当前位置:文档之家› 压缩感知技术研究进展分析

压缩感知技术研究进展分析

压缩感知技术研究进展分析
压缩感知技术研究进展分析

压缩感知技术研究进展

摘要:信号采样是联系模拟信源和数字信息的桥梁.人们对信息的巨量需求

造成了信号采样、传输和存储的巨大压力. 如何缓解这种压力又能有效提取承载在信号中的有用信息是信号与信息处理中急需解决的问题之一. 近年国际上出现的压缩感知理论(Compressed Sensing,CS)为缓解这些压力提供了解决方法. 本文综述了CS 理论框架及关键技术问题, 并介绍了仿真实例、应用前景, 评述了其中的公开问题,对研究中现存的难点问题进行了探讨,最后对CS技术做了一下总结和展望.

关键词:压缩感知;稀疏表示;观测矩阵;编码;解码

Advances in Theory and Application of Compressed

Sensing

Abstract:Sampling is the bridge between analog source signal and digital signal. With the rapid progress of information technologies, the demands for information are increasing dramatically. So the existing systems are very difficult to meet the challenges of high speed sampling, large volume data transmission and storage. How to acquire information in signal efficiently is an urgent problem in electronic information fields. In recent year s, an emerging theory of signal acquirement. compressed sensing(CS) provides a golden opportunity for solving this problem. This paper reviews the theoretical framework and the key technical problems of compressed sensing and introduces the latest developments of signal sparse representation, design of measurement matrix and reconstruction algorithm. Then this paper also reviews several open problems in CS theory and discusses the existing difficult problems. In the end, the application fields of compressed sensing are introduced.

Key words:compressed sensing;sparse representation; the observation matrix; coding;decoding

一、引言

在过去的半个世纪里,奈奎斯特采样定理几乎支配着所有的信号或图像等

的获取、处理、存储以及传输。它要求采样频率必须大于或等于信号带宽的两倍,才能不失真的重构原始信号。在许多实际应用中,例如高分辨率的数码装置及超带宽信号处理,高速采样产生了庞大的数据,为了降低存储,处理或传输成本,只保留其中少量的重要数据。由于采样后得到的大部分数据都被丢弃了,所以这种方式造成了采样资源的严重浪费。设想如果在采样的同时直接

提取信号的少量重要信息,就可以大大降低采样频率,节约资源,提高效率而且仍能够精确重构原始信号或图像。这就是Donoho、Candes以及Tao等人提出压缩感知(Compressed Sensing、Compressive Sampling或Compressive Sensing,CS)理论的主要思想。压缩感知理论指出:如果信号在某个变换域是稀疏的或可压缩的,就可以利用一个与变换基不相关的观测矩阵将变换所得的高维信号投影到一个低维空间上,根据这些少量的观测值,通过求解凸优化问题就可以实现信号的精确重构。

在传统理论的指导下,信号X 的编解码过程如图1 所示:编码端首先获得X 的N 点采样值,经变换后只保留其中K 个最大的投影系数并对它们的幅度和位置编码,最后将编得的码值进行存储或传输。解压缩仅是编码过程的逆变换。实际上,采样得到的大部分数据都是不重要的,即K 值很小,但由于奈奎斯特采样定理的限制,采样点数N可能会非常大,采样后的压缩是造成资源浪费的根本所在。

CS 很好的解决了这一问题,它将信号的采样、压缩及编码合并在了同一步骤中,不经过N 点采样的中间过程而直接得到信号的表示,其编解码过程如图2 所示。可压缩信号X 通过一个线性观测过程获得M个观测值后直接进行存储或传输。在满足一定的条件下接收端可以根据这M 个观测值通过一个非线性优化过程恢复出原信号X。

二、压缩感知的基本理论及核心问题

假设有一信号)(N R f f ∈,长度为N ,基向量为),...,2,1(N i i =ψ,对信号进行变换:

αψψ==∑=f a f i N

i i 或1

显然f 是信号在时域的表示,α是信号在ψ域的表示。信号是否具有稀疏性或者近似稀疏性是运用压缩感知理论的关键问题,若(1)式中的α只有K 个是非零值)(K N >>者仅经排序后按指数级衰减并趋近于零,可认为信号是稀疏的。信号的可稀疏表示是压缩感知的先验条件。在已知信号是可压缩的前提下,压缩感知过程可分为两步:

(1)设计一个与变换基不相关的)(N M N M <

(2)由M 维的测量向量重构信号。

2.1信号的稀疏表示

文献[4]给出稀疏的数学定义:信号X 在正交基ψ下的变换系数向量为X T ψ=Θ,假如对于20<

R ,这些系数满足:

R p p i

i p ≤≡Θ∑/1)||(||||θ

则说明系数向量Θ在某种意义下是稀疏的.文献[1]给出另一种定义:如果变换系数

>ψ=

最近几年,对稀疏表示研究的另一个热点是信号在冗余字典下的稀疏分解.这是一种全新的信号表示理论:用超完备的冗余函数库取代基函数,称之

为冗余字典,字典中的元素被称为原子.字典的选择应尽可能好地符合被逼近信号的结构,其构成可以没有任何限制.从从冗余字典中找到具有最佳线性组合的K 项原子来表示一个信号,称作信号的稀疏逼近或高度非线性逼近]13,12[。

目前信号在冗余字典下的稀疏表示的研究集中在两个方面:(1)如何构造一个适合某一类信号的冗余字典;(2)如何设计快速有效的稀疏分解算法.这两个问题也一直是该领域研究的热点,学者们对此已做了一些探索,其中以非相干字典为基础的一系列理论证明得到了进一步改进.西安电子科技大学的石光明教授也对稀疏表示问题进行了认真研究,并基于多组正交基级联而成的冗余字典提出一种新的稀疏分解方法]17[。

2.2信号的观测矩阵

用一个与变换矩阵不相关的)(N M N M <

f y φ=

测量值y 是一个M 维向量,这样使测量对象从N 维降为M 维。观测过程是非自适应的即测量矩阵少的选择不依赖于信号f 。测量矩阵的设计要求信号从f 转换为y 的过程中,所测量到的K 个测量值不会破坏原始信号的信息,保证信号的精确重构。

由于信号f 是是可稀疏表示的,上式可以表示为下式:

ααφΘ=ψΦ==f y

其中Θ是一个N M ?矩阵。上式中,方程的个数远小于未知数的个数,方程无确定解,无法重构信号。但是,由于信号是K 稀疏,若上式中的Θ满足有限等距性质(Restricted Isometry Property ,简称RIP),即对于任意K 稀疏信号f 和常数)1,0(∈k δ,矩阵Θ满足:

k k f f δδ+≤Θ≤-1||||||||1222

2

则K 个系数能够从M 个测量值准确重构。RIP 性质的等价条件是测量矩阵φ和稀疏基ψ不相关。目前,用于压缩感知的测量矩阵主要有以下几种:高斯随机矩阵,二值随机矩阵(伯努力矩阵),傅立叶随机矩阵,哈达玛矩阵,一致球矩阵等。

2.3信号的重构算法

当矩阵Θ满足RIP 准则时。压缩感知理论能够通过对上式的逆问题先求解稀疏系数x T ψ=α,然后将稀疏度为K 的信号x 从M 维的测量投影值y 中正确地恢

复出来。解码的最直接方法是通过0l 范数下求解的最优化问题:

αααΦψ=y t s l .||||0min

从而得到稀疏系数的估计。由于上式的求解是个NP —HARD 问题。而该最优化问题与信号的稀疏分解十分类似,所以有学者从信号稀疏分解的相关理论中寻找更有效的求解途径。文献[10]表明,1l 最小范数下在一定条件下和0l 最小范数具有等价性,可得到相同的解。那么上式转化为1l 最小范数下的最优化问题:

αααΦψ=y t s l .||||1min

1l 最小范数下最优化问题又称为基追踪(BP),其常用实现算法有:内点法和梯度投影法。内点法速度慢,但得到的结果十分准确:而梯度投影法速度快,但没有内点法得到的结果准确]14[。二维图像的重构中,为充分利用图像的梯度结构。可修正为整体部分(Total Variation ,TV)最小化法。由于1l 最小范数下的算法速度慢,新的快速贪婪法被逐渐采用,如匹配追踪法(MP)和正交匹配追踪法(OMP)。此外,有效的算法还有迭代阈值法以及各种改进算法。 三、压缩感知仿真实例

对256×256大小的8bit 灰度lena 图像进行仿真计算,由于数据量过大,将图像分为16×16大小的分块进行计算,稀疏矩阵采用DCT 矩阵,观测矩阵采用高斯随机矩阵,重构算法采用OMP (正交匹配追踪)算法。

MATLAB 代码如下:

在MATLAB R2001b 中的计算结果如下:

原图像采样率0.7 采样率0.5 采样率0.3

采用均方误差MSE评价重构后的图像质量。

不同采样率下的计算时间与计算误差如下图所示:

四、 CS 的应用前景

能从少量的非相关观测值中高效获取可压缩信号的信息,CS 的这一特点决定了其应用的广泛性。CS 的应用领域涉及数据压缩、模拟/ 信息的转换、压缩成像、信道编码、信道估计、生物传感、语音识别、雷达成像、雷达遥感、学习理论及模式识别等诸多领域。

在压缩成像方面,RICE 大学已成功研制了“单像素”压缩数码照相机,该相机不像传统相机那样获取原始信号的N 个像素值,而是直接获取M个随机线性观测值,在实践中为取代传统相机迈出了实质性的一步。在通信领域,压缩感知也有着强大的生命力,由于无线多径信道一般情况下是稀疏的,即使在时延扩展很大时,大幅度的径的个数也很少,因此利用少量的导频就能获取未知信道的频域响应估计。此外压缩感知理论还可用于通信信道的错误检测、传感网络的分布式信源编码、认知无线电中的频谱感知等。

五、研究的公开问题

5.1 p2范数优化问题

压缩感知理论在图像压缩编码等方面也应该有很广泛的前景, 但由于信号的恢复方法是建立在12范数意义下, 数据之间还有很大的冗余性没有去除, 相

比传统的小波变换编码, 压缩感知理论应用于图像压缩的效果还不理想. p2范数的优化是提高基于压缩感知理论的压缩算法效果的必经之路. p2范数的优化方法是一个公开问题( open problem) , 对它的研究将推动压缩感知理论在压缩方面的应用, 具有很深远的意义. p2范数意义下的优化问题是一个凸函数优化问题, 目前已有一些成熟的算法, 但p2范数的优化是一个非凸函数的优化问题, 其中有很多数学问题有待解决. 有关p2范数非凸函数优化问题, 也有一些学者开展研究. 如RickChartrand[用典型的合成数据做了一些实验, 表明在一定的稀疏误差范围内, 可以得到最小值. 在文献[19]中,他进一步给出了变换基空间内的系数严格的等距条件(restricted isometry) , 由于有了严格的约束, 完全适合于大多数实际的信号. 笔者期望通过借用自然优化计算以及将p2范数非凸函数转换为近似凸函数优化等方法, 提出一种新的求解p2范数范数的优化问题, 以实现在p2范数意义下的压缩感知理论的信号恢复, 最大可能减少信号的冗余. 该思路正在研究之中.

5.2 观测矩阵与恢复性能关系

前面提到, 观测矩阵与稀疏变换基的不相干特性是压缩感知理论具有良好性能的基础. 由于随机高斯分布的观测矩阵具有与其它固定基都不相关的特性而被广泛采用. 但在实际的应用中, 这种观测矩阵存在存储矩阵元素容量巨大、计算复杂度高的缺点 . 文献[20] 提出一种部分傅立叶变换采样的方法. 它首先对信号进行傅立叶变换再对变换系数进行随机抽取. 这种随机抽取使得各观测值具有随机不相关的特性. 由于变换时可以采用快速算法而使得计算量大大降低. 但由于傅立叶基仅与在空域稀疏的信号不相干, 故这种观测矩阵的应用范围受到很大的限制. 此外, 采用随机滤波器滤波也是一种有效的观测方法, 不过目前仍缺乏理论基础, 也缺少对其性能的详细分析. 文献[ 21]将伪高斯矩阵和部分傅立叶方法巧妙的结合在一起,提出了一种结构化的随机观测矩阵设计方法, 这种观测矩阵具有与所有基不相干的特性, 同时也有较快的计算速度.

总结以上的工作可以得出如下结论: 观测矩阵的随机不相关特性是正确恢复信号的一个充分条件, 观测矩阵和信号的高度不相干是有效恢复信号的保证.但是, 现在仍然无法确定随机不相关特性是否是最优恢复信号的必要条件, 这仍是一个公开问题. 另外, 如何衡量观测矩阵的不相干特性, 以及它们与恢复性能之间的关系也是一个尚未解决的问题.

另外, 自适应的观测矩阵设计也是观测矩阵设计的一个重要方面. 在众多有关压缩感知理论的文献中,大部分的观测矩阵都是预先设计好的, 不需要根据观测信号而自适应变化. 实际上, 如果能够进行自适应的观测, 压缩感知的压缩性能可以得到进一步的提高. 在文献[ 22] 中, 作者用Bayes 估计的观点对压缩感知做出了一种全新的解释. 在文献中, 压缩感知的解的可信度可以通过微分熵来衡量, 这样在已有观测的基础上, 下一次最优的观测向量应该使问题解的微分熵下降最快, 它可以由已有的观测向量和观测值唯一确定. 而且, 幸运的是这一特性在编码端和解码端是同样的. 由于对观测矩阵的最优化设计,Bayesian CS 与使用普通的随机观测矩阵相比, 在同等观测次数的情况下, 性能得到了很大的提高. 当然这也付出了一定的代价, 计算最优观测向量需要很大的计算量, 所以能够简捷有效地确定最优观测向量仍是这方面的一个有待解决的问题.

5.3 分布式压缩感知理论( Distr ibuted CompressedSensing, DCS)

目前, 针对单个信号的压缩感知的研究和应用已经开展得比较深入, 但是对分布式信号的处理仍然研究得不够. 例如, 对于一个包含大量传感器节点的传感器网络, 每个传感器都会采集大量的数据, 这些数据将会传输到一个控制中心, 也会在各个节点之间传输. 显然, 在这种分布式传感器网络中, 数据传输对功耗和带宽的需求非常大, 那么, 如何对分布式信号进行压缩以减少通信压力成为非常紧迫的需求.

2006年,Haupt 和Nowak 将压缩感知理论应用到多个信号的环境中 , 然而他们的方法仅研究了多个信号的互相关性, 却没有考虑单个信号的内相关性. Baron等人在压缩感知理论的基础上提出了分布式压缩感知(DCS) [ 18] , 进一步扩展了压缩感知理论的应用, 将单信号的压缩采样扩展到了信号群的压缩采样, 它着重研究如何利用信号内相关性和互相关性对多个信号进行联合重构. 这种联合重构的重要意义在于, 相对于压缩感知, 分布式压缩感知可节约相当可观的观测数目. 文献[ 18] 中的实验结果表明对于两个相关的信号可节约的观测数目大约为30%.

DCS 理论建立在一个称之为信号群的/ 联合稀疏( JSM) 0概念上.它指出, 如果多个信号都在某个基下稀疏, 并且这些信号彼此有关, 那么每个信号都能够通过利用另一个不相关基( 例如一个随机矩阵) 进行观测和编码, 得到远少于信号长度的编码. 将每个编码后的少量数据传输到解码端, 那么在适当的条件( 如JSM21)下, 解码端利用接收到的少量数据就能够精确重建每一个信号.

文献[ 18] 系统地阐述了DCS 理论及其应用, 提出了相应的压缩感知方法及恢复算法, 并采用稀疏的随机投影矩阵作为观测矩阵, 详细分析了分布式压缩感知理论的观测过程, 而文献[ 23] 则从重构误差估计的角度对分布式压缩感知理论进行了研究.

DCS 理论为分布式信号的处理提供了新的方法, 目前的热点和难点主要集中在如何将其应用到各种复杂的实际传感器网络中. 在某种意义上, DCS 是一种分布式信源压缩的框架, 它在很长时间内都将是一个具有挑战性的公开难题.

六总结与展望

压缩感知理论利用了信号的稀疏特性, 将原来基于奈奎斯特采样定理的信号采样过程转化为基于优化计算恢复信号的观测过程. 也就是利用长时间积分换取采样频率的降低, 省去了高速采样过程中获得大批冗余数据然后再舍去大部分无用数据的中间过程, 从而有效缓解了高速采样实现的压力, 减少了处理、存储和传输的成本, 使得用低成本的传感器将模拟信息转化为数字信息成为可能. 这种新的采样理论将可能成为将采样和压缩过程合二为一的方法的理论基础.

本文对压缩感知理论框架的全过程进行了描述,详细阐述了压缩感知理论所涉及的关键技术, 综述了国内外研究成果、存在的公开问题及最新的相关理论扩展, 如冗余字典下的压缩感知理论、模拟2信息理论、分布式压缩感知理论等. 并对其中的问题进行了概括性讨论.

压缩感知理论的研究已经有了一些成果, 但是仍然存在大量的问题需要研究.概括为以下几个方面:

(1)对于稳定的重构算法是否存在一个最优的确定性的观测矩阵;

(2)如何构造稳定的、计算复杂度较低的、对观测次数限制较少的重构算

法来精确地恢复可压缩信号;

(3)如何找到一种有效且快速的稀疏分解算法是冗余字典下的压缩感知理论的难点所在;

(4)如何设计有效的软硬件来应用压缩感知理论解决大量的实际问题, 这方面的研究还远远不够;

(5)对于p2范数优化问题的求解研究还远远不够;

(6)含噪信号或采样过程中引入噪声时的信号重构问题也是难点所在, 研究结果尚不理想. 此外, 压缩感知理论与信号处理其它领域的融合也远不够, 如信号检测、特征提取等. CS 理论与机器学习等领域的内在联系方面的研究工作已经开始.

压缩感知理论是新诞生的, 虽然还有许多问题待研究, 但它是对传统信号处理的一个极好的补充和完善, 是一种具有强大生命力的理论, 其研究成果可能对信号处理等领域产生重大影响

参考文献

[1]石光明.刘丹华.高大化.刘哲.林杰.王良君压缩感知理论及其研究进展-ACTA Electronica Sinica 2009,37(5)

[2]张锐基于压缩感知理论的图像压缩初步研究-Computer Knowledge And Technology 2010,6(4)

[3]Candes E, Romberg J, Tao T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Trans. Information Theory, 2006, 52(4): 489-509.

[4]E Candes and J Romberg, Quantitative robust uncentainty principles and optimally sparse decompositions[J]. Foundations of Comput Math, 2006, 6(2): 227-218.

[5]E Candès.T Tao Near optimal signal recovery from random projections:Universal encoding strategies 2006(12)

[6]D L Donoho Compressed sensing 2006(04)

[7]B Kashin.The widths of certain finite dimensional sets and classes of smooth functions[J].Izv Akad Nauk SSSR.1977, 41(2):334-351.

[8]E Candès Compressive sampling 2006

[9]喻玲娟.谢晓春压缩感知理论简介-Video Engineering 2008,32(12)

[10]DONOHO D.TSAIG Y Extensions of compressed sensing 2006(03)

[11]Guangming Shi.Jie Lin.Xuyang Chen.Fei Qi,Danhua Liu Li Zhang UWB echo signal detection with ultra low rate sampling based on compressed sensing 2008(04)

[12]张春梅.尹忠科.肖明霞基于冗余字典的信号超完备表示与稀疏分解-科学通报2006(06)

[13]V Temlyakov Nonlinear Methods of Approximation[IMI Research Reports] 2001

[14]FIGUEIREDO M A T.NOWAK R D.WRIGHT S J Gradient projection for sparse reconstruction:application to compressed sensing and other inveme problems 2007(04)

[15]S Mallat.杨力华.戴道清.黄文良信号处理的小波导引 2002

[16]覃凤清.数字图像压缩综述[J].宜宾学院学报,2006(6)

[17]刘丹华.石光明.周佳社一种冗余字典下的信号稀疏分解新方法-西安电子科技大学学报(自然科学版)2008(02)

[ 18] D Baron, M B Wakin, M Duarte, etc. Distributed compressed

sensing [ OL ] . DCS112005.

[ 19] R Chartrand. Exact Reconstruction of Sparse Signals via Non2 convex Minimization [ J ] . IEEE Signal Processing Letters.

2007, 14( 10) : 7072710.

[ 20] E J Candes, J Romberg. Sparsity and incoherence in compres2 sive sampling[ J] . Inverse Problems. 2007, 23( 3) : 9692985.

[ 21] T T Do, T D. Tran , L Gan. Fast compressive sampling with structurally random matrces [ OL] .

[ 22] S Ji, Y Xue, L Carin. Bayesian compressive sensing[ J] . IEEE Transactions Signal Processing, 2008, 56( 6) : 234622356.

[ 23] W Wang, M Garofalakis, K Ramchandran. Distributed sparse

random projections for refinable approxim2ation[ A] . Proceed2

ings of the Sixth International Symposium on Information Pro2

cessing in Sensor Networks, ( IPSN2007) [C] . New York: As2

sociation for Computing Machinery, 2007. 3312339.

论文题目压缩感知技术研究进展

中文摘要

信号采样是联系模拟信源和数字信息的桥梁.人们对信息的巨量需求造成了信号采样、传输和存储的巨大压力. 如何缓解这种压力又能有效提取承载在信号中的有用信息是信号与信息处理中急需解决的问题之一. 近年国际上出现的压缩感知理论(Compressed Sensing,CS)为缓解这些压力提供了解决方法. 本文综述了CS 理论框架及关键技术问题, 并介绍了仿真实例、应用前景, 评述了其中的公开问题,对研究中现存的难点问题进行了探讨,最后对CS技术做了一下总结和展望

关键词:压缩感知;稀疏表示;观测矩阵;编码;解码

英文题目Advances in Theory and Application of Compressed Sensing

英文摘要

Sampling is the bridge between analog source signal and digital signal. With the rapid progress of information technologies, the demands for information are increasing dramatically. So the existing systems are very difficult to meet the challenges of high speed sampling, large volume data transmission and storage. How to acquire information in signal efficiently is an urgent problem in electronic information fields. In recent year s, an emerging theory of signal acquirement. compressed sensing(CS) provides a golden opportunity for solving this problem. This paper reviews the theoretical framework and the key technical problems of compressed sensing and introduces the latest developments of signal sparse representation, design of measurement matrix and reconstruction algorithm. Then this paper also reviews several open problems in CS theory and discusses the existing difficult problems. In the end, the application fields of compressed sensing are introduced.

英文关键词

压缩感知简介

2011.No31 0 3.2 熟悉结构施工图 结构施工图是关于承重构件的布置,使用的材料、形状、大小及内部构造的工程图样,是承重构件以及其他受力构件施工的依据。 看结构施工图最难的就是钢筋,要把结施图看懂就要知道钢筋的分布情况,现在都是在使用平法来标示钢筋,所以也要把平法弄懂才行。在识读与熟悉结施图的过程中应该充分结合钢筋平法表示的系列图集,搞清楚: a 各结构构件的钢筋的品种,规格,以及受力钢筋在各构件的布置情况。 b 箍筋与纵向受力钢筋的位置关系。 c 各个构件纵向钢筋以及箍筋弯钩的角度及其长度。 d 熟悉各构件节点的钢筋的锚固长度。 e 熟悉各个构件钢筋的连接方式。 f 熟悉在钢筋的搭接区域内,钢筋的搭接长度。 g 核算钢筋的间距是否满足施工要求,尤其是各个构件节点处的钢筋间距。 h 弯起钢筋的弯折角度以及离连接点的距离。 除此以外,对于钢筋混凝土构件,还应该熟悉各个构件的砼保护层厚度,各个构件的尺寸大小、布置位置等。特别注意的是对于结施图的阅读应充分结合建施图进行。 4 结束语 在熟悉施工图纸的过程中,施工技术人员对于施工图纸中的疑问,和比较好的建议应该做好记录,为后续工作(图纸自审和会审)做好准备。 参考文献 [1]《建筑识图》周坚主编 中国电力出版社 2007年;[2]《建筑工程项目管理》银花主编 机械工业出版社 2010年; 摘 要 压缩感知(Compressive Sensing, CS)理论是一个充分利用信号稀疏性或可压缩性的全新信号采集、编解码理论。本文系一文献综述,主要介绍了压缩感知的三部分即信号的稀疏表示、测量矩阵的设计、信号恢复算法的设计。 关键词 压缩感知 稀疏表示 测量矩阵 信号恢复算法 1 引言 1928年由美国电信工程师H.奈奎斯特(Nyquist)首先提出,1948年信息论的创始人C.E.香农(Shannon)又对其加以明确说明并正式作为定理引用的奈奎斯特采样定理,是采样带限信号过程所遵循的规律。它指出:在进行模拟/数字信号的转换过程中,当采样频率fs.max大于信号中最高频率fmax的2倍时(fs.max>=2fmax),采样之后的数字信号完整地保留了原始信号中的信息。一般实际应用中保证采样频率为信号最高频率的5~10倍。该理论支配着几乎所有的信号/图像等的获取、处理、存储、传输等。随着科技的发展,成为目前信息领域进一步发展的主要瓶颈之一,主要表现在两个方面: (1)数据获取和处理方面。在许多实际应用中(例如超宽带信号处理、核磁共振、空间探测等),Nyquist采样硬件成本昂贵、获取效率低下,信息冗余及有效信息提取的效率低下,在某些情况甚至无法实现。 (2)数据存储和传输方面。通常的做法是先按照Nyquist方式获取数据,然后将获得的数据进行压缩,最后将压缩后的数据进行存储或传输,这样会造成很大程度的资源浪费。另外,为保证信息的安全传输,通常以某种方式对信号进行编码,这给信息的安全传输和接收带来一定程度的麻烦。 近年来,由D .D o n o h o (美国科学院院士)、E . Candes(Ridgelet, Curvelet创始人)及华裔科学家T. Tao(2006年菲尔兹奖获得者,2008年被评为世界上最聪明的科学家)等人提出了一种新的信息获取指导理论,即压缩感知(Compressive Sensing(CS),或称Compressed Sensing、Compressed Sampling)。该理论指出:对可压缩的信号通过远低于Nyquist标准的方式进行数据采样,仍能够精确地恢复出原压缩感知简介 刘太明1 黄 虎2 (1、成都理工大学,四川成都,610059;2、成都理工大学,四川成都,610059) 始信号。该理论一提出,就在信息论、信号/图像处理、医疗成像、模式识别、地质勘探、光学/雷达成像、无线通信等领域受到高度关注,并被美国科技评论评为2007年度十大科技进展。 2 CS基本原理 信号x∈R n×1压缩传感的测量过程可以表示为y=Ax∈R M×1,M<

压缩感知技术概况与学习心得

压缩感知技术概况与学习心得 一、数学知识 学习压缩感知课程需要一些数学基础,比如范数理论和凸优化问题。在矩阵论课上,老师将压缩感知作为范数理论的例子进行讲解。Ax=b,A是系统模型,b是观测值,当A是满秩方阵时,x有唯一解。当A为胖矩阵,即b的维数小于x时,方程有无穷多组解,在实际应用中我们希望的是唯一解,所以加个0范数的约束条件以得到唯一解,在一定条件下0范数问题又等价于1范数问题,将原问题转化为一个优化问题。通过查资料了解到什么是凸优化问题。若对于以下优化问题: 若目标函数f(x)是凸函数且可行集R是凸集,则称这样的问题为凸优化问题这个也可以换一种更一般的表达方式:对于以下优化问题 如果目标函数f(x)和共l个约束函数gi(x)都是凸函数,则称这样的问题为凸优化问题。凸函数的定义:对于(x)是定义在某凸集(非空的,空集也被规定为凸集)上的函数,对于凸集中的任意两点x1和x2,若 f[μx1+(1-μ)x2]<=μf(x1)+(1-μ)f(x2)则称函数f(x)为凸函数。直观几何表示:

也就是说两点对应的函数值f(x1)和f(x2)的之间的连(μf(x1)+(1-μ)f(x2))大于等于相应的(即同一个μ值)两点之间连线(μx1+(1-μ)x2)所对应的函数值f[μx1+(1-μ)x2]。这其实应叫下凸。 如果把上面不等式中的等号去掉,即 f[μx1+(1-μ)x2]<μf(x1)+(1-μ)f(x2) ,其中0<μ<1则称f(x)为严格凸函数。 二、问题描述 从物理世界获得的模拟信号无法直接应用在数字世界的计算机上,采样是将模拟量转换为数字量的必须步骤,奈奎斯特采样定理是指导采样过程的阶段性理论,之所以说它有阶段性,是因为已经出现了更适合信息技术发展的新理论—压缩感知。 如果信号的带宽很高,例如雷达系统相关的射频信号,根据传统采样定理,采样频率必须高于信号最高频率的二倍,而实际中没有采样率足够高的线路系统与之匹配,导致采集的信号带宽远低于实际信号的带宽。另一个实例,经典的数据压缩技术,比如音频压缩、图像压缩等都是直接将数据本身的冗余部分去除,以实现压缩的目的。这里所指的压缩有两个特点:第一、它是在数据被完整采集的基础上进行压缩;第二、压缩过程十分复杂。相对而言,解码过程更加简单,以音频压缩为范例,压制一个mp3 文件的计算量远大于播放(即解压缩)一个mp3 文件的计算量。稍加思量就会发现,这种压缩和解压缩的不对称性正好同人们的需求是相反的。现在的信号采集设备大多数计算能力较差,比如相机,录音笔,摄像头等。然而解压缩信号的设备却是计算机,它有相当高的计算能力,也没有便携和省电的要求。也就是说,我们是在用廉价节能的设备来处理复杂的计算任务,而用大型高效的设备处理相对简单的计算任务。 压缩感知理论可以解决上述两个问题,直接采集压缩的数据,将复杂的信号还原过程留给计算机。为更好理解压缩感知理论先了解一下传统压缩理论。传统压缩的数学模型是这样的,将需重建的信号x表示成一N 维向量 , 将对信号x 的观测抽象为用一m × N 的矩阵Φ对信号x进行线性变换。这样,我们所观测的信息为 =(1) yΦ x 为恢复信号x,我们需要观测几次呢?由数学知识可知, 为使方程组(1) 的解存在且唯一, 我们须选择m ≥ N. 也就是说, 我们需要至少进行m=N次观测。传统压缩的步骤是这样的,使m=N,则y也是一N维向量,留住其中的K个数值大

基于压缩感知的雷达成像

H a r b i n I n s t i t u t e o f T e c h n o l o g y 课程报告 课程名称:现代信号处理专题论文题目:基于压缩感知的雷达成像院系:电信学院 班级:电子一班 设计者:刘玉鑫 学号:13S005061 指导教师:张云 时间:2014.06 哈尔滨工业大学

第一章压缩感知理论基本原理 1.1 压缩感知的基本知识 压缩感知理论的核心思想主要包括两点。第一个是信号的稀疏结构。传统的香农信号表示方法只开发利用了最少的被采样信号的先验信息,即信号的带宽。但是,现实生活中很多广受关注的信号本身具有一些结构特点。相对于带宽信息的自由度,这些结构特点是由信号的更小的一部分自由度所决定。换句话说,在很少的信息损失情况下,这种信号可以用很少的数字编码表示。所以,在这种意义上,这种信号是稀疏信号(或者近似稀疏信号、可压缩信号)。另外一点是不相关特性。稀疏信号的有用信息的获取可以通过一个非自适应的采样方法将信号压缩成较小的样本数据来完成。理论证明压缩感知的采样方法只是一个简单的将信号与一组确定的波形进行相关的操作。这些波形要求是与信号所在的稀疏空间不相关的。 压缩感知方法抛弃了当前信号采样中的冗余信息。它直接从连续时间信号变换得到压缩样本,然后在数字信号处理中采用优化方法处理压缩样本。这里恢复信号所需的优化算法常常是一个已知信号稀疏的欠定线性逆问题。 1.2 压缩感知的主要原理内容 总的说来,压缩感知方法的处理流程可简要描述为:基于待处理信号在某个基上的稀疏性或可压缩性,设计合理的测量矩阵,获得远小于信号维数但包含足够信号特征信息的采样,通过非线性优化算法重构信号。 在传统理论的指导下,信号X的编解码过程如图1-1所示。编码端首先获得X的N店采样值经变换后只保留其中K个最大的投影系数并对它们的幅度和位置编码,最后将编得的码值进行存储或者传输。 解压缩仅仅是编码过程的逆变换。实际上,采样得到的大部分数据都是不重要的,即K值很小,但由于奈奎斯特采样定理的限制,采样点数N可能会非常大,采样后的压缩是造成资源浪费的根本所在。

基于压缩感知的DOA估计程序

程序可运行,有图有真相,MATLAB得事先装好cvx优化包。 clc; clear; close; lambda=1; d=lambda/2; %阵元间距离,取为入射波长的一半 K=500; %采样快拍数 theta=[-5 10]; %入射角度 SignalNum=length(theta); %入射信号数量 Nnum=5; %%阵列阵元数量 SNR1=-10; %%信噪比 Aratio=sqrt(10^(SNR1/10)); %信号幅度与噪声幅度比值,并假设信号幅度为1 Fs=5*10^3; %信号频率 Fc=[2*10^3,5*10^3,8*10^3]; %入射信号频率 fs=20*10^3; thetatest=(-90*pi/180:1*pi/180:90*pi/180); %theta角度搜索范围 thetanum=length(thetatest); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%计算信号协方差矩阵%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% T_Vector=(1:K)/fs; A=zeros(Nnum,SignalNum); SignalVector=zeros(SignalNum,K); %NoiseVector=zeros(Nnum,K); Xt=zeros(Nnum,K); %%构造A矩阵 for k2=1:SignalNum for k1=1:Nnum %1:12 At(k1)=exp(j*(k1-1)*2*pi*d*sin(theta(k2)*pi/180)/lambda); A(k1,k2)=At(k1); end end %%%构造信号矩阵和噪声矩阵 for k1=1:SignalNum SignalVector(k1,:)=exp(j*2*pi*Fc(k1).*T_Vector); %信号 end Xtt=A*SignalVector;

压缩感知理论综述(原创)

压缩感知理论综述 摘要:信号采样是模拟的物理世界通向数字的信息世界之必备手段。多年来,指导信号采样的理论基础一直是著名的Nyquist采样定理,但其产生的大量数据造成了存储空间的浪费。压缩感知(Compressed Sensing)提出一种新的采样理论,它能够以远低于Nyquist采样速率采样信号。本文详述了压缩感知的基本理论,着重介绍了信号稀疏变换、观测矩阵设计和重构算法三个方面的最新进展,并介绍了压缩感知的应用及仿真,举例说明基于压缩感知理论的编解码理论在一维信号、二维图像处理上的应用。 关键词:压缩感知;稀疏表示;观测矩阵;编码;解码 一、引言 Nyquist采样定理指出,采样速率达到信号带宽的两倍以上时,才能由采样信号精确重建原始信号。可见,带宽是Nyquist采样定理对采样的本质要求。然而随着人们对信息需求量的增加,携带信息的信号带宽越来越宽,以此为基础的信号处理框架要求的采样速率和处理速度也越来越高。解决这些压力常见的方案是信号压缩。但是,信号压缩实际上是一种资源浪费,因为大量的不重要的或者只是冗余信息在压缩过程中被丢弃。从这个意义而言,我们得到以下结论:带宽不能本质地表达信号的信息,基于信号带宽的Nyquist采样机制是冗余的或者说是非信息的。 于是很自然地引出一个问题:能否利用其它变换空间描述信号,建立新的信号描述和处理的理论框架,使得在保证信息不损失的情况下,用远低于Nyquist 采样定理要求的速率采样信号,同时又可以完全恢复信号。与信号带宽相比,稀疏性能够直观地而且相对本质地表达信号的信息。事实上,稀疏性在现代信号处理领域起着至关重要的作用。近年来基于信号稀疏性提出一种称为压缩感知或压缩采样的新兴采样理论,成功实现了信号的同时采样与压缩。 简单地说,压缩感知理论指出:只要信号是可压缩的或在某个变换域是稀疏的,那么就可以用一个与变换基不相关的观测矩阵将变换所得高维信号投影到一个低维空间上,然后通过求解一个优化问题就可以从这些少量的投影中以高概率重构出原信号,可以证明这样的投影包含了重构信号的足够信息。在该理论框架

基于压缩感知的电力监控系统研究

基于压缩感知的电力监控系统研究 摘要:随着经济和科技水平的快速发展,电力行业发展也十分快速。智能电网 的关键部分之一是构建低功耗、高效率的监控网络,该网络需要支持数以百万计 的智能电表或其它监控终端,其中,“最后一公里”成为制约当前智能电网发展的 首要问题。使用无线通讯技术以及由此衍生的无线传感器网络能够满足较少节点 的非实时数据采集和传输,然而当接入网络的智能电表或终端数量急剧增加、提 高系统实时性要求,则产生的大量数据及其通讯将导致较大的网络时延并降低网 络可靠性。在汇聚节点或区域基站采用压缩感知是解决该问题的有效方法之一, 与传统的数据压缩算法相比,压缩感知方法的稀疏矩阵的维数明显小于原始数据 矩阵维数,通过非线性重建算法能够获得比典型的线性回归方法更低的误差率。 压缩感知已被应用一些电力系统中,如文献[6]对智能电网中路由协议和质量问题 进行研究;在对智能电网文献综述中阐述了压缩感知在其中的应用发展情况;提 出基于压缩感知的小区电网数据监控方案。 关键词:智能电网;无线传感器网络;压缩感知 引言 随着社会经济的发展和科学技术的进步,电力企业得到了快速的发展,在电 力系统运行的过程中,由于电力系统的运行稳定性极易受到外界因素的影响,所 以为了避免电力系统运行故障的发生,我们需要给予电力监控系统网络安全监测 装置足够的重视,一定要能够确保电力系统安全、稳定的运行。电力行业的稳定 发展会直接影响到社会经济的发展速度,电力是现阶段社会工业生产建设中最主 要的能源,也是人们日常生活中最基础的能源,一旦电力系统的运行出现故障, 可能会给国家经济的增长以及人们的正常电力生活带来巨大的影响。 1电力监控系统特点分析 随着智能电网的建设和发展,电力监控系统在电网中得到了广泛的应用。电 力监控系统通过计算机技术对整个电网的运行状态进行实时监控和管理,为整个 电网的安全运行起到了保障作用。计算机技术和网络技术在电力监控系统中的应用,提高了电力监控系统的监控管理质量。在电力监控系统中,以太网技术实现 了电力监控系统的自动化和网络化。自动化装置和数字化电能表等智能电子设备 在电力监控系统中的应用,不仅建立了安全可靠的智能化电力监控系统,而且提 高了整个电力监控系统的自动化水平。中的很多设备都是由不同厂商制造,易出 现信息孤岛问题。MAS理论作为分布式人工智能技术,在电力监控系统中的应用,不仅解决了信息孤岛问题,而且实现了电力监控系统的自动化和智能化,并且在 电力监控系统的设计中得到了广泛应用。 2压缩感知系统测试 为了验证进一步验证系统及压缩感知模型的有效性,选取研究者所在大楼及 周边区域部署WSN测试系统,系统中包含了服务器(Host)、中继器(Router) 和传感器(Sensor)三类共7个设备节点构成典型的传感器网络测试环境。在该 测试模型中设定了两个具有路由功能的节点router1(R1)和router2(R2)它们 与测试终端构成两条基本待测通讯链路L1和L2,以及由R2R1H1所形成的路由中继链路L3L1;每个中继节点分别下辖2个传感器Sensor(S1~S4)。它们 分别使用传感器数据链路B1~B4向中继节点提交数据。各节点的温度传感器有高 低两种采样率,其中低速采样率为1h/次,高速采样率为6min/次;选取10月9 日这一天的天气温度作为对比测试样本,在小气候的作用下整体而言S1、S2获

基于压缩感知的人脸识别算法

龙源期刊网 https://www.doczj.com/doc/f010870470.html, 基于压缩感知的人脸识别算法 作者:胡槟 来源:《科技探索》2013年第09期 中图分类号:TP391.41 文献标识码:A 文章编号:1007-0745(2013)09-0141-01 1 压缩感知介绍 过去的几十年间,各种传感系统获取数据的能力不断地增强,这就对系统的采集和处理能力提出了更高的要求。如果仍然采用传统的Nyquis T采样定理,就需要二倍于信号带宽的采 样率,这给采样硬件设备带来了极大的挑战。 压缩感知理论是由Donoho与Candes等人提出的一个新的理论框架,其在线性模型的基础上,核心是只要信号是稀疏的,低维信号就能很好的恢复到高维信号。 2 理论简介 传统的信息处理主要由采样、压缩、传输和解压缩四个部分组成。在这个传统过程中,采样率必须高于信号模拟信号中最高频率的二倍,随着图像数据的越来越大,这给采样设备提出了更高的要求。传统的信号压缩是通过对信号进行一些变换(如:小波变换、离散余弦变换),然后剔除掉变换后为零或近似为零的数据,通过对少数绝对这大的新书进行压缩编码,从而实现大数据的压缩。在传统信号获取过程中,将采样和压缩分开,是否可以将压缩和采样过程合并呢?于是有人就尝试着将采样和压缩过程合并,这不仅能够大大缓解香农定理对于采样率和传输处理的要求,也能够大大提高数据采集的效率和性能。 2.1 信号稀疏表示 通常,大部分自然信号并不是稀疏的,但是通过实验发现大部分自然信号都可以通过某些映射变将其变换为稀疏的根据调和分析理论,一个一维离散信号f,可以通过一组标准正交基线性表出: 或(3.1) 其中,N为信号长度,为标准正交基,为正交基的第 i列的向量,系数矩阵。如果系数 矩阵x是稀疏的,那么原始信号f就是可稀疏表示的。如果说系数矩阵x为信号f的K稀疏表示,则向量x中只有K个非零分量。 2.2信号重构

压缩感知磁共振成像技术综述

https://www.doczj.com/doc/f010870470.html, 压缩感知磁共振成像技术综述 王水花,张煜东 南京师范大学计算机科学与技术学院,江苏南京210023 【摘 要】目的:综述近年来压缩感知磁共振成像技术的研究进展。方法:磁共振成像是目前临床医学影像中最重 要的非侵入式检查方法之一,然而其成像速度较低,限制其发展。压缩感知是一种新的信号采集与获取理论,它利用信号在特定域上的稀疏性或可压缩性,可通过少量测量重建整个原始信号。压缩感知磁共振成像技术将压缩感知应用到磁共振成像中,可在相同的扫描时间内获得更精细的空间组织结构,也可在相同的空间分辨率下加速成像。结果:本文概述了压缩感知磁共振成像的理论基础,分别从稀疏变换、不相干欠采样、非线性重建三个方面具体阐述,最后讨论了其研究展望与应用现状。结论:压缩感知磁共振成像具有较好的发展潜力,有逐渐增长的医用与商用价值。 【关键词】磁共振成像;压缩感知;稀疏变换;不相干欠采样;非线性重建【DOI 编码】doi:10.3969/j.issn.1005-202X.2015.02.002【中图分类号】R312;R445.2 【文献标识码】A 【文章编号】1005-202X (2015)02-0158-05 Survey on Compressed Sensing Magnetic Resonance Imaging Technique WANG Shui-hua,ZHANG Yu-dong School of Computer Science and Technology,Nanjing Normal University,Nanjing 210023,China Abstract:Objective This paper focuses on the survey of compressed sensing in magnetic resonance imaging (CSMRI ).Meth -ods Magnetic resonance imaging is one of the most crucial non-invasive diagnostic implements in routine clinical examination.However,it is often limited by long scan https://www.doczj.com/doc/f010870470.html,pressed sensing is a novel theory of signal acquisition and processing.It capitalizes on the signal's sparseness or compressibility in specific domain,allowing the entire original signal to be reconstruct-ed from relatively few measurements.CSMRI is proposed by integrating compressed sensing into MRI,providing more precise spatial tissue structure than normal technique in the same scan time,and accelerating imaging in the same spatial resolution.Results In this study we discussed in depth three components as sparse transform,incoherent subsampling,and nonlinear re-construction.We conclude the paper by discussing the research prospects and applications of CSMRI.Conclusion CSMRI has good development potential,and has increasing values for medical and commercial applications. Key words:magnetic resonance imaging;compressed sensing;sparse transform;incoherent subsampling;nonlinear recon-struction 前言 1971年,纽约州立大学的Paul https://www.doczj.com/doc/f010870470.html,uterbur 教授提出磁共振成像(MRI),并于2003年获得诺贝尔生理医学奖。MRI 利用核磁共振原理,由于能量在不同物 质结构中有不同的衰减[1],通过外加梯度磁场检测电 磁波,可知构成物体原子核的位置和种类,从而绘制物体内部影像[2-3]。 MRI 是目前少有的对人体无伤害的安全、快速、准确的临床诊断方法,具有多方位、多参数、多模态等优点,不仅可显示人体组织的解剖信息,而且可显示功能信息。MRI 在临床上有广泛的应用,如今每年至少有6000万病例利用MRI 技术进行检查。但MRI 扫描时间过长、成像较慢[4],造成以下几个问题[5]:(1)给病人造成额外的痛苦;(2)由于器官运动(例如呼吸、眨眼、吞咽等非自主运动)造成图像模糊,增加伪影;(3)无法满足动态实时成像与导航的需要;(4)限制功能成像的推广,如波谱成像、磁敏感加权成像等。 2006年Candes 等[6]在前人的基础上,系统性地 【收稿日期】2014-12-21 【基金项目】国家自然科学基金(610011024);南京师范大学高层次人才 科研启动基金(2013119XGQ0061,2014119XGQ0080) 【作者简介】王水花,女,助教,研究方向:生物图像处理。【通信作者】张煜东,男,博士,教授,研究方向:医学图像处理。 158--

压缩感知 很好的综述 2012

压缩感知? 许志强? 中国科学院数学与系统科学研究院, 计算数学与科学工程计算研究所, 科学与工程计算国家重点实验室,100190,北京 2012年1月12日 摘要 压缩感知是近来国际上热门的研究方向.其在信号处理中具有很好的应用前景. 此外,它与逼近论、最优化、随机矩阵及离散几何等领域密切相关,由此产生了一些漂 亮的数学结果.本文综述压缩感知一些基本结果并介绍最新进展.主要包括RIP矩阵 编码与?1解码的性能,RIP矩阵的构造,Gelfand宽度,个例最优性及OMP解码等. 1引言 现实世界中,人们经常需要对信号进行观测,例如医学图像成像、CT断层扫描等,以期通过观测信息对原始的信号进行重建.由于计算机的离散化存储,我们可将需重建的信号x抽象为一N维向量,可将对信号x的观测抽象为用一n×N的矩阵Φ与信号x进行乘积.例如在CT扫描中,矩阵Φ通常选择为离散Fourier矩阵.那么,我们所观测的信息为 y=Φx.(1)人们自然而问:为重建信号x,至少需要多少次观测?由线性代数知识可知,为使方程组(1)的解存在且唯一,我们须选择n≥N.也就是说,我们需要至少进行n=N次观测.然而,现实世界中的自然信号通常具有一定规律性.对这种规律性,一种常用的刻画方式是自然信号在一组基底表示下是稀疏的.这里的“稀疏”是指它们用一组基底展开后,大多数系数为0,或者绝对值较小.例如,自然图像用小波基底展开后,一般而言,其展开系数大多 ?国家自然科学基金(11171336)及创新群体(11021101)资助. ?Email:xuzq@https://www.doczj.com/doc/f010870470.html, 1

数绝对值较小.这也就是图像能够进行压缩的原理.然而,这同时为人们减少观测次数n 从理论上提供了可能性.因而,压缩感知的主要任务为:对尽量小的n,设计n×N观测矩阵Φ,以及通过Φx快速恢复x的算法.所以,压缩感知的研究主要分为两方面:矩阵Φ的设计;与反求信号x的算法. 本文主要介绍压缩感知的一些基本结果.在每节里,我们采用注记的方式介绍当前的一些研究进展及研究问题,同时提供与之相关的参考文献,以使感兴趣的读者可进一步探索.本文组织结构如下:第2节中我们介绍了稀疏信号精确恢复的编码、解码方法.特别是,我们将介绍矩阵的零空间性质,及RIP矩阵编码与?1解码的性能.我们在第3节中介绍RIP矩阵的构造方法,包括随机矩阵、结构随机矩阵及确定性矩阵.在第4节中,为理解最优编码、解码对的性能,我们介绍了Gelfand宽度与编码、解码对性能的关联.我们在第5节中介绍了编码、解码对在不同范数意义下的个例最优性.最后一节简要介绍实现解码的算法. 2稀疏信号的恢复 为方便介绍压缩感知理论,我们将信号的稀疏性简单理解为信号中非0元素数目较少.我们所指的信号即为一向量x∈R N.我们用Σs表示s-稀疏向量集合,即 Σs:={x∈R N:∥x∥0≤s}, 这里∥x∥0表示x中的非0元素数目.所谓对信号x0∈R N编码,即指用一n×N的矩阵Φ与x0∈R N进行乘积,那么我们得到 y=Φx0. 此处,y∈R n即为我们所观测到的关于x0的信息.所谓解码,就是试图通过y反求x0,也就是寻找一从R n到R N的映射,我们将该映射记为?.我们用?(y)表示反求结果.一般而言,若n

压缩感知原理

压缩感知原理(附程序) 1压缩感知引论 传统方式下的信号处理,是按照奈奎斯特采样定理对信号进行采样,得到大量的采样数据,需要先获取整个信号再进行压缩,其压缩过程如图2.1。 图2.1 传统的信号压缩过程 在此过程中,大部分采样数据将会被抛弃,即高速采样后再压缩的过程浪费了大量的采样资源,这就极大地增加了存储和传输的代价。 由于带宽的限制,许多信号只包含少量的重要频率的信息。所以大部分信号是稀疏的或是可压缩的,对于这种类型的信号,既然传统方法采样的多数数据会被抛弃,那么,为什么还要获取全部数据而不直接获取需要保留的数据呢?Candes和Donoho等人于2004年提出了压缩感知理论。该理论可以理解为将模拟数据节约地转换成压缩数字形式,避免了资源的浪费。即,在采样信号的同时就对数据进行适当的压缩,相当于在采样过程中寻找最少的系数来表示信号,并能用适当的重构算法从压缩数据中恢复出原始信号。压缩感知的主要目标是从少量的非适应线性测量中精确有效地重构信号。核心概念在于试图从原理上降低对一个信号进行测量的成本。压缩感知包含了许多重要的数学理论,具有广泛的应用前景,最近几年引起广泛的关注,得到了蓬勃的发展。 2压缩感知原理 压缩感知,也被称为压缩传感或压缩采样,是一种利用稀疏的或可压缩的信号进行信号重构的技术。或者可以说是信号在采样的同时被压缩,从而在很大程度上降低了采样率。压缩感知跳过了采集N个样本这一步骤,直接获得压缩的信号的表示。CS理论利用到了许多自然信号在特定的基 上具有紧凑的表示。即这些信号是“稀疏”的或“可压缩”的。由于这一特性,压缩感知理论的信号编解码框架和传统的压缩过程大不一样,主要包括信号的稀疏表示、编码测量和重构算法等三个方面。

压缩感知新技术专题讲座_二_第3讲压缩感知技术中的信号稀疏表示方法

压缩感知新技术专题讲座(二) 第3讲 压缩感知技术中的信号稀疏表示方法 X 周 彬1,朱 涛2,张雄伟3 (1.解放军理工大学指挥自动化学院研究生2队,江苏南京210007; 2.中国人民解放军66242部队,内蒙古锡林郭勒026000; 3.解放军理工大学指挥自动化学院信息作战系)摘 要:信号的稀疏表示是信号分析领域的基本问题,也是近几年兴起的压缩感知理论的基础。文章首先 分析了信号稀疏表示的基本原理,然后介绍了当前信号稀疏表示的主要方法,并重点阐述了基于过完备字典的稀 疏表示方法及其在压缩感知中的应用,最后总结了稀疏表示所面临的问题和未来发展方向。 关键词:稀疏表示;压缩感知;字典学习 中图分类号:T N 911.7文献标识码:A 文章编号:CN 32-1289(2012)01-0085-05 Sparse Representation of Signals in Compressive Sensing ZH OU Bin 1,ZH U T ao 2,ZH A N G X iong -w ei 3 (1.Postg r aduate T eam 2ICA ,PL A U ST ,Nanjing 210007,China ; 2.U nit 66242of P LA , Xiling uole 026000,China; 3.Depar tment of I nfo rm atio n O peration Studies ICA ,PL A U ST ) Abstract :T he sparse representation is a basic problem in signal analy sis field and also the basis o f the new emerging compressiv e sensing theory .The definitio n and principles of the sparse representation w ere firstly reviewed.And then some m ain m ethods o f the sparse representation, especially those based on the overco mplete dictionary w er e inv estig ated .The applications of the sparse repr esentation in CS w er e discussed.Some problem s to so lve were given and further devel- opm ent w as pointed out . Key words :sparse representation;com pressive sensing ;ov ercomplete dictionary 随着现代传感器技术的发展,许多领域面临着日益膨胀的海量数据,如地球物理数据、视频数据、天文数据、基因数据等。如何实现对这些数据更为灵活、简洁的表达已成为一个倍受关注的问题。传统的信号表示方法通常是基于正交基(如傅里叶基,小波基)的展开。为了实现信号的灵活、简洁和自适应的表示,一种更好的信号分解方式是根据信号本身的特点,自适应地选择合适的基函数,来完成信号的分解,从而得到信号的一个非常简洁的表达,即稀疏表示。由于信号的稀疏表示能在一定程度上自然地贴近信号的本质特征,因而对稀疏分解的研究有极其重要而深远的理论意义和广泛的应用价值。 目前,稀疏表示被广泛应用于信号处理和图像处理的各个领域,如图像压缩、音频压缩、噪声抑制、盲信号分离、地震数据处理、系统辨识、雷达成像处理等等。尤其是近年来新兴起的压缩感知(com pressed sensing)理论[1,2],其优点就是针对可稀疏表示的信号,将传统的数据采集与数据压缩合二为一,在获取信号同时对数据进行压缩。压缩感知理论的一个重要基础和前提就是选择信号的稀疏域,只有选择合适的基矩阵才能保证信号的稀疏度,从而保证信号的恢复精度。由于压缩感知理论的提出和蓬勃发展,稀疏表示越来 第33卷第1期  2012年3月军 事 通 信 技 术Jour na l o f M ilitar y Co mmunicatio ns T echnolog y V ol.33N o.1M ar.2012X 收稿日期:2011-10-18;修回日期:2011-12-12 作者简介:周 彬(1986-),男,博士生.

基于压缩感知认知模型的面像识别与理解

基于稀疏贝叶斯回归的人脸姿势识别方法(专利) 一种基于稀疏贝叶斯回归的人脸姿势识别方法,用于图像处理技术领域。步骤如下:采用Gabor滤波器为人脸姿势图像提取Gabor特征;将Gabor特征进行下采样,然后将采样后的特征行堆叠为一维向量;在训练样本上运用线性切空间排列方法,获得人脸姿势图像的本质低维子空间,并且得到相应的投影矩阵;在低维子空间运用稀疏贝叶斯回归方法训练识别参数;将每一个测试样本通过训练的得到的投影矩阵映射到低维子空间,运用训练的得到的识别参数进行人脸姿势识别。本发明能够得到人脸姿势的非确定解,降低错误率,提高实时性。 基于非负矩阵因子的人耳识别研究(硕士) 生物识别技术已经作为一种较为成熟的身份识别鉴定技术应用于实际生活的各个方面,目前常用的 生物特征包括人脸、虹膜、指纹、手形等。但是由于各个生物特征都有其局限性和不足,在研究和应用 过程中仍然存在一些尚未解决的问题。人耳识别技术是个体生物特征识别领域的一项新技术,人耳生物 特征自身的一些特点使人耳识别能丰富生物特征识别技术,能补充目前的一些生物识别技术的不足,其 可行性已经得到了试验证明。但是在现实生活中,人耳总是会有意或无意地被遮挡。系统所提取的人耳 特征将会受到很大的影响,则系统的鲁棒性、可靠性都将有所下降。所以在实现“非打扰识别”中,有必要 研究人耳遮挡问题。因此我们探索和研究了一种有效的针对遮挡情况下的人耳特征描述方法。首先提出 了一种改进的带有稀疏性限制的非负矩阵因子方法,为了使基空间和特征空间同时具有良好的稀疏性, 通过增加一个使系数矩阵尽可能正交的约束条件来定义原目标函数,给出了求解该新目标函数的迭代规则,并证明了迭代规则的收敛性。然后对人耳图像进行子区域划分,用改进的带有稀疏性限制的非负矩 阵因子方法对各子区域提取特征,并计算各子区域相似度,最后融合各子区域相似度得到整体相似度, 确定由局部相似度到整体相似度的最佳映射,以保证最优类间区分能力。在实验中,针对样本库的人耳 用改进的带有稀疏性限制的非负矩阵因子方法提取其特征变量,从结果数据可以看出所提取的特征向量 稀疏性及正交性都有所增强,使得特征向量之间的可区分性增强,导致识别率的提高。实验结果还证明,在遮挡情况下,采用基于子区域划分的融合方法的识别率比基于单一模式的识别率高。 作者:张玉学科专业:控制理论与控制工程授予学位:硕士学位授予单位:北京科技大学导 师姓名:穆志纯学位年度:2005 研究方向:分类号:TP391.4 关键词:人耳识别生物识别子 区域划分识别技术目标函数

压缩感知原理

压缩感知原理 1压缩感知引论 传统方式下的信号处理,是按照奈奎斯特采样定理对信号进行采样,得到大量 的采样数据,需要先获取整个信号再进行压缩,其压缩过程如图 2.1。 在此过程中,大部分采样数据将会被抛弃,即高速采样后再压缩的过程浪费了大量的采样资源,这就极大地增加了存储和传输的代价。 由于带宽的限制,许多信号只包含少量的重要频率的信息。所以大部分信号是稀疏的或是可压缩的,对于这种类型的信号,既然传统方法采样的多数数据会被抛弃,那么,为什么还要获取全部数据而不直接获取需要保留的数据呢?Candes和Donoho等人于2004年提出了压缩感知理论。该理论可以理解为将模拟数据节约地转换成压缩数字形式,避免了资源的浪费。即,在采样信号的同时就对数据进行适当的压缩,相当于在采样过程中寻找最少的系数来表示信号,并能用适当的重构算法从压缩数据中恢复出原始信号。压缩感知的主要目标是从少量的非适应线性测量中精确有效地重构信号。核心概念在于试图从原理上降低对一个信号进行测量的成本。压缩感知包含了许多重要的数学理论,具有广泛的应用前景,最近几年引起广泛的关注,得到了蓬勃的发展。 2压缩感知原理 压缩感知,也被称为压缩传感或压缩采样,是一种利用稀疏的或可压缩的信号进行信号重构的技术。或者可以说是信号在采样的同时被压缩,从而在很大程度上降低了采样率。压缩感知跳过了采集N个样本这一步骤,直接获得压缩的信号的表示。CS理论利用到了许多自然信号在特定的基上具有紧凑的表示。即这些信号 是“稀疏”的或“可压缩”的。由于这一特性,压缩感知理论的信号编解码框架和传统的压缩过程大不一样,主要包括信号的稀疏表示、编码测量和重构算法等三个方面。 对于一个实值的有限长一维离散时间信号 X ,可以看作为一个R N空间N X 1的 维的列向量,元素为n, n,=1 , 2,…N。R N空间的任何信号都可以用N X1维

基于压缩感知的图像重构技术研究

基于压缩感知的图像重构技术研究 压缩感知理论表明,若信号在某变换域具有稀疏表示,且采样矩阵与稀疏矩阵不相关,则可从远低于信号维度的少量非自适应测量值中精确恢复原信号。目前,压缩感知理论已被广泛用于各类磁共振成像中,以便在不降低成像质量的情况下减少采样点数,提高系统扫描速度。 本文即研究从亚采样的磁共振数据中,怎样快速而有效地恢复目标图像。主要研究内容包括:(1)为消除亚采样的磁共振成像重构时可能出现的过光滑(over-smoothed)和混叠伪影现象,将重构问题转化成含复合正则项的约束最小化问题,并提出一种高效的算法来求解。 该算法首先利用Bregman迭代技术,将约束问题转化成一系列无约束问题。然后利用算子分裂技术,将各无约束问题分解成一个梯度问题和一个能使用修改的SBD(Splitting Bregman Denoising)算法来求解的复合正则项的去噪问题。 最后再用加速方案对无约束问题的求解予以加速。本文将该算法称作BFSA (Bregman based Fast SBD Algorithm)。 对非笛卡尔轨迹采样的重构,本文还提出了一种动态更新L的方法。实验结果表明,新算法能够获得比其他算法更好的重构质量。 (2)为了克服现有动态磁共振成像重构速度较慢的问题,本文基于BFSA 算法框架,提出一种高效的动态磁共振成像重构算法ktBFSA。该算法利用SBD3D (Splitting Bregman Denoising for3D images)来求解含复合正则项的3D去噪问题。 实验结果表明,ktBFSA在重构速度和重构质量上都有优势。(3)SENSE (Sensitivity encoding)是常用的并行磁共振成像技术,引入压缩感知后重构

压缩感知技术综述

压缩感知技术综述 摘要:信号采样是模拟的物理世界通向数字的信息世界之必备手段。多年来,指导信号采样的理论基础一直是著名的Nyquist采样定理,但其产生的大量数据造成了存储空间的浪费。压缩感知(Compressed Sensing)提出一种新的采样理论,它能够以远低于Nyquist采样速率采样信号。本文详述了压缩感知的基本理论,着重介绍了信号稀疏变换、观测矩阵设计和重构算法三个方面的最新进展,并介绍了压缩感知的应用及基于压缩感知SAR成像的仿真。 关键词:压缩感知;稀疏表示;观测矩阵;SAR成像; Abstract: Signal sampling is a necessary means of information world physical world to the digital simulation. Over the years, the base theory of signal sampling is the famous Nyquist sampling theorem, but a large amount of data generated by the waste of storage space. Compressed sensing and put forward a new kind of sampling theory, it can be much less than the Nyquist sampling signal sampling rate. This paper introduces the basic theory of compressed sensing, emphatically introduces the new progress in three aspects of signal sparse representation, design of measurement matrix and reconstruction algorithm, and introduces the application of compressed sensing and Simulation of SAR imaging based on Compressive Sensing Keywords: Compressed sensing; Sparse representation; The observation matrix; SAR imaging; 0 引言 Nyquist采样定理指出,采样速率达到信号带宽的两倍以上时,才能由采样信号精确重建原始信号。可见,带宽是Nyquist采样定理对采样的本质要求。然而随着人们对信息需求量的增加,携带信息的信号带宽越来越宽,以此为基础的信号处理框架要求的采样速率和处理速度也越来越高。解决这些压力常见的方案是信号压缩。但是,信号压缩实际上是一种资源浪费,因为大量的不重要的或者只是冗余信息在压缩过程中被丢弃。从这个意义而言,我们得到以下结论:带宽不能本质地表达信号的信息,基于信号带宽的Nyquist采样机制是冗余的或者说是非信息的。 于是很自然地引出一个问题:能否利用其它变换空间描述信号,建立新的信号描述和处理的理论框架,使得在保证信息不损失的情况下,用远低于Nyquist 采样定理要求的速率采样信号,同时又可以完全恢复信号。与信号带宽相比,稀疏性能够直观地而且相对本质地表达信号的信息。事实上,稀疏性在现代信号处理领域起着至关重要的作用。近年来基于信号稀疏性提出一种称为压缩感知或压缩采样的新兴采样理论,成功实现了信号的同时采样与压缩。

相关主题
文本预览