当前位置:文档之家› 数学建模之农场规划问题

数学建模之农场规划问题

数学建模之农场规划问题
数学建模之农场规划问题

农场规划问题

问题重述:

某农户拥有100亩土地和15000元可供投资,每年冬季(9月中旬至来年5月中旬),该家庭的成员可以贡献3500小时的劳动时间,而夏季为4000小时。如果这些劳动时间有富裕,该家庭中的年轻成员将去附近的农场打工,冬季每小时元,夏季每小时元。

现金收入来源于三中农作物(大豆、玉米和燕麦)以及奶牛和母鸡。农作物不需要付出投资,但每头奶牛需要400元的初始投资,可产奶3年,每只母鸡需要3元的吃食投资,只饲养1年。每头奶牛需要亩的土地,并且冬季需要付出100小时劳动时间,夏季付出50小时劳动时间,每年产生的净现金收入为1350元;每只母鸡的对应数字为:不占用土地,冬季小时,夏季小时,年净现金收入元。养鸡厂房最多容纳3000只母鸡,栅栏的大小限制了最多能饲养32头奶牛。

根据统计,三种农作物每种植一亩所需要的劳动时间和收入数据分别为:大豆:冬季20小时,夏季30小时,年净收入元;玉米:冬季35小时,夏季75小时,年净收入元;燕麦:冬季10小时,夏季40小时,年净收入元。

基本假设:

1、假设该农户每年都能及时获得现金收入,即本年度所获得的

利润可及时用于下一年的投资;

2、第五年的投资也考虑到计算中。

问题分析:

这个问题的目标是使得5年内净现金收入最大,要做的决策是生产

规划,即确定每种农作物应该种植多少亩,奶牛和鸡各应蓄养多少只,决策受到6个变量的限制,即土地总面积、投资资金、劳动力时间(夏季和冬季)以及奶牛和鸡的总饲养量。

模型建立:

决策变量:

设用i=0,1,2,3,4,5表示年数,用j=1,2,3,4,5分别表示三种农作物(大豆、玉米、燕麦)及奶牛和母鸡。x xx可表示第i年种植三种农作物的亩数或者蓄养奶牛和母鸡的个数,x x表示第i年的总现金收入。

目标函数:

设第i年的总获利为x x元,因农作物不用投资,则第i年种植大豆为x x1亩,每亩收入360元,获利360×x x1元;第i年种植玉米x x2亩,每亩收入600元,获利600×x x2;第i年种植燕麦x x3亩,每亩收入400元,获利400×x x3元;第i年买奶牛x x4头,每头收入1350

元,获利1350×(x x4+x

(x?1)4+x

(x?2)4

)元;第i年鸡购买x x5

只,每只收入元,获利×x x5元;若劳动力有剩余,则第i年夏季劳动力收入[4000-(30x x1+75x x2+40x x3+50x x4+0.3x x5)]×7元,冬季劳动力收入[3500-(20x x1+35x x2+10x x3+100x x4+ 0.6x x5)]×6.8元。

即:

x x=(x x?1?400x x4-3x x5)+360x x1+600x x2+400x x3+1350

(x x4+x

(x?1)4+x

(x?2)4

)+x x5+[4000-(30x x1+75x x2+

40x x3+50x x4+0.3x x5)]×7+[3500-(20x x1+35x x2+ 10x x3+100x x4+0.6x x5)]×6.8

约束条件:

土地总面积 各种农作物及奶牛占用的土地不得超过该农户所拥

有的土地,故∑∑x xx 4x =15i =1≤100

投资钱数 每一年的投资总额度不得高于上一年的净现金收入,故40x x4+3x x5≤x x ?1

劳动力 夏、冬季各自所需的劳动时间不得超过该农户所能提供的最大劳动时间,故

30x x1+75x x2+40x x3+50x x4+0.3x x5≤4000

20x x1+35x x2+10x x3+100x x4+0.6x x5≤3500

家禽总数量 奶牛不得超过32头,即∑x x45i =1≤32

鸡不得超过3000只,即x x5≤3000

模型计算:

将以上模型输入LINGO :

model :

max =14*(x11+x12+x13+x14+x15)-163*(x21+x22+x23+x24+x25)+52*(x31+x32+x33+x34+x35)+*(x51+x52+x53+x54+x55)+560*(x41+x42+x43)+240*x44-80*x45+259000;

X51<=3000;

X52<=3000;

X53<=3000;

X54<=3000;

X55<=3000;

x41+x42<=32;

x41<=32;

x41+x42+x43<=32;

x42+x43+x44<=32;

x43+x44+x45<=32;

400*x41+3*x51<=15000;

400*x42+3*x52-z1<=0;

400*x43+3*x53-z2<=0;

400*x44+3*x54-z3<=0;

400*x45+3*x55-z4<=0;

20*x11+35*x21+10*x31+100*x41+*x51<=3500;

20*x12+35*x22+10*x32+100*(x41+x42)+*x52<=3500;

20*x13+35*x23+10*x33+100*(x41+x42+x43)+*x53<=3500;

20*x14+35*x24+10*x34+100*(x42+x43+x44)+*x54<=3500;

20*x15+35*x25+10*x35+100*(x43+x44+x45)+*x55<=3500;

30*x11+75*x21+40*x31+50*x41+*x51<=4000;

30*x12+75*x22+40*x32+50*(x41+x42)+*x52<=4000;

30*x13+75*x23+40*x33+50*(x41+x42+x43)+*x53<=4000;

30*x14+75*x24+40*x34+50*(x42+x43+x44)+*x54<=4000;

30*x15+75*x25+40*x35+50*(x43+x44+x45)+*x55<=4000;

*x41+x11+x21+x31<=100;

*x41+*x42+x12+x22+x32<=100;

*x41+*x42+*x43+x13+x23+x33<=100;

*x42+*x43+*x44+x14+x24+x34<=100;

*x43+*x44+*x45+x15+x25+x35<=100;

15000+360*x11+600*x21+400*x31+950*x41+*x51+*(3500-100**x51-20*x11-35*x21-10*x31)+7*(4000-50 **x51-30*x11-75*x21-40*x31)-z1=0;

360*x12+600*x22+400*x32+1350*x41+950*x42+*x52+*(3500-100*(x41+x42)*x52-20*x12-35*x22-10*x32 )+7*(4000-50*(x41+x42)*x52-30*x12-75*x22-40*x32)+z1-z2=0;

360*x13+600*x23+400*x33+1350*(x41+x42)+950*x43+*x53+*(3500-100*(x41+x42+x43)*x53-20*x13-35* x23-10*x33)+7*(4000-50*(x41+x42+x43)*x53-30*x13-75*x23-40*x33)+z2-z3=0;

360*x14+600*x24+400*x34+1350*(x42+x43)+950*x44+*x54+*(3500-100*(x42+x43+x44)*x54-20*x14-35* x24-10*x34)+7*(4000-50*(x42+x43+x44)*x54-30*x14-75*x24-40*x34)+z3-z4=0;

@gin(x41);@gin(x42);@gin(x43);@gin(x44);@gin(x45);@gin(x51);@gin(x52);@gin(x53);@gin(x54);@ gin(x55);

end

运行结果:

Global optimal solution found.

Objective value:

Objective bound:

Infeasibilities:

Extended solver steps: 89

Total solver iterations: 442

Variable Value Reduced Cost

X11

X12

X13

X14

X15

X21

X22

X23

X24

X25

X31

X32

X33

X51

X52

X53

X54

X55

X41

X42

X43

X44

X45

Z1

Z2

Z3

Z4

Row Slack or Surplus Dual Price

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

31

32

33

34

35

结果分析:x11=0 x12=0 x13=0 x14=0 x15=0

X21=0 x22=0 x23=0 x24=0 x25=0

X31= x32= x33= x34=64 x35=64

X41=11 x42=0 x43=11 x44=0 x45=0

X51=2928 x52=2928 x53=1095 x54=2928 x55=2928

五年来的最大盈利为元。

根据运行结果可以得出每年农场规划的最优解,可得:

第一年的农场规划为:不种植和蓄养任何农作物及牲畜,而将夏季和冬季全部的劳动时间都投入到附近农场打工。本年盈利元。

第二年的农场规划和第一年的相同。到本年盈利元。

第三年的农场规划为:种植三种农作物的亩数都是亩,而蓄养奶牛和母鸡的数量都是64只,其余的劳动时间都去到附近农场打工。到本年农场盈利元。

第四年的农场规划为:种植11亩大豆和燕麦,不种玉米,不蓄养任何牲畜,其余的劳动时间都去附近的农场打工。到本年农场共盈利元。

第五年的农场规划为:种大豆和玉米2928亩,种燕麦1095亩,蓄养奶牛和母鸡各2928只,其余的劳动时间都去附近的农场打工。到本年盈利农场共盈利元。

数学建模算法动态规划

第四章动态规划 §1 引言 1.1 动态规划的发展及研究内容 动态规划(dynamic programming)是运筹学的一个分支,是求解决策过程(decision process)最优化的数学方法。20世纪50年代初R. E. Bellman等人在研究多阶段决策过程(multistep decision process)的优化问题时,提出了著名的最优性原理(principle of optimality),把多阶段过程转化为一系列单阶段问题,逐个求解,创立了解决这类过程优化问题的新方法—动态规划。1957年出版了他的名著《Dynamic Programming》,这是该领域的第一本著作。 动态规划问世以来,在经济管理、生产调度、工程技术和最优控制等方面得到了广泛的应用。例如最短路线、库存管理、资源分配、设备更新、排序、装载等问题,用动态规划方法比用其它方法求解更为方便。 虽然动态规划主要用于求解以时间划分阶段的动态过程的优化问题,但是一些与时间无关的静态规划(如线性规划、非线性规划),只要人为地引进时间因素,把它视为多阶段决策过程,也可以用动态规划方法方便地求解。 应指出,动态规划是求解某类问题的一种方法,是考察问题的一种途径,而不是一种特殊算法(如线性规划是一种算法)。因而,它不象线性规划那样有一个标准的数学表达式和明确定义的一组规则,而必须对具体问题进行具体分析处理。因此,在学习时,除了要对基本概念和方法正确理解外,应以丰富的想象力去建立模型,用创造性的技巧去求解。 例1 最短路线问题 下面是一个线路网,连线上的数字表示两点之间的距离(或费用)。试寻求一条由A 到G距离最短(或费用最省)的路线。 例2 生产计划问题 工厂生产某种产品,每单位(千件)的成本为1(千元),每次开工的固定成本为3(千元),工厂每季度的最大生产能力为6(千件)。经调查,市场对该产品的需求量第一、二、三、四季度分别为2,3,2,4(千件)。如果工厂在第一、二季度将全年的需求都生产出来,自然可以降低成本(少付固定成本费),但是对于第三、四季度才能上市的产品需付存储费,每季每千件的存储费为0.5(千元)。还规定年初和年末这种产品均无库存。试制定一个生产计划,即安排每个季度的产量,使一年的总费用(生产成本和存储费)最少。 1.2 决策过程的分类 根据过程的时间变量是离散的还是连续的,分为离散时间决策过程(discrete-time decision process)和连续时间决策过程(continuous-time decision process);根据过程的演变是确定的还是随机的,分为确定性决策过程(deterministic decision process)和随

数学建模(农业规划模型)

数学建模论文

农业生产规划模型 杨欢 (2011级2班1110500122) 【摘要】 本模型就是研究了农民在农业生产中种植农作物和养殖畜牧业的生产规划问题。以现有标准为参考,采用逐步分析法提出了线性规划模型,计算出农民在农业生产中该如何合理规划农作物的种植和畜牧业养殖的分配问题。本文根据题目给出的数据和条件,假设出了必要未知量,再根据题意列出必要方程和不等式,从而建立了完整而又合理的数学模型。 最终建立的数学模型如下: 目标函数Max z=175*x1+300*x2+120*x3+400*x4+2*x5; 约束条件x1+x2+x3+1.5*x4<=100; 400*x4+3*x5<=15000; 20*x1+35*x2+10*x3+100*x4+0.6*x5<=3500; 50*x1+75*x2+40*x3+50*x4+0.3*x5<=4000; x4<=32; x5<=3000; x1,……,x5>=0 最后我们运用LINDO等数学软件进行模型求解和分析,确保了结果的准确性和可行性。 【关键词】农业规划投资最大净收益数学模型LINDO软件 1问题的重述

1.1 问题背景: 近年来,农业生产问题越来越收到人们的关注。人们对“农场”的热衷最初来自网络游戏带来的乐趣,同时带动和启发了人们积极投入到现实农场的建设和经营。当然,人们对农场的热衷还是日常生活的实际需求。中国是一个农业大国,农民的农业生产生活问题不仅在很大程度上影响着我国的经济发展,更是决定着中国13亿人口的温饱问题。所以,对农场进行合理的规划,使其达到最优的效果,也即是最大的收益,是一个不可忽视的问题。 让拥有有限济实力和有限土地的农民,在有限的投资和有限的土地限制下,可以按照不同季经节合理安排种植业和畜牧业的劳动时间,更可用赋予时间进行多项劳动,从而可以在规定的劳动力和劳动时间内收获最大净收益。这不仅可以展我国的农业,更可使农民富裕起来,从而缩小了我国的贫富差距,对我国的经济发展有着重大促进作用。 1.2 问题叙述: 在上述背景下。我们来研究下面的具体问题: 现某农场有100公顷土地和150000元资金可用于发展生产,农场劳动力情况为秋冬季节3500人日,春夏季节4000人日,如果劳动力本身用不了时可外出干活,春夏季收入为21元/人日,秋冬季收入为18元/人日。该农场种植三种作物,大豆、玉米、小麦,并饲养奶牛和鸡。种植作物事不需要专门投资,而饲养动物时每头奶牛投资400元,每只鸡投资3元,养奶牛时每头需要播出1.5公顷土地饲草,并占用人工秋冬季为100人日,春夏季为50人日,年净收入400元/每头奶牛,养鸡不占土地,需人工为每只鸡秋冬季需0.6人日,春夏季为0.3 人日,年净收入20元/每只鸡。农场现有鸡舍允许最多养3000只鸡,牛栏允许最多养32头奶牛。三种作物每年需要的人工及收入情况如下表,试决定该农场的经营方案,使年净收入为最大。(农作物的生产需要和收益如下表所示:) 大豆玉米麦子

数学建模论文(奶牛场问题)

奶牛场计划 摘要 本文是对农场生产计划进行最优化建模,首先要求制订未来五年的生产计划, 计划应贷款的金额、应卖的小母牛、以及用来种植粮食的土地,使成本降到最低。其中农场的收入包含卖牛的收入,卖牛奶的收入,和卖粮食甜菜的收入(当粮食和甜菜充足的情况下),农场的支出包括劳动力的消费,买牛的费用,承包农场的费用,以及购买粮食甜菜的费用(当粮食和甜菜不足的情况下)。通过迭代计算可以把本模型简化成一个收入和支出的关系表达式,将银行贷款利息结合到收支上,建立一个非线性规划模型,同时考虑到粮食的充和不足情况,运用0-1规划方法解决建模问题。最后我们利用LINGO 编程得到最终结果。 关键词:收入支出迭代计算 0-1规划 LINGO

一、问题重述 1.1问题背景 某公司计划承包有200亩土地的农场,建立奶牛场,雇佣工人进行奶牛养殖经营。由于承租费用较高,公司只能向银行贷款进行生产经营。现在要为未来的五年制定生产计划,并向银行还本付息,使公司盈利最大。 1.2相关信息 开始承包时农场有120头母牛,其中20头为不到2岁的幼牛,100头为产奶牛。产奶牛平均每头每年生1.1头牛,其中一半为公牛,生出后不久即卖掉,平均每头卖300元;另一半为母牛,可以在出生后不久卖掉,平均每头卖400元,也可以留下饲养,养至2岁成为产奶牛。幼牛年损失5%;产奶牛年损失2%。产奶牛养到满12岁就卖掉,平均每头卖1200元。现在有20头幼牛, 0岁和1岁各10头;100头产奶牛,从2岁至11岁,每一年龄的都有10头。应该卖掉的小母牛都已卖掉。所有20头是要饲养成产奶牛的。 一头牛所产的奶提供年收入3700元。现在农场最多只能养130头牛。超过此数每多养一头,要投资2000元。每头产奶牛每年消耗0.6吨粮食和0.7吨甜菜。每头小牛每年消耗粮食和甜菜量为奶牛的2/3。粮食和甜菜可以由农场种植出来。每亩产甜菜1.5吨。只有80亩的土地适于种粮食,产量平均0.9吨。从市场购粮食每吨900元,卖出750元。买甜菜每吨700元,卖出500元。 养牛和种植所需的劳动量为:每头小牛每年10小时;每头产奶牛每年42小时;种一亩粮食每年需20小时;种一亩甜菜每年需30小时。 其它费用:每头幼牛每年500元,产奶牛每头每年1000元;种粮食每亩每年150元,种甜菜每亩每年100元。劳动力成本为每小时费用为10元。 承包农场需要一笔费用,其中一部分是土地承租费用,每年6万元(每年底付清),另一部分用于支付开始承包时农场已有的120头牛的费用。平均产奶牛每头4000元,小牛每头400元,到承包结束时,农场的牛按此价折价抵卖。 任何投资都是从5年期的贷款得到。贷款的年利率为12%,每年偿还本息总共的1/5,

农场生产计划 数学建模

农场生产计划 数学模型 问题重述 某农场有3万亩农田,欲种植玉米、大豆和小麦三种农作物.各种作物每亩需施化肥分别为 吨、吨、 吨.预计秋后玉米每亩可收获500千克,售价为 元/千克, 大豆每亩可收获200千克,售价为 元/千克,小麦每亩可收获350 千克,售价为 元 /千克.农场年初规划时考虑如下几个方面: 第一目标:年终收益不低于350万元; 第二目标:总产量不低于万吨; 第三目标:玉米产量不超过万吨,大豆产量不少于万吨,小麦产量以 万吨为宜,同时根据三种农作物的售价分配权重; 第四目标:农场现能提供5000 吨化肥;若不够,可在市场高价购买,但希望高价采购量愈少愈好. 模型假设与建立 模型假设: 1、 假设农作物的收成不会受天灾的影响 2、 假设农作物不受市场影响,价格既定 用321,,x x x 分别表示用于种植玉米、大豆、小麦的农田(单位:亩) + +---++++++=6 455433_22_11*)107 35*10735*10760*10712(**min d p d d d d p d p d p z 模型建立 约束条件 (1)刚性约束 30000321<=++x x x (2)柔性约束 第一目标:年终收益不低于350万元; {} ?????=-++++ -- 3500000 245240120min 113211 d d x x x d

第二目标:总产量不低于万吨; {} ?????=-++++ -- 12500000 350200500min 223212 d d x x x d 第三目标:玉米产量不超过万吨,大豆产量不少于万吨,小麦产量以 万吨为宜, {} ?????=-++ -+ 6000000 500min 3313 d d x d {} ?????=-++--2000000 200m in 4424d d x d {} ?? ???=-+++-+-500000035min 55255d d x d d 第四目标:农场现能提供5000 吨化肥;若不够,可在市场高价购买,但希望 高价采购量愈少愈好. {} ?????=-++++ -+ 5000000 15.02.012.0min 663216 d d x x x d 模型求解:(见附件) 种植面积: 玉米:亩 土豆:亩 小麦:亩 能够得到一个满足条件的种植计划 附件: model : sets : L/1..4/:p,z,goal; V/1..3/:x; HN/1..1/:b; SN/1..6/:g,dp,dm; HC(HN,V):a; SC(SN,V):c; Obj(L,SN):wp,wm; endsets data : p=; goal=0;

数学建模-动态规划

-56- 第四章动态规划 §1 引言 1.1 动态规划的发展及研究内容 动态规划(dynamic programming)是运筹学的一个分支,是求解决策过程(decision process)最优化的数学方法。20 世纪50 年代初R. E. Bellman 等人在研究多阶段决策过程(multistep decision process)的优化问题时,提出了著名的最优性原理(principle of optimality),把多阶段过程转化为一系列单阶段问题,逐个求解,创立了解决这类过程优化问题的新方法—动态规划。1957 年出版了他的名著《Dynamic Programming》,这是该领域的第一本著作。 动态规划问世以来,在经济管理、生产调度、工程技术和最优控制等方面得到了广 泛的应用。例如最短路线、库存管理、资源分配、设备更新、排序、装载等问题,用动态规划方法比用其它方法求解更为方便。 虽然动态规划主要用于求解以时间划分阶段的动态过程的优化问题,但是一些与时 间无关的静态规划(如线性规划、非线性规划),只要人为地引进时间因素,把它视为多阶段决策过程,也可以用动态规划方法方便地求解。 应指出,动态规划是求解某类问题的一种方法,是考察问题的一种途径,而不是 一种特殊算法(如线性规划是一种算法)。因而,它不象线性规划那样有一个标准的数学表达式和明确定义的一组规则,而必须对具体问题进行具体分析处理。因此,在学习时,除了要对基本概念和方法正确理解外,应以丰富的想象力去建立模型,用创造性的技巧去求解。 例1 最短路线问题 图1 是一个线路网,连线上的数字表示两点之间的距离(或费用)。试寻求一条由A 到G 距离最短(或费用最省)的路线。 图1 最短路线问题 例2 生产计划问题 工厂生产某种产品,每单位(千件)的成本为1(千元),每次开工的固定成本为3 (千元),工厂每季度的最大生产能力为6(千件)。经调查,市场对该产品的需求量第一、二、三、四季度分别为2,3,2,4(千件)。如果工厂在第一、二季度将全年的需求都生产出来,自然可以降低成本(少付固定成本费),但是对于第三、四季度才能上市的产品需付存储费,每季每千件的存储费为0.5(千元)。还规定年初和年末这种产品均无库存。试制定一个生产计划,即安排每个季度的产量,使一年的总费用(生产成本和存储费)最少。 1.2 决策过程的分类 根据过程的时间变量是离散的还是连续的,分为离散时间决策过程(discrete-time -57- decision process)和连续时间决策过程(continuous-time decision process);根据过程的演变是确定的还是随机的,分为确定性决策过程(deterministic decision process)和随 机性决策过程(stochastic decision process),其中应用最广的是确定性多阶段决策过程。§2 基本概念、基本方程和计算方法 2.1 动态规划的基本概念和基本方程 一个多阶段决策过程最优化问题的动态规划模型通常包含以下要素。 2.1.1 阶段

数学建模之农场规划问题

农场规划问题 问题重述: 某农户拥有100亩土地和15000元可供投资,每年冬季(9月中旬至来年5月中旬),该家庭的成员可以贡献3500小时的劳动时间,而夏季为4000小时。如果这些劳动时间有富裕,该家庭中的年轻成员将去附近的农场打工,冬季每小时元,夏季每小时元。 现金收入来源于三中农作物(大豆、玉米和燕麦)以及奶牛和母鸡。农作物不需要付出投资,但每头奶牛需要400元的初始投资,可产奶3年,每只母鸡需要3元的吃食投资,只饲养1年。每头奶牛需要亩的土地,并且冬季需要付出100小时劳动时间,夏季付出50小时劳动时间,每年产生的净现金收入为1350元;每只母鸡的对应数字为:不占用土地,冬季小时,夏季小时,年净现金收入元。养鸡厂房最多容纳3000只母鸡,栅栏的大小限制了最多能饲养32头奶牛。 根据统计,三种农作物每种植一亩所需要的劳动时间和收入数据分别为:大豆:冬季20小时,夏季30小时,年净收入元;玉米:冬季35小时,夏季75小时,年净收入元;燕麦:冬季10小时,夏季40小时,年净收入元。 基本假设: 1、假设该农户每年都能及时获得现金收入,即本年度所获得的利润可及时 用于下一年的投资; 2、第五年的投资也考虑到计算中。 问题分析: 这个问题的目标是使得5年内净现金收入最大,要做的决策是生产规划,即确定每种农作物应该种植多少亩,奶牛和鸡各应蓄养多少只,决策受到6个变量的限制,即土地总面积、投资资金、劳动力时间(夏季和冬季)以及奶牛和鸡的

总饲养量。 模型建立: 决策变量: 设用i=0,1,2,3,4,5表示年数,用j=1,2,3,4,5分别表示三种农作物(大豆、玉米、燕麦)及奶牛和母鸡。x xx 可表示第i 年种植三种农作物的亩数或者蓄养奶牛和母鸡的个数,x x 表示第i 年的总现金收入。 目标函数: 设第i 年的总获利为x x 元,因农作物不用投资,则第i 年种植大豆为x x1亩,每亩收入360元,获利360×x x1元;第i 年种植玉米x x2亩,每亩收入600元,获利600×x x2;第i 年种植燕麦x x3亩,每亩收入400元,获利400×x x3元;第i 年买奶牛x x4头,每头收入1350元,获利1350×(x x4+x (x ?1)4+x (x ?2)4)元;第i 年鸡购买x x5只,每只收入元,获利×x x5元;若劳动力有剩余,则第i 年夏季劳动力收入[4000-(30x x1+75x x2+40x x3+50x x4+0.3x x5)]×7元,冬季劳动力收入[3500-(20x x1+35x x2+10x x3+100x x4+0.6x x5)]×6.8元。 即: x x =(x x ?1?400x x4-3x x5)+360x x1+600x x2+400x x3+1350(x x4+x (x ?1)4+x (x ?2)4)+x x5+[4000-(30x x1+75x x2+40x x3+50x x4+0.3x x5)]×7+[3500-(20x x1+35x x2+10x x3+100x x4+0.6x x5)]×6.8 约束条件: 土地总面积 各种农作物及奶牛占用的土地不得超过该农户所拥有的土地, 故∑∑x xx 4x =15i =1≤100 投资钱数 每一年的投资总额度不得高于上一年的净现金收入,故

10427-数学建模-动态规划的原理及应用

动态规划的原理及应用 动态规划是运筹学的一个分支,是求解多阶段决策过程的最优化数学方法。20世纪50年代初美国数学家R.E.Bellman等人在研究多阶段决策过程的优化问题时,提出了著名的最优化原理,把多阶段过程转化为一系列单阶段问题,逐个求解,创立了解决这类问题的新方法——动态规划。 动态规划主要用于以时间划分阶段的动态过程优化问题,但一些与时间无关的静态规划如线性规划或非线性规划,人为引进时间因素后,把它们看成多阶段过程,也可用动态规划求解。 1.动态规划的基本理论 一.动态规划的术语 在研究现实的系统时,我们必须将系统具体的术语抽象为数学统一的术语。在此先简要介绍动态规划中的常用术语。 级:我们把系统顺序地向前发展划分为若干个阶段,称这些阶段为“级”。在离散动态规划中,“级”顺序的用自然整数编号,即1,2,…,n. 状态(λ):用来描述、刻画级的特征。状态可以是单变量,也可以时向量。在此,我们假设研究的状态具有“无记忆性”,即当前与未来的收益仅决定于当前的状态,并不依赖于过去的状态和决策的历史。 状态空间(Λ):由全部系统可能存在的状态变量所组成。

决策:在每一级,当状态给定后,往往可以做出不同的决定,从而确定下一级的状态,这种决定称为决策。描述决策的变量称为决策变量。对每个状态λ∈Λ,有一非空集X(λ)称为λ的决策集。决策变量x(λ)∈X(λ)。 变换:若过程在状态λ,选择决策x(λ),可确定一个状态集T(λ,x(λ)),过程将从λ移动到其中某个状态.T(λ,x(λ))称为变换函数,它确定过程从一个状态到另一个状态的演变。T(λ,x(λ))可分为两种类型,即确定型和不确定型。确定型的T(λ,x(λ))只含有一个元。不确定型指我们不能确切知道决策的结果,但作为某已知概率分布支配的变换结果,在每级状态和决策是确定的。这时,集函数T(λ,x(λ))将包含多个元素。当T(λ,x(λ))=0 时,过程终止。 策略:顺序排列的决策集,记为v。所有可能的策略集构成策略空间Γ。 收益:评价给定策略的目标函数r(λ,v),它依赖于状态和策略。总收益是集收益s(λ,v)的某个组合(通常为集收益之和)。若T(λ,x(λ))=0,则r(λ1,v1)= s(λ1,v1);若T(λ,x(λ))= λ2,则r(λ1,v)= s(λ1,v1)+ r(λ1,v2)。 二.序贯决策过程 动态规划的寻优过程可以有正序、逆序两种方式。当初始状态给定时,用逆序方式比较好,当终止状态给定时,用正序方式较好。 采用分级的序贯决策方法,把一个含有n个变量的问题转化为求解n个单变量问题。为了应用最优化原理,必须满足分级条件,即目标函数可分性和状态可分性。 目标函数可分性:

数学建模中的优化问题与规划模型

与最大、最小、最长、最短等等有关的问题都是优化问题。 解决优化问题形成管理科学的数学方法:运筹学。运筹学主要分支:(非)线性规划、动态规划、图与网络分析、存贮学、排队伦、对策论、决策论。 6.1 线性规划 1939年苏联数学家康托洛维奇发表《生产组织与计划中的数学问题》 1947年美国数学家乔治.丹契克、冯.诺伊曼提出线性规划的一般模型及理论. 1. 问题 例1 作物种植安排 一个农场有50亩土地, 20个劳动力, 计划种蔬菜,棉花和水稻. 种植这三种农作物每亩地分别需要劳动力1/2 1/3 1/4, 预计每亩产值分别为110元, 75元, 60元. 如何规划经营使经济效益最大. 分析:以取得最高的产值的方式达到收益最大的目标. 1. 求什么?分别安排多少亩地种蔬菜、棉花、水稻? x 1亩、 x 2 亩、 x 3 亩 2. 优化什么?产值最大 max f=10x 1+75x 2 +60x 3 3. 限制条件?田地总量 x 1+x 2 +x 3 ≤ 50 劳力总数 1/2x 1 +1/3x 2 +1/4x 3 ≤ 20 模型I : 设决策变量:种植蔬菜x1亩, 棉花x2亩, 水稻x3亩, 求目标函数f=110x1+75x2+60x3 在约束条件x1+x2+x3≤ 50 1/2x1+1/3x2+1/4x3 ≤20 下的最大值 规划问题:求目标函数在约束条件下的最值, 规划问题包含3个组成要素: 决策变量、目标函数、约束条件。 当目标函数和约束条件都是决策变量的线性函数时,称为线性规划问题, 否则称为非线性规划问题。 2. 线性规划问题求解方法 称满足约束条件的向量为可行解,称可行解的集合为可行域, 称使目标函数达最值的可行解为最优解. 命题 1 线性规划问题的可行解集是凸集. 因为可行解集由线性不等式组的解构成。两个变量的线性规划问题的可行解集是平面上的凸多边形。 命题2 线性规划问题的最优解一定在可行解集的某个极点上达到. 图解法:解两个变量的线性规划问题,在平面上画出可行域,计算目标函数在各极点处的值,经比较后,取最值点为最优解。 命题 3 当两个变量的线性规划问题的目标函数取不同的目标值时,构成一族平行直线,目标值的大小描述了直线离原点的远近。 于是穿过可行域的目标直线组中最远离(或接近)原点的直线所穿过的凸多边形的顶点即为取的极值的极点—最优解。 单纯形法: 通过确定约束方程组的基本解, 并计算相应目标函数值, 在可行解集的极点中搜寻最优解. 正则模型: 决策变量: x 1,x 2 ,…,x n . 目标函数: Z=c 1 x 1 +c 2 x 2 +…+c n x n . 约束条件: a 11 x1+…+a1n x n≤b1, ……a m1x1+…+a mn x n≤b m, 模型的标准化 10. 引入松弛变量将不等式约束变为等式约束. 若有 a i1x 1 +…+a in x n ≤b i , 则引入 x n+i ≥ 0, 使得 a i1 x 1 +…+a in x n + x n+i =b i 若有 a j1x 1 +…+a jn x n ≥b j , 则引入 x n+j ≥ 0, 使得 a j1 x 1 +…+a jn x n - x n+j =b j .

数学建模线性规划

线性规划 1.简介: 线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法.在经济管理、交通运输、工农业生产等经济活动中,提高经济效果是人们不可缺少的要求,而提高经济效果一般通过两种途径:一是技术方面的改进,例如改善生产工艺,使用新设备和新型原材料.二是生产组织与计划的改进,即合理安排人力物力资源. 线性规划所研究的是:在一定条件下,合理安排人力物力等资源,使经济效果达到最好.规划问题。一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域。 (x)都是线性函数,则该模型称为在优化模型中,如果目标函数f(x)和约束条件中的g i 线性规划。 2.线性规划的3个基本要素 (1)决策变量 (2)目标函数f(x) (x)≤0称为约束条件) (3)约束条件(g i 3.建立线性规划的模型 (1)找出待定的未知变量(决策变量),并用袋鼠符号表示他们。 (2)找出问题中所有的限制或者约束,写出未知变量的线性方程或线性不等式。

(3)找到模型的目标或判据,写成决策变量的线性函数,以便求出其最大值或最小值。以下题为例,来了解一下如何将线性规划用与实际的解题与生活中。 生产计划问题 某工厂生产甲乙两种产品,每单位产品消耗和获得的利润如表 试拟订生产计划,使该厂获得利润最大 解答:根据解题的三个基本步骤 (1)找出未知变量,用符号表示: 设甲乙两种产品的生产量分别为x 1与x 2 吨,利润为z万元。 (2)确定约束条件: 在这道题目当中约束条件都分别为:钢材,电力,工作日以及生产量不能为负的限制 钢材:9x 1+5 x 2 ≤360, 电力:4x 1+5 x 2 ≤200, 工作日:3x 1+10 x 2 ≤300, x 1≥0 ,x 2 ≥0, (3)确定目标函数: Z=7x 1+12 x 2

农业生产规划模型数学建模

长江学院 课程设计报告课程设计题目:农业生产规划模型 姓名1:袁珍珍学号: 08354230 姓名2:倪美丹学号: 08354213 姓名3:阮鹏娟学号: 08354216 专业土木工程 班级083542 指导教师邱淑芳 2010年4月11号

摘要: 通过对题目的分析可以看出本题是关于线性规划的问题,解决此类问题要找出决策变量,目标函数,约束条件等,在解题中我们建立了两种模型,通过比较来使问题更加的具有科学性。 中国是一个农业大国,农民的生产生活可以直接影响到国家的经济,优化农业生产模型是一个不可忽视的问题。本题就是研究了农民在农业生产中种植农作物和养殖畜牧业的生产规划问题。以现有标准为参考,采用假设分析法提出了优化模型,计算出农民在农业生产中合理规划农作物的种植和畜牧业养殖的分配问题。让拥有有限经济实力和有限土地的农民,在有限的投资和有限的土地限制下,可以按照不同季节合理安排种植业和畜牧业的劳动时间,更可用赋予时间进行多项劳动,从而可以在规定的劳动力和劳动时间内收获最大净收益。这不仅可以发展我国的农业,更可使农民富裕起来,从而缩小了我国的贫富差距,对我国的经济发展有着重大促进作用。本文根据题目给出的数据和条件,假设出必要未知量,再列出必要方程式,运用Lingo等数学软件分析提出合理的数学模型。关键字: 线性规划、数学建模、Lingo、农业生产、合理分配、最大净收益

阐述题目 某农户拥有100亩土地和25000元可供投资,每年冬季(9月份中旬至来年5月中旬),该家庭的成员可以贡献 3500h的劳动时间,而夏季为4000h。如果这些劳动时间有赋予,该家庭中的年轻成员将去附近的农场打工,冬季每小时元,夏季每小时元。 现金收入来源于三种农作物(大豆、玉米和燕麦)以及两种家禽(奶牛和母鸡)。农作物不需要付出投资,但每头奶牛需要400元的初始投资,每只母鸡需要3元的初始投资,每头奶牛需要使用亩土地,并且冬季需要付出100h劳动时间,夏季付出50h劳动时间,该家庭每年产生的净现金收入为450元;每只母鸡的对应数字为:不占用土地,冬季,夏季,年净现金收入元。养鸡厂房最多只能容纳3000只母鸡,栅栏的大小限制了最多能饲养32偷奶牛。 根据估计,三种农作物每种植一亩所需要的劳动时间和收入如下表所示。建立数学模型,帮助确定每种农作物应该种植多少亩,以及奶牛和母鸡应该各蓄养多少,使年净现金收入最大。

数学建模-线性规划

-1- 第一章线性规划 §1 线性规划 在人们的生产实践中,经常会遇到如何利用现有资源来安排生产,以取得最大经济 效益的问题。此类问题构成了运筹学的一个重要分支—数学规划,而线性规划(Linear Programming 简记LP)则是数学规划的一个重要分支。自从1947 年G. B. Dantzig 提出 求解线性规划的单纯形方法以来,线性规划在理论上趋向成熟,在实用中日益广泛与深入。特别是在计算机能处理成千上万个约束条件和决策变量的线性规划问题之后,线性 规划的适用领域更为广泛了,已成为现代管理中经常采用的基本方法之一。 1.1 线性规划的实例与定义 例1 某机床厂生产甲、乙两种机床,每台销售后的利润分别为4000 元与3000 元。 生产甲机床需用A、B机器加工,加工时间分别为每台2 小时和1 小时;生产乙机床 需用A、B、C三种机器加工,加工时间为每台各一小时。若每天可用于加工的机器时 数分别为A 机器10 小时、B 机器8 小时和C 机器7 小时,问该厂应生产甲、乙机床各几台,才能使总利润最大? 上述问题的数学模型:设该厂生产1 x 台甲机床和2 x 乙机床时总利润最大,则1 2 x , x 应满足 (目标函数)1 2 max z = 4x + 3x (1) s.t.(约束条件) ?? ? ?? ? ? ≥ ≤ + ≤ + ≤ , 0 7 8 2 10 1 2 2 1 2 1 2 x x x x x x x (2) 这里变量1 2 x , x 称之为决策变量,(1)式被称为问题的目标函数,(2)中的几个不等式是问题的约束条件,记为s.t.(即subject to)。由于上面的目标函数及约束条件均为线性

数学建模8-动态规划和目标规划

数学建模8-动态规划和目标规划 一、动态规划 1.动态规划是求解决策过程最优化的数学方法,主要用于求解以时间划分阶段的动态过程的 优化问题。但是一些与时间无关的静态规划(如线性规划、非线性规划),只要人为地引进时间因素,把它视为多阶段决策过程,也可以用动态规划方法方便地求解。 2.基本概念、基本方程: (1)阶段 (2)状态 (3)决策 (4)策略 (5)状态转移方程: (6)指标函数和最优值函数: (7)最优策略和最优轨线 (8)递归方程: 3.计算方法和逆序解法(此处较为抽象,理解较为困难,建议结合例子去看)

4.动态规划与静态规划的关系:一些静态规划只需要引入阶段变量、状态、决策等就可以用动态规划方法求解(详见书中例4) 5.若干典型问题的动态规划模型: (1)最短路线问题: (2)生产计划问题:状态定义为每阶段开始时的储存量x k,决策为每个阶段的产量,记每个阶段的需求量(已知量)为d k,则状态转移方程为 (3)资源分配问题:详见例5

状态转移方程: 最优值函数: 自有终端条件: (4)具体应用实例:详见例6、例7。 二、目标规划 1.实际问题中,衡量方案优劣要考虑多个目标,有主要的,有主要的,也有次要的;有最大值的,也有最小值的;有定量的,也有定性的;有相互补充的,也有相互对立的,这时可用目标规划解决。其求解思路有加权系数法、优先等级法、有效解法等。 2.基本概念: (1)正负偏差变量: (2)绝对(刚性)约束和目标约束 ,次位赋(3)优先因子(优先等级)与权系数:凡要求第一位达到的目标赋予优先因子P 1……以此类推。 予P 2 (4)目标规划的目标函数: (5)一般数学模型:

数学建模实验报告

湖南城市学院 数学与计算科学学院《数学建模》实验报告 专业: 学号: 姓名: 指导教师: 成绩: 年月日

实验一 初等模型 实验目的:掌握数学建模的基本步骤,会用初等数学知识分析和解决实际问题。 实验内容:A 、B 两题选作一题,撰写实验报告,包括问题分析、模型假设、模型构建、模型求解和结果分析与解释五个步骤。 A 题 飞机的降落曲线 在研究飞机的自动着陆系统时,技术人员需要分析飞机的降落曲线。根据经验,一架水平飞行的飞机,其降落曲线是一条S 形曲线。如下图所示,已知飞机的飞行高度为h ,飞机的着陆点为原点O ,且在整个降落过程中,飞机的水平速度始终保持为常数u 。出于安全考虑,飞机垂直加速度的最大绝对值不得超过g /10,此处g 是重力加速度。 (1)若飞机从0x x 处开始下降,试确定出飞机的降落曲线; (2)求开始下降点0x 所能允许的最小值。 y 0x 一、 确定飞机降落曲线的方程

如图所示,我们假设飞机降落的曲线的方程为I d cx bx ax x f +++=23)( 由题设有 h x f f ==)(,0)0(0。 由于曲线是光滑的,所以f(x)还要满足0)(,0)0(0='='x f f ,代入f(x) 可以得到 ?? ? ? ?? ?=++='=+++==='==0 23)()(0)0(0)0(020*******c bx ax x f h d cx bx ax x f c f d f 得 ,0,0,3,22 3 ===- =d c x h b x h a 飞机的降落曲线为 )32()(2 30 2 0x x x x h x f --= 二、 找出最佳着陆点 飞机的垂直速度是关于时间t 的导数,所以 dt dx x x x x h dt dy )66(20 20--= 其中 dt dx 是飞机的水平速度, ,u dt dx = 因此 )(60 2 20x x x x hu dt dy --= 垂直加速度为 )12(6)12(6020 20202 2--=--=x x x hu dt dx x x x hu dt y d 记 ,)(22dt y d x a =则126)(0 2 02-=x x x hu x a ,[]0,0x x ∈ 因此,垂直加速度的最大绝对值为 2 26)(max x hu x a = []0,0x x ∈ 设计要求 1062 2g x hu ≤ ,所以g h u x 600?≥ (允许的最小值)

数学建模(工厂资源规划问题)

工厂资源规划问题 冉光明 29 信息与计算科学 指导老师:赵姣珍

目录 摘要 (1) 关键词 (1) 问题的提出 (2) 问题重述与分析 (3) 符号说明 (4) 模型假设 (4) 模型建立与求解 (5) 模型检验 (9) 模型推广 (10) 参考文献 (11) 附录 (12)

摘要:本问题是个优化问题。问题首先选择合适的决策变量即各种产品数,然后通过决策变量来表达约束条件和目标函数,再利用或编写程序,求得最优产品品种计划;最后通过优化模型对问题作以解释,得出当技术服务消耗33小时、劳动力消耗67小时、不消耗行政管理时,得到的是最优品种规划。 问题一回答:当技术服务消耗33小时、劳动力消耗67小时、不消耗行政管理时, 产品不值得生产。用运算分析,当产品的利润增加至25 3 时,若使产品品种计划最优, 此时需要消耗技术服务29h,劳动力消耗46h,行政管理消耗25h。 问题二回答:利用得到当技术服务增加1h时,利润增加2.5元;劳动力增加1h,利润增加1元;行政管理的增减不会影响利润。 问题三回答:增加的决策变量,调整目标函数。当技术服务消耗33h,劳动力消耗17h,不消耗行政管理,新增量50h时,管理部门采取这样的决策得到最优的产品品种规划。 问题四回答:增加新的约束条件,此时当技术服务消耗32h,劳动力消耗58h,行政管理消耗10h时,得到最优产品品种规划。 本文对模型的求解给出在线性约束条件下的获利最多的产品品种规划。 关键词:线性规划;优化模型;最优品种规划

问题的提出 某工厂制造三种产品,生产这三种产品需要三种资源:技术服务、劳动力和行政管理。下表列出了三种单位产品对每种资源的需要量: 现有100h的技术服务、600h劳动力和300h的行政管理时间可使用,求最优产品品种规划。且回答下列问题: ⑴若产品值得生产的话,它的利润是多少?假使将产品的利润增加至25/3元,求获利最多的产品品种规划。 ⑵确定全部资源的影子价格。 ⑶制造部门提出建议,要生产一种新产品,该种产品需要技术服务1h、劳动力4h 和行政管理4h。销售部门预测这种产品售出时有8元的单位利润。管理部门应有怎样的决策? ⑷假定该工厂至少生产10件产品,试确定最优产品品种规划。

数学建模常用的十种解题方法

数学建模常用的十种解题方法 摘要 当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言,把它表述为数学式子,也就是数学模型,然后用通过计算得到的模型结果来解释实际问题,并接受实际的检验。这个建立数学模型的全过程就称为数学建模。数学建模的十种常用方法有蒙特卡罗算法;数据拟合、参数估计、插值等数据处理算法;解决线性规划、整数规划、多元规划、二次规划等规划类问题的数学规划算法;图论算法;动态规划、回溯搜索、分治算法、分支定界等计算机算法;最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法;网格算法和穷举法;一些连续离散化方法;数值分析算法;图象处理算法。 关键词:数学建模;蒙特卡罗算法;数据处理算法;数学规划算法;图论算法 一、蒙特卡罗算法 蒙特卡罗算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法。在工程、通讯、金融等技术问题中, 实验数据很难获取, 或实验数据的获取需耗费很多的人力、物力, 对此, 用计算机随机模拟就是最简单、经济、实用的方法; 此外, 对一些复杂的计算问题, 如非线性议程组求解、最优化、积分微分方程及一些偏微分方程的解⑿, 蒙特卡罗方法也是非常有效的。 一般情况下, 蒙特卜罗算法在二重积分中用均匀随机数计算积分比较简单, 但精度不太理想。通过方差分析, 论证了利用有利随机数, 可以使积分计算的精度达到最优。本文给出算例, 并用MA TA LA B 实现。 1蒙特卡罗计算重积分的最简算法-------均匀随机数法 二重积分的蒙特卡罗方法(均匀随机数) 实际计算中常常要遇到如()dxdy y x f D ??,的二重积分, 也常常发现许多时候被积函数的原函数很难求出, 或者原函数根本就不是初等函数, 对于这样的重积分, 可以设计一种蒙特卡罗的方法计算。 定理 1 )1( 设式()y x f ,区域 D 上的有界函数, 用均匀随机数计算()??D dxdy y x f ,的方法: (l) 取一个包含D 的矩形区域Ω,a ≦x ≦b, c ≦y ≦d , 其面积A =(b 一a) (d 一c) ; ()j i y x ,,i=1,…,n 在Ω上的均匀分布随机数列,不妨设()j i y x ,, j=1,…k 为落在D 中的k 个随机数, 则n 充分大时, 有

数学建模 农场规划问题

model: Max=950*x11+7.5*x21+360*x31+600*x41+400*x51+6.8*(3500-100*x11-0.6*x21-20*x31-35*x4 1-10*x51)+7.0*(4000-50*x11-0.3*x21-30*x31-75*x41-40*x51)+1350*x11+950*x12+7.5*x21+36 0*x31+600*x41+400*x51+6.8*(3500-100*(x11+x12)-0.6*x21-20*x31-35*x41-10*x51)+7.0*(4000 -50*(x11+x12)-0.3*x21-30*x31-75*x41-40*x51)+1350*(x11+x12)+950*x13+7.5*x21+360*x31+6 00*x41+400*x51+6.8*(3500-100*(x11+x12+x13)-0.6*x21-20*x31-35*x41-10*x51)+7.0*(4000-50 *(x11+x12+x13)-0.3*x21-30*x31-75*x41-40*x51) +1350*(x12+x13)+950*x14+7.5*x21+360*x31+600*x41+400*x51+6.8*(3500-100*(x12+x13+x14) -0.6*x21-20*x31-35*x41-10*x51)+7.0*(4000-50*(x12+x13+x14)-0.3*x21-30*x31-75*x41-40*x51 ) +1350*(x13+x14)+950*x15+7.5*x21+360*x31+600*x41+400*x51+6.8*(3500-100*(x13+x14+x15) -0.6*x21-20*x31-35*x41-10*x51)+7.0*(4000-50*(x13+x14+x15)-0.3*x21-30*x31-75*x41-40*x51 ); x11+x12+x13<=32; x12+x13+x14<=32; x13+x14+x15<=32; x21<=3000; x22<=3000; x23<=3000; x24<=3000; x25<=3000; 1.5*x11+x31+x41+x51<=100; 1.5*x11+x32+x42+x52<=100; 1.5*x11+1.5*x12+1.5*x13+x33+x43+x53<=100; 1.5*x12+1.5*x13+1.5*x14+x34+x44+x54<=100; 1.5*x13+1.5*x14+1.5*x15+x35+x45+x55<=100; 100*x11+0.6*x21+20*x33+35*x43+10*x52<=3500; 100*x11+100*x12+0.6*x22+20*x33+35*x43+10*x52<=3500; 100*x11+100*x12+100*x13+0.6*x23+20*x33+35*x43+10*x52<=3500; 100*x12+100*x13+100*x14+0.6*x24+20*x34+35*x44+10*x54<=3500; 100*x13+100*x14+100*x15+0.6*x25+20*x35+35*x45+10*x55<=3500; 50*x11+0.3*x21+30*x33+75*x43+40*x52<=4000; 50*x11+50*x12+0.3*x22+30*x33+75*x43+40*x52<=4000; 50*x11+50*x12+50*x13+0.3*x23+30*x33+75*x43+40*x52<=4000; 50*x12+50*x13+50*x14+0.3*x24+30*x34+75*x44+40*x54<=4000; 50*x13+50*x14+50*x15+0.3*x25+30*x35+75*x45+40*x55<=4000; 400*x11+3*x21<=15000; 400*x12+3*x22<=15000+950*x11+7.5*x21+360*x31+600*x41+400*x51+6.8*(3500-100*x11-0.6 *x21-20*x31-35*x41-10*x51)+7.0*(4000-50*x11-0.3*x21-30*x31-75*x41-40*x51); 400*x13+3*x23<=950*x11+7.5*x21+360*x31+600*x41+400*x51+6.8*(3500-100*x11-0.6*x21-2 0*x31-35*x41-10*x51)+7.0*(4000-50*x11-0.3*x21-30*x31-75*x41-40*x51)+1350*x11+950*x12 +7.5*x21+360*x31+600*x41+400*x51+6.8*(3500-100*(x11+x12)-0.6*x21-20*x31-35*x41-10*x5 1)+7.0*(4000-50*(x11+x12)-0.3*x21-30*x31-75*x41-40*x51);

相关主题
文本预览
相关文档 最新文档