当前位置:文档之家› 高中数学必修五第一章

高中数学必修五第一章

高中数学必修五第一章
高中数学必修五第一章

第一章解三角形

章节总体设计

(一)要求

本章的中心内容是如何解三角形,正弦定理和余弦定理是解三角形的工具,最后落实在解三角形的应用上。通过本章学习,学生应当达到以下学习目标:

(1)通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题。

(2)能够熟练运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的生

活实际问题。

(二)教学内容及课时安排建议

1.1正弦定理和余弦定理(约课时)

1.2应用举例(约课时)

1.3实习作业(约课时)

(三)评价建议

1.要在本章的教学中,应该根据教学实际,启发学生不断提出问题,研究问题。在对于正弦定理和余弦定理的证明的探究过程中,应该因势利导,根据具体教学过程中学生思考问题的方向来启发学生得到自己对于定理的证明。如对于正弦定理,可以启发得到有应用向量方法的证明,对于余弦定理则可以启发得到三角方法和解析的方法。在应用两个定理解决有关的解三角形和测量问题的过程中,一个问题也常常有多种不同的解决方案,应该鼓励学生提出自己的解决办法,并对于不同的方法进行必要的分析和比较。对于一些常见的测量问题甚至可以鼓励学生设计应用的程序,得到在实际中可以直接应用的算法。

2.适当安排一些实习作业,目的是让学生进一步巩固所学的知识,提高学生分析问题的解决实际问题的能力、动手操作的能力以及用数学语言表达实习过程和实习结果能力,增强学生应用数学的意识和数学实践能力。教师要注意对于学生实习作业的指导,包括对于实际测量问题的选择,及时纠正实际操作中的错误,解决测量中出现的一些问题。

第1课时

课题: §1.1.1

正弦定理

●教学目标 知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。 过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。

情感态度与价值观:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。 ●教学重点

正弦定理的探索和证明及其基本应用。 ●教学难点

已知两边和其中一边的对角解三角形时判断解的个数。 ●教学过程 Ⅰ.课题导入

如图1.1-1,固定?ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动。 A 思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系? 显然,边AB 的长度随着其对角∠C 的大小的增大而增大。能否

用一个等式把这种关系精确地表示出来? C B Ⅱ.讲授新课

[探索研究] (图1.1-1)

在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。如图1.1-2,在Rt ?ABC 中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定

sin a

A c

=,

sin b

B c

=,又sin 1c C c

==

,

A

则sin sin sin a

b

c

c A

B

C

=

=

= b c 从而在直角三角形ABC 中,

sin sin sin a

b

c

A

B

C

=

=

C a B

(图1.1-2)

思考:那么对于任意的三角形,以上关系式是否仍然成立? (由学生讨论、分析)

可分为锐角三角形和钝角三角形两种情况:

如图1.1-3,当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A =,则sin sin a

b

A

B

=

, C

同理可得

sin sin c

b

C

B

=

, b a

从而

sin sin a

b

A

B

=

sin c

C

=

A c

B (图1.1-3) 思考:是否可以用其它方法证明这一等式?由于涉及边长问题,从而可以考虑用向量来研究这个问题。

(证法二):过点A 作j AC ⊥u r u u u r

, C

由向量的加法可得 AB AC CB =+u u r

u u u r u u r

则 ()j AB j AC CB ?=?+u r u u r u r u u u r u u r

∴j AB j AC j CB ?=?+?u r u u r u r u u u r u r u u r j

()()0

0cos 900cos 90-=+-r u u u r r u u u r j AB A j CB C

∴sin sin =c A a C ,即

sin sin =a c A C

同理,过点C 作⊥r u u u r j BC ,可得 sin sin =b c

B C

从而

sin sin a

b

A

B

=

sin c

C

=

类似可推出,当?ABC 是钝角三角形时,以上关系式仍然成立。(由学生课后自己推导)

从上面的研探过程,可得以下定理

正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即

sin sin a

b

A

B

=

sin c

C

=

[理解定理]

(1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数k 使sin a k A =,sin b k B =,sin c k C =; (2)

sin sin a

b

A

B

=

sin c

C

=

等价于

sin sin a

b

A

B

=

sin sin c

b

C

B

=

sin a

A

=

sin c

C

从而知正弦定理的基本作用为:

①已知三角形的任意两角及其一边可以求其他边,如sin sin b A

a B

=

; ②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如sin sin a A B b

=。 一般地,已知三角形的某些边和角,求其他的边和角的过程叫作解三角形。 [例题分析]

例1.在?ABC 中,已知032.0=A ,081.8=B ,42.9=a cm ,解三角形。 解:根据三角形内角和定理,

0180()=-+C A B

000180(32.081.8)=-+

066.2=; 根据正弦定理,

00

sin 42.9sin81.880.1()sin sin32.0==≈a B b cm A ;

根据正弦定理,

00

sin 42.9sin66.274.1().sin sin32.0==≈a C c cm A

评述:对于解三角形中的复杂运算可使用计算器。

例2.在?ABC 中,已知20=a cm ,28=b cm ,040=A ,解三角形(角度精确到01,边长精确到1cm )。

解:根据正弦定理,

sin 28sin40sin 0.8999.20

==≈b A B a

因为00<B <0180,所以064≈B ,或0116.≈B ⑴ 当064≈B 时,

00000180()180(4064)76=-+≈-+=C A B ,

00

sin 20sin7630().sin sin40==≈a C c cm A

⑵ 当0116≈B 时,

00000180()180(40116)24=-+≈-+=C A B ,

00

sin 20sin2413().sin sin40==≈a C c cm A

评述:应注意已知两边和其中一边的对角解三角形时,可能有两解的情形。

Ⅲ.课堂练习

第4页练习第1(1)、2(1)题。

[补充练习]已知?ABC 中,sin :sin :sin 1:2:3A B C =,求::a b c (答案:1:2:3)

Ⅳ.课时小结(由学生归纳总结) (1)定理的表示形式:

sin sin a

b

A B =

sin c

C

=

=

()0sin sin sin a b c

k k A B C

++=>++;

或sin a k A =,sin b k B =,sin c k C =(0)k >

(2)正弦定理的应用范围:

①已知两角和任一边,求其它两边及一角; ②已知两边和其中一边对角,求另一边的对角。 Ⅴ.课后作业

第10页[习题1.1]A 组第1(1)、2(1)题。

第2课时

课题: §1.1.2

余弦定理

●教学目标 知识与技能:掌握余弦定理的两种表示形式及证明余弦定理的向量方法,并会运用余弦定理解决两类基本的解三角形问题。 过程与方法:利用向量的数量积推出余弦定理及其推论,并通过实践演算掌握运用余弦定理解决两类基本的解三角形问题 情感态度与价值观:培养学生在方程思想指导下处理解三角形问题的运算能力;通过三角函数、余弦定理、向量的数量积等知识间的关系,来理解事物之间的普遍联系与辩证统一。 ●教学重点

余弦定理的发现和证明过程及其基本应用; ●教学难点

勾股定理在余弦定理的发现和证明过程中的作用。 ●教学过程 Ⅰ.课题导入

C 如图1.1-4,在?ABC 中,设BC=a,AC=b,AB=c,

已知a,b 和∠C ,求边c b a

A c B

(图1.1-4)

Ⅱ.讲授新课 [探索研究]

联系已经学过的知识和方法,可用什么途径来解决这个问题? 用正弦定理试求,发现因A 、B 均未知,所以较难求边c 。

由于涉及边长问题,从而可以考虑用向量来研究这个问题。 A

如图1.1-5,设CB a =u u r r ,CA b =u u r r ,AB c =u u r r ,那么c a b =-r r r

,则 b r c r

()()

2

22

2 2c c c a b a b

a a

b b a b a b a b

=?=--=?+?-?=+-?r

r r r r r r r r r r r r r r r r C a r 从而 2222cos c a b ab C =+- (图1.1-5)

同理可证 2222cos a b c bc A =+-

2222cos b a c ac B =+-

于是得到以下定理

余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍。即 2222cos a b c bc A =+-

2222cos b a c ac B =+-

2222cos c a b ab C =+-

思考:这个式子中有几个量?从方程的角度看已知其中三个量,可以求出第四个量,能否由三边求出一角?

(由学生推出)从余弦定理,又可得到以下推论:

222

cos 2+-=

b c a A bc 222

cos 2+-=

a c

b B a

c 222

cos 2+-=

b a

c C ba

[理解定理]

从而知余弦定理及其推论的基本作用为:

①已知三角形的任意两边及它们的夹角就可以求出第三边; ②已知三角形的三条边就可以求出其它角。

思考:勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角形中三边平方之间的关系,如何看这两个定理之间的关系?

(由学生总结)若?ABC 中,C=090,则cos 0=C ,这时222=+c a b 由此可知余弦定理是勾股定理的推广,勾股定理是余弦定理的特例。 [例题分析]

例1.在?ABC 中,已知=a c 060=B ,求b 及A ⑴解:∵2222cos =+-b a c ac B

=222+-?cos 045

=2121)+- =8

∴=b

求A 可以利用余弦定理,也可以利用正弦定理:

⑵解法一:∵cos 2221

,22+-=

b c a A bc

∴060.=A

解法二:∵sin 0sin sin45,

=a A B b

2.4 1.4

3.8,+=

21.8 3.6,?=

∴a <c ,即00<A <090,

∴060.=A

评述:解法二应注意确定A 的取值范围。

例2.在?ABC 中,已知134.6=a cm ,87.8=b cm ,161.7=c cm ,解三角形

(见课本第7页例4,可由学生通过阅读进行理解) 解:由余弦定理的推论得:

cos 222

2+-=b c a A bc

222

87.8161.7134.6287.8161.7+-=

??

0.5543,≈ 05620'≈A ; cos 222

2+-=c a b B ca

222

134.6161.787.82134.6161.7+-=

??

0.8398,≈ 03253'≈B ;

0000180()180(56203253)

''=-+≈-+C A B Ⅲ.课堂练习

第8页练习第1(1)、2(1)题。

[补充练习]在?ABC 中,若222a b c bc =++,求角A (答案:A=1200)

Ⅳ.课时小结

(1)余弦定理是任何三角形边角之间存在的共同规律,勾股定理是余弦定理的特例;

(2)余弦定理的应用范围:①.已知三边求三角;②.已知两边及它们的夹角,求第三边。 Ⅴ.课后作业

①课后阅读:课本第8页[探究与发现]

②课时作业:第11页[习题1.1]A 组第3(1),4(1)题。

第3课时

课题: §1.1.3

解三角形的进一步讨论

●教学目标 知识与技能:掌握在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形;三角形各种类型的判定方法;三角形面积定理的应用。

过程与方法:通过引导学生分析,解答三个典型例子,使学生学会综合运用正、余弦定理,三角函数公式及三角形有关性质求解三角形问题。

情感态度与价值观:通过正、余弦定理,在解三角形问题时沟通了三角形的有关性质和三角函数的关系,反映了事物之间的必然联系及一定条件下相互转化的可能,从而从本质上反映了事物之间的内在联系。 ●教学重点

在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形; 三角形各种类型的判定方法;三角形面积定理的应用。 ●教学难点

正、余弦定理与三角形的有关性质的综合运用。 ●教学过程 Ⅰ.课题导入 [创设情景]

思考:在?ABC 中,已知22a cm =,25b cm =,0133A =,解三角形。

(由学生阅读课本第9页解答过程)

从此题的分析我们发现,在已知三角形的两边及其中一边的对角解三角形时,在某些条件下会出现无解的情形。下面进一步来研究这种情形下解三角形的问题。 Ⅱ.讲授新课 [探索研究]

例1.在?ABC 中,已知,,a b A ,讨论三角形解的情况

分析:先由sin sin b A

B a

=可进一步求出B ; 则0180()C A B =-+ 从而sin a C

c A

=

1.当A 为钝角或直角时,必须a b >才能有且只有一解;否则无解。 2.当A 为锐角时,

如果a ≥b ,那么只有一解;

如果a b <,那么可以分下面三种情况来讨论: (1)若sin a b A >,则有两解; (2)若sin a b A =,则只有一解; (3)若sin a b A <,则无解。

(以上解答过程详见课本第9:10页)

评述:注意在已知三角形的两边及其中一边的对角解三角形时,只有当A 为锐角且 sin b A a b <<时,有两解;其它情况时则只有一解或无解。

[随堂练习1]

(1)在?ABC 中,已知80a =,100b =,045A ∠=,试判断此三角形的解的情况。 (2)在?ABC 中,若1a =,1

2

c =

,040C ∠=,则符合题意的b 的值有_____个。 (3)在?ABC 中,a xcm =,2b cm =,045B ∠=,如果利用正弦定理解三角形有两解,求x 的取值范围。

(答案:(1)有两解;(2)0;(3

)2x <<)

例2.在?ABC 中,已知7a =,5b =,3c =,判断?ABC 的类型。 分析:由余弦定理可知

222222222是直角ABC 是直角三角形是钝角ABC 是钝角三角形是锐角a b c A a b c A a b c A =+???>+???<+??ABC 是锐角三角形

? (注意:是锐角A ?ABC 是锐角三角形?)

解:222753>+Q ,即222a b c >+, ∴ABC 是钝角三角形?。

[随堂练习2]

(1)在?ABC 中,已知sin :sin :sin 1:2:3A B C =,判断?ABC 的类型。 (2)已知?ABC 满足条件cos cos a A b B =,判断?ABC 的类型。

(答案:(1

)ABC 是钝角三角形?;(2)?ABC 是等腰或直角三角形) 例3.在?ABC 中,060A =,1b =,面积为

2,求sin sin sin a b c A B C ++++的值 分析:可利用三角形面积定理111

sin sin sin 222

S ab C ac B bc A ===以及正弦定理

sin sin a

b

A

B

=

sin c

C

=

=

sin sin sin a b c

A B C

++++

解:由1sin 2S bc

A ==得2c =,

则2222cos a b c bc A =+-=3,即a =

从而

sin sin sin a b c A B C +++

+2sin a

A

==

Ⅲ.课堂练习

(1)在?ABC 中,若55a =,16b =,且此三角形的面积S = C (2)在?ABC 中,其三边分别为a 、b 、c ,且三角形的面积222

4

a b c S +-=,求角C

(答案:(1)060或0120;(2)045) Ⅳ.课时小结

(1)在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形; (2)三角形各种类型的判定方法; (3)三角形面积定理的应用。

Ⅴ.课后作业

(1)在?ABC 中,已知4b =,10c =,030B =,试判断此三角形的解的情况。 (2)设x 、x+1、x+2是钝角三角形的三边长,求实数x 的取值范围。 (3)在?ABC 中,060A =,1a =,2b c +=,判断?ABC 的形状。

(4)三角形的两边分别为3cm ,5cm,它们所夹的角的余弦为方程25760x x --=的根, 求这个三角形的面积。

第4课时

课题: §2.2解三角形应用举例

●教学目标

知识与技能:能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问题,了解常用的测量相关术语

过程与方法:首先通过巧妙的设疑,顺利地引导新课,为以后的几节课做良好铺垫。其次结合学生的实际情况,采用“提出问题——引发思考——探索猜想——总结规律——反馈训练”的教学过程,根据大纲要求以及教学内容之间的内在关系,铺开例题,设计变式,同时通过多媒体、图形观察等直观演示,帮助学生掌握解法,能够类比解决实际问题。对于例2这样的开放性题目要鼓励学生讨论,开放多种思路,引导学生发现问题并进行适当的指点和矫正情感态度与价值观:激发学生学习数学的兴趣,并体会数学的应用价值;同时培养学生运用图形、数学符号表达题意和应用转化思想解决数学问题的能力

●教学重点

实际问题中抽象出一个或几个三角形,然后逐个解决三角形,得到实际问题的解

●教学难点

根据题意建立数学模型,画出示意图

●教学过程

Ⅰ.课题导入

1、[复习旧知]

复习提问什么是正弦定理、余弦定理以及它们可以解决哪些类型的三角形?

2、[设置情境]

请学生回答完后再提问:前面引言第一章“解三角形”中,我们遇到这么一个问题,“遥不可及的月亮离我们地球究竟有多远呢?”在古代,天文学家没有先进的仪器就已经估算出了两者的距离,是什么神奇的方法探索到这个奥秘的呢?我们知道,对于未知的距离、高度等,存在着许多可供选择的测量方案,比如可以应用全等三角形、相似三角形的方法,或借助解直角三角形等等不同的方法,但由于在实际测量问题的真实背景下,某些方法会不能实施。如因为没有足够的空间,不能用全等三角形的方法来测量,所以,有些方法会有局限性。于是上面介绍的问题是用以前的方法所不能解决的。今天我们开始学习正弦定理、余弦定理在科学实践中的重要应用,首先研究如何测量距离。

Ⅱ.讲授新课

(1)解决实际测量问题的过程一般要充分认真理解题意,正确做出图形,把实际问题里的条件和所求转换成三角形中的已知和未知的边、角,通过建立数学模型来求解[例题讲解]

(2)例1、如图,设A、B两点在河的两岸,要测量两点之间的距离,测量者在A的同侧,在所在的河岸边选定一点C,测出AC的距离是55m,∠BAC=?

75。求A、B

51,∠ACB=?

两点的距离(精确到0.1m)

启发提问1:?ABC 中,根据已知的边和对应角,运用哪个定理比较适当? 启发提问2:运用该定理解题还需要那些边和角呢?请学生回答。

分析:这是一道关于测量从一个可到达的点到一个不可到达的点之间的距离的问题,题目条件告诉了边AB 的对角,AC 为已知边,再根据三角形的内角和定理很容易根据两个已知角算出AC 的对角,应用正弦定理算出AB 边。 解:根据正弦定理,得

ACB AB ∠sin = ABC

AC ∠sin AB = ABC

ACB AC ∠∠sin sin

= ABC

ACB ∠∠sin sin 55

=

)

7551180sin(75sin 55?-?-??

= ?

?54sin 75sin 55

≈ 65.7(m)

答:A 、B 两点间的距离为65.7米

变式练习:两灯塔A 、B 与海洋观察站C 的距离都等于a km,灯塔A 在观察站C 的北偏东30?,灯塔B 在观察站C 南偏东60?,则A 、B 之间的距离为多少? 老师指导学生画图,建立数学模型。 解略:2a km

例2、如图,A 、B 两点都在河的对岸(不可到达),设计一种测量A 、B 两点间距离的方法。 分析:这是例1的变式题,研究的是两个不可到达的点之间的距离测量问题。首先需要构造三角形,所以需要确定C 、D 两点。根据正弦定理中已知三角形的任意两个内角与一边既可求出另两边的方法,分别求出AC 和BC ,再利用余弦定理可以计算出AB 的距离。

解:测量者可以在河岸边选定两点C 、D ,测得CD=a ,并且在C 、D 两点分别测得∠BCA=α,

∠ ACD=β,∠CDB=γ,∠BDA =δ,在?ADC 和?BDC 中,应用正弦定理得

AC = )](180sin[)sin(δγβδγ++-?+a = )sin()sin(δγβδγ+++a BC =

)](180sin[sin γβαγ++-?a = )

sin(sin γβαγ++a 计算出AC 和BC 后,再在?ABC 中,应用余弦定理计算出AB 两点间的距离 AB = αcos 222BC AC BC AC ?-+

分组讨论:还没有其它的方法呢?师生一起对不同方法进行对比、分析。

变式训练:若在河岸选取相距40米的C 、D 两点,测得∠BCA=60?,∠ACD=30?,∠CDB=45?,

∠BDA =60?

略解:将题中各已知量代入例2推出的公式,得AB=206

评注:可见,在研究三角形时,灵活根据两个定理可以寻找到多种解决问题的方案,但有些

过程较繁复,如何找到最优的方法,最主要的还是分析两个定理的特点,结合题目条件来选择最佳的计算方式。

学生阅读课本4页,了解测量中基线的概念,并找到生活中的相应例子。 Ⅲ.课堂练习

课本第13页练习第1、2题 Ⅳ.课时小结

解斜三角形应用题的一般步骤:

(1)分析:理解题意,分清已知与未知,画出示意图

(2)建模:根据已知条件与求解目标,把已知量与求解量尽量集中在有关的三角形中,建立一个解斜三角形的数学模型

(3)求解:利用正弦定理或余弦定理有序地解出三角形,求得数学模型的解 (4)检验:检验上述所求的解是否符合实际意义,从而得出实际问题的解 Ⅴ.课后作业

课本第19页第1、2、3题

第5课时

课题: §2.2

解三角形应用举例

●教学目标 知识与技能:能够运用正弦定理、余弦定理等知识和方法解决一些有关底部不可到达的物体高度测量的问题

过程与方法:本节课是解三角形应用举例的延伸。采用启发与尝试的方法,让学生在温故知新中学会正确识图、画图、想图,帮助学生逐步构建知识框架。通过3道例题的安排和练习的训练来巩固深化解三角形实际问题的一般方法。教学形式要坚持引导——讨论——归纳,目的不在于让学生记住结论,更多的要养成良好的研究、探索习惯。作业设计思考题,提供学生更广阔的思考空间

情感态度与价值观:进一步培养学生学习数学、应用数学的意识及观察、归纳、类比、概括的能力

●教学重点

结合实际测量工具,解决生活中的测量高度问题 ●教学难点

能观察较复杂的图形,从中找到解决问题的关键条件 ●教学过程 Ⅰ.课题导入

提问:现实生活中,人们是怎样测量底部不可到达的建筑物高度呢?又怎样在水平飞行的飞机上测量飞机下方山顶的海拔高度呢?今天我们就来共同探讨这方面的问题 Ⅱ.讲授新课 [范例讲解]

例3、AB 是底部B 不可到达的一个建筑物,A 为建筑物的最高点,设计一种测量建筑物高度AB 的方法。

分析:求AB 长的关键是先求AE ,在?ACE 中,如能求出C 点到建筑物顶部A 的距离CA ,再测出由C 点观察A 的仰角,就可以计算出AE 的长。

解:选择一条水平基线HG ,使H 、G 、B 三点在同一条直线上。由在H 、G 两点用测角仪器测得A 的仰角分别是α、β,CD = a ,测角仪器的高是h ,那么,在?ACD 中,根据正弦定理可得

AC =

)

sin(sin βαβ-a

AB = AE + h = AC αsin + h

=

)

sin(sin sin βαβα-a + h 例4、如图,在山顶铁塔上B 处测得地面上一点A 的俯角α=5404'?,在塔底C 处测得A 处的俯角β=501'?。已知铁塔BC 部分的高为27.3 m,求出山高CD(精确到1 m)

师:根据已知条件,大家能设计出解题方案吗?(给时间给学生讨论思考)若在?ABD 中求CD ,则关键需要求出哪条边呢? 生:需求出BD 边。 师:那如何求BD 边呢?

生:可首先求出AB 边,再根据∠BAD=α求得。

解:在?ABC 中, ∠BCA=90?+β,∠ABC =90?-α,∠BAC=α- β,∠BAD =α.根据正弦定理,

)sin(βα-BC = )

90sin(β+?AB

所以 AB =)sin()90sin(βαβ-+?BC =)

sin(cos βαβ

-BC

解Rt ?ABD 中,得 BD =ABsin ∠BAD=)

sin(sin cos βαα

β-BC

将测量数据代入上式,得

BD = )

1500454sin(0454sin 150cos 3.27'-''

'????

=934sin 0454sin 150cos 3.27'

'

'???

≈177 (m)

CD =BD -BC ≈177-27.3=150(m)

答:山的高度约为150米.

师:有没有别的解法呢?

生:若在?ACD 中求CD ,可先求出AC 。

师:分析得很好,请大家接着思考如何求出AC ?

生:同理,在?ABC 中,根据正弦定理求得。(解题过程略)

例5、如图,一辆汽车在一条水平的公路上向正东行驶,到A 处时测得公路南侧远处一山顶D 在东偏南15?的方向上,行驶5km 后到达B 处,测得此山顶在东偏南25?的方向上,仰角为8?,求此山的高度CD.

师:欲求出CD ,大家思考在哪个三角形中研究比较适合呢? 生:在?BCD 中

师:在?BCD 中,已知BD 或BC 都可求出CD,根据条件,易计算出哪条边的长? 生:BC 边

解:在?ABC 中, ∠A=15?,∠C= 25?-15?=10?,根据正弦定理,

A BC sin = C

AB sin , BC =C

A A

B sin sin =??10sin 15sin 5

≈ 7.4524(km)

CD=BC ?tan ∠DBC ≈BC ?tan8?≈1047(m)

答:山的高度约为1047米

Ⅲ.课堂练习

课本第15页练习第1、2、3题 Ⅳ.课时小结

利用正弦定理和余弦定理来解题时,要学会审题及根据题意画方位图,要懂得从所给的背景资料中进行加工、抽取主要因素,进行适当的简化。 Ⅴ.课后作业

1、课本第19页练习第6、7、8题

第6课时

课题: §2.2解三角形应用举例

●教学目标

知识与技能:能够运用正弦定理、余弦定理等知识和方法解决一些有关计算角度的实际问题过程与方法:本节课是在学习了相关内容后的第三节课,学生已经对解法有了基本的了解,这节课应通过综合训练强化学生的相应能力。除了安排课本上的例1,还针对性地选择了既具典型性有具启发性的2道例题,强调知识的传授更重能力的渗透。课堂中要充分体现学生的主体地位,重过程,重讨论,教师通过导疑、导思让学生有效、积极、主动地参与到探究问题的过程中来,逐步让学生自主发现规律,举一反三。

情感态度与价值观:培养学生提出问题、正确分析问题、独立解决问题的能力,并在教学过程中激发学生的探索精神。

●教学重点

能根据正弦定理、余弦定理的特点找到已知条件和所求角的关系

●教学难点

灵活运用正弦定理和余弦定理解关于角度的问题

●教学过程

Ⅰ.课题导入

[创设情境]

提问:前面我们学习了如何测量距离和高度,这些实际上都可转化已知三角形的一些边和角求其余边的问题。然而在实际的航海生活中,人们又会遇到新的问题,在浩瀚无垠的海面上如何确保轮船不迷失方向,保持一定的航速和航向呢?今天我们接着探讨这方面的测量问题。

Ⅱ.讲授新课

[范例讲解]

例6、如图,一艘海轮从A出发,沿北偏东75?的方向航行67.5 n mile后到达海岛B,然后从B出发,沿北偏东32?的方向航行54.0 n mile后达到海岛C.如果下次航行直接从A出发到达C,此船应该沿怎样的方向航行,需要航行多少距离?(角度精确到0.1?,距离精确到0.01n mile)

学生看图思考并讲述解题思路

教师根据学生的回答归纳分析:首先根据三角形的内角和定理求出AC边所对的角∠ABC,即可用余弦定理算出AC边,再根据正弦定理算出AC边和AB边的夹角∠CAB。

解:在?ABC 中,∠ABC=180?- 75?+ 32?=137?,根据余弦定理,

AC=ABC BC AB BC AB ∠??-+cos 222 =????-+137cos 0.545.6720.545.6722 ≈113.15 根据正弦定理,

CAB BC ∠sin = ABC

AC ∠sin sin ∠CAB = AC

ABC BC ∠sin = 15

.113137sin 0.54?

≈0.3255, 所以 ∠CAB =19.0?, 75?- ∠CAB =56.0?

答:此船应该沿北偏东56.1?的方向航行,需要航行113.15n mile

补充例1、在某点B 处测得建筑物AE 的顶端A 的仰角为θ,沿BE 方向前进30m ,至点C 处测得顶端A 的仰角为2θ,再继续前进103m 至D 点,测得顶端A 的仰角为4θ,求θ的大小和建筑物AE 的高。

师:请大家根据题意画出方位图。 生:上台板演方位图(上图)

教师先引导和鼓励学生积极思考解题方法,让学生动手练习,请三位同学用三种不同方法板演,然后教师补充讲评。

解法一:(用正弦定理求解)由已知可得在?ACD 中, AC=BC=30, AD=DC=103,

∠ADC =180?-4θ, ∴θ

2sin 310=

)

4180sin(30

θ-? 。

因为 sin4θ=2sin2θcos2θ

∴ c os2θ=

2

3

,得 2θ=30? ∴ θ=15?,

∴在Rt ?ADE 中,AE=ADsin60?=15

答:所求角θ为15?,建筑物高度为15m 解法二:(设方程来求解)设DE= x ,AE=h 在 Rt ?ACE 中,(103+ x)2 + h 2=302 在 Rt ?ADE 中,x 2+h 2=(103)2 两式相减,得x=53,h=15

∴在 Rt ?ACE 中,tan2θ=

x

h +310=

3

3

∴2θ=30?,θ=15?

答:所求角θ为15?,建筑物高度为15m

解法三:(用倍角公式求解)设建筑物高为AE=8,由题意,得

∠BAC=θ, ∠CAD=2θ,

AC = BC =30m , AD = CD =103m 在Rt ?ACE 中,sin2θ=30x

--------- ① 在Rt ?ADE 中,sin4θ=

3

104, --------- ②

②÷① 得 cos2θ=

2

3

,2θ=30?,θ=15?,AE=ADsin60?=15 答:所求角θ为15?,建筑物高度为15m

补充例2、某巡逻艇在A 处发现北偏东45?相距9海里的C 处有一艘走私船,正沿南偏东75?的方向以10海里/小时的速度向我海岸行驶,巡逻艇立即以14海里/小时的速度沿着直线方向追去,问巡逻艇应该沿什么方向去追?需要多少时间才追赶上该走私船?

师:你能根据题意画出方位图?教师启发学生做图建立数学模型

分析:这道题的关键是计算出三角形的各边,即需要引入时间这个参变量。 解:如图,设该巡逻艇沿AB 方向经过x 小时后在B 处追上走私船,则CB=10x, AB=14x,AC=9,

∠ACB=?75+?45=?120

∴(14x) 2= 92+ (10x) 2 -2?9?10xcos ?120

∴化简得32x 2-30x-27=0,即x=

23,或x=-16

9(舍去)

所以BC = 10x =15,AB =14x =21,

又因为sin ∠BAC =AB BC ?120sin =21

15?23=1435 ∴∠BAC =3831'?,或∠BAC =14174'?(钝角不合题意,舍去), ∴3831'?+?45=8331'?

答:巡逻艇应该沿北偏东8331'?方向去追,经过1.4小时才追赶上该走私船.

评注:在求解三角形中,我们可以根据正弦函数的定义得到两个解,但作为有关现实生活的

应用题,必须检验上述所求的解是否符合实际意义,从而得出实际问题的解 Ⅲ.课堂练习

课本第16页练习 Ⅳ.课时小结

解三角形的应用题时,通常会遇到两种情况:(1)已知量与未知量全部集中在一个三角形中,依次利用正弦定理或余弦定理解之。(2)已知量与未知量涉及两个或几个三角形,这时需要选择条件足够的三角形优先研究,再逐步在其余的三角形中求出问题的解。 Ⅴ.课后作业

1、课本第20页练习第9、10、11题

2、我舰在敌岛A 南偏西?50相距12海里的B 处,发现敌舰正由岛沿北偏西?10的方向以10海里/小时的速度航行.问我舰需以多大速度、沿什么方向航行才能用2小时追上敌舰?(角度用反三角函数表示)

高中数学必修五综合测 试题 内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

高中数学必修五综合测试题 1、已知数列{a n }满足a 1=2,a n+1-a n +1=0,(n ∈N),则此数列的通项a n 等于 ( ) A .n 2+1 B .n+1 C .1-n D .3-n 2、三个数a ,b ,c 既是等差数列,又是等比数列,则a ,b ,c 间的关系为( ) A .b-a=c-b B .b 2=ac C .a=b=c D .a=b=c ≠0 3、若b<0 C .a +cb -d 4、若a 、b 为实数, 且a +b=2, 则3a +3b 的最小值为( ) A .18 B .6 C .23 D .243 5、不等式0)86)(1(22≥+--x x x 的解集是( ) C }21{}1{≤≤-≤x x x x D 1{-≤x x 或21≤≤x 或}4≥x 6、已知数列{n a }的前n 项和29n S n n =-,第k 项满足58k a <<,则k =( ) A .9 B .8 C. 7 D .6 7、等差数列{}n a 的前m 项和为30,前2m 项和为100,则它的前3m 项和是( ) A 、130 B 、170 C 、210 D 、260 8、目标函数y x z +=2,变量y x ,满足?? ???≥<+≤+-12553034x y x y x ,则有( ) A .3,12min max ==z z B .,12max =z z 无最小值 C .z z ,3min =无最大值 D .z 既无最大值,也无最小值 9、不等式1 2222++--x x x x <2的解集是( ) A.{x|x≠-2} C.? D.{x|x <-2,或x >2} 10、不在 3x + 2y < 6 表示的平面区域内的一个点是( ) A (0,0) B (1,1) C (0,2) D (2,0) 11、若0,0b a d c <<<<,则 ( ) A bd ac < B d b c a > C a c b d +>+ D a c b d ->- 12、不等式2320x x --≤的解集是 , 13、在ABC ?中,45,60,6B C c ===,则最短边的长是 , 14、约束条件2232 4x y x y π?≤?-≤≤??+≥? 构成的区域的面积是 平方单位, 15、在△ABC 中,sin A =2cos B sin C ,则三角形为

高中数学必修五第一章教案 1.1.1 正弦定理 1.1.2 余弦定理 1.角度问题 1.三角形中的几何计算 1.正弦定理和余弦定理-章末归纳提升 1.2应用举例距离和高度问题 1.1.1 正弦定理 高一年级数学备课组(总第课时)主备人:时间:年月日

【问题导思】 正弦定理 1.如图在Rt △ABC 中,C =90°,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,∠A 、∠B 与∠C 的正弦值有怎样的关系? 【提示】 ∵sin A =a c ,sin B =b c , ∴ a sin A =b sin B =c . 又∵sin C =sin 90°=1,∴a sin A =b sin B =c sin C . 2.对于锐角三角形中,问题1中的关系是否成立? 【提示】 成立. 3.钝角三角形中呢? 【提示】 成立. 1.正弦定理 在一个三角形中,各边和它所对角的正弦的比相等.即: a sin A = b sin B =c sin C . 2.三角形中的元素与解三角形 (1)三角形的元素 把三角形的三个角A ,B ,C 和它们的对边a ,b ,c 叫做三角形的元素. (2)解三角形 已知三角形的几个元素求其他元素的过程叫做解三角形.(对应学生用书第3页)知识运用 已知两角及一边解三角形 例1在△ABC 中,A =60°,sin B =1 2 ,a =3,求三角形中其他边与角的大小. 【思路探究】 (1)由sin B =1 2能解出∠B 的大小吗?∠B 唯一吗? (2)能用正弦定理求出边b 吗? (3)怎样求其他边与角的大小? 【自主解答】 ∵sin B =1 2, ∴B =30°或150°,

§2.3 等差数列的前n 项和(2) 主备人: 王 浩 审核人: 马 琦 学习目标 1. 进一步熟练掌握等差数列的通项公式和前n 项和公式; 2. 了解等差数列的一些性质,并会用它们解决一些相关问题; 3. 会利用等差数列通项公式与前 n 项和的公式研究n S 的最大(小)值. 学习过程 一、复习回顾 1:等差数列{n a }中, 4a =-15, 公差d =3,求5S . 2:等差数列{n a }中,已知31a =,511a =,求和8S . 二、新课导学 ※ 探究一:如果一个数列{}n a 的前n 项和为2n S pn qn r =++,其中p 、q 、r 为常数,且0p ≠,那么这个数列一定是等差数列吗?如果是,它的首项与公差分别是多少? ※探究二:记等差数列{}n a 的偶数项和为S 偶,奇数项和为S 奇.当项数为2n 时,则有 S S nd -=奇偶 ;当项数为21n -时,则有n S S a -=奇偶 。 ※探究三:当等差数列{}n a 的项数为21n -时,有12-n S = 。 ※ 典型例题 例1、已知数列{}n a 的前n 项为212 n S n n =+,求这个数列的通项公式. 这个数列是等差数列

吗?如果是,它的首项与公差分别是什么? 变式:已知数列{}n a 的前n 项为212 343n S n n =++,求这个数列的通项公式. 小结:数列通项n a 和前n 项和n S 关系为 n a =11(1) (2)n n S n S S n -=??-≥?,由此可由n S 求n a . 例2、等差数列{}m a 共有2n 项,其中奇数项的和为90,偶数项的和为72,且 2133n a a -=-,求该数列的公差d 。 变式:已知两个等差数列{}n a 和{}n b 的前n 项和分别为n A 和n B ,且745 3 n n A n B n +=+,求n n a b 。 例2、已知等差数列24 54377,,,....的前n 项和为n S ,求使得n S 最大的序号n 的值. 变式:等差数列{n a }中, 4a =-15, 公差d =3, 求数列{n a }的前n 项和n S 的最小值.

绝密★启用前 高中数学必修五综合考试卷 第I卷(选择题) 一、单选题 1.数列的一个通项公式是() A.B. C.D. 2.不等式的解集是() A.B.C.D. 3.若变量满足,则的最小值是() A.B.C.D.4 4.在实数等比数列{a n}中,a2,a6是方程x2-34x+64=0的两根,则a4等于( ) A.8B.-8C.±8D.以上都不对 5.己知数列为正项等比数列,且,则()A.1B.2C.3D.4 6.数列 1111 1,2,3,4, 24816 L前n项的和为() A. 2 1 22 n n n + +B. 2 1 1 22 n n n + -++C. 2 1 22 n n n + -+D. 2 1 1 22 n n n + - -+ 7.若的三边长成公差为的等差数列,最大角的正弦值为,则这个三角形的面积为() A.B.C.D. 8.在△ABC中,已知,则B等于( ) A.30°B.60°C.30°或150°D.60°或120° 9.下列命题中正确的是( ) A.a>b?ac2>bc2B.a>b?a2>b2 C.a>b?a3>b3D.a2>b2?a>b 10.满足条件,的的个数是( ) A.1个B.2个C.无数个D.不存在

11.已知函数满足:则应满足()A.B.C.D. 12.已知数列{a n}是公差为2的等差数列,且成等比数列,则为()A.-2B.-3C.2D.3 13.等差数列的前10项和,则等于() A.3 B.6 C.9 D.10 14.等差数列的前项和分别为,若,则的值为()A.B.C.D. 第II卷(非选择题) 二、填空题 15.已知为等差数列,且-2=-1,=0,则公差= 16.在中,,,面积为,则边长=_________. 17.已知中,,,,则面积为_________. 18.若数列的前n项和,则的通项公式____________ 19.直线下方的平面区域用不等式表示为________________. 20.函数的最小值是_____________. 21.已知,且,则的最小值是______. 三、解答题 22.解一元二次不等式 (1)(2) 23.△的角、、的对边分别是、、。 (1)求边上的中线的长;

高中数学必修五第一章知识点总结 一.正弦定理(重点) 1.正弦定理 (1)在一个三角形中,各边和它所对角的正弦的比相等,即 ==sin sin sin a b c A B C =2R(其中R是该三角形外接圆的半径) (2)正弦定理的变形公式: ①2sin a R =A ,2sin b R =B ,2sin c R C =; ②sin 2a R A =,sin 2b R B =,sin 2c C R =; ③::sin :sin :sin a b c C =A B ; ④sin sin sin sin sin sin a b c a b c C C ++===A +B +A B . 2.正弦定理的应用(重难点) (1)已知任意两角与一边:有三角形的内角和定理,先算出第三个角,再有正弦定理计算出另两边 (2)已知任意两边与其中一边的对角:先应用正弦定理计算出另一边的对角的正弦值,进而确定这个角和三角形其他的边与角(注意:这种情况可能出现解的个数的判断问题,一解,两解,或无解) (3)面积公式 111s i n s i n s i n 222C S b c a b C a c ?A B =A ==B 二余弦定理(重点) 1.余弦定理 三角形中任何一边的平方等于其它两边的平方和减去这两边与它们的夹角的余弦的积的两倍.即 222 2cos a b c bc =+-A , 2222cos b a c ac =+-B , 2222cos c a b ab C =+-. 应用:已知三角形的两边及其夹角可以求出第三边 2.推论 222 cos 2b c a bc +-A =, 222 cos 2a c b ac +-B =, 222 cos 2a b c C ab +-=

数列知识点总结 一、等差数列与等比数列 等差数列 等比数列 定义 1+n a -n a =d n n a a 1 +=q(q ≠0) 通项公式 n a =1a +(n-1)d n a =1a 1-n q (q ≠0) 递推公式 n a =1-n a +d, n a =m a +(n-m)d n a =1-n a q n a =m a m n q - 中项 A=2b a + 推广:A=2a k n k n a +-+(n,k ∈N + ;n>k>0) ab G =2。推广:G=k n k n a a +-±(n,k ∈N + ;n>k>0) 。任意两数a 、c 不一定有等比中项,除非有ac >0,则等比中 项一定有两个 前n 项和 n S =2 n (1a +n a ) n S =n 1a + 2 ) 1(n -n d n S = q q a n --11() 1 n S =q q a a n --11 性质 (1)若m n p q +=+,则m n p q a a a a +=+; (2)数列{}{}{}12212,,+-n n n a a a 仍为等差数列,232n n n n n S S S S S --,,……仍为等差数列,公差为d n 2; (3)若三个成等差数列,可设为 a d a a d -+,, (4)若n n a b ,是等差数列,且前n 项和分别为n n S T ,,则 21 21 m m m m a S b T --= (5){}n a 为等差数列2n S an bn ?=+(a b ,为常数,是关于n 的常数项为0的二次函数) (6)d= n m a n m --a (m ≠n) (7)d>0递增数列d<0递减数列d=0常数数列 (1)若m n p q +=+,则 m n p q a a a a =·· (2)232n n n n n S S S S S --,,……仍 为等比数列,公比为n q 二、求数列通项公式的方法 1、通项公式法:等差数列、等比数列 2、涉及前n项和S n 求通项公式,利用a n 与S n 的基本关系式来求。即 例1、在数列{n a }中,n S 表示其前n项和,且2 n n S =,求通项n a . 例2、在数列{n a }中,n S 表示其前n项和,且n n a 32S -=,求通项n a 3、已知递推公式,求通项公式。 (1)叠加法:递推关系式形如()n f a a n 1n =-+型 ???≥-===-) 2() 1(111n s s n a s a n n n

《必修五知识点整理》 第一章 解三角形 1.1 正弦定理和余弦定理 1.1.1 正弦定理 1、正弦定理:在一个三角形中,各边和它所对角的正弦的比相等, 即 sin sin sin a b c A B C ==. 正弦定理推论:①2sin sin sin a b c R A B C ===(R 为三角形外接圆的半 径) ②2sin ,2sin ,2sin a R A b R B c R C === ③ sin sin sin ,,sin sin sin a A b B a A b B c C c C === ④::sin :sin :sin a b c A B C = ⑤ sin sin sin sin sin sin a b c a b c A B C A B C ++=== ++ 2、解三角形的概念:一般地,我们把三角形的各个角即他们所对的边叫做三角形的元素。任何一个三角形都有六个元素:三条边),,(c b a 和三个内角),,(C B A .在三角形中,已知三角形的几个元素求其他元素的过程叫做解三角形。 3、正弦定理确定三角形解的情况 图 形 关 系 式 解 的 个 数 A 为 锐 角 ①sin a b A = ②a b ≥ 一 解

sin b A a b << 两 解 sin a b A < 无 解 A 为钝角或直角 b a > 一 解 b a ≤ 无 解 4、任意三角形面积公式为: 2111sin sin sin 2224()()()()2sin sin sin 2 ABC abc S bc A ac B ab C R r p p a p b p c a b c R A B C ==== =---=++= 1.1.2 余弦定理 5、余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍,即 2222cos a b c bc A =+-,2222cos b a c ca B =+-,2222cos c a b ab C =+-. 余弦定理推论:222cos 2b c a A bc +-=,222cos 2a c b B ac +-=,222 cos 2a b c C ab +-= 6、不常用的三角函数值 15° 75° 105° 165°

高中数学必修5知识点总结 第一章 解三角形 1、三角形三角关系:A+B+C=180°;C=180°-(A+B); 2、三角形三边关系:a+b>c; a-b,则90C <;③若 222a b c +<,则90C >. 注:正余弦定理的综合应用:如图所示:隔河看两目标

必修五阶段测试二(第二章数列) 时间:120分钟满分:150分 一、选择题(本大题共12小题,每小题5分,共60分)1.(2017·山西朔州期末)在等比数列{}中,公比q=-2,且a 3a 7=4a 4,则a 8等于() A.16 B.32 C.-16 D.-32 2.已知数列{}的通项公式=错误!则a 2·a 3等于()A.8 B.20 C.28 D.303.已知等差数列{}和等比数列{}满足a 3=b 3,2b 3-b 2b 4=0,则数列{}的前5项和S 5为() A.5 B.10 C.20 D.404.(2017·山西忻州一中期末)在数列{}中,=-2n+29n+3,则此数列最大项的值是()

A.102 D.108 5.等比数列{}中,a 2=9,a 5=243,则{}的前4项和为()A.81 B.120 C.168 D.1926.等差数列{}中,a 10<0,a 11>0,且a 11> 10|,是前n项的和,则() A.S 1,S 2,S 3,…,S 10都小于零,S 11,S 12,S 13,…都大于零B.S 1,S 2,…,S 19都小于零,S 20,S

21,…都大于零 C.S 1,S 2,…,S 5都大于零,S 6,S 7,…都小于零 D.S 1,S 2,…,S 20都大于零,S 21,S 22,…都小于零 7.(2017·桐城八中月考)已知数列{}的前n项和=+(a,1 / 922b∈R),且S 25=100,则a 12+a 14等于() A.16 B.8 C.4 D.不确定8.(2017·莆田六中期末)设{}(n∈N)是等差数列,是其前* n项和,且S 5

高中数学必修5_教材电子课本(人教 版).pdf 篇一:人教版高一数学必修一电子课本1 第一章集合和函数概念 1.1 集合 1.1.1 集合的含义和表示 1.1.2 集合间的基本关系 1.1.3 集合的基本运算 1.2 函数及其表示 1.2.1 函数的概念 1.2.2 函数的表示法 1.3 函数的基本性质 1.3.1 单调性和最大(小)值 1.3.2 奇偶性 第二章基本初等函数 2.1 指数函数 2.1.1 指数和指数幂的运算 2.1.2 指数函数及其性质 2.2 对数函数

2.2.1 对数和对数运算(一) 2.2.1 对数和对数运算(二) 2.2.2 对数函数及其性质 2.3 幂函数 第三章函数的使用 3.1 函数和方程 3.1.1 方程的根和函数的零点 3.1.2 用二分法求方程的近似解 3.2 函数模型及其使用1 2 3 4 5 篇二:人教版高一数学必修一至必修五教材目录 必修一、二、四、五章节内容 必修一必修四 第一章集合和函数的概念第一章三角函数1.1 集合 1.1 任意角和弧度制1.2 函数及其表示1.2 任意角的三角函数1.3 函数的基本性质第二章基本初等函数 2.1 指数函数2.2 对数函数2.3 幂函数第三章函数的使用 3.1 函数和方程3.2 函数模型及其使用必修五第一章解三角形1.1 正弦定理和余弦定理1.2 使用举例第二章数列

2.1 数列的概念和简单表示方法2.2 等差数列2.3 等差数列的前n 项和2.4 等比数列2.5 等比数列前n 项和第三章不等式 3.1 不等关系和不等式3.2 一元一次不等式及其解法3.3 二元一次不等式(组) 及其解法3.4 基本不等式 1.3 三角函数的诱导公式 1.4 三角函数的图像和性质1.5 函数y=Asin(?x+?) 1.6 三角函数模型的简单使用第二章平面向量 2.1 平面向量的实际背景及基本概念2.2 平面向量的线性运算 2.3 平面向量的基本定理及坐标表 2.4 平面向量的数量积 2.5 平面向量使用举例第三章三角恒等变换 3.1 两角和和差的正弦、余弦3.2 简单的三角恒等变换必修二 第一章空间几何体1.1 空间几何体的结构 1.2 空间几何体的三视图和直观图1.3 空间体的表面积和体积 第二章点、直线、平面间的关系2.1 空间点、直线、平面之间的位2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质第三章直线和方程 3.1 直线的倾斜角和斜率3.2 直线的方程 3.3 直线的交点坐标和距离公式

高中数学必修五综合练习3 文 班 考号 姓 名 A 卷 一.选择题(本大题共11小题,每小题5分,共55分). 1.如果R b a ∈,,并且b a >,那么下列不等式中不一定能成立的是( ) A.b a -<- B.21->-b a C.a b b a ->- D.ab a >2 2.等比数列{}n a 中,5145=a a ,则111098a a a a =( ) A.10 B.25 C.50 D.75 3.在ABC ?中,若b 2 + c 2 = a 2 + bc , 则A =( ) A .30? B .45? C .60? D .120? 4.已知数列{}n a 中,11=a ,31+=+n n a a ,若2008=n a ,则n =( ) A.667 B.668 C.669 D.670 5.等差数列{}n a 的前n 项和为S n ,若,100,302==n n S S 则=n S 3( ) A.130 B.170 C.210 D.260 6.在⊿ABC 中,A =45°,B =60°,a=2,则b 等于( ) A.6 B.2 C.3 D. 62 7.若将20,50,100都分别加上同一个常数,所得三个数依原顺序成等比数列,则此等比数列的公比是( ) A. 21 B. 23 C. 34 D. 3 5 8.关于x 的不等式x x x 352 >--的解集是( ) A.}1x 5{-≤≥或x x B.}1x 5{-<>或x x C.}5x 1{<<-x D.}5x 1{≤≤-x 9.在一幢10米高的楼顶测得对面一塔吊顶的仰角为060,塔基的俯角为0 45,那么这座塔吊的高是( ) A.)3 3 1(10+ B.)31(10+ C.)26(5+ D.)26(2+ 10.已知+ ∈R b a ,且 11 1=+b a ,则 b a +的最小值为( ) A.2 B.8 C. 4 D. 1

高中数学必修五第一章复习测试卷 一、选择题: 1.在△ABC 中,一定成立的等式是 ( ) =b sinB =b cosB =b sinA =b cosA 2. .在△ABC 中,根据下列条件解三角形,则其中有两个解的是 A .b = 10,A = 45°, B = 70° B .a = 60,c = 48,B = 100° ( ) C .a = 7,b = 5,A = 80° D .a = 14,b = 16,A = 45° 3. 在ABC ?中,已知角,3 34,22,45===b c B 则角A 的值是( ) A .15° B .75° C .105° D .75°或15° 4.在ABC ?中,若2=a ,22=b ,26+=c ,则A ∠的度数是( ) A .?30 B .?45 C .?60 D .?75 5. 若c C b B a A cos cos sin ==则△ABC 为 ( ) A .等边三角形 B .等腰三角形 C .有一个内角为30°的直角三角形 D .有一个内角为30°的等腰三角形 6. 在ABC ?中,已知,,8,45,60D BC AD BC c B 于⊥=== 则AD 长为( ) A .1)34-( B .1)34+( C .3)34+( D .)334-( 7. 钝角ABC ?的三边长为连续自然数,则这三边长为( ) A .1、2、3、 B .2、3、4 C .3、4、5 D .4、5、6 8.已知△ABC 中,a ∶b ∶c =1∶3∶2,则A ∶B ∶C 等于( ) A .1∶2∶3 B .2∶3∶1 C .1∶3∶2 D .3∶1∶2 9. 在△ABC 中,090C ∠=,00450< B sin cos B A > C sin cos A B > D sin cos B B > 二、填空题: 1、已知在ABC △中,6,30a c A ===,ABC △的面积S . 2.设△ABC 的外接圆半径为R ,且已知AB =4,∠C =45°,则R =________. 3.在平行四边形ABCD 中,已知310=AB ,?=∠60B ,30=AC ,则平行四边形ABCD 的面积 . 4.在△ABC 中,已知2cos B sin C =sin A ,则 △ ABC 的形状 是 . 三、解答题:

s - s 一、等差数列与等比数列 数列知识点总结 2、涉及前n项和 S 求通项公式,利用 a 与 S 的基本关系式来求。即a = ?s 1 = a 1 (n = 1) n n n n ? ? n n -1 (n ≥ 2) 例 1、在数列{ a n }中, S n 表示其前n项和,且S = n ,求通项a . 2 例 2、在数列{ a n }中, S n 表示其前n项和,且S n = 2 - 3a n ,求通项a n 3、已知递推公式,求通项公式。 (1) 叠加法:递推关系式形如a n +1 - a n = f (n )型 n n

n 例 3、已知数列{ a n }中, a 1 = 1, a n +1 - a n = n ,求通项a n 练习 1、在数列{ a n }中, a 1 = 3 , a n +1 = a n + 2n ,求通项a (2) 叠乘法:递推关系式形如 a n +1 = f (n ) 型 a n n 例 4、在数列{ a n }中, a 1 = 1,a n +1 = n +1 a n ,求通项a n 练习 2、在数列{ a n }中, a 1 = 3 , a n +1 = a n ? 2n ,求通项a (3) 构造等比数列:递推关系式形如a n +1 = Aa n + B (A,B 均为常数,A ≠1,B ≠0) 例 5、已知数列{ a n }满足a 1 = 4 , a n = 3a n -1 - 2 ,求通项a n 练习 3、已知数列{ a n }满足a 1 = 3 , a n +1 = 2a n + 3 ,求通项a n (4) 倒数法 例 6、在数列{a n }中,已知a 1 = 1,a n +1 = 2a n a n + 2 ,求数列的通项a n 四、求数列的前 n 项和的方法 1、利用常用求和公式求和: 等差数列求和公式: S = n (a 1 + a n ) = na + n (n -1) d n 2 ? na 1 1 2 (q = 1) 等比数列求和公式: S = ? a (1 - q n ) a - a q n ? 1 = 1 n (q ≠ 1) ?? 1 - q 1 - q 2、错位相减法:主要用于求数列{a n ·b n }的前 n 项和,其中{a n }、{b n }分别是等差数列和等比数列 .[例 1] 求数列 2 , 4 2 22 , 6 ,? ? ?, 23 2n ,? ? ?前 n 项的和. 2n [例 2] 求和: S = 1 + 3x + 5x 2 + 7x 3 + ? ? ? + (2n - 1)x n -1 3、倒序相加法:数列{ a n }的第 m 项与倒数第 m 项的和相等。即: a 1 + a n = a 2 + a n -1 = = a m + a n -m +1 [例 3] 求sin 2 1 + sin 2 2 + sin 2 3 + ??? + sin 2 88 + sin 2 89 的值 [例 4] 函数f (x )对任x ∈ R 都有f (x )+ f (1- x ) = 1 ,求: 2 f (0)+ f ? 1 ? + f ? 2 ? + + f ? n -1? + f (1) n ? n ? n ? ? ? ? ? ? ? 4、分组求和法:主要用于求数列{a n + b n }的前 n 项和,其中{a n }、{b n }分别是等差数列和等比数列 1 1 1 1 [例 5] 求数列:1+ 2 ,2 + 4 ,3 + 8 , , n + 2 n , 的前 n 项和 n n

解三角形复习知识点 一、知识点总结 【正弦定理】 1.正弦定理: 2sin sin sin a b c R A B C === (R 为三角形外接圆的半径). 2.正弦定理的一些变式: ()sin sin sin i a b c A B C ::=::;()sin ,sin ,sin 22a b ii A B C R R = =2c R =; ()2sin ,2sin ,2sin iii a R A b R B b R C ===;(4) R C B A c b a 2sin sin sin =++++ 3.两类正弦定理解三角形的问题: (1)已知两角和任意一边,求其他的两边及一角. (2)已知两边和其中一边的对角,求其他边角.(可能有一解,两解,无解) 【余弦定理】 1.余弦定理: 222222 2222cos 2cos 2cos a b c bc A b a c ac B c b a ba C ?=+-?=+-??=+-? 2.推论: 222222222cos 2cos 2cos 2b c a A bc a c b B ac b a c C ab ?+-=?? +-? = ?? ?+-= ?? . 设a 、b 、c 是C ?AB 的角A 、B 、C 的对边,则: ①若2 2 2 a b c +=,则90C =o ; ②若2 2 2 a b c +>,则90C o . 3.两类余弦定理解三角形的问题:(1)已知三边求三角. (2)已知两边和他们的夹角,求第三边和其他两角. 【面积公式】 已知三角形的三边为a,b,c, 1.111sin ()222 a S ah a b C r a b c ===++(其中r 为三角形内切圆半径) 2.设)(2 1 c b a p ++= ,))()((c p b p a p p S ---=

2018-2019学年必修五第二章训练卷 数列(一) 注意事项: 1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。 2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。 3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。写在试题卷、草稿纸和答题卡上的非答题区域均无效。 4.考试结束后,请将本试题卷和答题卡一并上交。 一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.在数列{}n a 中,12=a ,1=221n n a a ++,则101a 的值为( ) A .49 B .50 C .51 D .52 2.已知等差数列{}n a 中,7916a a +=,41a =,则12a 的值是( ) A .15 B .30 C .31 D .64 3.等比数列{}n a 中,29a =,5243a =,则{}n a 的前4项和为( ) A .81 B .120 C .168 D .192 4.等差数列{}n a 中,12324a a a ++=-,18192078a a a ++=,则此数列前20项和等于( ) A .160 B .180 C .200 D .220 5.数列 {} n a 中,37 ()n a n n +=∈N -,数列 {} n b 满足11 3 b = ,1(72)2n n b b n n +≥=∈N -且,若log n k n a b +为常数,则满足条件的k 值( ) A .唯一存在,且为1 3 B .唯一存在,且为3 C .存在且不唯一 D .不一定存在 6.等比数列{}n a 中,2a ,6a 是方程234640x x +=-的两根,则4a 等于( ) A .8 B .8- C .8± D .以上都不对 7.若{}n a 是等比数列,其公比是q ,且5a -,4a ,6a 成等差数列,则q 等于( ) A .1或2 B .1或2- C .1-或2 D .1-或2- 8.设等比数列{}n a 的前n 项和为n S ,若105:1:2S S =,则155:S S 等于( ) A .3:4 B .2:3 C .1:2 D .1:3 9.已知等差数列{}n a 的公差0d ≠且1a ,3a ,9a 成等比数列,则139 2410 a a a a a a ++++等于 ( ) A . 1514 B . 1213 C . 1316 D . 1516 10.已知{}n a 为等差数列,135105a a a ++=,24699a a a ++=,以n S 表示{}n a 的前n 项和,则使得n S 达到最大值的n 是( ) A .21 B .20 C .19 D .18 11.设{}n a 是任意等比数列,它的前n 项和,前2n 项和与前3n 项和分别为X ,Y , Z ,则下列等式中恒成立的是( ) A .2X Z Y += B .()()Y Y X Z Z X =-- C .2Y XZ = D .()()Y Y X X Z X =-- 12.已知数列1,12,21,13,22,31,14 ,23,32,41,…,则5 6是数列中的( ) A .第48项 B .第49项 C .第50项 D .第51项 二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.21-与21+的等比中项是________. 14.已知在等差数列{}n a 中,首项为23,公差是整数,从第七项开始为负项, 则公差为______. 15.“嫦娥奔月,举国欢庆”,据科学计算,运载“神六”的“长征二号”系列火箭,在点火第一秒钟通过的路程为2 km ,以后每秒钟通过的路程都增加2 km ,在达到离地面240 km 的高度时,火箭与飞船分离,则这一过程大约需要的时间是______秒. 此 卷 只 装 订 不 密 封 班级 姓名 准考证号 考场号 座位号

高中数学必修5 命题人:魏有柱 时间:100分钟 一、选择题 1.数列1,3,6,10,…的一个通项公式是() (A )a n =n 2-(n-1) (B )a n =n 2-1 (C )a n =2)1(+n n (D )a n =2 )1(-n n 2.已知数列3,3,15,…,)12(3-n ,那么9是数列的() (A )第12项 (B )第13项 (C )第14项 (D )第15项 3.已知等差数列{a n }的公差d ≠0,若a 5、a 9、a 15成等比数列,那么公比为 () A . B . C . D . 4.等差数列{a n }共有2n+1项,其中奇数项之和为4,偶数项之和为3,则n 的值是 () A.3 B.5 C.7 D.9 5.△ABC 中,cos cos A a B b =,则△ABC 一定是() A .等腰三角形 B .直角三角形 C .等腰直角三角形 D .等边三角形 6.已知△ABC 中,a =4,b =43,∠A =30°,则∠B 等于() A .30° B .30°或150° C .60° D .60°或120° 7.在△ABC 中,∠A =60°,a=6,b=4,满足条件的△ABC( A ) (A)无解 (B)有解 (C)有两解 (D)不能确定 8.若110a b <<,则下列不等式中,正确的不等式有 () ①a b ab +< ②a b > ③a b < ④2b a a b +> A.1个 B.2个 C.3个 D.4个 9.下列不等式中,对任意x ∈R 都成立的是 () A .2111x <+ B .x 2+1>2x C .lg(x 2+1)≥lg2x D .244 x x +≤1 10.下列不等式的解集是空集的是(C) A.x 2-x+1>0 B.-2x 2+x+1>0 C.2x-x 2>5 D.x 2+x>2 11.不等式组 (5)()0,03x y x y x -++≥??≤≤?表示的平面区域是 ( )

[探索研究] 在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。如图1.1-2,在Rt ?ABC 中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,有 sin a A c =,sin b B c =,又sin 1c C c ==, 则sin sin sin a b c c A B C === b c 从而在直角三角形ABC 中,sin sin sin a b c A B C == C a B (图1.1-2) 思考:那么对于任意的三角形,以上关系式是否仍然成立? (由学生讨论、分析) 可分为锐角三角形和钝角三角形两种情况: 如图1.1-3,当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A =,则sin sin a b A B = , C 同理可得sin sin c b C B = , b a 从而 sin sin a b A B = sin c C = A c B (图1.1-3) 正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即 sin sin a b A B = sin c C = [理解定理] (1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数k 使sin a k A =,sin b k B =,sin c k C =; (2) sin sin a b A B = sin c C = 等价于 sin sin a b A B = , sin sin c b C B = , sin a A = sin c C 从而知正弦定理的基本作用为: ①已知三角形的任意两角及其一边可以求其他边,如sin sin b A a B = ; ②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如sin sin a A B b =。 一般地,已知三角形的某些边和角,求其他的边和角的过程叫作解三角形。 [例题分析] 例1.在?ABC 中,已知032.0=A ,081.8=B ,42.9=a cm ,解三角形。 解:根据三角形内角和定理, 0180()=-+C A B 000180(32.081.8)=-+ 066.2=; 根据正弦定理, 00 sin 42.9sin81.880.1()sin sin32.0==≈a B b cm A ; 根据正弦定理,

课题: §1.1.1正弦定理 授课类型:新授课 ●教学目标 知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。 过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。 情感态度与价值观:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。 ●教学重点 正弦定理的探索和证明及其基本应用。 ●教学难点 已知两边和其中一边的对角解三角形时判断解的个数。 ●教学过程 Ⅰ.课题导入 如图1.1-1,固定?ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动。 A 思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系? 显然,边AB 的长度随着其对角∠C 的大小的增大而增大。能否 用一个等式把这种关系精确地表示出来? C B Ⅱ.讲授新课 [探索研究] (图1.1-1) 在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。如图1.1-2,在Rt ?ABC 中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定 义 , 有 sin a A =, sin b B =,又s i n 1 c C == , A 则sin sin sin a b c c A B C = = = b c 从而在直角三角形ABC 中, sin sin sin a b c = = C a B (图1.1-2) 思考:那么对于任意的三角形,以上关系式是否仍然成立? (由学生讨论、分析) 可分为锐角三角形和钝角三角形两种情况: 如图1.1-3,当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A =,则sin sin a b A B = , C 同理可得sin sin c b C B = , b a 从而 sin sin a b A B = sin c C = A c B

解三角形练习题 一、选择题 1. 满足条件a=4,b=32,A=45°的ABC ?的个数是( ) A .一个 B .两个 C .无数个 D .零个 2.如果满足 60=∠ABC ,12=AC ,k BC =的△ABC 恰有一个,那么k 的取值范围是( ) A .38=k B .120≤,则A 与B 的大小关系为( ) A. B A > B. B A < C. A ≥B D. A 、B 的大小关系不能确定 11.锐角三角形ABC ?中,若2A B =,则下列叙述正确的是( ). ①sin3sin B C = ②3tan tan 122B C = ③64B ππ<< ④a b ∈ A.①② B.①②③ C.③④ D.①④ 12.在ABC ?中,3 A π = ,3BC =,则ABC ?的周长为( ) A.)33B π ++ B.)36 B π ++ C.6sin()33B π + + D.6sin()36 B π ++ 13.在△ABC 中,角ABC 的对边分别为a 、b 、c ,若(a 2 +c 2 -b 2 )tan B ,则角B 的值为( )A. 6 π B. 3π C.6π或56 π D. 3π或23 π 14.已知D 、C 、B 三点在地面同一直线上,DC=a ,从C 、D 两点测得A 的点仰角分别为α、β(α>β)则A 点离地面的高AB 等于 ( ) A . )sin(sin sin βαβα-a B .)cos(sin sin βαβα-a C .)sin(cos cos βαβα-a D .) cos(cos cos βαβ α-a 二、填空题 15.在ABC ?中,角,,A B C 的对边分别是,,a b c ,若,,a b c 成等差数列,30,B = ABC ?的面积为3 2 ,则b =____. 16.若△ABC 中,∠C =60°,a +b =1,则面积S 的取值范围是________. 17.在ABC ?中,已知60A = ,1b = ,ABC S ?= sin sin sin a b c A B C ++=++_______. 三、解答题 18.在△ABC 中,求证:)cos cos (a A b B c a b b a -=- 19、在ABC ?中,,,a b c 分别是角A ,B ,C 所对边的长,S 是ABC ?的面积.已知2 2 ()S a b c =--, 求tan A 的值.

相关主题
文本预览
相关文档 最新文档