的周长为24 C.三角形的面积为24 D.第三边有可能为10 例2.如图,由Rt △ABC 的三边向外作正方形,若最大正方形的边长为8cm , 则正方形M 与正方形N 的面积之和为2_____cm 例3. 放学以后,小红和小颖从学校分手,分别沿东南方向和西南方向回家, 若小红和小颖行走的速度都是40米/分,小红用15分钟到家,小颖20分钟到家, 小红和小颖家的直线距离为( )。 A 、600米 B 、800米 C 、1000米 D 、不能确定 考点二:求第三条边的长 例1.若Rt ABC 中,90C ?∠=且c=37,a=12,则b=( ) A 、50 B 、35 C 、34 D 、26 例2.若一个直角三角形的三边分别为a 、b 、c, 22144,25a b ==,则2c =( ) A 、169 B 、119 C 、169或119 D 、13或25

考点三:与高、面积有关 例1.一个三角形的三边的长分别是3,4,5,则这个三角形最长边上的高是( ) A .4 B .3 10 C.25 D . 5 12 例2.等腰三角形的底边为10cm ,周长为36cm ,则它的面积是2_____cm 【变式练习】 1.已知一个Rt △的两边长分别为3和4,则第三边长的平方是( ) A 、25 B 、14 C 、7 D 、7或25 2.下列各组数中,以a ,b ,c 为边的三角形不是Rt △的是( ) A 、a=1.5,b=2, c=3 B 、a=7,b=24,c=25 C 、a=6, b=8, c=10 D 、a=3,b=4,c=5 3.三角形的三边长为(a+b )2=c 2+2ab,则这个三角形是( ) A. 等边三角形; B. 钝角三角形; C. 直角三角形; D. 锐角三角形. 4.已知Rt △ABC 中,∠C=90°,若a+b=14cm ,c=10cm ,则Rt △ABC 的面积是( ) A 、24cm 2 B 、36cm 2 C 、48cm 2 D 、60cm 2 5、直角三角形中,斜边长为5cm ,周长为12cm ,则它的面积为( )。 A .122 cm B .62 cm C .8 2 cm D .92 cm 6.等腰三角形底边上的高为6,周长为36,则三角形的面积为( ) A 、56 B 、48 C 、40 D 、32 7.Rt △一直角边的长为9,另两边为连续自然数,则Rt △的周长为( ) A 、121 B 、120 C 、90 D 、不能确定 8.已知,如图,一轮船以16海里/时的速度从港口A 出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A 出发向东南方向航行,离开港口2小时后,则两船相距( ) A 、25海里 B 、30海里 C 、35海里 D 、40海里

17.2勾股定理的逆定理(优质课)优秀教学设计

《17.2勾股定理的逆定理》教学设计 Y qzx Bmm 【内容和教材分析】 内容教材第31-33页,17.2勾股定理的逆定理. 教材分析“勾股定理的逆定理”一节,是在上节“勾股定理”之后,继续学习的一个直角三角形的判断定理,它是前面只是的继续和深化.勾股定理的逆定理是初中几何学习中的重要内容之一,是今后判断某三角形是直角三角形的重要方法之一,在以后的解题中,将有十分广泛的应用,同时在应用中渗透了利用代数计算的方法证明几何问题的思想,为将来学习解析几何埋下了伏笔,所以本节也是本章的重要内容之一. 【教学目标】 知识与技能 1.理解勾股定理的逆定理的证明方法并能证明勾股定理的逆定理. 2.理解原命题、逆命题、逆定理的概念关系. 3.掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一个三角形是不是直角三角形. 过程与方法 1.通过对勾股定理的逆定理的探索,经历知识的发生、发展与形成过程. 2.通过用三角形三边的数量关系来判断三角形的形状,体验数与形结合方法的应用.3.通过勾股定理的逆定理的证明,体会数与形结合方法在问题解决中的作用,并能运用勾股定理的逆定理解决相关问题. 情感、态度与价值观 1.通过用三角形三边的数量关系来判断三角形的形状,体验数与形的内在联系,感受定理与逆定理之间的和谐及辩证统一的关系. 2.在探究勾股定理的逆定理的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神. 【教学重难点及突破】 重点 1.勾股定理的逆定理及运用. 2.灵活运用勾股定理的逆定理解决实际问题. 难点 1.勾股定理的逆定理的证明. 2.说出一个命题的逆命题及辨别其真假性. 【教学突破】 1.勾股定理的逆定理的题设实际上是给出了三条边的条件,其形式和勾股定理的结论形式一致.证明在此条件下的三角形是一个直角三角形,需要构造直角三角形才能完成,构造直角三角形是解决问题的关键.可以从特例推向一般,设置两个动手操作问题. 2.勾股定理的逆定理给出的是判定一个三角形是直角三角形的方法,和前面学过的一些判定方法不同,它通过计算来做判断. 3.几何中有许多互逆的命题、互逆的定理,它们从正反两个方面揭示了图形的特征性质,所以互逆命题和互逆定理是几何中的重要概念.对互逆命题、互逆定理的概念,理解它们通常困难不大.但对那些不是以“如果……那么……”形式给出的命题,叙述它们的逆命题有时就会有困难,可以尝试首先把命题变为“如果……那么……”. 4.勾股定理的逆定理可以解决生活中的许多问题.在解决实际问题时,常先画出图形,根

勾股定理及逆定理的应用

勾股定理复习课教案 教学目标:1、回顾记忆勾股定理及逆定理的内容并会使用符号语 言来表达。2、能熟练运用勾股定理及逆定理解决实际问题。3、探索将立体图形展开成平面图形来求最短路径的问题。教学重点:能 熟练运用勾股定理及逆定理解决实际问题。教学难点:将立体图形 展开成平面图形来求最短路径的问题。教学过程:一、导入:以长方体求前面这个面的对角线长引入勾股定理。内容是在直角三角形中已3道简单计算题,二、复习回顾了定理后做知两边长求第三边的 长。 口答:A (1)已知:直角△ABC中,∠C=90°,若a=5,b=12, 则c=__。 C=90°2)已知:直角△ABC中,∠( b=__。若a=8,c=17,则 °ABC中,∠C=903()已知:直角△__。__,b= 若 a:b=3:4,c=10cm,则a=B C 三、复习回顾逆定理,之后做两道选择题。 1、以下各组为边长,能构成直角三角形的() A. B. 55,43,2,3, C. 9, 16, 25 D. 1,

2, 3 22+2ab 满足 (a+b) =ca2﹑三角形的三边长﹑b﹑c, 则这个三角形是() A.等边三角形 B.钝角三角形 C.直角三角形 D.锐角三角形 四、定理的应用 1、体会经典——《九章算术》之折竹抵地 一根竹子原来高一丈,虫伤之后,一阵风将竹子折断,竹稍恰好抵地,抵地处离原来竹子根部距离3尺,问原处还有多高的竹子? 尺)=10丈1(. 学生自己做在学案上,老师评讲。 、最短路程问题2的圆柱,在圆柱下底面的32cm如图所示,有一个高为12cm,底面周长为例1:问这只蚂点相对的AB点处的食物,A点有一只蚂蚁,它想吃到圆柱上底面上与蚁沿着侧面需要爬行的最短路程为多少厘米?

勾股定理逆定理及其应用

一、教材分析: (一)本节课在教材中的地位作用 “勾股定理的逆定理”一节,是在上节“勾股定理”之后,继续学习的一个直角三角形的判断定理,它是前面知识的继续和深化,勾股定理的逆定理是初中几何学习中的重要内容之一,是今后判断某三角形是直角三角形的重要方法之一,在以后的解题中,将有十分广泛的应用,同时在应用中渗透了利用代数计算的方法证明几何问题的思想,为将来学习解析几何埋下了伏笔,所以本节也是本章的重要内容之一。课标要求学生必须掌握。 (二)学情分析:尽管已到初二下学期学生知识增多,能力增强,但思维的局限性还很大,能力也有差距,而勾股定理的逆定理的证明方法学生第一次见到,它要求根据已知条件构造一个直角三角形,根据学生的智能状况,学生不容易想到,因此勾股定理的逆定理的证明又是本节的难点,这样如何添辅助线就是解决它的关键,这样就确定了本节课的重点、难点和关键以及教法等。 (三)教学目标:根据数学课标的要求和教材的具体内容,结合学生实际我确定了本节课的教学目标。 教 学 目 标知识技能1、了解勾股定理的逆定理的证明方法和证明过程; 2、掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一个三角形是直角三角形; 3、会运用勾股定理的逆定理解决相关实际问题。 数学思考1、通过“创设情景—建立模型—实验探究—理论释意—拓展应用”的勾股定理的逆定理的探索过程,经历知识的发生、发展、形成和应用的过程; 2、通过三角形三边的数量关系来判断三角形的形状,体验数形结合法的应用。 解决问题通过勾股定理的逆定理的证明及其应用,体会数形结合法在问题解决中的作用,并能运用勾股定理的逆定理解决相关问题。 情感态度1、通过三角形三边的数量关系来判断三角形的形状,体验数与形的内在联系,感受定理与逆定理之间的和谐及辨证关系; 2、在探究勾股定理的逆定理的证明及应用的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神。 重点勾股定理的逆定理及其应用。 难点勾股定理的逆定理的证明。 (四)教学关键:辅助线的添法探索 (五)教学方法:“引导发现,合作探究”教学法 (六)学法指导:尝试学习、探究学习、合作交流学习 (七)教学资源:借助PPT软件展示引例及变式训练题组,在不损害知识体系的完整性的前提下,对本节知识做一些本土化的补充和更改,以增大课堂容量,最大限度地激发学生的学习兴趣,优化课堂结构,提高课堂教学效率。 (八)教学评价:随堂提问、练习反馈、作业反馈 二、教学过程:本节课的设计原则是:使学生在动手操作的基础上和合作交流的良好氛围中,通过巧妙而自然地在学生的认识结构与几何知识结构之间筑了一个信息流通渠道,进而达到完善学生的数学认识结构的目的。 (一)复习回顾:复习回顾与勾股定理有关的内容,建立新旧知识之间的联系。即:勾股定理的内容、文字叙述、符号表述、图形 (二)创设问题情境,提出问题

相关主题
文本预览
相关文档 最新文档