当前位置:文档之家› 霍尔效应转速传感器和电磁式转速传感器的区别

霍尔效应转速传感器和电磁式转速传感器的区别

霍尔效应转速传感器和电磁式转速传感器的区别
霍尔效应转速传感器和电磁式转速传感器的区别

转速传感器

转速传感器的功用是检测车轮的速度,并将速度信号输入ABS的电控单元。下图所示为转速传感器在车轮上的安装位置。

目前,用于ABS系统的速度传感器主要有电磁式和霍尔式两种。

电磁式转速传感器结构

传感头的结构如下图所示,它由永磁体2、极轴5和感应线圈4等组成,极轴头部结构有凿式和柱式两种。

齿圈6旋转时,齿顶和齿隙交替对向极轴。在齿圈旋转过程中,感应线圈内部的磁通量交替变化从而产生感应电动势,此信号通过感应线圈末端的电缆1输入ABS 的电控单元。当齿圈的转速发生变化时,感应电动势的频率也变化。ABS电控单元通过检测感应电动势的频率来检测车轮转速。

电磁式轮速传感器结构简单、成本低,但存在下述缺点:一是其输出信号的幅值随转速的变化而变化。若车速过慢,其输出信号低于1V,电控单元就无法检测;二是响应频率不高。当转速过高时,传感器的频率响应跟不上;三是抗电

磁波干扰能力差。目前,国内外ABS系统的控制速度范围一般为15~160km/h,今后要求控制速度范围扩大到8~260km/h以至更大,显然电磁感应式轮速传感器很难适应。

霍尔轮速传感器

霍尔轮速传感器也是由传感头和齿圈组成。传感头由永磁体,霍尔元件和电子电路等组成,永磁体的磁力线穿过霍尔元件通向齿轮,如下图所示。

当齿轮位于图中(a)所示位置时,穿过霍尔元件的磁力线分散,磁场相对较弱;而当齿轮位于图中(b)所示位置时,穿过霍尔元件的磁力线集中,磁场相对较强。齿轮转动时,使得穿过霍尔元件的磁力线密度发生变化,因而引起霍尔电压的变化,霍尔元件将输出一个毫伏(mV)级的准正弦波电压。此信号还需由电子电路转换成标准的脉冲电压。

霍尔轮速传感器具有以下优点:其一是输出信号电压幅值不受转速的影响;其二是频率响应高,其响应频率高达20kHz,相当于车速为1000km/h 时所检测的信号频率;其三是抗电磁波干扰能力强。因此,霍尔传感器不仅广泛应用于ABS轮速检测,也广泛应用于其控制系统的转速检测。

霍尔效应的物理定义

霍尔效应是磁电效应的一种,这一现象是美国物理学家霍尔(A.H.Hall,1855—1938)于1879年在研究金属的导电机构时发现的。当电流垂直于外磁场通过导体时,在导体的垂直于磁场和电流方向的两个端面之间会出现电势差,这一现象便是霍尔效应。

霍尔效应原理

霍尔效应的本质是:固体材料中的载流子在外加磁场中运动时,因为受到洛仑兹力的作用而使轨迹发生偏移,并在材料两侧产生电荷积累,形成垂直于电流方向的电场,最终使载流子受到的洛仑兹力与电场斥力相平衡,从而在两侧建立起一个稳定的电势差即霍尔电压。正交电场和电流强度与磁场强度的乘积之比就是霍尔系数。平行电场和电流强度之比就是电阻率。大量的研究揭示:参加材料导电过程的不仅有带负电的电子,还有带正电的空穴。

传感器原理——基于霍尔传感器的转速测量系统设计

传感器原理及应用期末课程设计题目基于霍尔传感器的转速测量电路设计 姓名小波学号8888888888 院(系)电子电气工程学院 班级清华大学——电子信息 指导教师牛人职称博士后 二O一一年七月十二日

摘要:转速是发动机重要的工作参数之一,也是其它参数计算的重要依据。针对工业上常见的发动机设计了以单片机STC89C51为控制核心的转速测量系统。系统利用霍尔传感器作为转速检测元件,并利用设计的调理电路对霍尔转速传感器输出的信号进行滤波和整形,将得到的标准方波信号送给单片机进行处理。实际测试表明,该系统能满足发动机转速测量要求。 关键词:转速测量,霍尔传感器,信号处理,数据处理

Abstract: The rotate speed is one of the important parameters for the engine, and it is also the important factor that calculates other parameters. The rotate speed measurement system for the common engine is designed with the single chip STC89C51. The signal of the rotate speed is sampled by the Hall sensor, and it is transformed into square wave which will be sent to single chip computer. The result of the experiment shows that the measurement system is able to satisfy the requirement of the engine rotate speed measurement. Key words: rotate speed measurement, Hall sensor, signal processing, data processing

磁电式转速传感器功能特点及技术参数

磁电式转速传感器采用电磁感应原理来达到测速目的。具有输出信号大,抗干扰性能好,不需外接电源,可在烟雾、油气、水气等恶劣环境中使用。下面就让艾驰商城小编对磁电式转速传感器功能特点及技术参数来一一为大家做介绍吧。 磁电式转速传感器的特点: 磁电式转速传感器是针对测速齿轮而设计的发电型传感器(无源),测速齿轮旋转引起的磁隙变化,在探头线圈中产生感生电动势,其幅度与转速有关,转速越高输出电压越高,输出频率与转速成正比,转速进一步增高,磁路损耗增大,输出电势已趋饱和,当转速过高时,磁路损耗加剧,电势锐减。 磁电式转速传感器的性能指标: 直流电阻:150~200(25℃) 齿轮形式:模数2~4(渐开线齿轮)使用温度:-10~+120℃ 抗振动:20g螺纹规格:M16×1(或客户要求) 测量范围:10~15000r/min(60齿) 输出信号幅值:60r/min》100mV (测试条件:发讯齿轮,齿数为60,材料为电工钢,模数为2,传感器端面距齿顶1mm)。信号幅值大小,与转速成正比,与端面和齿顶间隙的大小成反比。 输出电压波形:渐开线齿轮—近似正弦波,若齿轮略有偏心则为调幅正弦波;孔板—近似方波 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解图尔克、奥托尼克斯、科瑞、山武、倍加福、邦纳、亚德客、施克等各类传感器的选型,报价,采购,参数,图片,批发信息,请关注艾驰商城https://www.doczj.com/doc/ef8679533.html,/

传感器原理——基于霍尔传感器的转速测量系统设计

. 传感器原理及应用期末课程设计题目基于霍尔传感器的转速测量电路设计 姓名小波学号8888888888 院(系)电子电气工程学院 班级清华大学——电子信息 指导教师牛人职称博士后 二O一一年七月十二日

摘要:转速是发动机重要的工作参数之一,也是其它参数计算的重要依据。针对工业上常见的发动机设计了以单片机STC89C51为控制核心的转速测量系统。系统利用霍尔传感器作为转速检测元件,并利用设计的调理电路对霍尔转速传感器输出的信号进行滤波和整形,将得到的标准方波信号送给单片机进行处理。实际测试表明,该系统能满足发动机转速测量要求。 关键词:转速测量,霍尔传感器,信号处理,数据处理

Abstract: The rotate speed is one of the important parameters for the engine, and it is also the important factor that calculates other parameters. The rotate speed measurement system for the common engine is designed with the single chip STC89C51. The signal of the rotate speed is sampled by the Hall sensor, and it is transformed into square wave which will be sent to single chip computer. The result of the experiment shows that the measurement system is able to satisfy the requirement of the engine rotate speed measurement. Key words:rotate speed measurement, Hall sensor, signal processing, data processing

磁电式传感器

磁电式传感器 基本概念:磁电式传感器是利用电磁感应原理,将输入运动速度变换成感应电势输出的传感器。它能把被测对象的机械能转换成易于测量的电信号,是一种有源传感器。 工作原理:磁电式传感器是基于电磁感应原理,通过磁电相互作用将被测量(如振动、位移、转速等)转换成感应电动势的传感器,它也被称为感应式传感器、电动式传感器。根据电磁感应定律,N匝线圈中的感应电动势。感应电动势的大小由磁通的变化率决定。磁通量协的变化可以通过很多办法来实现:如磁铁与线圈之间作相对运动;磁路中磁阻变化;恒定磁场中线圈面积变化等。因此可以制造出不同类型的磁电式传感器。磁电式传感器是一种机一电能量变换型传感器,不需要供电电源,电路简单,性能稳定,输出信号强,输出阻抗小,具有一定的频率响应范围,适合于振动、转速、扭矩等测量。但这种传感器的尺寸和重量都较大。恒定磁通磁电式传感器由永久磁铁(磁钢)、线圈、弹簧、金属骨架和壳体等组成。系统产生恒定直流磁场,磁路中工作气隙是固定不变的,因而气隙中的磁通也是恒定不变的。它们的运动部件可以是线圈,又可分为圈式或动铁式两种结构类型。恒磁通磁电式传感器结构原理图磁铁与传感器壳体固定,线圈和金属骨架(合称线圈组件)用柔软弹簧支承。线圈组件与壳体固定,永久磁铁用柔软弹簧支承。两者的阻尼都是由金属骨架和磁场发生相对运动而产生的电磁阻尼。动圈式和动铁式的工作原理是完全相同的,当壳体随被测振动体一起振动时,由于弹簧较软,运动部件质量相对较大,因此振动频率足够高(远高于传感器的固有频率)时,运动部件的惯性很大,来不及跟随振动体一起振动,近于静止不动,振动能量几乎全被弹簧吸收,永久磁铁与线圈之间的相对运动速度接近于振动体振动速度。线圈与磁铁间相对运动使线圈切割磁力线,产生与运动速度成正比的感应电动势,线圈处于工作气隙磁场中的匝数,称为工作匝数;工作气隙中磁感应强度;每匝线圈的平均长度。这类传感器的基型是速度传感器,能直接测量线速度。因为速度与位移和加速度之间有内在的联系,即它们之间存在着积分或微分关系。因此,如果在感应电动势的测量电路中接入一积分电路,则它的输出就与位移成正比;如果在测量电路中接人一微分电路,则它的输出就与运动的加速度成正比。这样,这类磁电式传感器就可以用来测量运动的位移或加速度。 工作特性:

霍尔式加速度传感器

湖南科技大学 课程设计 题目霍尔式加速度传感器 作者伍文斌 学院机电工程学院 专业测控技术与仪器 学号1403030104 指导教师杨淑仪、凌启辉 二零一七年六月二十日

目录 摘要 (3) 第一章霍尔传感器基本原理 (4) 1.1霍尔效应 (4) 1.2霍尔元件 (5) 第二章加速度传感器设计方案 (6) 2.1设计理念 (6) 2.2设计电路图 (6) 2.3电路图解析 (7) 第三章传感器结构参数 (10) 第四章参考文献

摘要 霍尔传感器是基于霍效应而将被测量转化成电动势输出的一种传感器。霍尔元件已发展成一个品种多样的磁传感器产品簇,并且得到广泛的应用。霍尔器件是一种磁传感器,用它可以检测磁场及其变化,可以在各种与磁有关的场合中使用。霍尔传感器以霍尔效应为其工作原理。本文的加速度传感器属于霍尔开关器件,当物体移动时,若使其表面带上一定磁场,当其接近传感器时,会输出高电平,通过计算一定时间内的转的圈数(如汽车轮胎的转动圈数),可以得到物体运动的加速度(如汽车行驶的加速度)。霍尔开关器件无触点、无磨损、输出波形清晰、无抖动、无回跳、位置重复精度高。取用了各种补偿和保护措施的霍尔器件的工作温度范围宽等特点,因此应用广泛。 关键字:霍尔效应;霍尔开关器件;转动;加速度

第一章霍尔传感器基本原理 1.1霍尔效应 所谓霍尔效应,是指磁场作用于载流金属导体、半导体中的载流子时,产生横向电位差的物理现象。金属的霍尔效应是1879年被美国物理学家霍尔发现的。当电流通过金属箔片时,若在垂直于电流的方向施加磁场,则金属箔片两侧面会出现横向电位差。半导体中的霍尔效应比金属箔片中更为明显,而铁磁金属在居里温度以下将呈现极强的霍尔效应。 利用霍尔效应可以设计制成多种传感器。霍尔电位差UH的基本关系为 UH=RHIB/d (18) RH=1/nq(金属)(19) 式中RH——霍尔系数: n——载流子浓度或自由电子浓度;

基于霍尔传感器的转速测量)

成绩评定: 传感器技术 课程设计 题目基于霍尔传感器的转速测量

摘要 转速是发动机重要的工作参数之一,也是其它参数计算的重要依据。针对工业上常见的发动机设计了以单片机STC89C51为控制核心的转速测量系统。系统利用霍尔传感器作为转速检测元件,并利用设计的调理电路对霍尔转速传感器输出的信号进行滤波和整形,将得到的标准方波信号送给单片机进行处理。实际测试表明,该系统能满足发动机转速测量要求。 关键词:转速测量,霍尔传感器,信号处理,数据处理

目录 一、设计目的------------------------- 1 二、设计任务与要求--------------------- 1 2.1设计任务------------------------- 1 2.2设计要求------------------------- 1 三、设计步骤及原理分析 ----------------- 1 3.1设计方法------------------------- 2 3.2设计步骤------------------------- 2 3.3设计原理分析--------------------- 16 四、课程设计小结与体会 ---------------- 16 五、参考文献------------------------- 16

一、设计目的 1.学习基本理论在实践中综合运用的初步禁言,掌握模拟电路的设计的基本方法,设计步骤,培养综合设计与实物调试能力。 2.学会霍尔传感器的设计方法和性能指标测试。 3.进一步了解霍尔传感器的组成框图和各个单元的工作原理以及相互之间的联系。 4.培养实践技能,提高分析和解决问题的能力。 5.提高自己对文献资料的搜索和信息处理能力。 二、设计任务与要求 2.1设计任务 1、查阅传感器有关方面的相关资料,了解此方面的发展状况。 2、掌握所用器件的特性。 3、采用合理的设计方案。 4、设计、实现该系统。 5、撰写设计报告。 2.2设计要求 1.掌握霍尔传感器的使用方法 2.熟悉使用单片机测量转速 三、设计步骤及原理分析 3.1设计方法 系统由传感器、信号预处理电路、处理器、显示器和系统软件等部分组成。传感器部分采用霍尔传感器,负责将电机的转速转化

实验十九 开关式霍尔传感器测转速实验

实验十九开关式霍尔传感器测转速实验 一、实验目的:了解开关式霍尔传感器测转速的应用。 二、基本原理:开关式霍尔传感器是线性霍尔元件的输出信号经放大器放大,再经施密特电路整形成矩形波(开关信号)输出的传感器。开关式霍尔传感器测转速的原理框图19—1所示。当被测圆盘上装上6只磁性体时,圆盘每转一周磁场就变化6次,开关式霍尔传感器就同频率f相应变化输出,再经转速表显示转速n。 图19—1开关式霍尔传感器测转速原理框图 三、需用器件与单元:主机箱中的转速调节0~24V直流稳压电源、+5V直流稳压电源、电压表、频率\转速表;霍尔转速传感器、转动源。 四、实验步骤: 1、根据图19—2将霍尔转速传感器安装于霍尔架上,传感器的端面对准转盘上的磁钢并调节升降杆使传感器端面与磁钢之间的间隙大约为2~3mm。 2、将主机箱中的转速调节电源0~24V旋钮调到最小(逆时针方向转到底)后接入电压表(电压表量程切换开关打到20V档);其它接线按图19—2所示连接(注意霍尔转速传感器的三根引线的序号);将频频\转速表的开关按到转速档。 3、检查接线无误后合上主机箱电源开关,在小于12V范围内(电压表监测)调节主机箱的转速调节电源(调节电压改变直流电机电枢电压),观察电机转动及转速表的显示情况。

图19—2 霍尔转速传感器实验安装、接线示意图 4、从2V开始记录每增加1V相应电机转速的数据(待电机转速比较稳定后读取数据);画出电机的V-n(电机电枢电压与电机转速的关系)特性曲线。实验完毕,关闭电源。 n(转/ 406286108132157179203225250分) V(mv)2003004635006017037999019991104 电机的V-n(电机电枢电压与电机转速的关系)特性曲线 五、思考题: 利用开关式霍尔传感器测转速时被测对象要满足什么条件? 被测物能够阻挡或透过或反射霍尔信号,般都是一个发射头一个接收头若发射接收安装在同侧,则被测物必须能反射该信号,发射接收安装在对侧,则被测物必须能阻挡透过该信

根据霍尔传感器的电机测速装置设计

检测与转换技术大作业报告 题目 院系 班级 学生姓名 日期

霍尔传感器在电机转速测量装置上 的应用设计 利用霍尔传感器,设计了一种电机转速测量装置并提出了相应的测速算法,还设计了转速信号处理电路,将脉冲信号转化为标准的T TL 电平,便于A T89C52 单片机的计数运算,并通74LS164 寄存器将转速信号显示在L ED 上。该电机测速装置具有线路简单、实时性好、成本低、安装调试方便和节省空间等优点,尤其是在测量空间有限、轴偏心或传感器不便安装的条件下,该测量方法具有明显的优势。 第一章测速电路相关元件分析 1.1 AT89C52单片机 AT89C52是一个低电压、高性能CMOS8位单片机,片内含8KB的可反复擦写的Flash只读程序存储器和256B的随机存取数据存储器(RAM),兼容标准MCS-51指令系统,片内置通用8位中央处理器和Flash存储单元。AT89C52有40个引脚,32个外部双向输入/输出(I/O)端口,同时内含2个外中断口,3个16位可编程定时计数器,2个全双工串行通信口,2个读/写口线。AT89C52主要功能特性和引脚图如下所示: ·完全兼容MCS-51指令系统 ·8k可反复擦写Flash ROM ·全静态操作:时钟频率0-24MHz

·三级加密程序存储器 ·3个16位可编程定时/计数器中断 ·256x8bit内部RAM ·32个可编程的双向I/O口 ·2个外部中断源,共8个中断源 ·2个读写中断口线 ·可编程串行UART通道 ·低功耗空闲和掉电模式 ·软件设置睡眠和唤醒功能 1.2 LM317T三端稳压器 LM317T是可调节三端正电压稳压器,在输出电压范围为1.25V到37V时能够提供超过1.5A的负载电流。此稳压器使用非常容易,只需两个外接电阻来设置输出电压。其主要功能特性如下所示: ·输出电流超过1.5安 ·输出电压在1.2伏和37伏间连续可调 ·内部热过载保护 ·不随温度变化的内部短路电流限制

磁电转速传感器的工作原理和特点

磁电转速传感器的工作原理和特点 发布时间:2011-06-16 来源:本站原创作者:无忧备件网 磁电式转速传感器是利用磁电感应来测量物体转速的,属于非接触式转速测量仪表。磁电式转速传感器可用于表面有缝隙的物体转速测量,有很好的抗干扰性能,多用于发动机等设备的转速监控,在工业生产中有较多应用。 磁电式转速传感器的工作原理 磁电式转速传感器是以磁电感应为基本原理来实现转速测量的。磁电式转速传感器由铁芯、磁钢、感应线圈等部件组成的,测量对象转动时,转速传感器的线圈会产生磁力线,齿轮转动会切割磁力线,磁路由于磁阻变化,在感应线圈内产生电动势。 磁电式转速传感器的感应电势产生的电压大小,和被测对象转速有关,被测物体的转速越快输出的电压也就越大,也就是说输出电压和转速成正比。但是在被测物体的转速超过磁电式转速传感器的测量范围时,磁路损耗会过大,使得输出电势饱甚至是锐减。 磁电式转速传感器的特点 磁电式转速传感器的工作方式决定了它有很强的抗干扰性,能够在烟雾、油气、水汽等环境中工作。磁电式转速传感器输出的信号强,测量范围广,齿轮、曲轴、轮辐等部件,及表面有缝隙的转动体都可测量。 磁电式转速传感器的工作维护成本较低,运行过程无需供电,完全是靠磁电感应来实现测量,同时磁电式转速传感器的运转也不需要机械动作,无需润滑。磁电式转速传感器的结构紧凑、体积小巧、安装使用方便,可以和各种二次仪表搭配使用。 现在的柴油机正在经历以柴油机电控化为核心的第3 次技术飞跃。ECU 技术是柴油机电控化的核心技术之一,它采集发动机的相位、转速( n )、燃油压力、油门位置、温度等信号,通过一定的算法得出泵油和喷油的参数,并驱动相应的执行器工作。在ECU 中,曲轴和凸轮轴相位传感器信号是整个发动机工作时序的基础,其作用相当于芯片中的时钟。发动机的n 、喷油相位以及判缸信号等都是通过这两个传感器计算处理得出的。因此,设计一种抗干扰能力强,可靠性高的曲轴和凸轮轴传感器信号处理模块对整个柴油机电控单元来说至关重要。 常用的发动机曲轴和凸轮轴相位传感器有霍尔式传感器和磁电式传感器两种。磁电式传感器具有成本低、结构简单、耐腐蚀、耐冲击、可靠性高和稳定性好等优点,故本研究采用两个磁电式传感器分别测量6 缸发动机的曲轴和凸轮

霍尔传感器测速原理

现代检测技术论文 测控11-2班 范国霞 1105070202

绪论 现代技术关于速度的测量方法多种多样,其中包括线速度和角速度两个方面,速度和转速测量在工业农业、国防中有很多应用,如汽车、火车、轮船及飞机等行驶速度测量;发动机、柴油机、风力发电机等输出轴的转速测量等等。其中有微积分转换法,线速度与角速度转换方法,时间位移方法等等,下面我所介绍的是霍尔传感器对于速度的测量方法。霍尔式传感器是基于霍尔效应原理设计的传感器. 关键字:霍尔效应,霍尔传感器

霍尔传感器 霍尔传感器是基于霍尔效应的一种传感器。1879年美国物理学家霍尔首先在金属材料中发现了霍尔效应,但由于金属材料的霍尔效应太弱而没有得到应用,随着半导体技术的发展,开始用半导体材料制成霍尔元件,由于他的霍尔效应显著而得到了应用和发展。在了解霍尔传感器之前先了解一下什么是霍尔元件以及它的基本特性。 霍尔元件的结构很简单,它是由霍尔片、四根引线和壳体组成的,如图1所示。 图1 霍尔片是一块矩形半导体单晶薄片,引出四根引线:1、1ˊ两根引线加激励电压或电流,称激励电极;2、2ˊ引线为霍尔输出引线,称霍尔电极。霍尔元件的壳体是用非到此金属、陶瓷或环氧树脂封装的。在电路中,霍尔元件一般可用两种符号表示,如图1(b)所示。

霍尔元件的基本特性 (1)额定激励电流和最大允许激励电流当霍尔元件自身温度升高10℃所流过的激励电流成为额定激励电流。以元件允许最大温升为限定的激励电流称为最大允许激励电流。因霍尔电势随激励电流增加而线性增加,所以使用中希望选用尽可能大的激励电流,因而需要知道元件的最大允许激励电流。 (2)输入电阻和输出电阻激励电极间的电阻称为输入电阻。霍尔电极输出电势对电路外部来说相当于一个电压源,其电源内阻即为输出电阻。 (3)不等位电势及不等为电阻当霍尔元件的激励电流为I时,若元件所处位置磁感应强度为零,则它的霍尔电势应该为零,但实际不为零。这是测得的空载电势称为不等位电势。 (4)寄生直流电势再外加磁场为零、霍尔元件用交流激励时,霍尔电极输出除了交流不等位电势外,还有一直流电势,称为寄生直流电势。 (5)霍尔电势温度系数在一定磁感应强度和激励电流下温度每变化1℃时,霍尔电势变化的百分率称为霍尔电势温度系数。他同时也是霍尔系数的温度系数。

霍尔传感器测量转速

测试技术应用案例 (霍尔传感器测量转速) 班级: 学号: 姓名:

霍尔传感器测量转速 一.霍尔传感器的优点 1.测量范围广:霍尔传感器可以测量任意波形的电流和电压, 如:直流、交流、脉冲波形等。 2.精度高:在工作温度区内精度优于1%,该精度适合于任何波形 的测量。 3.线性度好:优于%。 4.动态性能好:响应时间小于1μs跟踪速度di/dt高于50A/μs。 5.性价比高。 各式各样的霍尔传感器 二.霍尔传感器测转速原理 霍尔效应,是指磁场作用于载流金属导体、半导体中的载流子时,产生横向电位差的物理现象。当电流通过金属箔片时,若在垂直于电流的方向施加磁场,则金属箔片两侧面会出现横向电位差。利用霍尔效应可以设计制成多种传感器。霍尔电位差U H的基本关系为: U H=K H IB K H =1/nq(金属) 式中K H――霍尔系数;n――单位体积内载流子或自由电子的个数;q――电子电量;I――通过的电流;B――垂直于I的磁感应强度; 利用霍尔效应表达式:U H=K H IB,当被测物体上装上N只磁性体时,物体每转一周磁场就变化N次,霍尔电势相应变化N次,输出电势通过放大、整形和计数电路就可以测量被测旋转物的转速。 三.测量设备 本案例以实验室霍尔元件测量圆盘转速为例。 实验设备:CSY2000系列传感器与检测技术实验台。

1、主控台部分,提供高稳定的±15V、+5V、±2V~±10V可 调、+2V~+24V可调四种直流稳压电源;主控台面板上还装有电压、频率、转速的3位半数显表。 2、旋转源0-2400转/分(可调) 需用器件与单元:霍尔传感器、5V直流源、转速调节装置、转动源单元、数显单元的转速显示部分。 四.实验方案 1.实验装置如下图 2.将5V直流源加于霍尔元件电源输入端。 3.将霍尔转速传感器输出端(黄)插入数显单元F i n端。 4.将转速调节中的2V-24V转速电源引入到台面上转动单元中转 动电源2-24VK插孔。 5.将数显单元上的转速/频率表波段开关拨到转速档,此时数显 表指示转速。 6.调节转速调节电压使转动速度变化。观察数显表转速显示的变 化。 五.实验结果计算 磁体经过霍尔元件,霍尔元件就会发出就会发出一个信号,经放大整形得到脉冲信号,两个脉冲的间隔时间即为周期,通过周期就可算出转速。

基于霍尔传感器的转速测量系统设计

基于霍尔传感器的 转速测量 姓名:** 班级:** 学号:** 指导老师:** 基于霍尔传感器的转速测量

摘要 本文介绍一种用STC89C51单片机测量小型电动机转速的方法,霍尔传感器的工作原理,阐述了霍尔传感器测速系统的工作过程,利用脉冲计数法实现了对转速的测量,通过LCD 直观地显示电机的转速值。结合硬件电路设计,采用模块化方法进行了软件设计。编制了电机转速的测量设计了测量模块、转速模块、显示模块等的C51程序。系统以单片机STC89C51为控制核心,用霍尔集成传感器作为测量小型直流电机转速的检测元件,经过单片机数据处理,用8位LED数码管动态显示小型直流电机的转速。 关键词:单片机;转速测量;霍尔传感器 背景: 在直流电机的多年实际运行的过程中,机械测速电机不足之处日益明显,其主要表现为直流测速电机DG中的炭刷磨损及交流测速发电机TG中的轴承磨损,增加了设备的维护工作量,也随着增加了发生故障的可能性;同时机械测速电机在更换炭刷及轴承的检修作业过程中,需要将直流电动机停运,安装过程中需要调整机械测速电机轴与主电机轴的同轴度,延长了检修时间,影响了设备的长期平稳运行。 随着电力电子技术的不断发展,一些新颖器件的不断涌现,原有器件的性能也随着逐渐改进,采用电力电子器件构成的各种电力电子电路的应用范围与日俱增。因此采用电子脉冲测速取代原直流电动机械测速电机已具备理论基础,如可采用磁阻式、霍尔效应式、光电式等方式检测电机转速。 经过比较分析后,决定采用测速齿轮和霍尔元件代替原来的机械测速电机。霍尔传感器作为测速器件得到广泛应用。霍尔传感器是利用霍尔效应实现磁电转换的一种传感器。霍尔效应这种物理现象的发现,虽然已有一百多年的历史,但是直到20世纪40年代后期,由于半导体工艺的不断改进,才被人们所重视和应用。我国从70年代开始研究霍尔器件,经过20余年的研究和开发,目前已经能生产各种性能的霍尔元件,霍尔传感器具有灵敏度高、线性度好、稳定性高、体积小和耐高温等特点。 (一)转速的测量原理 转速是工程中应用非常广泛的一个参数,而随着大规模及超大规模集成电路技术的发展,数字测量系统得到普遍应用,利用单片机对脉冲数字信号的强大处理能力,应用全数字化的结构,使数字测量系统的越来越普及。在测量范围和测量精度方面都有极大的提高。转速的测量方法有很多,由于转速是以单位时间内的转速来衡量的,所以本文采用霍尔元器件测量转速。 霍尔器件是有半导体材料制成的一种薄片,其长为l,宽为b,厚度为d。若在垂直于薄片方向(即沿厚度d的方向)施加外磁场,在沿长为l的方向的两端面加外电场,则其内部会有一定的电流通过。由于电子在磁场中运动,所以将受到一个洛仑兹力,其大小为: F=qVB, 式中:F为洛伦兹力;q为载流子电荷,V为载流子运动速度,B为磁感应强度。

磁电式传感器是利用电磁感应原理

磁电式传感器是利用电磁感应原理,将输入运动速度变换成感应电势输出的传感器。它不需要辅助电源,就能把被测对象的机械能转换成易于测量的电信号,是一种有源传感器。有时也称作电动式或感应式传感器, 只适合进行动态测量。由于它有较大的输出功率,故配用电路较简单;零位及性能稳定;工作频带一般为10~1000Hz 。磁电式传感器具有双向转换特性,利用其逆转换效应可构成力(矩)发生器和电磁激振器等。 根据电磁感应定律,当W 匝线圈在均恒磁场内运动时,设穿过线圈的磁通为Φ,则线圈内的感应电势e 与磁通变化率d Φ/dt 有如下关系: dt d W e φ-= (5-1) 根据这一原理,可以设计成变磁通式和恒磁通式两种结构型式,构成测量线速度或角速度的磁电式传感器。图5.1所示为分别用于旋转角速度及振动速度测量的变磁通式结构。其中永久磁铁1(俗称“磁钢”)与线圈4均固定,动铁心3(衔铁)的运动使气隙5和磁路磁阻变化,引起磁通变化而在线圈中产生感应电势,因此又称变磁阻式结构。 图5.1 变磁通式结构(a)旋转型(变磁阻); (b)平移型(变气隙) 在恒磁通式结构中,工作气隙中的磁通恒定,感应电势是由于永久磁铁与线圈之间有相对运动——线圈切割磁力线而产生。这类结构有两种,如图5-2所示。图(a)为动圈式,图中的磁路系统由圆柱形永久磁铁和极掌、圆筒形磁轭及空气隙组成。气隙中的磁场均匀分布,测量线圈绕在筒形骨架上,经膜片弹簧悬挂于气隙磁场中。当线圈与磁铁间有相对运动是,线圈中产生的感应电势e 为:

图5.2 恒磁通式结构 (a)动圈式;(b)动铁式 Blv e = (5-2) 式中 B ——气隙磁通密度(T); l——气隙磁场中有效匝数为W 的线圈总长度(m)为l=la W (la 为每匝线圈的平均长度); ν——线圈与磁铁沿轴线方向的相对运动速度(ms -1)。 当传感器的结构确定后,式(5-2)中B 、la 、W 都为常数,感应电势e 仅与 相对速度v 有关。传感器的灵敏度为: Bl v e S == (5-3) 为提高灵敏度,应选用具有磁能积较大的永久磁铁和尽量小的气隙长度,以提高气隙磁通密度B ;增加la 和W 也能提高灵敏度,但它们受到体积和重量、 内电阻及工作频率等因素的限制。为了保证传感器输出的线性度,要保证线圈始终在均匀磁场内运动。设计者的任务是选择合理的结构形式、材料和结构尺寸,以满足传感器基本性能要求。 一.传递矩阵 ㈠.机械阻抗 图5.3(a)所示的质量为m 、弹簧刚度为k ,阻尼系数为c 的单自由度机械振动系统。设在力F 作用下产生的振动速度和位移分别为ν和x ,由此可列出

霍尔齿轮转速传感器的工作原理和优点

霍尔齿轮转速传感器的工作原理和优点 作者: 发布时间:2009-11-25 来源: 关键字:霍尔转速传感器 霍尔转速传感器的主要工作原理是霍尔效应,也就是当转动的金属部件通过霍尔传感器的磁场时会引起电势的变化,通过对电势的测量就可以得到被测量对象的转速值。霍尔转速传感器的主要组成部分是传感头和齿圈,而传感头又是由霍尔元件、永磁体和电子电路组成的。 霍尔转速传感器的工作原理 霍尔转速传感器在测量机械设备的转速时,被测量机械的金属齿轮、齿条等运动部件会经过传感器的前端,引起磁场的相应变化,当运动部件穿过霍尔元件产生磁力线较为分散的区域时,磁场相对较弱,而穿过产生磁力线较为几种的区域时,磁场就相对较强。 霍尔转速传感器就是通过磁力线密度的变化,在磁力线穿过传感器上的感应元件时,产生霍尔电势。霍尔转速传感器的霍尔元件在产生霍尔电势后,会将其转换为交变电信号,最后传感器的内置电路会将信号调整和放大,输出矩形脉冲信号。 霍尔转速传感器的测量方法 霍尔转速传感器的测量必须配合磁场的变化,因此在霍尔转速传感器测量非铁磁材质的设备时,需要事先在旋转物体上安装专门的磁铁物质,用以改变传感器周围的磁场,这样霍尔转速传感器才能准确的捕捉到物质的运动状态。 霍尔转速传感器主要应用于齿轮、齿条、凸轮和特质凹凸面等设备的运动转速测量。高转速磁敏电阻转速传感器除了可以测量转速以外,还可以测量物体的位移、周期、频率、扭矩、机械传动状态和测量运行状态等。 霍尔转速传感器目前在工业生产中的应用很是广泛,例如电力、汽车、航空、纺织和石化等领域,都采用霍尔转速传感器来测量和监控机械设备的转速状态,并以此来实施自动化管理与控制。 霍尔转速传感器的应用优势 霍尔转速传感器的应用优势主要有三个,一是霍尔转速传感器的输出信号不会受到转速值的影响,二是霍尔转速传感器的频率相应高,三是霍尔转速传感器对电磁波的抗干扰能力强,因此霍尔转速传感器多应用在控制系统的转速检测中。 同时,霍尔转速传感器的稳定性好,抗外界干扰能力强,如抗错误的干扰信号等,因此不易因环境的因素而产生误差。霍尔转速传感器的测量频率范围宽,

霍尔转速测量实训报告

河南工程学院 课程设计 霍尔转速测量 学生姓名:## 学院:电气信息工程学院专业班级:电气工程及其自动化####专业课程:自动检测技术 指导教师:## 2014年6月26日

一、设计的背景和目的 1.设计的背景 在工程实践中,我们经常会遇到各种需要测量转速的场合。例如在发动机、电动机等旋转设备的试验、运转和控制中,常需要分时和连续测量和显示其转速及瞬时速度。 传统式的转速测量通常是采用测速发电机为检测元件,这种方法是模拟式的,因此其得到的信号是电压信号,其抗干扰能力差,灵活性差。霍尔元件是一种基于霍尔效应的磁传感器,已发展成一个品种多样的磁传感器产品族,并已得到广泛的应用。霍尔器件是一种磁传感器。用它们可以检测磁场及其变化,可在各种与磁场有关的场合中使用。霍尔器件以霍尔效应为其工作基础。霍尔器件具有许多优点,它们的结构牢固,体积小,重量轻,寿命长,安装方便,功耗小,频率高(可达1MHZ),耐震动,不怕灰尘、油污、水汽及盐雾等的污染或腐蚀。霍尔线性器件的精度高、线性度好;霍尔开关器件无触点、无磨损、输出波形清晰、无抖动、无回跳、位置重复精度高(可达μm级)。采用了各种补偿和保护措施的霍尔器件的工作温度范围宽,可达.55℃~150℃。按照霍尔器件的功能可将它们分为:霍尔线性器件和霍尔开关器件。前者输出模拟量,后者输出数字量。 2.设计的目的 实验介绍了霍尔传感器的工作原理,阐述了霍尔传感器测速系统的工作过程,利用脉冲计数法实现了对转速的测量,利用硬件电路设计,编制了电机转速的测量设计了测量模块、显示模块等,并通过PROTEUSE软件进行了仿真。仿真结果表明所设计的电路原理上是可行的。 二、设计的功能 根据霍尔传感器的原理,当转动的物体比如说电机在转动时,如果能在其转子上加上一个磁铁,然后让霍尔传感器去感受就能在LED数码管上得到一定时间内的转动的脉冲数,然后通过芯片的内部计算从而得到转速,并且显示在数码管

霍尔传感器转速测量电路设计

课程设计报告书

2.概述 2.1系统组成框图 系统由传感器、信号预处理电路、处理器、显示器和系统软件等部分组成。传感器部分采用霍尔传感器,负责将电机的转速转化为脉冲信号。信号预处理电路包含待测信号放大、波形变换、波形整形电路等部分,其中放大器实现对待测信号的放大,降低对待测信号的幅度要求,实现对小信号的测量;波形变换和波形整形电路实现把正负交变的信号波形变换成可被单片机接受的TTL/CMOS兼容信号。处理器采用AT89C51单片机,显示器采用8位LED数码管动态显示。本课题采用的是以8051系列的A T89C51单片机为核心开发的霍尔传感器测转速的系统。系统硬件原理框图如图1所示: 图1 系统框图 2.2系统工作原理 转速是工程上一个常用的参数,旋转体的转速常以每分钟的转数来表示。其单位为 r/min。由霍尔元件及外围器件组成的测速电路将电动机转速转换成脉冲信号,送至单片机AT89C51的计数器 T0进行计数,用T1定时测出电动机的实际转速。此系统使用单片机进行测速,采用脉冲计数法,使用霍尔传感器获得脉冲信号。其机械结构也可以做得较为简单,只要在转轴的圆盘上粘上两粒磁钢,让霍尔传感器靠近磁钢,机轴每转一周,产生两个脉冲,机轴旋转时,就会产生连续的脉冲信号输出。由霍尔器件电路部分输出,成为转速计数器的计数脉冲。控制计数时间,即可实现计数器的计数值对应机轴的转速值。单片机CPU将该数据处理后,通过LED显示出来。

2.2.1霍尔传感器 霍尔传感器是对磁敏感的传感元件,由磁钢、霍耳元件等组成。测量系统的转速传感器选用SiKO 的 NJK-8002D 的霍尔传感器,其响应频率为100KHz ,额定电压为5-30(V )、检测距离为10(mm )。其在大电流磁场或磁钢磁场的作用下,能测量高频、工频、直流等各种波形电流。该传感器具有测量精度高、电压范围宽、功耗小、输出功率大等优点,广泛应用在高速计数、测频率、测转速等领域。输出电压4~25V ,直流电源要有足够的滤波电容,测量极性为N 极。安装时将一非磁性圆盘固定在电动机的转轴上,将磁钢粘贴在圆盘边缘,磁钢采用永久磁铁,其磁力较强,霍尔元件固定在距圆盘1-10mm 处。当磁钢与霍尔元件相对位置发生变化时,通过霍尔元件感磁面的磁场强度就会发生变化。圆盘转动,磁钢靠近霍尔元件,穿过霍尔元件的磁场较强,霍尔元件输出低电平;当磁场减弱时,输出高电平,从而使得在圆盘转动过程中,霍尔元件输出连续脉冲信号。这种传感器不怕灰尘、油污,在工业现场应用广泛。 2.2.2转速测量原理 霍尔器件是由半导体材料制成的一种薄片,器件的长、宽、高分别为 l 、b 、d 。若在垂直于薄片平面(沿厚度 d )方向施加外磁场B ,在沿l 方向的两个端面加一外电场,则有一定的电流流过。由于电子在磁场中运动,所以将受到一个洛仑磁力,其大小为:qVB f = 式中:f —洛仑磁力, q —载流子电荷, V —载流子运动速度, B —磁感应强度。 这样使电子的运动轨迹发生偏移,在霍尔元器件薄片的两个侧面分别产生电子积聚或电荷过剩,形成霍尔电场,霍尔元器件两个侧面间的电位差H U 称为霍尔电压。 霍尔电压大小为: H U H R =d B I /??(mV) 式中:H R —霍尔常数, d —元件厚度,B —磁感应强度, I —控制电流 设 H K H R =d /, 则H U =H K d B I /??(mV) H K 为霍尔器件的灵敏系数(mV/mA/T),它表示该霍尔元件在单位磁感应强度和 单位控制电流下输出霍尔电动势的大小。应注意,当电磁感应强度B 反向时,霍尔电动势也反向。图2为霍耳元件的原理结构图。

霍尔传感器组成的转速测量电路

霍尔传感器测量转速 测量转速的方法分为模拟式和数字式两种。数字式通常采用光电编码器、圆光栅、霍尔元件等为检测元件,得到的信号是脉冲信号。单片机技术的日新月异,特别是高性能价格比的单片机的出现,转速测量普遍采用以单片机为核心的数字式测量方法,使得许多控制功能及算法可以采用软件技术来完成。采用单片机构成控制系统,可以节约人力资源和降低系统成本,从而有效的提高工作效率。 利用霍尔传感器来测量转速。由磁场的变化来使霍尔传感器产生脉冲,由单片机计数,经过数据计算转化成所测转速,再由数码管显示出来。 一、主要内容 利用强磁铁与霍尔元件组成测试转体转速的测量电路,包括计数与显示电路。 二、基本要求 1. 实现基本功能 3. 画出电路图 三、主要技术指标(或研究方法) 测量范围0—6000r/min 精度±5r/min 工作电压5V~12V 工作电流低于500mA 工作环境温度-60℃~65℃ 四、 应收集的资料及参考文献 霍尔元件原理与应用 显示元件原理 数据采样整理单 2.1 系统组成框图 在测量电机转速时采用电磁感应式传感器。当电机转动时,带动传感器。这种传感器可以将转速信号转变成一个对应频率的脉冲信号输出,经过信号处理后输出到计数器。脉冲信号的频率与电机的转速是一种线性的正比关系,因此对电机转速的测量,实质上是对脉冲信号的频率的测量。 我采用的是以STC89C52单片机为核心将处理好的信号经过数据处理转换成所测得的实际十进制信号的系统。系统硬件原理框图如图2-1:

系统框图原理如图2-1所示,系统由传感器、信号处理、显示电路和系统软件等部分组成。传感器采用霍尔传感器,负责将转速转化为脉冲信号。信号处理电路包含待测信号放大、波形变换、波形整形电路等部分,其中放大器实现对待测信号的放大,降低对待测信号的幅度要求,实现对小信号的测量;波形变换和波形整形电路实现把正负交变的信号波形变换成可被单片机接受的TTL/CMOS 兼容信号。 处理器采用STC89C52单片机,显示器采用8位LED 数码管动态显示。 2.2霍尔传感器测转速原理及特性 1、霍尔传感器测速原理: 霍尔器件是由半导体材料制成的一种薄片,器件的长、宽、高分别为 l 、b、d。若在垂直于薄片平面(沿厚度 d)方向施加外磁场B,在沿l方向的两个端面加一外电场,则有一定的电流流过。由于电子在磁场中运动,所以将受到一个洛仑磁力,其大小为: qVB f = 式中:f —洛仑磁力, q—载流子电荷, V—载流子运动速度, B—磁感应强度。 这样使电子的运动轨迹发生偏移,在霍尔元器件薄片的两个侧面分别产生电子积聚或电荷过剩,形成霍尔电场,霍尔元器件两个侧面间的电位差H U 称为霍尔电压。 霍尔电压大小为: H U H R =d B I /??(mV) 式中:H R —霍尔常数, d—元件厚度, B—磁感应强度, I—控制电流 设 H K H R =d /, 则H U =H K d B I /??(mV) 为霍尔器件的灵敏系数(mV/mA/T),它表示该霍尔元件在单位磁感应强度和单位控制电流下输 出霍尔电动势的大小。应注意,当电磁感应强度B反向时,霍尔电动势也反向。 若控制电流保持不变,则霍尔感应电压将随外界磁场强度而变化,根据这一原理,可以将两块永久磁钢固定在电动机转轴上转盘的边沿,转盘随被测轴旋转,磁钢也将跟着同步旋转,在转盘附近安装一个霍尔元件,转盘随轴旋转时,霍尔元件受到磁钢所产生的磁场影响,输出脉冲信号。传 单 片 机 四位数码管显示电路 霍尔传感器 信号处理 图2-1系统框图

实验十磁电式传感器测转速实验

姓名____________班级____________学号____________ 实验十 磁电式传感器测转速实验 一、实验目的:了解磁电式测量转速的原理。掌握测量方法。 二、基本原理:磁电传感器是一种将被测物理量转换成为感应电势的有源传感器,也称为电动式传感器或感应式传感器。根据电磁感应定律,一个匝数为N的线圈在磁场中切割磁力线 时,穿过线圈的磁通量发生变化,线圈两端就会产生出感应电势,线圈中感应电 势: 。线圈感应电势的大小在线圈匝数一定的情况下与穿过该线圈的磁通变化率成正比。当传感器的线圈匝数和永久磁钢选定(即磁场强度已定)后,使穿过线圈的磁通发生变化的方法通常有两种:一种是让线圈和磁力线作相对运动,即利用线圈切割磁力线而使线圈产生感应电势;另一种则是把线圈和磁钢部固定,靠衔铁运动来改变磁路中的磁阻,从而改变通过线圈的磁通。因此,磁电式传感器可分成两大类型:动磁式及可动衔铁式(即可变磁阻式)。本实验应用动磁式磁电传感器,实验原理框图如图10—1所示。当转动盘上嵌入6个磁钢时,转动盘每转一周磁电传感器感应电势e 产生6次的变化,感应电势e 通过放大、整形由频率表显示f,转速n =10f 。 图10—1磁电传感器测转速实验原理框图 三、需用器件与单元:主机箱中的转速调节0~24V 直流稳压电源、电压表、频频\转速 表;磁电式传感器、转动源。 四、实验步骤: 磁电式转速传感器测速实验除了传感器不用接电源外(传感器探头中心与转盘磁钢对 dt d N e Φ -=

准),其它完全与实验九相同;请按图10—2示意安装、接线并按照实验九中的实验步骤做实验。实验完毕,关闭电源。 图10—2 磁电转速传感器测速实验安装、接线示意图 V (V) 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.0 11.0 12.0 N (rpm ) 720 850 990 115 128 152 174 195 215 232 246 0 五、思考题:

相关主题
文本预览
相关文档 最新文档