当前位置:文档之家› 汽车操纵稳定性道路试验和评价系统设计

汽车操纵稳定性道路试验和评价系统设计

汽车操纵稳定性道路试验和评价系统设计
汽车操纵稳定性道路试验和评价系统设计

汽车操纵稳定性研究方法探讨

汽车操纵稳定性研究方法探讨 刘进伟1,徐达1,吴志新2 1.武汉理工大学汽车学院车辆工程系,湖北武汉 430070 2.天津清源电动车辆有限公司,天津 300457 liujinweixiaodao@https://www.doczj.com/doc/f015152675.html, 摘要:本文综述了操稳性研究和评价的历史、现状和存在的问题,着重介绍了客观评价、主观评价、人一车闭环系统综合评价等几种评价方法,以及基于汽车一驾驶员一环境(道路)闭环系统、模糊逻辑控等几种研究方法。提出了操稳性研究的发展趋势,这对全面了解汽车操纵稳定性问题具有指导和借鉴的作用。 关键词:操纵稳定性,历史,研究方法,评价,发展趋势 1操纵稳定性的研究历史和概况 对汽车操稳性的系统研究,早在20世纪3O年代就已经开始。对车辆控制的重视导致对悬架和转向机构的运动学研究。1925 年平顺性理论初步形成规模。同年,Broulheit 在文章中首次提出侧偏和侧偏角的概念【Broulheit, 1925】。1931 年,Becker、Fromm 和 Maruhn 在发表的文章中分析了轮胎在转向系振动中起的作用,进一步研究了轮胎特性【Becker,1931】。对轮胎的研究使进一步分析车辆稳定性成为可能[1]。 20世纪50年代,建立简单的汽车动力学模型,研究人员开始从事汽车动力学性能仿真,分析汽车操纵稳定性。19 世纪 50 年代中期所作的研究工作为建立汽车数学模型打下基础。对轮胎的基本了解使建立相对精确的轮胎数学模型成为可能。 20世纪60年代,开始从控制理论和振动理论出发,采用开环系统瞬态响应、系统特性分析和系统稳定性理论设计汽车的总成系统[2]。但是,应用开环系统分析方法,仅用于分析汽车的方向稳定性条件,因为当时不知道如何评价汽车的开环特性和瞬态特性,很难直接在车辆设计中应用。 到20世纪70年代,安全实验车(ESV)研究计划实施,促使人们去研究之中实用方法,用来设计汽车的动力学性能。这个阶段,各国主要采用系统工程学方法探索汽车动力学性能评价方法。依据大量实验和理论分析,形成了以驾驶员主观评价为主,客观评价指标限制为辅的一整套主观评价设计方法[2]。20 世纪70年代车辆动力学仿真模型变得更加复杂和真实。这主要归功于计算机技术的发展。以前的仿真工作都在模拟计算机上进行,它能解决实时动力学问题,但其致命缺点是不能解决非线性问题。由于数字计算机逐步取代了模拟计算机和混合计算机,因而必须建立完全数字化的车辆动力学模型。考虑到计算机的费用及计算速度,建立有效的计算机模型是必要的。 - 1 -

汽车操纵稳定性验之稳态回转实验

汽车操纵稳定性实验之稳态回转实验 实验目的:测定汽车对转向盘转角输入达到稳定行驶状态时汽车的稳态横摆响应 学会用前、后侧偏角绝对值之差12()αα-以及转向半径的比0R R 来判别汽车的稳态响应 实验仪器:垂直陀螺仪(VG400CD-100)实验车 汽车速度采集器 实验条件: 1. 实验汽车 1.1 实验车是按厂方规定装备齐全的汽车,实验前,应测定车轮定位参数, 对转向系、悬架系进行检查,并按规定进行调整、紧固和润滑。 1.2 实验时若用新轮胎,轮胎至少应经过200km 正常行驶磨合;若是旧胎, 实验结束时,残留花纹高度应小于1.5mm 。实验过程中,轮胎充气压力 应符合该车技术条件规定,误差不得超过±10kPa 。 2.实验场地 2.1 实验场地应为干燥、平坦且清洁的水泥或沥青路面,任意方向的坡度不大于2% 2.2 实验时风速应不大于5m s 2.3 大气温度在040-℃之间 实验方法: 1. 在实验场地上,画出半径为15m 的圆周1。 2. 接通仪器连线并开机预热至工作温度2。 3. 实验开始前,汽车以侧向加速度为23m s 的相应车速沿画定的圆周行驶 500m 以使轮胎升温。 4. 驾驶员操纵汽车以最低稳定车速沿所画圆周行驶,此时转向盘得转角为 sw 0δ;测定车速0u 以及横摆角速度0r ω。由于车速很低,离心力很小, 轮胎侧偏角忽略不计。保持转向盘转角sw 0δ不变条件下,令汽车缓慢连 续而均匀的加速(纵向加速度不得超过20.25m s ),直至汽车的侧向加速度达到26.5m s (或受发动机功率限制而所能达到的最大侧向加速度、或汽车出现不稳状态)为止。纪录整个过程。 5. 实验按向左转和向右转两个方向进行,每个方向实验三次。每次实验开 始时车身应处于正中位置。 实验数据处理: 1. 连续测量车速u 与横摆角速度r ω值,根据瞬时的u 与r ω值,按公式 ,y r r u R a u ωω==求出相应的R 与y a 值,根据数据画出0y R R a -曲线

汽车操纵稳定性实验指导书

汽车操纵稳定性实验指导书 课程编号: 课程名称: 实验一汽车转向轻便性实验 实验目的 汽车的转向轻便性和操纵稳定性是现代汽车重要的使用性能,通过对实验了解和掌握测试系统的安装调试、基本实验方法并学会数据处理和运用理论知识对汽车操纵稳定性研究、评价。以培养学生解决实际工程问题的能力。 二、实验的主要内容 了解测试系统的组成和测试原理,汽车转向轻便性实验的数据的实时采集和处理。测定汽车在低速大转角时的转向轻便性,与操纵稳定性其他试验项目一起,共同评价汽车的操纵稳定性。 采集测量变量及参数 方向盘转角; 方向盘力矩; 方向盘直径。 三、实验设备和工具 1.测量仪器 汽车方向盘转角——力矩传感器 汽车操纵稳定性数据采集和分析仪 2.实验车辆 小型客车一辆 3.标明试验路径的标桩16个。 四、实验原理 测定汽车在道路上进行转向行驶时,驾驶员作用在方向盘上的力矩和方向盘转角的变化关系评价汽车的转向操纵性能 验方法和步骤 1.实验准备 试验场地应为干燥、平坦而清洁的水泥或柏油路面。任意方向上的坡度不大于2%。在试验场地上,用明显颜色画出双纽线路径(图1),双纽线轨迹的极坐标方程为: 为:轨迹上任意点的曲率半径R

°时,双纽线顶点的曲率半径为最小值,即=0Ψ 当. 双纫线的最小曲率半径(m)应按试验汽车的最小转弯半径(m)乘以倍,并圆整到比此乘积大的一个整数来确定。并据此画出双纽线,在双纽线最宽处、顶点和中点(即结点)的路径两侧共放置16个标桩(图1)。标桩与试验路径中心线的距离,按汽车的轴距确:定,当试验汽车轴距大于时,为车宽一半加50cm,当试验汽车轴距小于或等于2m时,为车宽一半加30cm。 图1 双纽线路径示意图 2.试验方法 2.1接通仪器电源,使之预热到正常工作温度。 2.2汽车以低速直线滑行,驾驶员松开方向盘,停车后,记录方向盘中间位置及方向盘力矩零线。 2.3驾驶员操纵方向盘使汽车沿双纽线路径行驶。车速为10土1km/h。待车速稳定后,开始记录方向盘转角及力矩,并记录(或显示)车速作为监督参数,直到汽车绕双纽线行驶满三周。 3.数据处理 3.1根据记录的方向盘转角及方向盘力矩,按双纽线路径每一周整理成图2所示的M—θ曲线,并计算以下参数: 3.1.1方向盘最大力矩,用下式计算: 式中:Mmax——方向盘最大力矩,N·m; 3.1.2方向盘最大作用力,用下式计算:

同济汽车操纵稳定性实验报告新终审稿)

同济汽车操纵稳定性实 验报告新 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

《汽车平顺性和操作稳定性》实验报告 学院(系)汽车学院 专业车辆工程(汽车) 学生姓名同小车学号 000001 同济大学汽车学院实验室 2014年11月 1.转向轻便性实验 实验目的 驾驶员通过操纵方向盘来控制汽车的行驶方向,操纵方向盘过重,会增加驾驶员的劳动强度,驾驶员容易疲劳;操纵方向盘过轻,驾驶员会失去路感,难以控制汽车的形式方向。操纵方向盘的轻重,是评价汽车操纵稳定性的基本条件之一。转向轻便性实验的目的在于通过测量驾驶员操纵方向盘力的大小,与其他实验仪器评价汽车操纵稳定性的好处。 实验仪器设备 实验条件 试验车:依维柯 实验场地与环境 于圆形试车场,实验时按照桩桶圈出的双扭线,以10Km/h的车速行驶。双扭线的极坐标方程见下,形状如下图 实验当天天气晴好,无风,气温20度

在ψ=0时,双扭线顶点处的曲率半径最小,相应数值为Rmin=1/3d,双扭线的最小曲率半径应按照实验汽车的最小转弯半径乘以1,1倍,并圆整到比此乘积大的一个整数来确定。试验中记录转向盘转交及转向盘转矩,并按双扭线路经过每一周整理出转向盘转矩转向盘转矩曲线。通常以转向盘最大转矩,转向盘最大作用力以及转向盘作用功等来评价转向轻便性。 转向轻便型实验数据记录 方向盘转角-转矩曲线 2. 蛇形试验 实验目的 本项试验是包括车辆-驾驶员-环境在内的闭路试验的一种,用来综合评价汽车行驶的稳定性及乘坐的舒适性,与其他操纵试验项目一起,共同评价汽车的操纵稳定性。也可以用来考核汽车在接近侧滑或侧翻工况下的操纵性能,在若干汽车操纵稳定性对比试验时,作为主观评价的一种感性试验。 实验原理 将试验车辆以不同车速行驶于规定的蛇形试验中,通过实验仪器可以得到行驶时的车速,方向盘转角,横摆角速度,车身侧倾角。 试验方法遵照GB/T 6323.1-94汽车操纵稳定性试验方法蛇形试验

汽车道路试验系统设计

摘要 本文在分析国、内外现有的汽车道路试验技术的基础之上,深入地研究了汽车道路试验设备的特性以及试验数据采集、数据处理和数据分析的方法。采用虚拟仪器软件LabVIEw8.6作为开发工具,结合GPS设备,独立开发和研制出基于GPS汽车道路试验系统软件。整个流程是:先进行GPS系统的硬件设置,使其达到较高的定位精度;然后利用笔记本电脑来接收、处理和分析数据,完成汽车道路试验相关项目。 本课题中所用GPS设备是GARMIN公司的GPS OEM产品,它采用OEM4-G2板卡作为数据来源,提供多种通信方式(USB和九针串口),具有高速率数据采样、低速率延迟、快速信号重捕、功耗低、抵抗恶劣环境、抗射频干扰等优势。可以达到较高的定位精度,准确的输出车辆的行驶位置经纬度,为汽车产品试验提供可靠的试验参数。 本课题从动态测量的角度出发,根据最新的国家标准和国际标准,开发出新的道路试验系统配套的软件。软件实现了通过串口来实时发送和接收试验命令和数据,满足高速率、大流量数据采样要求,并在其中加入以往试验软件中没有实现的功能:自动生成数据存放目录、试验车辆的轨迹、各种运动参数关系曲线的实时显示等。配套本软件的新系统可以进行以下试验项目:汽车最高车速试验、最低稳定车速试验、加速试验、滑行试验和制动试验。从而使新系统大大提高了道路试验的实时性、可靠性和精度。 关键词:汽车道路试验;GPS;Labview;数据;串口

ABSTRACT This paper analyzes foreign and domestic the vehicle road test technology based on in-depth study of the characteristics of motor vehicle road test equipment and test data collection, data processing and data analysis. LabVIEw8.6 used as a virtual instrument software development tools, combined GPS device, independent research and development of a GPS-based vehicle road test system software. The whole process is: first, the GPS system's hardware settings to achieve high positioning accuracy; then use the notebook computers to receive, process and analyze data, complete vehicle road test related projects. Used in this project GARMIN GPS device is the company's GPS OEM product, it uses OEM4-G2 board as a data source, offers a variety of communications (USB and nine-pin serial port), with a high-speed data sampling, low-rate delay, fast signal reacquisition, low power consumption, resistance to harsh environments, anti-RF interference and other advantages. Can achieve a higher positioning accuracy, the exact latitude and longitude location of the vehicle output for the automotive product testing to provide reliable test parameters. Dynamic measurement of the subject from the point of view, according to the latest national and international standards, the development of new road test system supporting the software. Software in real time through the serial port to send and receive test command and data to meet the high-speed, high flow data sampling requirements, and add no previous experience in the implementation of the software functions: automatic generation of data storage directory, the test vehicle's trajectory, the kinds of motion parameters in real time curve display. The software supporting the new system the following test items: the maximum speed of vehicles, the lowest steady speed test, speed test, taxi test and brake test. So that the new system has greatly enhanced the real-time road test, reliability and accuracy. Keywords: Automobile Test;Global Satellite Positioning System;Labview;Data;Serial

汽车操纵稳定性道路试验测试方法研究

汽车操纵稳定性道路试验测试方法研究 汽车道路试验是在规则路面输入和典型驾驶输入下对汽车的动力性、制动性、主动安全性和操作稳定性等性能的不解体实车进行测试。汽车道路试验检测技术是推动汽车技术进步的一种极为重要的力法,也是保证产品性能、提高产品质量和市场竞争力的重要手段,随着汽车工业的发展其作用和地位不断提高。因此,如何通过有效的试验方法和检测系统来检测、评价汽车的性能具有重要的意义。 目前,关于汽车道路试验的研究主要可分为两个方向:一是根据汽车道路试验的特点,在提高道路试验的可靠性、测试方法、测试精度等方面做文章,因此催生出了一大批相关的新型传感器和测试方法。二是道路模拟试验技术的发展,在实验室进行道路模拟试验,可以排除气候等因素的影响,大大地缩短试验周期和节约资金,并且试验的可控性好,试验结果的重复性强、精度高,便于对比,可以提高汽车测试效率,具有重要的工程应用价值。本文着重对前者的技术发展状况做一个梳理。 位移、轨迹、速度、加速度和平面运动角速度等是汽车运动性能的主要描述参数,汽车的各种动力性能试验、制动性能试验和操纵稳定性能试验主要是通过对以上参数的时问特性进行测量和分析,以达到性能评价的目的。由于汽车道路试验涉及的内容比较多,这里主要以操纵稳定性为例,结合汽车稳定性控制系统(vehicle stability control system ,简称VSC ) 对汽车位置姿态测量技术、车轮力测量技术和为解决客观评价引入的汽车道路试验转向机器人技术的国内外研究进展进行阐述。 汽车道路试验特点及测试系统架构 汽车道路试验测试系统为车载,而试验法规要求对汽车进行充分激励才能完成有效测试,故对测试系统的可靠性要求很高。传感器等的安装不能要求改变原车的结构,对传感器的安装位置、体积、质量等提出了更高的要求。另外,汽车信号属于低频信号(通常在25 Hz 以下),且由于是短时测量,大多数变量对采样频率、测量精度等要求不高,但各信号采样需有较好的同步性。基于以上特点构建的汽车道路试验测试系统是汽车道路试验的基础,图1所示是汽车道路试验系统的原理图,主要由传感、数据采集、数据记录和分析3部分组成。根据可靠性和具体的测试方法,这3部分或集成在一起,或部分集成。具有CAN 节点的车载测试传感器,集成CA 节点和数据存储、LCD 过程显示等功能的数据采与处理装置是汽车道路试验测试系统的发展方向。 图1 车身运动姿态和质心轨迹的测量 长期以来由于缺乏有效的测试技术手段,汽车做曲线运动的速度难以准确测取 ,汽车质心动态轨迹无法精密测定,以至涉及汽车安全的汽车制动方向稳定性能和高速操纵稳定性试验条件控制困难、测试结果不能全面反映汽车的动态特性 2。 传统的测量方法是: ?? ???++=++=??t c c c t c c c dt v y y dt v x x 0000)sin()cos(?β?β 其中,c x 、c y ———质心在地面固定坐标系中的坐标 传感器 数据 采集器 过程监控/数据记录/离 线分析

汽车操纵稳定性仿真

实验4 汽车操纵稳定性仿真 一.实验目的 1.了解和掌握汽车操作稳定性实验条件、试验规程、数据实验方法以及实验仪器设备。 2.熟悉掌握Adams/Car软件的应用并能实际操作完成汽车操控性仿真的全过程。 二.实验器材 Adams软件、计算机一台 三.实验结果与分析 1.定转弯半径仿真 汽车在行驶过程中,由于路面的侧向倾斜,侧向风或者曲线行驶时的离心力等的作用,车轮中心沿车轴方向产生一个侧向力F。因为车轮是有弹性的,所以,在侧向力F 未达到车轮与地面间的最大摩擦力时,侧向力 F 使轮胎产生变形,使车轮倾斜,导致车轮行驶方向偏离预定的行驶路线。这种现象,就称为汽车轮胎的侧偏现象。汽车轮胎的中心线,在侧向力F 的作用下,与车轮平面错开了一定距离,而且有一个倾斜角,这个倾斜角,就叫做汽车轮胎的侧偏角。 侧偏最常见于汽车转弯。汽车转弯时,前后轮都会产生侧偏角。如果前后轮侧偏角相等,则汽车实际转弯半径等于方向盘转角对应的转弯半径,称为“中性转向”;如果前轮侧偏比后轮大,汽车实际转弯半径大于方向盘转角对应的转弯半径,称为“不足转向”;如果后轮侧偏比前轮大,汽车实际转弯半径小于方向盘转角对应的转弯半径,称为“过度转向”。 在设置转弯半径28m,车辆以10km/h的初速度加速到120km/h时,汽车行驶到最后阶段失去控制,脱离预先设计好的圆形轨道。其行驶轨迹如下图所示;

图1 从图中我们可以看出,汽车在行驶大概一圈的时候冲出轨道,且距离圆心随着时间增长越来越远。这是由于随着速度的不断增加,汽车所受到的侧向力不断变大,当地面的摩擦力不足以平衡侧向力时,汽车便会失去控制。从图中可以看出,在汽车达到120km/h时候汽车已经偏原来的轨道很大一段距离。 在这实验的基础上,改了一下数据,设置转弯半径20m,出事加速度0.1m/s^2最终加速度为4m/s^2,得到了以下曲线: 图2 图3 从图中,我们可以得到,汽车在设定好的轨道中良好运行,没有冲出跑道。再上一个控制速度的实验中,所得到的最终加速度的大小大概为 5.5g,而控制加速度的实验中,所得到的最终加速度大小为0.4g,明显小于前者,因此猜想,当汽车的加速度比较大时,汽车比较容易冲出跑道 为了证实以上猜想,设定转弯半径20m,初始加速度0.01g,最终加速度5g,得到以下实验曲线:

汽车操纵稳定性试验解析

汽车操纵稳定性试验解析! 汽车的操稳性不仅影响到汽车驾驶的操纵方面,而且也是决定汽车安全行驶的一个主要性能;为了保证安全行驶,汽车的操稳性受到汽车设计者很大的重视,成为现代汽车的重要使用性能之一,如何试验并评价汽车的操稳性显得极其重要。汽车操控稳定性分为两个方面:1、操控性: 指汽车能够确切的响应驾驶员转向指令的能力;2、稳定性:指汽车受到外界扰动(路面扰动或阵风扰动)后恢复原来运动状态的能力。一、常用试验仪器 1、陀螺仪:用于汽车运动状态下测动态参数,如汽车行进方位角,汽车横摆角速度,车身侧倾角及纵倾角等; 2、光束水准车轮定位仪:测车轮外倾角,主销内倾角,主销外倾角,车轮前束,车轮最大转角及转角差; 3、车辆动态测试仪:测汽车横摆角速度,车身侧倾角及纵倾角,汽车横向加速度与纵向加速度等运动参数; 4、力矩及转角仪:测转向盘转角或力矩; 5、五轮仪和磁带机等。二、试验分类三、稳态回转试验 01试验步骤 1、在试验场上,用明显的颜色画出半径为15m或20m的圆周; 2、接通仪器电源,使之加热到正常工作温度; 3、试验开始前,汽车应以侧向加速度为3m/s2的相应车速沿画定的

圆周行驶500m以使轮胎升温。4、以最低稳定速度沿所画圆周行驶,待安装于汽车纵向对称面上的车速传感器在半圈内都能对准地面所画的圆周时,固定转向盘不动,停车并开始记录,记下各变量的零线,然后,汽车起步,缓缓连续而均匀地加速(纵向加速度不超过0·25m/s2),直至汽车的侧向加速度达到6·5m/s2为止,记录整个过程。5、试验按向左转和右转两个方向进行,每个方向试验三次。每次试验开始时车身应处于正中央。 02评价条件 1、中性转向点侧向加速度值An:前后桥侧偏角之差与侧向加速度关系曲线上斜率为零的点的侧向加速度值,越大越好; 2、不足转向度:按前后桥侧偏角之差与侧向加速度关系曲线上侧向加速度2m/s2点的平均值计算,越小越好; 3、车厢侧倾度K:按车厢侧倾角与侧向加速度关系曲线上侧向加速度2m/s2点的平均斜率计算,越小越好。 转向特性曲线图四、转向回正试验 01试验步骤一)低速回正性能试验:1、在试验场地上用明显的颜色画出半径为15m的圆周。2、试验前试验汽车沿半径为15m的圆周、以侧向加速度达3m/ s 2 的相应车速,行 驶500m,使轮胎升温。3、接通仪器电源,使其达到正常工作温度。4、试验汽车直线行驶,记录各测量变量零线,然

车辆道路模拟试验系统

车辆道路模拟试验系统 随着我国汽车工业的迅猛发展,尤其是我国加入WTO后,伴随着新的《汽车产业发展政策》以及《缺陷汽车产品召回管理规定》的出台,汽车工业面临着新的机遇和挑战,努力提高汽车整车质量和加快新车型的研发速度是汽车工业的唯一出路,这不仅对汽车工业提出了更高的要求,同时也对试验设备制造业提出了新的课题,如何更加逼真的模拟道路试验并缩短试验时间以缩短新车型的研发周期成了汽车工业和试验设备制造业的共同追求。 1.道路模拟试验的发展和回顾 从1886年世界第一辆真正意义的汽车诞生以来,汽车工业走过了一百多年的发展历程。汽车的诞生彻底改变了人民的生活,同时对汽车也提出了新的要求:行驶寿命、行驶安全等等,如何更好的提高汽车的行驶寿命,同时又要降低成本成了汽车研发工程师的追求,于是提出了全历程的道路试验——试车场跑道跑车试验,通过试验为汽车研发工程师提供了宝贵的设计更改依据,但随着汽车工业的进一步发展,汽车工业的竞争日趋激烈要求汽车制造商必须更快的推出新一代的车型,才能保证在激烈的市场竞争中立于不败之地,于是到了20世纪60年代出现了室内台架模拟试验。 1.1简单路面模拟 道路试验经历了漫长的发展历程,即使到了今天在汽车工业发展相对落后的中国仍在使用这种方法,这种方法存在着先天的缺点:试验结果受天气以及驾乘人员等因素的影响较大,试验结果的精度以及重复性较差,试验周期长。到了20世纪60年代,汽车的设计和试验随着电液伺服闭环技术的日趋成熟逐渐由静态力学试验模式发展到动态特性的研究,1962年美国通用汽车公司凯迪拉克轿车部提出了委托美国MTS公司设计制造一台汽车道路模拟机的计划,经过双方密切合作于1965年制造完毕并投入使用,这就是世界上第一台汽车道路模拟机。其输入信号是这样获得的:对安装在车身上的加速度传感器测得的加速度信号进行两次积分获得车身对路面的绝对位移,通过安装在车身两侧的测试轮测量测试轮与汽车车身的相对位移,二者的差就是路面高程在时间历程上的波形,即汽车道路模拟机的输入信号,但这种方法存在其很大的缺点:轮胎的包容性未能被模拟;存在轨迹误差。 1.2 有效路面模拟 为了克服简单路面模拟技术试验技术上的缺点:汽车试验技术工程师经过分析和研究,提出了有效路面模拟技术,其原理是:将汽车看作是由轮胎包容特性的车轮悬上和悬下串联组成的二自由度系统,其运动的微分方程如下: K T(Z RE-Z W)+C T(Z RE-Z W)+M W Z W+F S=0 (1)

同济汽车操纵稳定性实验报告新

《汽车平顺性和操作稳定性》实验报告 学院(系)汽车学院 专业车辆工程(汽车) 学生姓名同小车学号 000001 同济大学汽车学院实验室 2014年11月 1.转向轻便性实验

实验目的 驾驶员通过操纵方向盘来控制汽车的行驶方向,操纵方向盘过重,会增加驾驶员的劳动强度,驾驶员容易疲劳;操纵方向盘过轻,驾驶员会失去路感,难以控制汽车的形式方向。操纵方向盘的轻重,是评价汽车操纵稳定性的基本条件之一。转向轻便性实验的目的在于通过测量驾驶员操纵方向盘力的大小,与其他实验仪器评价汽车操纵稳定性的好处。 实验仪器设备 实验条件 试验车:依维柯 实验场地与环境 于圆形试车场,实验时按照桩桶圈出的双扭线,以10Km/h的车速行驶。双扭线的极坐标方程见下,形状如下图 实验当天天气晴好,无风,气温20度 在ψ=0时,双扭线顶点处的曲率半径最小,相应数值为Rmin=1/3d,双扭线的最小曲率半径应按照实验汽车的最小转弯半径乘以1,1倍,并圆整到比此乘积大的一个整数来确定。 试验中记录转向盘转交及转向盘转矩,并按双扭线路经过每一周整理出转向盘转矩转向盘转矩曲线。通常以转向盘最大转矩,转向盘最大作用力以及转向盘作用功等来评价转向轻便性。 转向轻便型实验数据记录

方向盘转角-转矩曲线 2. 蛇形试验 实验目的 本项试验是包括车辆-驾驶员-环境在内的闭路试验的一种,用来综合评价汽车行驶的稳定性及乘坐的舒适性,与其他操纵试验项目一起,共同评价汽车的操纵稳定性。也可以用来考核汽车在接近侧滑或侧翻工况下的操纵性能,在若干汽车操纵稳定性对比试验时,作为主观评价的一种感性试验。 实验原理 将试验车辆以不同车速行驶于规定的蛇形试验中,通过实验仪器可以得到行驶时的车速,方向盘转角,横摆角速度,车身侧倾角。 试验方法遵照GB/T 6323.1-94汽车操纵稳定性试验方法 蛇形试验

数字图像课程设计 监控视频中道路车流量检测系统设计

山东建筑大学 课程设计说明书 题目:监控视频中道路车流量检测系统设计课程:数字图像处理课程设计 院(部):信息与电气工程学院 专业:电子信息工程 班级:电信 学生姓名: 学号: 指导教师: 完成日期:2013年6月

目录 摘要································································································II 1 设计目的 (1) 2 设计要求 (1) 3 设计内容 (2) 3.1运动车辆检测算法比较 (2) 3.2形态学滤波 (5) 3.3车辆检测 (6) 3.4车辆计数 (9) 3.5软件设计 (9) 总结与致谢 (10) 参考文献 (11) 附录 (12)

摘要 获得实时的交通信息是当前各种检测方式的前提,但是现有的信息采集方式并不能满足交通管理与控制的需求。随着计算机技术的快速发展,基于视频的检测技术在交通中得到了广泛的应用,同其它检测方式相比,它具有检测范围大、设置灵活、安装维护方便、检测参数多等优点。基于图像处理的视频检测方式近年来发展很快,已成为当今智能交通系统的一个研究热点。本论文对视频交通流运动车辆检测的内容进行了深入地研究。结合视频图像详细的介绍了视频检测中的背景更新、阴影去除、车辆分割等关键技术和算法,介绍了视频检测的方法。最后在MATLAB的平台上进行了系统实现设计。实验结果表明,该算法具有一定的可行性,能够快速的将目标参数检测出来关键词:MATLAB;帧间差法;车辆检测

随着经济的发展,人民生活水平的提高,汽车保有量大幅增加,怎样安全高效地对交通进行管理,就显得非常重要.解决这一问题的关键是建立智能交通系统(ITS),其中车辆检测系统是智能交通系统的基础.它为智能控制提供重要的数据来源 作为ITS的基础部分,车辆检测系统在ITS中占有很重要的地位,目前基于视频的检测法是最有前途的一种方法,它是通过图像数字的方法获得交通流量信息,主要有以下优点:(1)能够提供高质量的图像信息,能高效、准确、安全可靠地完成道路交通的监视和控制工作.(2)安装视频摄像机破坏性低、方便、经济.现在我国许多城市已经安装了视频摄像机,用于交通监视和控制.(3)由计算机视觉得到的交通信息便于联网工作,有利于实现道路交通网的监视和控制.(4)随着计算机技术和图像处理技术的发展,满足了系统实时性、安全性和可靠性的要求 2 设计要求 通过对视频流中的车辆进行检测和跟踪,准确地统计每个车道流量、平均车速、平均车道占有率、车队长度、平均车间距等信息为交通规划,交通疏导和车辆动态导航领域提供一系列指导。 设计车辆检测与识别方法和车流量统计方法,实现监控视频中道路车流量检测。通过实验验证检测精度。

汽车道路试验测试设备

1.选购GPS测速测距传感器时应注意什么问题? GPS的功能很多,概括起来就是三维定位、三维测姿、三维测速,人们较多的是注意它的定位精度,很少关心它的测姿、测速功能。 GPS用于车辆道路试验中,主要利用其测速功能。当前,测量级的GPS 板卡原始测速精度可达0.03m/s(0.1km/h),速度积分可得到距离,但是在车辆紧急制动时,直接利用速度信号积分距离误差较大。因此,选购GPS测速测距传感器时应关心如下几个指标: (1)GPS的测速精度; (2)GPS的原始数据更新率; (3)GPS在紧急制动等高动态工况下的测距精度。 经我们大量实测试验表明,GPS的原始数据更新率在20Hz以上时,对紧急制动工况下的测距精度影响不大,因此,20Hz的GPS传感器性价比最优。 我们研制的KD系列GPS车速距离传感器,选用了国外高精度的GPS 接收板卡,研制了独特的距离修正算法,充分保证了在紧急制动时距离测试的准确性。 2.电子陀螺仪哪些技术指标不容易做到高精度? 陀螺仪是汽车操纵稳定性试验的必备仪器,陀螺仪是俗称,准确的叫法应该是航姿测量系统,主要可以得到车辆运行的三维加速度、三维角速度和三维角度。 加速度、角速度的测量现在不是难题,现成的测量芯片很多,都可以满足汽车操稳试验的精度要求,最困难的是角度的测量。此处的角度测量是指动态角度测量,也就是在有加速度干扰的情况下测量角度,由于现有的角度传感器本质上是加速度传感器,根据重力加速度的分量来测量角度,车辆转弯时、振动等的附加加速度会严重影响陀螺仪的动态角度测量精度。 因此,在选择陀螺仪时要特别注意其角度测量的动态指标,静态指标很容易可以做到0.05°,甚至0.001°,但是动态角度要做到0.1°都非常困难,能达到0.1°动态角度精度的陀螺仪价格基本都在20万元以上。

车流量检测系统设计.(DOC)

车流量检测系统设计 随着我国经济的快速发展交通安全的有效保障显得尤其重要,并且对交通管理的要求越来越高。与此同时各种各样的道路监控设备也应运而生。雷达监控系统视频监控系统地表传感系统激光检测系统等相继应用。由此计算机科学与现代通信等高新技术运用于交通监控管理与车辆控制以保障交通顺畅及行车安全。而实时获取交通车流量的车辆检测技术是是进行交通管理必不可少的一个步骤。随着我国城市车辆使用的增多道路状况同时也变得复杂如何对道路车流量进行实时监控对统计、预测道路交通状况十分重要并且同时这也是对道路车辆运行情况高效调度的一项十分的重要参考依据。而且当前对道路监测多使用视频方法有事还可能采用人工计数方法此方法对每条公路在某个时间段车辆行驶情况不容易做到长时间、高效的统计。因此我们需要进行一种低成本、高准确率的智能识别装系统的设计由此促进对高速路口交通情况的检测水准。 本文设计了一种基于A T89C51单片机的车速检测系统。其主要原理是将红外传感器测得的电平信号传递到单片机中通过单片机判断处理、计数等功能实现车流量的检测。本系统传感电路采用的的是红外传感矩阵利用单片机实时对传感器的输出数据进行连续读取通过特定的算法处理数据然后送显示或者发出报警信号。本系统致力于为路口车流量的监控服务从而形成对路口行车的科学管理减少交通事故的发生。 1、工作原理及总体方案选择 1.1车流量监测系统的工作原理 红外线矩阵法是一种利用红外传感器组成的红外线矩阵检测设备检测道路上机动车流量和车速的方法。它是利用红外线发射和接收方向较强的特点在车辆经过的路面上安装密度适当的几排红外线发射接收电路由此组成红外线矩阵红外线检测矩阵由两排嵌入路面内的接收器和安装在其上方几米处的发射器组成两排接收器之间的距离为0.5到2米每排接收器由若干间隔0.2到0.9米的接收管和接收电路组成。接收管在没有遮挡的情况下可以接收发射器发出的信号接收电路中产生低电平接收管在受到遮蔽的状况下下收不到发射器发出的信号接收电路中出现高电平信号。因此根据车辆驶入、通过、驶出检测区域以及车辆行驶方向并排行驶车辆的流量等情况引起的矩阵内部各测试点高低电平信号的变化经过硬件电路设计和软件编程计算方法,最终统计计算出经过该测量区域内双向并排经过的多辆车的车流量测量。 1.1.1系统总体模块设计 本系统是利用单片机并且采用模块化设计来设计车流量检测系统只要有车辆经过就会挡住两个发射和接收红外线传感器之间的传感信号这样就能根据车量的流动情况对车流量进行检测。当然对于正常的情况下还会有并行的车量经过本系统也做了设计。系统的总体模块图如下图1

第5章_汽车的操纵稳定性 (2)

第5章汽车的操纵稳定性 1. 何谓汽车的操纵稳定性?其性能如何在时域和频域中进行评价?具体说明有几种型式可 以判定和表征汽车的稳态转向特性? 2. 解释下列名词和概念侧偏现象侧偏刚度回正力矩转向灵敏度特征车速临界车速 中性转向点侧向力变形转向系数侧向力变形外倾系数转向盘力特性静态储备系数S.M. 轮胎拖距 3. 举出三种表示汽车稳态转向特性的方法,并说明汽车重心前后位置和内、外轮负荷转移 如何影响稳态转向特性? 4. 汽车的稳态响应由哪几种类型?表征稳态响应的具体参数由哪些?它们彼此之间的关系 如何(要求有必要的公式和曲线)。 5. 汽车转弯时车轮行驶阻力是否与直线行驶时一样? 6. 主销内倾角和后倾角的功能有何不同? 7. 横向稳定杆起什么作用?为什么有的车装在前悬架,有的车装在后悬架,有的前后都装? 8. 某种汽车的质心位置、轴距和前后轮胎的型号已定。按照二自由度操纵稳定性模型,其 稳态转向特性为过多转向,请找出5种改善其转向特性的方法。 9. 汽车空载和满载是否具有相同的操纵稳定性? 10. 试用有关计算公式说明汽车质心位置对主要描述和评价汽车操纵稳定性、稳态响应指标 的影响。 11. 为什么有些小轿车后轮也没有设计有安装前束角和外倾角? 12. 转向盘力特性与哪些因素有关,试分析之。 13. 地面作用于轮胎的切向反力是如何控制转向特性的? 14. 汽车的三种稳态转向特性是什么?我们希望汽车一般具有什么性质的转向特性?为什 么?有几种型式可以判定或表征汽车的稳态转向特性?具体说明。 15. 画出弹性轮胎侧偏角和回正力矩特性曲线,分析其变化规律的原因。 16. 轮胎产生侧偏的条件是什么?侧偏的结果又是什么?试分析侧倾时垂直载荷在左、右车 轮上重新分配对汽车操纵稳定性的稳态响应有什么影响? 17. 试述外倾角对车轮侧偏特性的影响。 18. 汽车表征稳态响应的参数有哪几个?分别加以说明。 19. 汽车重心位置变化对汽车稳态特性有何影响? 20. 用何参数来评价汽车前轮角阶跃输入下的瞬态特性?试加以说明。 21. 车厢侧倾力矩由哪几种力矩构成?写出各力矩计算公式。 22. 试述等效单横臂悬架的概念。 23. 什么是线刚度?如何计算单横臂独立悬架的线刚度? 24. 试述汽车瞬态响应的稳定条件。 25. 转向时汽车左右轮的垂直载荷变化对车轮侧偏特性有何影响? 26. 汽车在前轴增加一横向稳定杆后不足转向量有何变化?为什么? 27. 非独立悬架汽车车厢侧倾力矩由哪两种力矩组成?写出其计算公式。

汽车道路可靠性试验规范(2013[1].03.20)

Q/LFQ 力帆实业(集团)股份有限公司企业标准 Q/LFQ G0010—2013 汽车道路可靠性试验 (试行) 2013-03-23发布2013-03-23实施

前言 本文件是以符合国家及行业标准为前提,针对本公司在新产品研发过程中对整车、总成、零部件开发认可试验而制定的。本规范由范围、规范性引用文件、术语、内容等部分组成。 本文件按照GB/T 1.1-2009给出的规则起草。 本文件由重庆力帆(实业)集团股份有限公司汽车研究院提出。 本文件由重庆力帆(实业)集团股份有限公司汽车研究院负责起草。 本文件由重庆力帆(实业)集团股份有限公司汽车研究院负责归口。 本文件起草人:尤启明 本文件批准人:关锋金 本文件所代替标准的历次发布情况为:首次发布

汽车道路可靠性试验 1 范围 本文件规定了质量考核及认可工作中道路整车性能、可靠性、零部件搭载行驶试验条件、试验程序、行使规范、试验记录、试验行驶里程和路面分配及可靠性评价。 本文件适用于公司所研发的汽车整车、总成零部件的质量考核及认可工作。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB 1495-2002 汽车加速行驶车外噪声限值及测量方法 GB/T 4970-2009 汽车平顺性试验方法 GB/T 6323.1-1994 汽车操纵稳定性试验方法蛇行试验 GB/T 6323.2-1994 汽车操纵稳定性试验方法转向瞬态响应试验 GB/T 6323.3-1994 汽车操纵稳定性试验方法转向瞬态响应试验 GB/T 6323.4-1994 汽车操纵稳定性试验方法转向回正性能试验 GB/T 6323.5-1994 汽车操纵稳定性试验方法转向轻便性试验 GB/T 6323.6-1994 汽车操纵稳定性试验方法稳态回转试验 GB 7258-2012 机动车运行安全技术条件 GB/T 12534-1990 汽车道路试验通则 GB/T 12536-1990 汽车滑行试验方法 GB/T 12539-1990 汽车爬陡坡试验方法 GB/T 12543-2009 汽车加速性能试验方法 GB/T 12544-1990 汽车最高车速试验方法 GB/T 12545.1-2008 汽车燃料消耗试验方法第1部分:乘用车燃料消耗试验方法 GB/T 12547-2009 汽车最低稳定车速试验方法 GB/T 12548-1990 汽车速度表、里程表检验校正方法 GB/T 12673-1990 汽车主要尺寸测量方法 GB/T 12674-1990 汽车质量(重量)参数测定方法 GB 12676-1999 汽车制动系统结构、性能和试验方法 GB/T 12677-1990 汽车技术状况行驶检查方法 GB/T 12678-1990 汽车可靠性行驶试验方法 GB 18352.3-2005 轻型汽车污染物排放限值及测量方法(中国III、IV阶段) GB/T 18697-2002 声学汽车车内噪声测量方法 GB 1495-2002汽车加速行驶车外噪声限值及测量方法 QC/T 34-1992 汽车故障模式分类 QC/T 900-1997 汽车整车产品质量检验评定方法

GBT6323694汽车操纵稳定性试验方法稳态回转试验

中华人民共和国国家标准 汽车操纵稳定性试验方法GB/T 6323.6—94 稳态回转试验代替GB 6323.6—86 Controllbility and stability test procedure for automobiles—Steady static circular test procedure 1 主题内容与适用范围 本标准规定了汽车操纵稳定性试验方法中的稳态回转试验方法。 本标准采用固定转向盘转角连续加速的方法进行试验。也可采用附录A(补充件)所规定的试验方法。 本标准适用于二轴的轿车、客车、货车及越野汽车,其他类型汽车可参照执行。 2 引用标准 GB/T 12534汽车道路试验方法通则 GB/T 13047汽车操纵稳定性指标限值与评价方法 GB/T 12549汽车操纵稳定性术语及其定义 3 测量变量和仪器设备 3.1 测量变量 3.1.1 必须测量变量 a.汽车横摆角速度; b.汽车前进车速; c.车身侧倾角。 3.1.2 希望测量变量 a.汽车重心侧偏角; b.汽车纵向加速度; c.汽车侧向加速度。

3.2 仪器、设备 3.2.1 试验仪器应符合GB/T 12534中3.5条的规定,其测量范围及最大误差应满足表1要求。 3.2.2 包括传感器及记录仪器在内的整个测量系统,频带宽度不小于3Hz。 3.2.3 试验所用传感器应按各自使用说明书安装。陀螺仪的安装应接近车辆重心位置,垂直陀螺轴线与车辆Z轴线重合或平行。 4 试验条件 4.1 试验汽车 4.1.1 试验汽车应是按厂方规定装备齐全的汽车,试验前,应测定车轮定位参数,对转向系、悬架系进行检查,并按规定进行调整、紧固和润滑。只有认定汽车已符合厂方规定的技术条件时,方可进行试验。测定及检查的有关参数的数值记入附录B(补充件)中。 4.1.2 试验时若用新轮胎,轮胎至少应经过200km正常行驶的磨合,若用旧轮胎,试验终了,残留花纹的高度应不小于1.5mm。轮胎气压应符合GB/T 12534中3.2条的规定。 4.1.3 试验汽车为厂定最大总质量状态(驾驶员、试验员及测试仪器的质量,计入总质量)和轻载状态;乘员和装载物(推荐用沙袋)的分布应符合GB/T 12534中3.1.2、3.1.3条的规定。轴载质量必须符合厂方规定。 注:轻载状态是指除驾驶员、试验员及仪器外,没有其他加载物的状态。对于承载能力小的汽车,如果轻载质量已超过最大总质量的70%,则不必进行轻载状态的试验。 4.2 试验场地与环境 a.试验场地应为干燥、平坦且清洁的水泥或沥青路面,任意方向的坡度不大于2%; b.试验时风速应不大于5m/s;

相关主题
文本预览
相关文档 最新文档