当前位置:文档之家› 什么是开关电源_开关电源和普通电源有什么区别

什么是开关电源_开关电源和普通电源有什么区别

什么是开关电源_开关电源和普通电源有什么区别

什么是开关电源_开关电源和普通电源有什么区别

什么叫开关电源?开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IC和MOSFET构成。随着电力电子技术的发展和创新,使得开关电源技术也在不断地创新。目前,开关电源以小型、轻量和高效率的特点被广泛应用几乎所有的电子设备,是当今电子信息产业飞速发展不可缺少的一种电源方式。

开关电源是相对线性电源说的。他输入端直接将交流电整流变成直流电,再在高频震荡电路的作用下,用开关管控制电流的通断,形成高频脉冲电流。在电感(高频变压器)的帮助下,输出稳定的低压直流电。由于变压器的磁芯大小与他的工作频率的平方成反比,频率越高铁心越小。这样就可以大大减小变压器,使电源减轻重量和体积。而且由于它直接控制直流,使这种电源的效率比线性电源高很多。这样就节省了能源,因此它受到人们的青睐。但它也有缺点,就是电路复杂,维修困难,对电路的污染严重。电源噪声大,不适合用于某些低噪声电路。

开关电源的特点开关电源一般由脉冲宽度调制(PWM)控制IC和MOSFET构成。随着随着电力电子技术的发展和创新,目前开关电源主要以小型、轻量和高效率的特点被广泛应用到几乎所有的电子设备,其重要性可见一斑。

开关电源的分类根据开关器件在电路中连接的方式,开关电源总的来说可分为串联式开关电源、并联式开关电源、变压器式开关电源等三大类。其中,变压器式开关电源还可以进一步分成:推挽式、半桥式、全桥式等多种;根据变压器的激励和输出电压的相位,又可以分成:正激式、反激式、单激式和双激式等多种。

开关电源和普通电源有什么区别普通的电源一般是线性电源,线性电源,是指调整管工作在线性状态下的电源。而在开关电源中则不一样,开关管(在开关电源中,我们一般把调整管叫做开关管)是工作在开、关两种状态下的:开电阻很小;关电阻很大。

开关电源中的电子变压器有何作用

开关电源中的电子变压器有何作用 电子变压器,具有将市电的交变电压转变为直流后再通过半导体开关器件以及电子元件和高频变压器绕组构成一种高频交流电压输出的电子装置,也是在电子学理论中所讲述的一种交直交逆变电路。无论是直流电源还是交流电源,都要使用由软磁磁芯制成的电子变压器(软磁电磁元件)。 1、起改变输出频率作用的倍频或分频变压器; 2、起储能作用的储能电感器,起帮助半导体开关换向作用的换向电感器; 3、起变换电压、电流或脉冲检测信号的电压互感器、电流互感器、脉冲互感器、直流互感器、零磁通互感器、弱电互感器、零序电流互感器、霍尔电流电压检测器; 4、起电压和功率变换作用的电源变压器,功率变压器,整流变压器,逆变变压器,开关变压器,脉冲功率变压器; 5、起交流和直流滤波作用的滤波电感器; 6、起调节电感作用的可控电感器和饱和电感器;

7、起传递脉冲、驱动和触发信号作用的脉冲变压器,驱动变压器,触发变压器; 8、起吸收浪涌电流作用的吸收电感器,起减缓电流变化速率的缓冲电感器; 9、起原边和副边绝缘隔离作用的隔离变压器,起屏蔽作用的屏蔽变压器; 10、起开关作用的磁性开关电感器和变压器; 11、起传递宽带、声频、中周功率和信号作用的宽带变压器,声频变压器,中周变压器; 12、起稳定输出电压或电流作用的稳压变压器(包括恒压变压器)或稳流变压器,起调节输出电压作用的调压变压器; 13、起单相变三相或三相变单相作用的相数变换变压器,起改变输出相位作用的相位变换变压器(移相器); 14、起抑制电磁干扰作用的电磁干扰滤波电感器,起抑制噪声作用的噪声滤波电感器; 15、起改变输出阻抗与负载阻抗相匹配作用的匹配变压器。

开关电源变压器参数设计步骤详解

开关电源高频变压器设计步骤 步骤1确定开关电源的基本参数 1交流输入电压最小值u min 2交流输入电压最大值u max 3电网频率F l开关频率f 4输出电压V O(V):已知 5输出功率P O(W):已知 6电源效率η:一般取80% 7损耗分配系数Z:Z表示次级损耗与总损耗的比值,Z=0表示全部损耗发生在初级,Z=1表示发生在次级。一般取Z=0.5 步骤2根据输出要求,选择反馈电路的类型以及反馈电压V FB 步骤3根据u,P O值确定输入滤波电容C IN、直流输入电压最小值V Imin 1令整流桥的响应时间tc=3ms 2根据u,查处C IN值 3得到V imin 确定C IN,V Imin值 u(V)P O(W)比例系数(μF/W)C IN(μF)V Imin(V) 固定输 已知2~3(2~3)×P O≥90 入:100/115 步骤4根据u,确通用输入:85~265已知2~3(2~3)×P O≥90 定V OR、V B 固定输入:230±35已知1P O≥240 1根据u由表查出V OR、V B值

2 由V B 值来选择TVS 步骤5根据Vimin 和V OR 来确定最大占空比 Dmax V OR Dmax= ×100% V OR +V Imin -V DS(ON) 1设定MOSFET 的导通电压V DS(ON) 2 应在u=umin 时确定Dmax 值,Dmax 随u 升高而减小 步骤6确定初级纹波电流I R 与初级峰值电流I P 的比值K RP ,K RP =I R /I P u(V) K RP 最小值(连续模式)最大值(不连续模式) 固定输入:100/1150.41通用输入:85~2650.441固定输入:230±35 0.6 1 步骤7确定初级波形的参数 ①输入电流的平均值I AVG P O I A VG= ηV Imin ②初级峰值电流I P I A VG I P = (1-0.5K RP )×Dmax ③初级脉动电流I R u(V) 初级感应电压V OR (V)钳位二极管反向击穿电压V B (V) 固定输入:100/115 6090通用输入:85~265135200固定输入:230±35 135 200

开关电源占空比的选择与开关变压器初次级线圈匝数比的计算

开关电源占空比的选择与开关变压器初次级线圈匝数比的计算 作者:陶显芳发布时间:2011-07-04文章来源:华强北·电子市场价格指数浏览量:50466 下面是开关电源设计务必掌握的知识 1、开关电源占空比的选择与计算 2、开关变压器初次级线圈匝数比的计算 希望从事开关电源设计的工程师对此感兴趣 概述:占空比是脉冲宽度调制(PWM)开关电源的调制度,开关电源的稳压功能就是通过自动改变占空比来实现的,开关电源的输出电压与占空比成正比,开关电源输出电压的变化范围基本上就是占空比的变化范围。由于开关电源输出电压的变化范围受到电源开关管击穿电压的限制,因此,正确选择占空比的变化范围是决定开关电源是否可靠工作的重要因素;而占空比的选择主要与开关电源变压器初、次级线圈的匝数比有关,因此,正确选择开关电源变压器初、次级线圈的匝数比也是一个非常重要的因素。 开关电源占空比和开关电源变压器初、次级线圈的匝数比的正确选择涉及到对开关电源变压器初、次级线圈感应电动势的计算。因此,下面我们先从分析开关电源变压器初、次级线圈感应电动势开始。 1.1占空比的定义 占空比一般是指,在开关电源中,开关管导通的时间与工作周期之比,即: (1)式中:D为占空比,Ton为开关管导通的时间,Toff为开关管关断的时间,T为开关电源的工作周期。 对于一个脉冲波形也可以用占空比来表示,如图1所示。 在反激式开关电源中,开关管导通的时候,变压器次级线圈是没有功率输出的,如果把(1)中的D记为D1,(2)式中的D记为D2,则D1、D2有下面关系: 1.2开关变压器初次级线圈的输出波形

图2a是输出电压为交流的开关电源工作原理图。为了便于分析,我们假说变压器初次级线圈的变压比为1:1(即N1=N2,L1=L2),当开关K又导通转断开时,变压器初级、次 级线圈产生感应电动势为: (6)式中:为变压器初级线圈的励磁电流,由此可知,变压器初、次级线圈产生 的反电动势主要是由励磁电流产生的。我们从(5)可以看出,当变压器初、次级线圈的负载电阻R很大或者开路的情况下,变压器初、次级线圈产生的感应电动势峰值是非常高的,如果这个电压直接加到电源开关管两端,电源开关管一定会被击穿。 为了便于分析,我们引进一个半波平均值的概念,我们把Upa、Upa-分别定义为变压器初、次级线圈感应电动势正、负半周的半波平均值。半波平均值就是把反电动势等效成一 个幅度等于Upa或Upa-的方波,如图2b中的Upa-所示。

开关电源与线性电源的区别

开关电源和线性电源的区别 线性电源的调整管工作在放大状态,因而发热量大,效率低(35%左右),需要加体积庞大的散热片,而且还需要同样也是大体积的工频变压器,当要制作多组电压输出时变压器会更庞大。开关电源的调整管工作在饱和和截至状态,因而发热量小,效率高(75%以上)而且省掉了大体积的变压器。但开关电源输出的直流上面会叠加较大的纹波(50mV at 5V output typical),在输出端并接稳压二极管可以改善,另外由于开关管工作是会产生很大的尖峰脉冲干扰,也需要在电路中串连磁珠加以改善。相对而言线性电源就没有以上缺陷,它的纹波可以做的很小(5mV以下)。对于电源效率和安装体积有要求的地方用开关电源为佳,对于电磁干扰和电源纯净性有要求的地方(例如电容漏电检测)多选用线性电源。另外当电路中需要作隔离的时候现在多数用DC-DC来做对隔离部分供电(DC-DC从其工作原理上来说就是关电源)。还有,开关电源中用到的高频变压器可能绕制起来比较麻烦。 开关电源就是用通过电路控制开关管进行高速的道通与截止.将直流电转化为高频率的交流电提供给变压器进行变压,从而产生所需要的一组或多组电压!转华为高频交流电的原因是高频交流在变压器变压电路中的效率要比50Hz高很多.所以开关变压器可以做的很小,而且工作时不是很热!!成本很低.如果不将50Hz变为高频那开关电源就没有意义!!开关变压器也不神秘.就是一个普通的变压器!这就是开关电源。 开关电源,是通过电子技术实现的,主要环节:整流成直流电——逆变成所需电压的交流电(主要来调整电压)——再经过整流成直流电压输出。 开关电源的结构中由于中间没有变压器和散热片,因而体积非常小。同时,开关电源内部都是电子元件,效率高、发热小。虽然,具有电磁干扰等缺点,但现在的屏蔽技术已经非常到位。 开关电源大体可以分为隔离和非隔离两种,隔离型的必定有开关变压器,而非隔离的未必 一定有。 简单地说,开关电源的工作原理是: 1.交流电源输入经整流滤波成直流; 2.通过高频PWM(脉冲宽度调制)信号控制开关管,将那个直流加到开关变压器初级上; 3.开关变压器次级感应出高频电压,经整流滤波供给负载; 4.输出部分通过一定的电路反馈给控制电路,控制PWM占空比,以达到稳定输出的目的. 交流电源输入时一般要经过厄流圈一类的东西,过滤掉电网上的干扰,同时也过滤掉电源对电网的 干扰;在功率相同时,开关频率越高,开关变压器的体积就越小,但对开关管的要求就越高;开关变

变压器开关电源致命原理

变压器开关电源致命原理 在Toff期间,控制开关K关断,流过变压器初级线圈的电流突然为0。由于变压器初级线圈回路中的电流产生突变,而变压器铁心中的磁通量不能突变,因此,必须要求流过变压器次级线圈回路的电流也跟着突变,以抵消变压器初级线圈电流突变的影响,要么,在变压器初级线圈回路中将出现非常高的反电动势电压,把控制开关或变压器击穿。 如果变压器铁心中的磁通ф产生突变,变压器的初、次级线圈就会产生无限高的反电动势,反电动势又会产生无限大的电流,而电流在线圈中产生的磁力线又会抵制磁通的变化,因此,变压器铁心中的磁通变化,最终还是要受到变压器初、次级线圈中的电流来约束的。 因此,在控制开关K关断的Toff期间,变压器铁心中的磁通主要由变压器次级线圈回路中的电流来决定,即: e2 =-N2*dф/dt =-L2*di2/dt = i2R —— K关断期间 (1-64) 式中负号表示反电动势e2的极性与(1-62)式中的符号相反,即:K接通与关断时变压器次级线圈产生的感应电动势的极性正好相反。对(1-64)式阶微分方程求解得: 式中C为常数,把初始条件代入上式,就很容易求出C,由于控制开关K由接通状态突然转为关断时,变压器初级线圈回路中的电流突然为0,而变压器铁心中的磁通量不能突变,因此,变压器次级线圈回路中的电流i2一定正好等于控制开关K接通期间的电流i2(Ton+),与变压器初级线圈回路中励磁电流被折算到变压器次级线圈回路电流之和。所以(1-65)式可以写为: (1-66)式中,括弧中的第一项表示变压器次级线圈回路中的电流,第二项表示变压器初级线圈回路中励磁电流被折算到变压器次级线圈回路的电流。 图1-16-a单激式变压器开关电源输出电压uo等于: (1-68)式中的Up-就是反击式输出电压的峰值,或输出电压最大值。由此可知,在控制开关K关断瞬间,当变压器次级线圈回路负载开路时,变压器次级线圈回路会产生非常高的反电动势。理论上需要时间t等于无限大时,变压器次级线圈回路输出电压才为0,但这种情况一般不会发生,因为控制开关K的关断时间等不了那么长。 从(1-63)和(1-67)式可以看出,开关电源变压器的工作原理与普通变压器的工作原理是不一样的。当开关电源工作于正激时,开关电源变压器的工作原理与普通变压器的工作原理基本相同;当开关电源工作于反激时,开关电源变压器的工作原理相当于一个储能电感。 如果我们把输出电压uo的正、负半波分别用平均值Upa、Upa-来表示,则有: 分别对(1-71)和(1-72)两式进行积分得: 由此我们可以求得,单激式变压器开关电源输出电压正半波的面积与负半波的面积完全相等,即: Upa×Ton = Upa-×Toff —— 一个周期内单激式输出 (1-75) (1-75)式就是用来计算单激式变压器开关电源输出电压半波平均值Upa和Upa-的表达式。

正激变压器开关电源的优缺点

正激式变压器开关电源的优缺点 2010年04月08日 15:18 电源网作者:陶显芳用户评论(0) 关键字:变压器(453)开关(111)正激式(3) 正激式变压器开关电源的优缺点 为了表征各种电压或电流波形的好坏,一般都是拿电压或电流的幅值、平均值、有效值、一次谐波等参量互相进行比较。在开关电源之中,电压或电流的幅值和平均值最直观,因此,我们用电压或电流的幅值与其平均值之比,称为脉动系数S;也有人用电压或电流的有效值与其平均值之比,称为波形系数K。 因此,电压和电流的脉动系数Sv、Si以及波形系数Kv、Ki分别表示为: Sv = Up/Ua ——电压脉动系数(1-84) Si = Im/Ia ——电流脉动系数(1-85) Kv =Ud/Ua ——电压波形系数(1-86) Ki = Id/Ia ——电流波形系数(1-87) 上面4式中,Sv、Si、Kv、Ki分别表示:电压和电流的脉动系数S,和电压和电流的波形系数K,在一般可以分清楚的情况下一般都只写字母大写S或K。脉动系数S和波形系数K都是表征电压或者电流好坏的指标,S和K的值,显然是越小越好。S和K的值越小,表示输出电压和电流越稳定,电压和电流的纹波也越小。 正激式变压器开关电源正好是在变压器的初级线圈被直流电压激励时,变压器的次级线圈向负载提供功率输出,并且输出电压的幅度是基本稳定的,此时尽管输出功率不停地变化,但输出电压的幅度基本还是不变,这说明正激式变压器开关电源输出电压的瞬态控制特性相对来说比较好;只有在控制开关处于关断期间,功率输出才全部由储能电感和储能电容两者同时提供,此时输出电压虽然受负载电流的影响,但如果储能电容的容量取得比较大,负载电流对输出电压的影响也很小。 另外,由于正激式变压器开关电源一般都是选取变压器输出电压的一周平均值,储能电感在控制开关接通和关断期间都向负载提供电流输出,因此,正激式变压器开关电源的负载能力相对来说比较强,输出电压的纹波比较小。如果要求正激式变压器开关电源输出电压有较大的调整率,在正常负载的情况下,控制开关的占空比最好选取在0.5左右,或稍大于0.5,此时流过储能滤波电感的电流才是连续电流。当流过储能滤波电感的电流为连续电流时,负载能力相对来说比较强。

开关电源中变压器的八种检测方法

开关电源中变压器的八种检测方法 1、通过观察变压器的外貌来检查其是否有明显异常现象。如线圈引线是否断裂、脱焊、绝缘材料是否有烧焦痕迹、铁心紧固螺杆是否有松动、硅钢片有 无锈蚀、绕组线圈是否有外露等。 2、绝缘性测试。用万用表R×10k挡分别测量铁心与初级,初级与各次级、铁心与各次级、静电屏蔽层与衩次级、次级各绕组间的电阻值,万用表指针均 应指在无穷大位置不动。否则,说明变压器绝缘性能不良。 3、线圈通断的检测。将万用表置于R×1挡,测试中,若某个绕组的电阻 值为无穷大,则说明此绕组有断路性故障。 4、判别初、次级线圈。电源变压器初级引脚和次级引脚一般都是分别从两侧引出的,并且初级绕组多标有220V字样,次级绕组则标出额定电压值,如 15V、24V、35V等。再根据这些标记进行识别。 5、空载电流的检测。 a、直接测量法。将次级所有绕组全部开路,把万用表置于交流电流挡 (500mA,串入初级绕组。当初级绕组的插头插入220V交流市电时,万用表所指示的便是空载电流值。此值不应大于变压器满载电流的10%~20%。一般常见电 子设备电源变压器的正常空载电流应在100mA左右。如果超出太多,则说明变 压器有短路性故障。 b、间接测量法。在变压器的初级绕组中串联一个10?/5W的电阻,次级仍全部空载。把万用表拨至交流电压挡。加电后,用两表笔测出电阻R两端的电 压降U,然后用欧姆定律算出空载电流I空,即I空=U/R。F?空载电压的检测。将电源变压器的初级接220V市电,用万用表交流电压接依次测出各绕组的空载电压值(U21、U22、U23、U24)应符合要求值,允许误差范围一般为:高压绕组 ≤±10%,低压绕组≤±5%,带中心抽头的两组对称绕组的电压差应≤±2%。 6、一般小功率电源变压器允许温升为40℃~50℃,如果所用绝缘材料质 量较好,允许温升还可提高。 7、检测判别各绕组的同名端。在使用电源变压器时,有时为了得到所需的次级电压,可将两个或多个次级绕组串联起来使用。采用串联法使用电源变压

正激式变压器开关电源工作原理

正激式变压器开关电源工作原理 正激式变压器开关电源输出电压的瞬态控制特性和输出电压负载特性,相对来说比较好,因此,工作比较稳定,输出电压不容易产生抖动,在一些对输出电压参数要求比较高的场合,经常使用。 1-6-1.正激式变压器开关电源工作原理 所谓正激式变压器开关电源,是指当变压器的初级线圈正在被直流电压激励时,变压器的次级线圈正好有功率输出。 图1-17是正激式变压器开关电源的简单工作原理图,图1-17中Ui是开关电源的输入电压,T是开关变压器,K是控制开关,L是储能滤波电感,C是储能滤波电容,D2是续流二极管,D3是削反峰二极管,R 是负载电阻。 在图1-17中,需要特别注意的是开关变压器初、次级线圈的同名端。如果把开关变压器初线圈或次级线圈的同名端弄反,图1-17就不再是正激式变压器开关电源了。 我们从(1-76)和(1-77)两式可知,改变控制开关K的占空比D,只能改变输出电压(图1-16-b中正半周)的平均值Ua ,而输出电压的幅值Up不变。因此,正激式变压器开关电源用于稳压电源,只能采用电压平均值输出方式。 图1-17中,储能滤波电感L和储能滤波电容C,还有续流二极管D2,就是电压平均值输出滤波电路。其工作原理与图1-2的串联式开关电源电压滤波输出电路完全相同,这里不再赘述。关于电压平均值输出滤波电路的详细工作原理,请参看“1-2.串联式开关电源”部分中的“串联式开关电源电压滤波输出电路”内容。 正激式变压器开关电源有一个最大的缺点,就是在控制开关K关断的瞬间开关电源变压器的初、次线圈绕组都会产生很高的反电动势,这个反电动势是由流过变压器初线圈绕组的励磁电流存储的磁能量产生的。因此,在图1-17中,为了防止在控制开关K关断瞬间产生反电动势击穿开关器件,在开关电源变压器中增加一个反电动势能量吸收反馈线圈N3绕组,以及增加了一个削反峰二极管D3。 反馈线圈N3绕组和削反峰二极管D3对于正激式变压器开关电源是十分必要的,一方面,反馈线圈N3绕组产生的感应电动势通过二极管D3可以对反电动势进行限幅,并把限幅能量返回给电源,对电源进行充

(完整版)开关电源与线性电源区别

是直流电按要求不同使用不同,线性电源最好他输出的是线性直流电,可以用在要求高的场合,开关电源次之,他是由很高的开关速度的变压器和开关管,特点是重量小,容量大,输出质量高,相控电原用在要求不高,电流特大的场合 线性电源,开关电源区别 线性电源的调整管工作在放大状态,因而发热量大,效率低(35%左右),需要加体积庞大的散热片,而且还需要同样也是大体积的工频变压器,当要制作多组电压输出时变压器会更庞大。 开关电源的调整管工作在饱和和截至状态,因而发热量小,效率高(75%以上)而且省掉了大体积的变压器。但开关电源输出的直流上面会叠加较大的纹波(50mV at 5V output typical),在输出端并接稳压二极管可以改善,另外由于开关管工作是会产生很大的尖峰脉冲干扰,也需要在电路中串连磁珠加以改善。相对而言线性电源就没有以上缺陷,它的纹波可以做的很小(5mV以下)。 对于电源效率和安装体积有要求的地方用开关电源为佳,对于电磁干扰和电源纯净性有要求的地方(例如电容漏电检测)多选用线性电源。另外当电路中需要作隔离的时候现在多数用DC-DC来做对隔离部分供电(DC-DC从其工作原理上来说就是开关电源)。还有,开关电源中用到的高频变压器可能绕制起来比较麻烦 开关电源和线性电源在内部结构上是完全不一样的,开关电源顾名思义有开关动作,它利用变占空比或变频的方法实现不同的电压,实现较为复杂,最大的优点是高效率,一般在90%以上,缺点是文波和开关噪声较大,适用于对文波和噪声要求不高的场合;而线性电源没有开关动作,属于连续模拟控制,内部结构相对简单,芯片面积也较小,成本较低,优点是成本低,文波噪声小,最大的缺点是效率低。它们各有有缺点在应用上互补共存! 一、线性电源的原理: 线性电源主要包括工频变压器、输出整流滤波器、控制电路、保护电路等。线性电源是先将交流电经过变压器变压,再经过整流电路整流滤波得到未稳定的直流电压,要达到高精度的直流电压,必须经过电压反馈调整输出电压,这种电源技术很成熟,可以达到很高的稳定度,波纹也很小,而且没有开关电源具有的干扰与噪音。但是它的缺点是需要庞大而笨重的变压器,所需的滤波电容的体积和

(整理)开关电源变压器测试标准

开关电源变压器测试标准 正常的试验大气条件(除有规定条件除外,均应在正常试验条件下进行试验): 温 度: 15~35℃ 相对湿度: 45%~75% 气 压: 86~106kPa 一、直流铜阻 目的:保证每一绕组使用正确的漆包线规格。 仪器:TH2511低直流电阻测试仪。 方法:变压器各绕组在温度为20℃时的直流电阻,应符合产品规格书的标准。 若测量环境温度不等于20℃时,应按下面的公式换算 R 20=θ +5.2345 .254R θ 式中: R 20——温度为20时的直流电阻,Ω; R θ——温度为θ时测得的直流电阻,Ω; θ——测量时的环境温度,℃。 二、电感量 目的:确保使用正确的磁性材料及绕组圈数的正确性。 仪器:WK3255B 电桥。 方法:对变压器测试端施加额定条件的电桥,测试电感量。见图1 图1 开 路

三、直流叠加 目的:检验磁芯的磁饱和特性或实际工作条件下的磁芯特性。 仪器:WK3255B 电桥;FJ1772A 直流磁化电源。 方法:对变压器测试端施加规定的直流电流,用电桥测试电感量。见图2 图2 图中I 0 —— 在测试端N1绕组施加的直流电流 四、漏感 目的:保证绕组处于骨架上正确的位置以及磁性材料的气隙大小的正确性。 仪器:WK3255B 电桥。 方法:将所测变压器次级端短路,在初级端施加额定条件的电桥测试电感量。 见图3 图3 五、绝缘电阻 目的:保证每一绕组对磁芯、静电屏蔽及各绕组间绝缘电阻性能满足所需的 技术指标。 仪器:2679绝缘电阻测试仪。 方法:用绝缘电阻测试仪对变压器的初次级绕组间或绕组和磁芯、静电屏蔽 短 路

开关电源变压器基础知识

开关电源变压器基础知识 开关电源变压器现代电子设备对电源的工作效率、体积 以及安全要求等技术性能指标越来越高,在开关电源中决定这些技术性能指标的诸多因素中,基本上都与开关变压器的技术指标有关。开关电源变压器是开关电源中的关键器件,因此,在这一节中我们将非常详细地对与开关电源变压器相关的诸多技术参数进行理论分析。在分析开关变压器的工作原理的时候,必然会涉及磁场强度H和磁感应强度B以及磁 通量等概念,为此,这里我们首先简单介绍它们的定义和概念。在自然界中无处不存在电场和磁场,在带电物体的周围必然会存在电场,在电场的作用下,周围的物体都会感应带电;同样在带磁物体的周围必然会存在磁场,在磁场的作用 ,周围的物体也都会被感应产生磁通。现代磁学研究表明: 切磁现象都起源于电流。磁性材料或磁感应也不例外,铁磁现象的起源是由于材料内部原子核外电子运动形成的微电流,亦称分子电流,这些微电流的集合效应使得材料对外呈现各种各样的宏观磁特性。因为每一个微电流都产生磁效应,所以把一个单位微电流称为一个磁偶极子。因此,磁场强度的大小与磁偶极子的分布有关。在宏观条件下,磁场强度可以定义为空间某处磁场的大小。我们知道,电场强度的概念是用单位电荷在电场中所产生的作用力来定义的,而在

磁场中就很难找到一个类似于“单位电荷”或“单位磁场”的带磁物质来定义磁场强度,为此,电场强度的定义只好借用流过单位长度导体电流的概念来定义磁场强度,但这个概念本应该是用来定义电磁感应强度的,因为电磁场是可以互相产生感应的。幸好,电磁感应强度不但与流过单位长度导体的电流大小相关,而且还与介质的属性有关。所以,电磁感应强度可以在磁场强度的基础上再乘以一个代表介质属性的系数来表示。这个代表介质属性的系数人们把它称为导磁率。 在电磁场理论中,磁场强度H 的定义为:在真空中垂直于磁场方向的通电直导线,受到的磁场的作用力F 跟电流I 和导线长度的乘积I 的比值,称为通电直导线所在处的磁场强度。或:在真空中垂直于磁场方向的1 米长的导线,通过1 安培的电流,受到磁场的作用力为1 牛顿时,通过导线所在处的磁场强度就是1 奥斯特(Oersted) 。电磁感应强度一般也称为磁感应强度。由于在真空中磁感应强度与磁场强度在数

开关电源原理与设计 连载13 正激式变压器开关电源

开关电源原理与设计连载13 正激式变压器开关电源 1-6.正激式变压器开关电源 正激式变压器开关电源输出电压的瞬态控制特性和输出电压负载特性,相对来说比较好,因此,工作比较稳定,输出电压不容易产生抖动,在一些对输出电压参数要求比较高的场合,经常使用。 1-6-1.正激式变压器开关电源工作原理 所谓正激式变压器开关电源,是指当变压器的初级线圈正在被直流电压激励时,变压器的次级线圈正好有功率输出。

图1-17是正激式变压器开关电源的简单工作原理图,图1-17中Ui是开关电源的输入电压,T是开关变压器,K是控制开关,L是储能滤波电感,C是储能滤波电容,D2是续流二极管,D3是削反峰二极管,R是负载电阻。在图1-17中,需要特别注意的是开关变压器初、次级线圈的同名端。如果把开关变压器初线圈或次级线圈的同名端弄反,图1-17就不再是正激式变压器开关电源了。 我们从(1-76)和(1-77)两式可知,改变控制开关K的占空比D,只能改变输出电压(图1-16-b中正半周)的平均值Ua ,而输出电压的幅值Up不变。因此,正激式变压器开关电源用于稳压电源,只能采用电压平均值输出方式。 图1-17中,储能滤波电感L和储能滤波电容C,还有续流二极管D2,就是电压平均值输出滤波电路。其工作原理与图1-2的串联式开关电源电压滤波输出电路完全相同,这里不再赘述。关于电压平均值输出滤波电路的详细工作原理,请参看“1-2.串联式开关电源”部分中的“串联式开关电源电压滤波输出电路”内容。 正激式变压器开关电源有一个最大的缺点,就是在控制开关K关断的瞬间开关电源变压器的初、次线圈绕组都会产生很高的反电动势,这个反电动势是由流过变压器初线圈绕组的励磁电流存储的磁能量产生的。因此,在图1-17中,为了防止在控制开关K关断瞬间产生反电动势击穿开关器件,在开关电源变压器中增加一个反电动势能量吸收反馈线圈N3绕组,以及增加了一个削反峰二极管D3。

(整理)开关电源与变压器电源的分析

现在的电源大致分两大类:电子开关电源和变压器电源。 开关电源:: 开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IC和MOSFET构成。开关电源和线性电源相比,二者的成本都随着输出功率的增加而增长,但二者增长速率各异。线性电源成本在某一输出功率点上,反而高于开关电源,这一点称为成本反转点。随着电力电子技术的发展和创新,使得开关电源技术也在不断地创新,这一成本反转点日益向低输出电力端移动,这为开关电源提供了广阔的发展空间。 开关电源中应用的电力电子器件主要为二极管、IGBT和MOSFET。 开关电源的三个条件 1、开关:电力电子器件工作在开关状态而不是线性状态 2、高频:电力电子器件工作在高频而不是接近工频的低频 3、直流:开关电源输出的是直流而不是交流 变压器电源: 线性电源(Liner power supply)是先将交流电经过变压器降低电压幅值,再经过整流电路整流后,得到脉冲直流电,后经滤波得到带有微小波纹电压的直流电压。要达到高精度的直流电压,必须经过稳压电路进行稳压。 线性电源与开关电源对比 线性电源的电压反馈电路是工作在线性状态。 线性电源一般是将输出电压取样然后与参考电压送入比较电压放大器,此电压放大器的输出作为电压调整管的输入,用以控制调整管使其结电压随输入的变化而变化,从而调整其输出电压。 从其主要特点上看:线性电源技术很成熟,制作成本较低,可以达到很高的稳定度,波纹也很小,而且没有开关电源具有的干扰与噪音,但其体积相对开关电源来说,比较庞大,且输入电压范围要求高;而开关电源与之相反。 线性电源用途 线性电源产品可广泛应用于科研、大专院校、实验室、工矿企业、电解、电镀、充电设备等。 从以上两个解释大家应该知道开关电源与变压器电源(线性)的大致区别了吧。 很多朋友都会碰到一个问题,就是现在的低廉变压器电源为什么不能满足一般大、中功率的红外摄像机供电使用,而开关电源侧存在漏电的情况,这样,我把我所认识的两款电源和大家说说。 电源的优缺点: 开关电源优点:

开关电源变压器选择

开关电源功率变压器的设计方法 2010-01-25 19:26 1开关电源功率变压器的特性 功率变压器是开关电源中非常重要的部件,它和普通电源变压器一样也是通过磁耦合来传输能量的。不过在这种功率变压器中实现磁耦合的磁路不是普通变压器中的硅钢片,而是在高频情况下工作的磁导率较高的铁氧体磁心或铍莫合金等磁性材料,其目的是为了获得较大的励磁电感、减小磁路中的功率损耗,使之能以最小的损耗和相位失真传输具有宽频带的脉冲能量。 图1(A)为加在脉冲变压器输入端的矩形脉冲波,图1(B)为输出端得到的输出波形,可以看出脉冲变压器带来的波形失真主要有以下几个方面: 图1脉冲变压器输入、输出波形 (A)输入波形(B)输出波形 (1)上升沿和下降沿变得倾斜,即存在上升时间和下降时间; (2)上升过程的末了时刻,有上冲,甚至出现振荡现象; (3)下降过程的末了时刻,有下冲,也可能出现振荡波形; (4)平顶部分是逐渐降落的。 这些失真反映了实际脉冲变压器和理想变压器的差别,考虑到各种因素对波形的影响,可以得到如图2所示的脉冲变压器等效电路。 图中:RSI——信号源UI的内阻 RP——一次绕组的电阻 RM——磁心损耗(对铁氧体磁心,可以忽略) T——理想变压器 RSO——二次绕组的电阻 RL——负载电阻 C1、C2——一次和二次绕组的等效分布电容 LIN、LIS——一次和二次绕组的漏感 LM1——一次绕组电感,也叫励磁电感 N——理想变压器的匝数比,N=N1/N2 图2脉冲变压器的等效电路 将图2所示电路的二次回路折合到一次,做近似处理,合并某些参数,可得图3所示电路,漏感LI包括LIN和LIS,总分布电容C包括C1和C2;总电阻RS包括RSI、RP和RSO;LM1是励磁电感,和前述的LM1相同;RL′是RL等效到一次侧的阻值,RL′=RL/N2,折合后的输出电压U′O=UO/N。 经过这样处理后,等效电路中只有5个元件,但在脉冲作用的各段时间内,每个元件并不都是同时起主要作用,我们知道任何一个脉冲波形可以分解成基波与许多谐波的叠加。脉冲的上升沿和下降沿包含着各种高频分量,而脉冲的平顶部分包含着各种低频分量。因此在上升、下降和平顶过程中,各元件(L、C等)表现出来的阻抗也不一样,因此我们把这一过程分成几个阶段来分析,分别找出各阶段起主要作用的元件,而忽略次要的因素。例如,当输入信号为矩形脉冲时,可以分3个阶段来分析,即上升阶段、平顶阶段和下降阶段。 (1)上升阶段 对于通常的正脉冲而言,上升阶段即脉冲前沿,信号中包含丰富的高频成分,当

开关电源中高频变压器绕制心得

开关电源中高频变压器绕制心得 1:使用专用的变压器设计软件PIXls Designer和PI TRANSFORMER Designer,将需要的参数,如输入电压范围、输出电压要求、偏置电压大小、变压器估计功率、功率因数、额定负载、初级线圈层数、次级线圈匝数等参数输入,PI软件会根据用户输入的参数给出一个合理的变压器参数,然后设计人员就可以根据给出的参数绕制变压器了,软件给出的会有以下参数:初级线圈、反馈线圈、次级线圈的层数、匝数、线经大小、绕制的方向、气隙大小、线圈与线圈之间的胶带的层数、骨架型号、磁芯型号、浸漆要求等。 2:有了这些参数后就可以绕制变压器了,在绕制变压器之前先给骨架的脚编上一个号码,例如我们现在需要绕制一个输入电压是+24V,输出1是+9V,输出2是+15V的变压器,要求2输出端的功率都为1.5W,那么这个变压器的绕制方法如下: 初级线圈的绕制方法:从引脚2开始,使用线径0.19毫米的漆包线绕骨架53圈,估计有两层,绕线应尽量平整。在引脚1结束,绕完后用绝缘胶布裹两层。 偏置线圈的绕制方法:从引脚5开始,使用线径0.13毫米的漆包线绕骨架27圈至引脚4结束,绕完后用绝缘胶布裹两层,再用一层绝缘胶布裹住除了引脚以外的其他所有有线圈露出的地方。9V端线圈绕制方法:用绝缘胶布裹在7脚与6脚底,使用线径0.35毫米的漆包线,从7脚开始绕20圈至6脚结束,用绝缘胶布裹两层。再用绝缘胶布裹住7脚6脚以外的绕线。 15V端线圈绕制方法:用绝缘胶布裹在10脚9脚底,使用线径0.19毫米的漆包线,从10脚开始绕34圈到9脚结束,用绝缘胶布裹两层,然后装上两快磁芯,在两磁芯中间放0.3MM厚的纸(即气隙,大约4层白纸厚度),压平后用胶布把磁芯与骨架裹在一起。(说明绝缘胶布均指4KV绝缘胶) EPC13骨架引脚图如下: 3:测试变压器输出及带负载能力 测试方法: 将绕好的变压器安装在已经实验成功的测试板上,检测电路输出及带负载能力,若输出端和带负载能力正常后方可测试变压器耐压能力。 4: 测试变压器耐压能力.

开关变压器工作原理及作用

开关变压器工作原理及作用 开关变压器一般是指开关电源里面所用的变压器,工作在十几到几十千赫兹甚至几百千赫兹频率的脉冲状态下,铁芯一般采用铁氧体材料。开关电源变压器是加入了开关管的电源变压器,在电路中除了普通变压器的电压变换功能,还兼具绝缘隔离与功率传送功能一般用在开关电源等涉及高频电路的场合。 开关变压器作用开关电源变压器和开关管一起构成一个自激(或他激)式的间歇振荡器,从而把输入直流电压调制成一个高频脉冲电压。 起到能量传递和转换作用。在反激式电路中,当开关管导通时,变压器把电能转换成磁场能储存起来,当开关管截止时则释放出来。在正激式电路中,当开关管导通时,输入电压直接向负载供给并把能量储存在储能电感中。当开关管截止时,再由储能电感进行续流向负载传递。 把输入的直流电压转换成所需的各种低压。 开关变压器工作原理对于开关电源,开关变压器的工作原理与普通变压器的工作原理是不同的。普通变压器输入的交流电压或电流的正、负半周波形都是对称的,并且输入电压和电流波形一般都是连续的,在一个周期之内,输入电压和电流的平均值等于0,这是普通变压器工作原理的基本特点;而开关变压器一般都是工作于开关状态,其输入电压或电流一般都不是连续的,而是断续的,输入电压或电流在个周期之内的平均值大多数都不等于0,因此,开关变压器也称为脉冲变压器,这是开关变压器与普通变压器在工作原理方面的最大区别。 除此之外,开关变压器对于输入电压来说,有单激式和双激式之分:对于输出电压来说,又有正激式和反激式之分。单激式和双激式开关电源,或正激式和反激式开关电源,它们使用的开关变压器,在工作原理方面也有很大的不同。 当开关变压器的输入电压为直流脉冲电压时,称为单极性脉冲输入,这种单极性脉冲输入的开关电源称为单激式变压器开关电源:当开关变压器的输入电压为正、负交替的脉冲电压时,称为双极性脉冲输入,这种双极性脉冲输入的开关电源称为双激式变压器开关电源;

开关电源变压器设计资料完整版

开关电源变压器设计 开关变压器是将DC 电压﹐通过自激励震荡或者IC 它激励间歇震荡形成高频方波﹐通过变 压器耦合到次级,整流后达到各种所需DC 电压﹒ 变压器在电路中电磁感应的耦合作用﹐达到初﹒次级绝缘隔离﹐输出实现各种高频电压﹒ 目的﹕减小变压器体积﹐降低成本﹐使设备小形化﹐节约能源﹐提高稳压精度﹒ N 工频变压器与高频变压器的比较﹕ 工频 高频 E =4.4f N Ae Bm f=50HZ E =4.0f N Ae Bm f=50KHZ N Ae Bm 效率﹕ η=60-80 % (P2/P2+Pm+ P C ) η>90% ((P2/P2+Pm ) 功率因素﹕ Cosψ=0.6-0.7 (系统100W 供电142W) Cosψ>0.90 (系统100W 供电111W) 稳压精度﹕ ΔU%=1% (U20-U2/U20*100) ΔU<0.2% 适配.控制性能﹕ 差 好 体积.重量 大 小 EMI 滤波电路 整流滤波 隔离变压器 整流滤波电路 PWM 控制电路 间隙震荡﹒功率因素改善﹒保 光电 耦合 电路 取样﹒放大 AC AC DC DC SPS 开关电源方框图 IC 分立元件 (典形電路)

开关变压器主要工作方式 一.隔离方式: 有隔离; 非隔离 (TV&TVM11) 二.激励方式: 自激励; 它激励 (F + & IC) 三.反馈方式: 自反馈; 它反馈 (F- & IC) 四.控制方式: PWM: PFM (T & T ON ) 五.常用电路形式: FLYBACK & FORWARD 一.隔离方式: 二.激励方式: P=300V S1=120 S1=110V S2=57V F + 激勵 S3=16V 分 立 元 件 S2 S1 P=300V 220V*√2-VD F - 取樣 分 立元件震蕩 S1=120 S2=12V S1=40V IC P=40V S1=120F+=5V S2=5V S1=85V P=300 S3= ±12V 有隔离:P-S 不共用地 非隔离:P-S 共用地﹐俗稱熱底板 它激励﹕用集成IC 它激励间歇震荡 自激励﹕用变压器F+自激励震荡

开关电源中变压器的Saber仿真辅助设计一:反激

经常在论坛上看到变压器设计求助,包括:计算公式,优化方法,变压器损耗,变压器饱和,多大的变压器合适啊? 其实,只要我们学会了用Saber这个软件,上述问题多半能够获得相当满意的解决。 一、 Saber在变压器辅助设计中的优势: 1、由于Saber相当适合仿真电源,因此对电源中的变压器营造的工作环境相当真实,变压器不是孤立地被防真,而是与整个电源主电路的联合运行防真。主要功率级指标是相当接近真实的,细节也可以被充分体现。 2、Saber的磁性材料是建立在物理模型基础之上的,能够比较真实的反映材料在复杂电气环境中的表现,从而可以使我们得到诸如气隙的精确开度、抗饱和安全余量、磁损这样一些用平常手段很难获得的宝贵设计参数。 3、作为一种高性能通用仿真软件,Saber并不只是针对个别电路才奏效,实际上,电力电子领域所有电路拓扑中的变压器、电感元件,我们都可以把他们置于真实电路的仿真环境中来求解。从而放弃大部分繁杂的计算工作量,极大地加快设计进程,并获得比手工计算更加合理的设计参数。 4、由于变压器是置于真实电路的仿真环境中求解的,所有与变压器有关的电路和器件均能够被联合仿真,对变压器的仿真实际上成了对主电路的仿真,从而不仅能够获得变压器的设计参数,还同时获得整个电路的运行参数以及主要器件的最佳设计参数。 二、 Saber 中的变压器 我们用得上的 Saber 中的变压器是这些:(实际上是我只会用这些) 分别是:

xfrl 线性变压器模型,2~6绕组xfrnl 非线性变压器模型,2~6绕组 单绕组的就是电感模型:也分线性和非线性2种 线性变压器参数设置(以2绕组为例): 其中: lp 初级电感量 ls 次级电感量

开关电源变压器解析,如何判断开关电源变压器的好坏

开关电源变压器解析,如何判断开关电源变压器的好坏 开关电源变压器是加入了开关管的电源变压器,在电路中除了普通变压器的电压变换功能,还兼具绝缘隔离与功率传送功能一般用在开关电源等涉及高频电路的场合。 开关电源变压器和开关管一起构成一个自激(或他激)式的间歇振荡器,从而把输入直流电压调制成一个高频脉冲电压。起到能量传递和转换作用。在反激式电路中,当开关管导通时,变压器把电能转换成磁场能储存起来,当开关管截止时则释放出来。在正激式电路中,当开关管导通时,输入电压直接向负载供给并把能量储存在储能电感中。当开关管截止时,再由储能电感进行续流向负载传递。把输入的直流电压转换成所需的各种低压。 开关电源变压器的基本组成:开关电源变压器的主要材料:磁性材料,导线材料和绝缘材料是开关变压器的核心。 磁性材料:开关变压器使用的磁性材料为软磁铁氧体,按其成分和应用频率可分为MnZn 系和NiZn系两大类。前者具有高的导磁率和高的饱和磁感应,在中频和低频范围具有较低损耗。磁芯的形状很多,如EI型,E型,EC型等 导线材料漆包线:一般用于绕制小型电子变压器的漆包线有高强度聚酯漆包线(QZ)和聚氨酯漆包线(QA)两种。根据漆层厚度分为1型(薄漆型)和2型(厚漆型)两种。前者的绝缘涂层为聚酯漆,具有优越的耐热性,绝缘性抗电强度可达60kv/mm;后者绝缘层为聚氨酯漆,具有自粘性强,有自焊性能(380℃),可不用去漆膜就可直接焊接 压敏胶带:绝缘胶带抗电强度高,使用方便机械性能好,被广泛应用在开关变压器线圈的层间,组间绝缘和外包绝缘。必须达到下列要求:粘性好,抗剥离,具有一定的拉伸强度,绝缘性能好,耐压性能好,阻燃和耐高温 骨架材料:开关变压器骨架与一般的变压器骨架不同,除了作为线圈的绝缘与支撑材料外,还承担了整个变压器的安装固定和定位的作用,因此制作骨架的材料除了满足绝缘要求

驱动电源和开关电源的区别

驱动电源和开关电源的区别 概括地说,LED驱动也是开关电源的一种,只是它有几点特殊性,也是这类开关电源的共性,所以习惯上把它分类称为LED驱动了.这几点特殊性是: 1、它的电压输出是3.2的倍数,就是说电压输出的形式为3.2V、6.4V.9.6V、12.8V.....,但最多一般不超过25.6V,因为超过这个数后,在开启LED的时候,会因产品的一至性不好而发生瞬间烧掉最后导通的那只LED的可能性.而这个电压也不是恒定的,而是随负载的变化而变化,以达到恒流的目的. 2、它的输出电流是恒定的,理想的电路是无论LED的特性曲线怎么变化,驱动电源的电流保持不变.但限于元件精度,还是会有少量的变化的,而这个变化也是判 断驱动电路是否优秀的重要参数,LED的导通与电压的函数是一个非线性的“三段”关系,所以保持恒流非常重要. 3、它的启动是软启动.由于LED的一致性非常差,并且在导通时内部PN结的活性发生瞬间变化,所以LED的驱动一般设计为软启动,来避开这个缺陷. 4、它的电路要求最简单,因为很多时候,要求电路装在一个很小的空间里,以配合LED照明的方便性,所以电路应尽可能的简单,这样也能节约成本、减少能耗. 5、它一般不要求隔离,因为很多产品是类似于普通照明灯一样的结构,安全方面可与照明灯相仿就是,但这第5条是一个“选读项”,大家在了解的时候不要有误解,因为有的驱动还是需要隔离的,这个特点只适用于我们目前流行的电路,而不一定适合以后的电路发展需要. 综上所述,可以认为:软启动、恒流、阶跃电压、电路简单是它的特点. 这里再指出一点:很从人偏面的强调恒流,但却闭口不提电压,是不对的,因为恒流的概念与电压无关,比如一个电源,如果仅仅是30V输出的恒流,那么当你开路的时候,它的电压就是30V了,这时你如果接上LED,那么这个直接用PN结工作的元件,会在最精确电路的反应之前烧掉的, 因为任何电路都需要有反应时间,而电路里的工作器件就是半导体,众之的PN结在电源给出取样信号后才能反应过来,而LED的PN结直接就开始工作了,所以它的“反应”比电路中“众多的PN结配合”来得快,提前烧掉!当然也有特殊场合下用这种驱动的,但这种LED的驱动不允许输出端开路的, 准确的说是“不允许输出端开路后再接上LED”.所以在恒流的同时,我们要加上电压概念才行,何况这样更有利于理解LED的导通函数曲线 几种基本类型的开关电源 顾名思义,开关电源就是利用电子开关器件(如晶体管、场效应管、可控硅闸流管等),通过控制电路,使电子开关器件不停地“接通”和“关断”,让电子开关器件对输入电压进行脉冲调制,从而实现DC/AC、DC/DC电压变换,以及输出电压可调和自动稳压。 开关电源一般有三种工作模式:频率、脉冲宽度固定模式,频率固定、脉冲宽度可变模式,频率、脉冲宽度可变模式。前一种工作模式多用于DC/AC逆变电源,或DC/DC电压变换;后两种工作模式多用于开关稳压电源。另外,开关电源输出电压也有三种工作方式:直接输出

相关主题
文本预览
相关文档 最新文档