当前位置:文档之家› 超高频 RFID 读写器设计原理

超高频 RFID 读写器设计原理

超高频 RFID 读写器设计原理
超高频 RFID 读写器设计原理

超高频RFID 读写器设计原理

摘要:RFID技术是一种非接触的自动识别技术,通过无线射频的方式进行非接触双向数据通信,对目标加以识别并获取相关数据。RFID系统通常主要由电子标签、读写器、天线3部分组成。读写器对电子标签进行操作,并将所获得的电子标签信息反馈给PC机。

引言

RFID技术是一种非接触的自动识别技术,通过无线射频的方式进行非接触双向数据通信,对目标加以识别并获取相关数据。RFID系统通常主要由电子标签、读写器、天线3部分组成。读写器对电子标签进行操作,并将所获得的电子标签信息反馈给PC机。射频识别技术以其独特的优势,逐渐被广泛应用于生产、物流、交通运输、防伪、跟踪及军事等方面。按工作频段不同,RFID系统可以分为低频、高频、超高频和微波等几类。目前,大多数RFID 系统为低频和高频系统,但超高频频段的RFID系统具有操作距离远,通信速度快,成本低,尺寸小等优点,更适合未来物流、供应链领域的应用。尽管目前,RFID超高频技术的发展已比较成熟,也已经有了一些标准,标签的价格也有所下降;但RFID超高频读写器却有变得更大,更复杂和更昂贵的趋势,其消耗能量将更多,制造元件达数百个之多。然而,这里的设计采用高度集成的R1000,可以解决上述问题,既可降低芯片设计中的复杂性和生产成本,又能使制造商制造出体积更小,更有创新性的读写器,从而开拓新的RFID应用领域。

1 读写器硬件结构设计

该设计选用W78E465作为主控模块,IntelR1000收发器作为射频模块。该设计可以作为手持终端,并用RS 232串行通信模块和电平转换接口MAX232与上位机相连。系统硬件原理见图1.

1.1 主控模块

W78E365是具有带ISP功能的FLASH EPROM的低功耗8位微控制器,可用于固件升级。它的指令集与标准8052指令集完全兼容。W78E365包含64

KB的主ROM,4 KB的辅助FLASH EPROM,256

B片内RAM;4个8位双向、可位寻址的I/0口;一个附加的4位I/O口P4;3个16位定时/计数器及1个串行口。这些外围设备都由有9个中断源和4级中断能力的中断系统支持。为了方便用户进行编程和验证,W78E365内含的ROM允许电编程和电读写。一旦代码确定后,用户就可以对代码进行保护。

W78E365内部ROM仅64 KB,内存太小,故采用A T29C256作为外扩ROM.线路连接见图2.

1.2 收发模块

射频模块采用Intel R1000收发器。R1000内包含了一个能源扩大器,使得它可以在近距离或者2 m内对标签进行编码和阅读,而具体距离由读写器所使用的天线决定。有了额外的外部能源扩大器,使用R1000读写器的读写范围可以达到10 m.R1000必须与单独的微处理器连接,这个微处理器可以把由R1000数字信息处理器产生的原始数据转换成EPc或者18000-6c格式的代码,其工作频率为860~960 MHz,共有56个引脚,采用0.18μmSiGe BiCMOs先进工艺,体积仅为8 mm×8 mm,功耗只有1.5 w左右,具有很高的集成度。

R1000与W78E365的连接见图3.射频信号经天线进入电桥,输出信号被分为两路,一路信号经过带通滤波器和不平衡到平衡的转换进入R1000的射频输入口。另一路信号经不平衡到平衡的转换进人R1000的本振输入口。这两路信号在R1000内部经过解调和模/数转换等一系列操作后,将所得的数字信息送给W78E365.W78E365对收到的信号经解码和校验,将所得信息送往上位机,并将其对R1000的命令编码和加密后发送给R1000.这些命令在R1000内部经过调制和PA,再经过平衡到不平衡的转换和滤波,由天线发射出去。数字模块中的时钟驱动来自于外部TCXO产生的24 MHz参考频率。系统中通过∑-△DACS的信号频率为24 MHz;通过∑-△ADCS的信号频率为48 MHz.

R1000内部集成了接收器和发射器。实质上,接收器是一个零中频接收机。下变频后,直流的大部分被复位,由交流耦合电容器滤除。模拟中频滤波器提供粗略的频道选择。它具有可编程带宽满足大范围的数字通过率。该滤波器可以配置成两个实际的低通滤波器,也可以配置成复杂的单相带通滤波器。经滤波后,I,Q信号被数/模转换器转换成数字信号。滤波器中自动中频增益的升高会降低模/数转换器的动态范围。

R1000中,发射器支持同相正交矢量调制和极化调制。前者,用于SSB-ASK调制和反相幅移键控调制;后者,用于DSB-ASK.在这两种调制方式下,数字模块产生的信号,经过∑一△数/模转换器和重建滤波器转换成模拟信号。

在SSB-ASK调制方式下,基带编码信号经希尔伯特滤波器产生复合的同相信号I和正交信号Q,经∑-△数/模转换器将I,Q数字信号转换成模拟信号,进入模拟模块,该模拟信号经天线发射出去。在PR-ASK调制方式下,用混频器将信号反相弥补AM部分的时延,反相时延控制有一个可编程时延,使极化调制的相位与幅度之问的时间错误趋于最小值。在DSB-ASK调制方式下,基带编码和脉冲信号同样也经过希尔伯特滤波器产生一个复合的I,Q信号。所不同的是脉冲成型信号预先进行了扭曲,这样可以补偿调幅传递函数中的非线性。这个经过预先扭曲的调幅控制信号经过∑-△数/模转换器转换成模拟信号,最后通过天线发射出去。

基于功率要求和调制方式的不同,R1000有全功率非线性,低功率非线性和线性3种发射模式。在DSB-ASK调制模式下。R1000采用全功率非线性发射模式。为了发射R1000允许的天线上最大发射功率值为+30

dBm,需在R1000外部接1个PA.采用class—C极化调制能够提高系统的功率效率。在这种发射方式下,只有在DSB—ASK调制方式才有效。低功率非线性发射模式与全功率非线性发射模式相似,只是外部不再需要PA.相反,只使用内部较低的输出功率,在这种发射方式

下只有DSB—ASK调制方式有效。在线性发射模式下,R1000的PA—out信号与外部线性PA相连,这是因为SSB—ASK调制方式要求1个线性的PA.需要指出的是在R1000外部接1个PA时,会增加系统的复杂度,但同时放大了传输信号的功率,使信号传输距离更远,提高了读写器的读写距离。

基于C超高频RFID技术而生产的北京旭航电子新技术有限公司的电子封印,将半导体芯片与普通封印整合为一提,形成具有安全、防伪的智能封印;洗脱液计算机的广泛普及及应用,通过智能封印管理系统对封印实现电子化、信息化管理,完善计量部门日常对封印的巡检监督监察。

1.3 天线

对Intel R1000超高频收发器,基于不同的天线子系统,天线有两种配置情况。第一种情况是单天线模式。在这种情况下,用一个回路来隔离发射路径和接收路径,每根天线都具备接收器和发射器的功能。第二种情况是双天线模式。同样用分离的天线将接收器和发射器连接起来,通常情况下,两根独立的天线由一个开关控制,每根天线仅具备接收器功能或发射器功能。

对单天线模式,因天线的反射系数并不理想,所以接收增益不能太大,会有饱和的问题。以R1000的高接收灵敏度,可以搭配-10 dB左右的Coupler,视整体线路的隔离而定;对于双天线模式,天线的收发隔离比较理想,接收路径可以使用高增益。

该设计采用双天线模式,用矩形微带天线和同轴电缆构成读写器的天线。该微带天线的基板材料采用介电常数比较高的陶瓷基片,厚0.635 mm.天线宽为70.5 mm,长为52.689 mm,微带线宽度为0.598 mm,馈电点选取在天线宽边中心。经过ADS仿真,该天线中心频率为915 MHz.为减小天线反射系数,达到较理想的匹配,对天线串联一根长度为18.471 mm,阻值为50Ω的传输线,然后再并联一根长度为24.678 mm,阻值为50Ω的传输线。经ADS仿真优化得知,在中心频率915 MHz处,天线最大辐射方向上的方向性系数为3.535;效率为40.087%;增益为1.417.

RFID读写器天线设计中比较实用的方法

RFID读写器天线设计中比较实用的方法 射频识别技术(Radio Frequency Identification,缩写RFID),射频识别技术是20世纪90年代开始兴起的一种自动识别技术,射频识别技术是一项利用射频信号通过空间耦合(交变磁场或电磁场)实现无接触信息传递并通过所传递的信息达到识别目的的技术。RFID应用将继续以供应物流领域为主,在这个领域用RFID 收发器进行包括各种各样的可移动货物/产品的记录和跟踪,在RFID收发器(信用卡大小的塑料/纸标签,内含芯片、射频部分和天线)上的必要存储将继续成为主要的应用。另外的一个可能应用就是将收发器标签贴到纺织品、药品包装或者甚至是单个药盒内。然而,未来RFID还将被用在如地方公共交通、汽车遥控钥匙、传送轮胎气压以及在移动电话等领域内。本文主要通过实际工作中对于各种RFID读写系统的对比,总结研究RFID读写器天线设计中比较实用的方法。 1 实际RFID天线设计主要考虑物理参量 磁场强度 磁场强度是线圈安匝数的一个表征量,反映磁场的源强弱。磁感应强度则表示磁场源在特定环境下的效果。打个不恰当的比方,你用一个固定的力去移动一个物体,但实际对物体产生的效果并不一样,比如你是借助于工具的,也可能你使力的位置不同或方向不同。对你来说你用了一个确定的力。而对物体却有一个实际的感受,你作用的力好比磁场强度,而物体的实际感受好比磁感应强度。它定义为磁通密度[1]B除以真空磁导率μ0再减去磁化强度μ,即-μH为矢量。这样,在恒定磁场中磁场强度的闭合环路积分仅与环路所链环的传导电流Ic有关而不含束缚分子电流。 运动的电荷或者说电流会产生磁场,磁场的大小用磁场强度来表示。RFID天线的作用距离,与天线线圈电流所产生的磁场强度紧密相关。 圆形线圈的磁场强度(在近场耦合有效的前提下,近场耦合有效与否的判断在节)可用式(1)进行计算: 式中:H是磁场强度;I是电流强度;N为匝数;R为天线半径;x为作用距离。

RFID基本原理

RFID基本原理 什么是RFID? [摘要]什么是RFID技术,基本工作原理和组成部分是什么,是什么让零售商如此推崇RFID,什么是RFID的典型应用,RFID中国论坛,提供无线射频识别技术应用解决方案及电子标签原理的相关信息 什么是RFID?自2004年以来,与RFID技术相关的文章在各个媒体上不断涌现,相关的报道让这个历史其实并不短的技术在短时间内成为国际追逐的焦点。从全球巨型商业帝国沃尔玛,到国际IT巨头IBM、HP、微软等等,从美国国防部到中国国家标准委,全都在RFID魔棒的指挥下舞蹈起来。 RFID是什么?RFID是Radio Frequency Identification的缩写,即射频识别,俗称电子标签。 什么是RFID技术? RFID射频识别是一种非接触式的自动识别技术,它通过射频信号自动识别目标对象并获取相关数据,识别工作无须人工干预,可工作于各种恶劣环境。RFID技术可识别高速运动物体并可同时识别多个标签,操作快捷方便。 埃森哲实验室首席科学家弗格森认为RFID是一种突破性的技术:"第一,可以识别单个的非常具体的物体,而不是像条形码那样只能识别一类物体;第二,其采用无线电射频,可以透过外部材料读取数据,而条形码必须靠激光来读取信息;第三,可以同时对多个物体进行识读,而条形码只能一个一个地读。此外,储存的信息量也非常大。" 什么是RFID的基本组成部分? 最基本的RFID系统由三部分组成: ? 标签(Tag):由耦合元件及芯片组成,每个标签具有唯一的电子编码,附着在物体上标识目标对象; ? 阅读器(Reader):读取(有时还可以写入)标签信息的设备,可设计为手持式或固定式; ? 天线(Antenna):在标签和读取器间传递射频信号。 RFID技术的基本工作原理是什么? RFID技术的基本工作原理并不复杂:标签进入磁场后,接收解读器发出的射频信号,凭借感应电流所获得的能量发送出存储在芯片中的产品信息(Passive Tag,无源标签或被动标签),或者主动发送某一频率的信号(Active Tag,有源标签或主动标签);解读器读取信息并解码后,送至中央信息系统进行有关数据处理。 是什么让零售商如此推崇RFID?

超高频rfid读写器技术方案

健新科技JX-PU2902多功能RFID读写笔配合智能手机、智能平板等各类型终端,实现RFID 智能识别功能和智能移动终端功能的完美结合,轻松实现各行业资产盘点、智能巡检、人员物资管理等移动互联网应用。 ◆手写笔设计:纳米超纤触控笔头,手写笔外形设计,可作为触控笔使用; ◆RFID空口协议:EPCglobal UHF Class 1 Gen 2、ISO18000-6C、ISO 18000-6B ◆操作简单:两个按键即可实现所有操作功能 ◆状态指示:设备状态通过两组7色LED灯显示,清晰明了 ◆蓝牙4.0:内置蓝牙4.0模块,可与所有具备蓝牙功能的终端进行通信连接,所有具 备蓝牙功能的智能终端均可作为采集终端 ◆内置锂电池:内置350mAh锂电池,支持USB充电 一、技术指标 二、健新RFID读写笔产品优点 三、基于RFID读写笔的系统应用 四、应用系统的优点: 五、典型应用: 在某品牌空调外壳中嵌入超高频RFID标签,售后维修通过扫描空调RFID标签获得准确的产品信息,防止售后维修点虚假维修报账。 4S店车辆库存盘点:在一个区域的某类汽车品牌4S店管理中,采用超高频RFID 标签对车辆进行定位,采用RFID蓝牙读写笔对各4S店的车辆进行盘点,防止各 4S店之间库存车辆相互串货。 电力资产管理:在某电网公司,采用超高频RFID标签对资产进行标识, 使用RFID蓝牙读写笔及平板电脑对电力资产设备进行盘点,解决高压设备的远距离识别问题。 行业应用 电力:变电所、变压器、高压铁塔、线杆、高压线路、发电厂、电能表读数、安全用具巡检巡更 石油:输油管道、天然气管道、油罐库区、油田油井设施巡检巡更 铁路:路基、路轨、桥梁、水电、机车、库房、候车大厅、乘警巡逻巡检巡更 电信:光缆、电话线路、电话亭、线杆、发射机站巡检巡更 公安:巡警、交警、警车、岗哨、狱警巡逻巡检巡更 军队:边防、岗哨、弹药库、军需库巡逻巡检巡更 粮库:防火、防水、防虫、温度、湿度控制巡检巡更 林业:森林防火、森警巡逻、动植物保护、防猎巡检巡更 矿业:煤矿井下安全、井上设施、车辆、煤场巡检巡更 医院:护士查房、人员考核、保安巡逻巡检巡更 邮政:邮箱、库房、趟车的频次/时限管理巡检巡更

125kHzRFID读写器的硬件设计_

中国高新技术企业125kHzRFID读写器的硬件设计 文/王萍曾宝国 【摘要】射频识别(RFID)是利用无线方式对电子数据载体(电子标签)进行识别的一种新兴技术。本文针对 工作频率为125kHz的电子标签AT88FR256-12,介绍了其识读系统的组成及读写终端的硬件设计。 【关键词】RFID读写器硬件设计 射频识别技术(RFID)是近年迅速发展起来的一项新技术,它利用射频信号通过空间耦合(交变磁场或电磁场)实现非接触式信息传递,达到自动识别目的。与接触式IC卡和条形码识别技术相比,射频识别技术最大的优势在于特别适合对数量大、分布区域广的信息进行智能化管理和高效快捷地运作,因此在物流、交通航运、自动收费、服务领域等方面有着广泛的应用前景。针对工作频率为125kHz的电子标签AT88FR256-12,本文介绍了其识读系统的组成及读写终端的硬件设计。 1读写器的系统组成 本文所研究的RFID系统为125kHz近耦合射频识别系统,系统组成如图1所示。RFID读写器硬件主要由三部分构成:接口电路、控制模块、射频模块及天线。控制中心或I/O设备通过接口电路与控制模块通信,向控制模块发送控制命令或接收来自控制模块的数据与操作报告。控制模块采用ATMEL公司生产的AT89S52单片机,实现过程控制、数据处理以及通过接口电路完成与控制中心的数据通信或I/O设备的数据传输。射频模块用于实现数据调制、解调及收发信号,本系统采用RFID专用无线基站芯片EM4095作为电子标签与识读终端之间的接口。电子标签采用Atmel公司的AT88FR256-12无源可读写标签,使用时可根据用户要求通过读写器将相关信息写入标签。当标签进入读写器的工作范围内时,标签被激活,读写器发送读数据给标签,标签根据接收到的读数据信号将存储单元中指定的数据通过天线发送至读写器,读写器再将处理后的数据通过接口电路送回控制中心;若需要修改标签的数据,可由读写器发送写数据信号给标签,标签收到数据后自动修改内存数据。 图1RFID识读系统的组成 2读写器的硬件设计 2.1电源电路设计 EM4095和AT89S52的工作电压均为+5V,可用220V市电经整流、滤波、稳压后输出稳定的+5V的直流电为其供电。+5V稳压器采用CW7805,其应用电路如图2所示。图中,滤波电容C1和C3的值为1000μF,C2和C4为0.33μF。发光二极管D的作用是显示读写器的电源是否接通,若接通则D灯亮,无接通则D灯灭。 图2电源电路原理图 2.2射频收发模块电路设计 EM4095兼容多种传输协议(如EM4OOX、EM4150等),工作频率100kHz ̄150kHz;不需外接晶振,利用内部锁相环PLL就可得到与天线匹配的谐振频率;采用调幅同步解调技术,具有睡眠模式,与微控制器的接口简单。 EM4095的内部结构如图3所示。接收模块由采样保持器、滤波器、比较器组成。DMOD-IN端输入的AM信号在VCO输出信号的同步控制下被采样,采样输出信号由端脚CDEC外接的电容隔离直和带通滤波采样(消除输出中的载频成分、高频和低频噪声)后,经异步比较得到对应的数字信号。发送模块由锁相环PLL、天线驱动器和调制器组成。其中PLL由环路滤波器、相位比较器、压控制振荡器组成。天线感生的信号经耦合电容输入DMOD-IN端,该信号与天线驱动器的输入信号由相位比较器进行相位比较,形成与相位差对应的电压,作为压控振荡器的控制信号,最终实现对天线发射信号频率的锁定。 图3射频芯片EM4095内部结构图 EM4095的工作受输入信号SHD和MOD控制。MOD=0时,芯片工作于只读模式;MOD=1时,芯片工作于读/写模式。SHD=1时,为睡眠模式。芯片供电之后,SHD应先为高电平,以初始化芯片,然后再接低电平,芯片即处于收发状态。天线感生到的AM信号中携带的数据经解调模块解调后由DMOD-0UT端输出。RDY/CLK端用于向微控制器提供芯片内部的状态以及与收发信号同步的参考时钟。SHD=1时,RDY/CLK端输出低电平;SHD由高电平变为低电平后,经过约35ms,RDY/CLK端输出同步时钟信号,该参考时钟信号的出现表示发射模块和接收模块已经启动。通过查询RDY/CLK端信号状态,微控制器即可确定从DMOD-OUT端接收数据的时刻。 由EM4095构成的射频收发模块电路如图4所示,LA、CRES、CDV1和CDV2组成LC串联谐振天线,谐振频率为f0=1/[2π×(LA、C0)1/2],其中C0=CRES+CDV1‖CDV2。天线的工作电流与谐振电路Q值有关,可在天线线圈LA上并联一个电阻调节Q值。 图4射频收发/控制模块电路设计 2.3控制模块电路设计 微控制器AT89S52负责启动EM4095并接收由EM4095解调的编码数据。EM4095的DMOD-OUT端接P1.0,SHD接P1.1,MOD接P1.2,RDY/CLK端接P3.4,用作编解码的同步时钟。 图5AT89S52与MAX232A电路连接图 (下转88页 )科技论坛 85 --

超高频rfid读写器技术方案

RFID 如有帮助,欢迎下载支持 健新科技JX-PU2902多功能RFID 读写笔配合智能手机、智能平板等各类型终端,实现 智能识别功能和智能移动终端功能的完美结合,轻松实现各行业资产盘点、智能巡检、人员 物资管理等移动互联网应用。 手写笔设计:纳米超纤触控笔头,手写笔外形设计,可作为触控笔使用; RFID 空口协议:EPCglobal UHF Class 1 Gen 2、IS018000-6C ISO 18000-6B 操作简单:两个按键即可实现所有操作功能 状态指示:设备状态通过两组 7色LED 灯显示,清晰明了 蓝牙4.0 :内置蓝牙4.0模块,可与所有具备蓝牙功能的终端进行通信连接,所有具 备蓝牙功能的智能终端均可作为采集终端 内置锂电池:内置350mAh fi 电池,支持USB 充电 一、 技术指标 二、 健新RFID 读写笔产品优点 三、 基于RFID 读写笔的系统应用 四、 应用系统的优点: 五、 典型应用: 在某品牌空调外壳中嵌入超高频 RFID 标签,售后维修通过扫描空调 RFID 标签获得准确的产 品信息,防止售后维修点虚假维修报账。 4S 店车辆库存盘点:在一个区域的某类汽车品牌 4S 店管理中,采用超高频 RFID 标签对车辆进行定位,采用 RFID 蓝牙读写笔对各 4S 店的车辆进行盘点,防止各 4S 店之间库存车辆相互串货。 电力资产管理:在某电网公司,采用超高频RFID 标签对资产进行标识, 使用 RFID 蓝牙读写笔及平板电脑对电力资产设备进行盘点,解决高压 设备的远距 离识别问题。 行业应用 电力: 变电所、变压器、高压铁塔、线杆、高压线路、发电厂、电能表读数、安全用具 巡检巡更 石油: 输油管道、天然气管道、 油罐库区、 油田油井设施巡检巡更 铁路: 路基、路轨、桥梁、水电、机车、库房、候车大厅、乘警巡逻巡检巡更 电信: 光缆、电话线路、电话亭、线杆、发射机站巡检巡更 公安: 巡警、交警、警车、岗哨、狱警巡逻巡检巡更 军队: 边防、岗哨、弹药库、军需库巡逻巡检巡更 粮库: 防火、防水、防虫、温度、湿度控制巡检巡更 林业: 森林防火、森警巡逻、动植物保护、防猎巡检巡更 矿业: 煤矿井下安全、井上设施、车辆、煤场巡检巡更 医院: 护士查房、人员考核、保安巡逻巡检巡更 邮政: 邮箱、库房、趟车的频次/时限管理巡检巡更

进步RFID读写器的读取效果的解决办法

、管路敷设技术,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标等,要求技术交底。管线敷设技术中包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接、电气课件中调试下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进、电气设备调试高中资料试卷技术卷安全,并且尽可能地缩小故障高中资料试卷破坏范围,或者对某些异常高中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资料试

通过管线不仅可以解决吊顶层配置不规范高中资料试卷问题,而且可保障各类管路高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;电力保护装置调试技术,电力保护高中资料试卷配置技术是指机组在进行继电保护高中资料试卷总体配置时,需要在最大

对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行 高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用电力保护装置

可以看出,在零中频接收模拟输出除了所需要的标签回传数据外,数据帧同步头还混杂了直流偏移干扰以及高频噪声.由于距离较远,有用信号的p-p 值仅有110,波形畸变严重,信噪比较差。 经过CIC 及带通滤波,可以得到图4所示的曲线,此时滤波器去除了混杂的噪声,波 形变得比较圆滑整齐,能够较容易的分辨出数据帧的同步头和数据位.图中同时显示了过零检测的解码曲线(位于图形下方,方波上边标注的是过零检测的0和1及其样本点数量;下方标注解码结果。2B4 :0,表示第2字节的第4位解码为0),该算法在横轴坐标240左边出现了解码判决错误(1B5:1,码元0被判决为1),表明处理畸变干扰能力有限。 图4 直接过零检测解码的效果 同时采用直流偏移校正和相干检测方法对同一个数据进行处理,得到的曲线及效果参见图5。解码结果波形显示算法改善了同步头的解码效果。同时,横轴坐标240左边被正确的解码(1B5:0),证明了该算法在远距离标签返回信号幅度比较小或者标签信号中值波动的情况下,仍然可以正确获得EPC 数据。 图5 直流偏移校正及相干检测解码的效果 5 结论 本文通过分析零中频架构超高频RFID 读写器数字接收机设计中的性能瓶颈,明确了影响接收性能的噪声干扰、直流偏移及解码问题的成因及解决思路.从基带数字信号处理角度,在过采样滤波处理基础上,给出直流偏移校正和相关解码等解决办法.经过测试验证 、管路敷设技术通过管线不仅可以解决吊顶层配置不规范高中资料试卷问题,而且可保障各类管路习题到位。在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标等,要求技术交底。管线敷设技术中包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内强电回路须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。、电气课件中调试对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行 高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷技术问题,作为调试人员,需要在事前掌握图纸资料、设备制造厂家出具高中资料试卷试验报告与相关技术资料,并且了解现场设备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况 ,然后根据规范与规程规定,制定设备调试高中资料试卷方案。 、电气设备调试高中资料试卷技术电力保护装置调试技术,电力保护高中资料试卷配置技术是指机组在进行继电保护高中资料试卷总体配置时,需要在最大限度内来确保机组高中资料试卷安全,并且尽可能地缩小故障高中资料试卷破坏范围,或者对某些异常高中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试卷调试技术是指发电机一变压器组在发生内部故障时,需要进行外部电源高中资料试卷切除从而采用高中资料试卷主要保护装置。

MHz RFID读写器设计与制作

RFID技术及应用实训报告 题目: RFID读写器设计与制作 班级: 学号: 姓名: 指导教师: 二〇一五年七月一日

目录 第1章RFID读写器的设计与制作..................... 错误!未定义书签。 读写器组成与分析.............................. 错误!未定义书签。 读写器原理图与PCB设计........................ 错误!未定义书签。 读写器原理图............................... 错误!未定义书签。 读写器PCB设计............................. 错误!未定义书签。 读写器装配与功能测试.......................... 错误!未定义书签。 装配....................................... 错误!未定义书签。 功能调试................................... 错误!未定义书签。第2章RFID上位机软件开发与调试................... 错误!未定义书签。 数据访问层设计与实现.......................... 错误!未定义书签。 数据访问层设计............................. 错误!未定义书签。 实现过程及代码分析......................... 错误!未定义书签。 窗体表示层设计与实现.......................... 错误!未定义书签。 设计与实现................................. 错误!未定义书签。总结.............................................. 错误!未定义书签。

基于FPGA的超高频RFID读写器设计

基于FPGA的超高频RFID读写器设计 [日期:2008-10-9 17:48:00] 作者:未知来源:射频识别技术(RFID)是利用射频方式进行远距离通信以达到物品识别目的,可用来追踪和管理几 乎所有物理对象在工业自动化、商业自动化、交通运输控制管理、防伪等众多领域,甚至军事用途都 具有广泛的应用前景,并且引起了广泛的关注 1 引言 RFID系统一般包括读写器和电子标签(或称应答器)2个部分RFID电子标签(Tag)由芯片与天线(Antenna)组成,每个标签具有惟一的电子编码标签附在物体上以标识目标对象RFID读写器(Reader)的主要任务是控制射频模块向标签发射读写信号,并接收标签的应答对标签信息进行解码,并将信息传输到主机以供处理根据应用的不同,阅读器可以是手持式或固定式本文重点介绍的就是读写器的开发 EPC规范已经颁布第一代规范规范把标签细分为Class 0,Class 1,Class 2三种其中Class 0和Class 1标签都是一次写入多次读取标签,Class 0标签只能由厂商写入信息,用户无法修改,因而又称为只读标签,主要用于供应链管理)Class 1则提供了更多的灵活性,信息可由用户写入一次Class 0和Class 1标签采用不同的空中接口标准进行通信,因此两类标签不能互操作Class 2标签具备多次写入能力,并增加了部分存储空间用于存储用户的附加数据Class 2标签允许加入安全与访问控制、感知网络和Ad Hoc网络等功能支持目前EPCglobal正在制定第二代标签标准,即UHF Class l Generation 2(C1G2)C1G2具有随时更新标签内容的能力,保证标签始终保存最新信息EPC规范 l_0版本包括EPC Tag数据规范、Class 0(900 MHz)标签规范、C1ass 1(13.56 MHz)标签接口规范、Class l(860~930 MHz)标签射频与逻辑通讯接口规范、物理标识语言(PhysicalMarkup Language,PML) 本文重点介绍EPC Class 1读写器系统设计、数字部分设计及FPGA在数字实现上的应用由于U 频段RFID技术的应用还处在早期的发展阶段,符合EPCClass 1协议的读写器在国内还没有相关产品面世本文对相关开发有一定的参考价值 2 EPC Class lb系统设计 一个完整的RFID系统包括:读写器、天线、标签和PC机读写器完成对标签(Tag)的读写操作通过RS 232或RS 485总线完成PC机的命令接收和EPC卡号的上传图l是读写器的系统组成框图读写器组成包括与PC机的串口通信部分、单片机和FPGA组成的数字部分、射频部分RF单元实现和标签的通信,数字部分完成对射频部分的控制、回波命令解析PC机接收卡号实现上位机的控制下面对

RFID系统工作原理及其结构

RFID 系统工作原理及其结构 一套完整的RFID系统,是由阅读器(Reader)与电子标签(TAG)也就是所谓的应答器(Transponder) 及应用软件系统三个部份所组成, 其工作原理是Reader 发射一特定频率的无线电波能量给Transponder,用以驱动Transponder 电路将内部的数据送出,此时Reader 便依序接收解读数据,送给应用程序做相应的处理。 图系统的基本组成 以RFID 卡片阅读器及电子标签之间的通讯及能量感应方式来看大致上可以分成, 感 应偶合(Inductive Coupling) 及后向散射偶合(Backscatter Coupling) 两种,一般低频的RFID 大都采用第一种式,而较高频大多采用第二种方式。 图卡片阅读器及电子标签之间的通讯及能量感应方式 阅读器根据使用的结构和技术不同可以是读或读/写装置,是RFID系统信息控制和处 理中心。阅读器通常由耦合模块、收发模块、控制模块和接口单元组成。阅读器和应答器之间一般采用半双工通信方式进行信息交换,同时阅读器通过耦合给无源应答器提供能量和时序。在实际应用中,可进一步通过Ethernet或WLAt等实现对物体识别信息的采集、处理 及远程传送等管理功能。应答器是RFID系统的信息载体,目前应答器大多是由耦合原件 (线 圈、微带天线等)和微芯片组成无源单元。 应答器通常包含: a.天线:用来接收由阅读器送过来的信号,并把所要求的数据送回给阅读器。 /DC电路:把由卡片阅读器送过来的射频讯号转换成DC电源,并经大电容储存能量,再经 稳压电路以提供稳定的电源。 c.解调电路: 把载波去除以取出真正的调制信号。 d.逻辑控制电路:译码阅读器所送过来的信号,并依其要求回送数据给阅读器。 e.内存: 做为系统运作及存放识别数据的位置。 f.调制电路: 逻辑控制电路所送出的数据经调制电路后加载到天线送给阅读器。 图3. 标签结构 阅读器通常包含: a.天线:用来发送无线信号给Tag,并把由Tag响应回来的数据接收回来. b.系统频率产生器: 产生系统的工作频率. c.相位锁位回路(PLL): 产生射频所需的载波信号 d.调制电路:把要送给Tag的信号加载到载波并送给射频电路送出? e.微处理器:产生要送给Tag信号给调制电路,同时译码Tag回送的信号,并把所得的数据回传给应用程序,若是加密的系统还必需做加解密操作. f.存储器: 存储用户程序和数据 g.解调电路: 解调tag 送过来的微弱信号,再送给微处理器处理. h.外设接口: 用来和计算机联机

基于单片机的RFID读写器设计毕业设计

摘要 射频识别(Radiofrequency identification ,RFID),又称电子标签(E-Tag),是一种利用射频信号自动识别目标对象并获取相关信息的技术。随着技术的进步,RFID应用领域日益扩大,现已涉及到人们日常生活的各个方面,并将成为未来信息社会建设的一项基础技术。因此,研究、设计和开发RFID系统具有十分重要的理论意义和实际意义。 论文系统地论述了射频识别系统和读卡器的理论分析,研究了射频识别系统中的许多关键技术,并提出了射频识别读卡器的设计方案。 本文首先分析了射频识别技术的基本原理、研究方向和应用情况。在充分研究了射频卡的基本原理、技术特点、国际相关标准后,进而提出了基于STC11F32单片机的射频读卡器系统设计的方法。设计采用MFRC522射频读写模块在STC11F32单片机的控制下实现对Mifare卡的读写访问操作。 硬件部分设计主要包括单片机控制电路设计,射频模块设计,天线电路设计,串行通信电路设计,声音提示及显示电路设计等,其中详细讨论了读卡器的软件设计方法。软件设计包括单片机处理程序,射频基站芯片RC522的基本操作、Mifare卡操作程序设计、声音提示及显示部分程序等。论文中系统地讨论了软件实现读卡器与Mifare卡之间通信所要求的请求应答、防冲撞、选卡片、认证、读写等功能模块的实现原理。 关键词:射频识别,读卡器,IC卡,STC11F32,MFRC522

Abstract Radio frequency identification (radio frequency identification, RFID), also known as electronic tags (e-Tag), is an RF signal automatic target recognition and access to relevant information technology. With the advances in technology, RFID applications widening, has been involved in all aspects of people's daily lives, and will become a basic technology of the future information society. Therefore, research, design and development of RFID systems has important theoretical and practical significance. Discusses the theoretical analysis of radio frequency identification system and card reader to the paper system, many of the key technology of radio frequency identification system, and the design of radio frequency identification reader. This paper firstly analyzes the basic principle of radio frequency identification technology, the research direction and application. In the full study of RF Card basic principle, technical characteristics, relevant international standards, and then put forward based on STC11F32 single chip RF card reader system design method. The design adopts MFRC522radio frequency read write module in STC11F32under the control of a single-chip microcomputer to realize Mifare card read and write access operations. The hardware part of the design including the MCU control circuit design, design of the RF module, Antenna circuit design, circuit design of the serial communication, voice prompts and display circuit design, including detailed discussion of the reader software design methods. Software design, including the microcontroller handler, the basic operation of the RF base station chip RC522, Mifare card operating procedures, voice prompts and display part of the program. The paper discussed the request response communication between the software implementation of the reader with Mifare card required, anti-collision, election card, certification, read and write function module principle. Key words:RFID, reader, IC card, STC11F32, MFRC522

RFID原理与应用复习(附答案)

RFID原理及应用复习 一、判断 1.RFID是Radio Frequency Identification 的缩写,即无线射频识别。(yes) 2.物联网的感知层主要包括:二维码标签、读写器、RFD标签、摄像头、GPS传感器、M-M终端。(no) 3.13.56MHZ,125kHz,433MHz都是RFID系统典型的工作频率(yes) 4.在物联网节点之间做通信的时候,通信频率越高,意味着传输距离越远。( no) 5.物联网标准体系可以根据物联网技术体系的框架进行划分,即分为感知延伸层标准、网络层标准、应用层标准和共性支撑标准。(yes) 6.在物联网中,系统可以自动的、实时的对物体进行识别、追踪和监控,但不可以触发相应的事件。( no) 7.物联网共性支撑技术是不属于网络某个特定的层面,而是与网络的每层都有关系,主要包括:网络架构、标识解析、网络管理、安全、QoS等。(yes) 8.物联网中间件平台:用于支撑泛在应用的其他平台,例如封装和抽象网络和业务能力,向应用提供统一开放的接口等。(yes) 9.RFID拥有耐环境性,穿透性,形状容易小型化和多样化等特性(yes) 10.物联网信息开放平台:将各种信息和数据进行统一汇聚、整合、分类和交换,并在安全范围内开放给各种应用服务。(yes) 二、不定项选择题 1. 物联网的基本架构不包括(CD)。 A、感知层 B、传输层 C、数据层 D、会话层 2.物联网节点之间的无线通信,一般不会受到下列因素的影响。( D ) A、节点能量 B、障碍物 C、天气 D、时间 3.下列哪项不是物联网的组成系统(B)。 A、EPC编码体系 B、EPC解码体系 C、射频识别技术 D、EPC信息网络系统 4. 利用RFID 、传感器、二维码等随时随地获取物体的信息,指的是(B)。 A、可靠传递 B、全面感知 C、智能处理 D、互联网 5.RFID卡(C)可分为:主动式标签(TTF)和被动式标签(RTF)。 A、按供电方式分 B、按工作频率分 C、按通信方式分 D、按标签芯片分

基于单片机的RFID读写器设计

基于单片机的RFID读写器设计 摘要 射频识别(Radiofrequency identification ,RFID),又称电子标签(E-Tag),是一种利用射频信号自动识别目标对象并获取相关信息的技术。随着技术的进步,RFID应用领域日益扩大,现已涉及到人们日常生活的各个方面,并将成为未来信息社会建设的一项基础技术。因此,研究、设计和开发RFID系统具有十分重要的理论意义和实际意义。 论文系统地论述了射频识别系统和读卡器的理论分析,研究了射频识别系统中的许多关键技术,并提出了射频识别读卡器的设计方案。 本文首先分析了射频识别技术的基本原理、研究方向和应用情况。在充分研究了射频卡的基本原理、技术特点、国际相关标准后,进而提出了基于STC11F32单片机的射频读卡器系统设计的方法。设计采用MFRC522射频读写模块在STC11F32单片机的控制下实现对Mifare卡的读写访问操作。 硬件部分设计主要包括单片机控制电路设计,射频模块设计,天线电路设计,串行通信电路设计,声音提示及显示电路设计等,其中详细讨论了读卡器的软件设计方法。软件设计包括单片机处理程序,射频基站芯片RC522的基本操作、Mifare卡操作程序设计、声音提示及显示部分程序等。论文中系统地讨论了软件实现读卡器与Mifare卡之间通信所要求的请求应答、防冲撞、选卡片、认证、读写等功能模块的实现原理。 关键词:射频识别,读卡器,IC卡,STC11F32,MFRC522

Abstract Radio frequency identification (radio frequency identification, RFID), also known as electronic tags (e-Tag), is an RF signal automatic target recognition and access to relevant information technology. With the advances in technology, RFID applications widening, has been involved in all aspects of people's daily lives, and will become a basic technology of the future information society. Therefore, research, design and development of RFID systems has important theoretical and practical significance. Discusses the theoretical analysis of radio frequency identification system and card reader to the paper system, many of the key technology of radio frequency identification system, and the design of radio frequency identification reader. This paper firstly analyzes the basic principle of radio frequency identification technology, the research direction and application. In the full study of RF Card basic principle, technical characteristics, relevant international standards, and then put forward based on STC11F32 single chip RF card reader system design method. The design adopts MFRC522radio frequency read write module in STC11F32under the control of a single-chip microcomputer to realize Mifare card read and write access operations. The hardware part of the design including the MCU control circuit design, design of the RF module, Antenna circuit design, circuit design of the serial communication, voice prompts and display circuit design, including detailed discussion of the reader software design methods. Software design, including the microcontroller handler, the basic operation of the RF base station chip RC522, Mifare card operating procedures, voice prompts and display part of the program. The paper discussed the request response communication between the software implementation of the reader with Mifare card required, anti-collision, election card, certification, read and write function module principle.

超高频射频识别系统读写器设计

第28卷 第3期2005年9月 电 子 器 件 Chinese Journal of Electro n Devices   Vo l.28No.3 Sep.2005 Design of UHF RFID Interrogator ZH A NG X iao-p eng1,2,ZH U Yun-long1,L UO H ai-bo1 1.S heny ang Institute o f Au tomation,Chinese A cad emy o f S ciences,S henyang110016,China; 2.G radu ate S chool of the Chine se A cad emy o f S ciences,B eij ing100039,China Abstract:UH F RFID system is becom ing more w idespread due to its advantag e,such as fast read-w rite speed,large m em ory,long recog nition distance and simultaneous read-w rite multi-tag.This paper intro-duces the characteristic and structure and principle and r ead-wr ite method of an UHF RFID tag accorded w ith ISO18000-6Standard,and presents the solution of its interr ogator,ex patiates hardw are design of in-terro gator and flow of softw are prog ram.Its has m er its of fast read-w rite speed(single tag64bit/6ms) and hig h reco gnition rate,and long recog nition distance(≥4m)prove out as a result of practical applica-tio n. Keywords:RFID;tag;interrog ato r;UHF EEACC:7210 超高频射频识别系统读写器设计 张晓鹏1,2,朱云龙1,罗海波1 (1.中国科学院沈阳自动化研究所,沈阳110016;2.中国科学院研究生院,北京100039) 摘 要:超高频射频识别系统具有读写速度快、存储容量大、识别距离远和同时读写多个标签等特点,已经在物流等领域得到越来越广泛的应用。介绍了符合I SO18000-6标准的超高频R FID电子标签主要特点、结构、工作原理及读写方法,提出了相应读写器的解决方案,重点阐述了读写器的硬件设计及软件程序流程。实际应用结果表明该读写器读写速度快(单个标签64bit/6ms)、识别率高,识别距离远(≥4m)。 关键词:射频识别;标签;读写器;超高频 中图分类号:TM931 文献标识码:A 文章编号:1005-9490(2005)03-0542-04 射频识别(RFID,Radio Frequency Identifica-tio n)技术是一种新兴的自动识别技术。它是利用无线射频方式进行非接触双向数据通信,以达到目标识别并交换数据的目的。可用来跟踪和管理几乎所有的物理对象,在工业自动化、商业自动化、交通运输控制管理、防伪及军事等众多领域都有广泛的应用前景。按照工作频段的不同,RFID系统还可以分为低频(135kHz以下)、高频(13.56M Hz)、超高频(860~960MHz)和微波(2.4GHz以上)等几类[1~2]。目前大多数RFID系统为低频和高频系统,但超高频(U HF)频段的RFID系统具有操作距离远、通讯速度快、成本低、尺寸小等优点,更适合未来物流、供应链领域的应用,也为实现“物联网”提供了可能。因此超高频RFID系统的发展是当前RFID系统 收稿日期:2005-01-30 基金项目:中科院先进制造基地创新项目(F040210) 作者简介:张晓鹏(1979-),女,硕士研究,研究方向为RFI D软硬件系统及其应用,zhang xp@https://www.doczj.com/doc/f017553730.html,; 朱云龙(1967-),男,研究员,博士生导师,中科院沈阳自动化研究所先进制造技术实验室主任,主要研究方向为CIM S、分布式智能技术、协同制造理论与方法以及SCM/ERP/CRM系统管理软件的开发等; 罗海波(1967-),男,研究员,硕士生导师,主要研究方向为模式识别与图像处理、DSP系统设计、实时信号处理系统。

相关主题
文本预览
相关文档 最新文档