当前位置:文档之家› 第56讲 数学建模与数学探究-新高考数学一轮专题复习(新高考专版)

第56讲 数学建模与数学探究-新高考数学一轮专题复习(新高考专版)

第56讲 数学建模与数学探究-新高考数学一轮专题复习(新高考专版)
第56讲 数学建模与数学探究-新高考数学一轮专题复习(新高考专版)

第56讲数学建模与数学探究

一、考情分析

数学建模活动是对现实问题进行数学抽象,用数学语言表达问题、用数学方法构建模型解决问题的过程.主要包括:在实际情境中从数学的视角发现问题、提出问题,分析问题、构建模型,确定参数、计算求解,检验结果、改进模型,最终解决实际问题.数学建模活动是基于数学思维运用模型解决实际问题的一类综合实践活动,是高中阶段数学课程的重要内容.

二、知识梳理

数学建模活动的基本过程如下:

数学探究活动是围绕某个具体的数学问题,开展自主探究、合作研究并最终解决问题的过程.具体表现为:发现和提出有意义的数学问题,猜测合理的数学结论,提出解决问题的思路和方案,通过自主探索、合作研究论证数学结论.数学探究活动是运用数学知识解决数学问题的一类综合实践活动,也是高中阶段数学课程的重要内容.

【过程解读】

掌握建模基本过程,会对实际问题进行问题分析,善于合理假设.

·问题分析也常称为模型准备或问题重述.由于数学模型是建立数学与实际现象之间的桥梁,因此,首要的工作是要设法用数学的语言表述实际现象.所谓问题重述是指把实际现象尽量地使用贴近数学的语言进行重新描述.为此,要充分了解问题的实际背景,明确建模的目的,尽可能弄清对象的特征,并为此搜集必需的各种信息或数据.要善于捕捉对象特征中隐含的数学因素,并将其一一列出.至此,我们便有了一个很好的开端,而有了这个良好的开端,不仅可以决定建模方向,初步确定用哪一类模型,而且对下面的各个步骤都将产生影响.

·模型假设(即合理假设)是与问题分析紧密衔接的又一个重要步骤.根据对象的特征和建模目的,在问题分析基础上对问题进行必要的、合理的取舍简化,并使用精确的语言作出假设,这是建模至关重要的一步.这是因为,一个实际问题往往是复杂多变的,如不经过合理的简化假设,将很难于转化成数学模型,即便转化成功,也可能是一个复杂的难于求解的模型从而使建模归于失败.当然,假设作得不合理或过分简单也同样会因为与实际相去甚远而使建模归于失败.一般地,作出假设时要充分利用与问题相关的有关学科知识,充分发挥想象力和观察判断力,分清问题的主次,抓住主要因素,舍弃次要因素.

【实际意义】

数学建模的实际意义

1.在一般工程技术领域,数学建模仍然大有用武之地.

在以声、光、热、力、电这些物理学科为基础的诸如机械、电机、土木、水利等工程技术领域中,数学建模的普遍性和重要性不言而喻,虽然这里的基本模型是已有的,但是由于新技术、新工艺的不断涌现,提出了许多需要用数学方法解决的新问题;高速、大型计算机的飞速发展,使得过去即便有了数学模型也无法求解的课题(如大型水坝的应力计算,中长期天气预报等)迎刃而解;建立在数学模型和计算机模拟基础上的CAD技术,以其快速、经济、方便等优势,大量地替代了传统工程设计中的现场实验、物理模拟等手段.

2.在高新技术领域,数学建模几乎是必不可少的工具.

无论是发展通讯、航天、微电子、自动化等高新技术本身,还是将高新技术用于传统工业去创造新工艺、开发新产品,计算机技术支持下的建模和模拟都是经常使用的有效手段.数学建模、数值计算和计算机图形等相结合形成的计算机软件,已经被固化于产品中,在许多高新技术领域起着核心作用,被认为是高新技术的特征之一.

3.数学迅速进入一些新领域,为数学建模开拓了许多新的处女地.

随着数学向诸如经济、人口、生态、地质等所谓非物理领域的渗透,一些交叉学科如计量经济学、人口控制论、数学生态学、数学地质学等应运而生.在这些领域里建立不同类型、不同方法、不同深浅程度模型的余地相当大,为数学建模提供了广阔的新天地.马克思说过,一门科学只有成功运用数学时,才算达到了完善的地步.展望21世纪,数学必将大踏步地进入所有学科,数学建模将迎来蓬勃发展的新时期.

【课题研究】

课题研究的过程包括选题、开题、做题、结题四个环节.学生需要撰写开题报告,教师要组织开展开题交流活动,开题报告应包括选题意义、文献综述、解决问题思路、研究计划、预期结果

等.做题是解决问题的过程,包括描述问题、数学表达、建立模型、求解模型、得到结论、反思完善等.结果包括撰写研究报告和报告研究结果,开展结题答辩.根据选题的内容,报告可以采用专题作业、测量报告、算法程序、制作的实物、研究报告或小论文等多种形式.

三、经典例题

测量学校内、外建筑物的高度

[目的]运用所学知识解决实际测量高度的问题,体验数学建模活动的完整过程.组织学生通过分组、合作等形式,完成选题、开题、做题、结题四个环节.

[情境]给出下面的测量任务;

(1)测量本校的一座教学楼的高度;

(2)测量本校的旗杆的高度;

(3)测量学校院墙外的一座不可及,但在学校操场上可以看到见的物体的高度.

可以每2~3个学生组成一个测量小组,以小组为单位完成;各人填写测量课题报告表,一周后上交.

测量课题报告表

项目名称:______________完成时间:______________

1.成员与分工

姓名分工

2.测量对象

例如,某小组选择的测量对象是:旗杆、教学楼、校外的××大厦.

3.测量方法(请说明测量的原理、测量工具、创新点等)

[要求](1)成立项目小组,确定工作目标,准备测量工具.

(2)小组成员查阅有关资料,进行讨论交流,寻求测量效率高的方法,设计测量方案(最好设计两套测量方案).

(3)分工合作,明确责任.例如,测量、记录数据、计算求解、撰写报告的分工等.

(4)撰写报告,讨论交流.可以用照片、模型、PPT等形式展现获得的成果.

根据上述要求,每个小组要完成以下工作.

(1)选题

本案例活动的选题步骤略去.

(2)开题

可以在课堂上组织开题交流,让每一个项目小组陈述初步测量方案,教师和其他同学可以提出质疑.在讨论的基础上,项目小组最终形成各自的测量方案.

(3)做题

依据小组的测量方案实施测量.尽量安排各个小组在同一时间进行测量,这样有利于教师的现场观察和管理.要有分工、合作、责任落实到个人.

(4)结题

在每一位学生都完成“测量报告”后,安排一次交流讲评活动.遴选的交流报告最好有鲜明的特点,如测量结果准确,过程完整清晰,方法有创意,误差处理得当,报告书写规范等;或者测量的结果出现明显误差,使用的方法不当.

[分析]测量高度是传统的数学应用问题,这样的问题有助于培养学生分析解决问题、动手实践、误差分析等方面的能力.测量模型可以用平面几何的方法,例如,比例线段、相似形等;也可以用三角的方法,甚至可以用物理的方法,例如,考虑自由落体的时间;等等.

[拓展]欢迎提出新的问题,积累数学建模资源.例如:

1.本市的电视塔的高度是多少米?

2.一座高度为H m的电视塔,信号传播半径是多少?信号覆盖面积有多大?

3.找一张本市的地图,看一看本市的地域面积有多少平方千米?电视塔的位置在地图上的什么地方?按照计算得到的数据,这座电视塔发出的电视信号是否能覆盖本市?

4.本市(外地)到省会的距离有多少千米?要用一座电视塔把信号从省会直接发送到本市,这座电视台的高度至少要多少米?

5.如果采用多个中继站的方式,用100 m高的塔接力传输电视信号,从省会到本地至少要建多少座100 m高的中继传送塔?

6.考虑地球大气层和电离层对电磁波的反射作用,重新考虑问题2,4,5.

7.如果一座电视塔(例如300 m高)不能覆盖本市,请设计一个多塔覆盖方案.

8.至少发射几颗地球定点的通讯卫星,可以使其信号覆盖地球?

9.如果我国要发射一颗气象监测卫星,监测我国的气象情况,请你设计一个合理的卫星定点位置或卫星轨道.

10.在网上收集资料,了解有关“北斗卫星导航系统”的内容,在班里做一个相关内容的综述,并发表对这件事的看法.

数学建模常用模型方法总结精品

【关键字】设计、方法、条件、动力、增长、计划、问题、系统、网络、理想、要素、工程、项目、重点、检验、分析、规划、管理、优化、中心 数学建模常用模型方法总结 无约束优化 线性规划连续优化 非线性规划 整数规划离散优化 组合优化 数学规划模型多目标规划 目标规划 动态规划从其他角度分类 网络规划 多层规划等… 运筹学模型 (优化模型) 图论模型存 储论模型排 队论模型博 弈论模型 可靠性理论模型等… 运筹学应用重点:①市场销售②生产计划③库存管理④运输问题⑤财政和会计⑥人事管理⑦设备维修、更新和可靠度、项目选择和评价⑧工程的最佳化设计⑨计算器和讯息系统⑩城市管理 优化模型四要素:①目标函数②决策变量③约束条件 ④求解方法(MATLAB--通用软件LINGO--专业软件) 聚类分析、 主成分分析 因子分析 多元分析模型判别分析 典型相关性分析 对应分析 多维标度法 概率论与数理统计模型 假设检验模型 相关分析 回归分析 方差分析 贝叶斯统计模型 时间序列分析模型 决策树 逻辑回归

传染病模型马尔萨斯人口预测模型微分方程模型人口预 测控制模型 经济增长模型Logistic 人口预测模型 战争模型等等。。 灰色预测模型 回归分析预测模型 预测分析模型差分方程模型 马尔可夫预测模型 时间序列模型 插值拟合模型 神经网络模型 系统动力学模型(SD) 模糊综合评判法模型 数据包络分析 综合评价与决策方法灰色关联度 主成分分析 秩和比综合评价法 理想解读法等 旅行商(TSP)问题模型 背包问题模型车辆路 径问题模型 物流中心选址问题模型 经典NP问题模型路径规划问题模型 着色图问题模型多目 标优化问题模型 车间生产调度问题模型 最优树问题模型二次分 配问题模型 模拟退火算法(SA) 遗传算法(GA) 智能算法 蚁群算法(ACA) (启发式) 常用算法模型神经网络算法 蒙特卡罗算法元 胞自动机算法穷 举搜索算法小波 分析算法 确定性数学模型 三类数学模型随机性数学模型 模糊性数学模型

数学建模的思考与实践

数学建模的思考与实践 数学建模是一个学数学?做数学?用数学的过程,它体现了学和用的统一?同时,数学建模是一种数学的思考方法,是对现实世界的一种用数学语言和方法,通过抽象?简化,建立近似刻画并解决实际问题的数学解决方案?数学建模的对象常常是一些实际生活?生产问题,把这些问题进行数学化无疑对培养学生的数学观念和数学意识具有重要的作用?下面通过实际例子,来说明数学建模与数学教学的结合? 一?数学建模的概念 数学模型是用数学的语言和方法对各种实际对象做出抽象或模仿而形成的一种数学结构?建立数学模型的过程叫做数学建模?将所考察的实际问题转化为数学问题,构造出相应的数学模型,通过对数学模型的研究和解答,使原来的实际问题得以解决,这种解决问题的方法叫做数学模型方法? 建立教学模型的过程,是把错综复杂的实际问题简化?抽象为合理的数学结构的过程?要通过调查?收集数据资料,观察和研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的理论和方法去分折和解决问题?这就需要深厚扎实的数学基础,敏锐的洞察力和想象力,对实际问题的浓厚兴趣和广博的知识面?数学建模是联系数学与实际问题的桥梁,是数学在各个领域广泛应用的媒介,是数学科学技术转化的主要途径,数学建模在科学技术发展中的重要作用越来越受到数学界和工程界的普遍重视,它已成为现代科技工作者必备的重要能力之一? 二?数学建模的重要性 21世纪课程改革的一个重要目标就是要加强综合性?应用性内容,重视联系学生生活实际和社会实践,逐步实现应试教育向素质教育转轨,目前数学教学状况令我们担忧,相当一部分教师认为数学主要是培养学生运算能力和逻辑推理能力,应用问题得不到应有的重视;至于如何从数学的角度出发,分析和处理学生周围的生活及生产实际问题更是无暇顾及,因而学生平时很少涉及实际建模问题的解决,其结果是可想而知的,所以加强学生的建模教学已刻不容缓? 开展数学建模教学,可激发学生的学习积极性,培养团结协作的工作能力;培养学生的应用意识和解决日常生活中有关数学问题的能力;能使学生加强数学与其他学科的融合,体会数学的实用价值;同时也是素质教育的重要体现? 三?数学教学中培养建模思想的意义 数学教育是基础教育的不可缺少的一个环节,在数学教学中培养建模思想,开展建模活动,具有重要意义? 1.在数学教学中培养建模思想符合学生认知过程发展规律 在数学建模的过程中,学生通过对现实问题的观察?归纳?假设,将其转化为一个数学问题,然后求解数学问题,得到所求的解;再回到实际问题中,看是否能解决实际问题,是否与实际经验或数据相吻合,这样经过直觉——试探——出错——思考——猜想——验证的过程,符合学生的认知规律,引导学生建立相应的数学模型,选择适当的方法解决问题,可以更好地激发学生的学习兴趣.

数学建模方法大全

数学中国国赛专题培训(一) 《数学建模思想方法大全及方法适用范围》 主讲人:厚积薄发(冰强,Bruce Jan) 第一篇:方法适用范围 一、统计学方法 1.1多元回归 1、方法概述: 在研究变量之间的相互影响关系模型时候,用到这类方法,具体地说:其可以定量地描述某一现象和某些因素之间的函数关系,将各变量的已知值带入回归方程可以求出因变量的估计值,从而可以进行预测等相关研究。 2、分类 分为两类:多元线性回归和非线性线性回归;其中非线性回归可以通过一定的变化转化为线性回归,比如:y=lnx可以转化为y=u u=lnx来解决;所以这里主要说明多元线性回归应该注意的问题。 3、注意事项 在做回归的时候,一定要注意两件事: (1)回归方程的显著性检验(可以通过sas和spss来解决) (2)回归系数的显著性检验(可以通过sas和spss来解决) 检验是很多学生在建模中不注意的地方,好的检验结果可以体现出你模型的优劣,是完整论文的体现,所以这点大家一定要注意。 4、使用步骤: (1)根据已知条件的数据,通过预处理得出图像的大致趋势或者数据之间的大致关系; (2)选取适当的回归方程; (3)拟合回归参数; (4)回归方程显著性检验及回归系数显著性检验 (5)进行后继研究(如:预测等) 1.2聚类分析 1、方法概述 该方法说的通俗一点就是,将n个样本,通过适当的方法(选取方法很多,大家可以自行查找,可以在数据挖掘类的书籍中查找到,这里不再阐述)选取m聚类中心,通过研究各样本和各个聚类中心的距离Xij,选择适当的聚类标准,通常利用最小距离法(一个样本归于一个类也就意味着,该样本距离该类对应的中心距离最近)来聚类,从而可以得到聚类结果,如果利用sas软件或者spss软件来做聚类分析,就可以得到相应的动态聚类图。 这种模型的的特点是直观,容易理解。 2、分类 聚类有两种类型: (1)Q型聚类:即对样本聚类; (2)R型聚类:即对变量聚类;

数学建模专题汇总-离散模型

离散模型 § 1 离散回归模型 一、离散变量 如果我们用0,1,2,3,4,?说明企业每年的专利申请数,申请数是一个离散的变量,但是它是间隔尺度变量,该变量类型不在本章的讨论的被解释变量中。但离散变量0和1可以用来说明企业每年是否申请专利的事项,类似表示状态的变量才在本章的讨论中。在专利申请数的问题中,离散变量0,1,2,3 和4 等数字具 有具体的经济含义,不能随意更改;而在是否申请专利的两个选择对象的选择问题中,数字0和1只是用于区别两种不同的选择,是表示一种状态。本专题讨论有序尺度变量和名义尺度变量的被解释变量。 、离散因变量

在讨论家庭是否购房的问题中,可将家庭购买住房的决策用数字1 表示,而将家庭不购买住房的决策用数字0 表示。 1 yes x 0 no 如果x 作为说明某种具体经济问题的自变量,则应用以前介绍虚拟变量知识就足够了。如果现在考虑某个家庭在一定的条件下是否购买住房问题时,则表示状态的虚拟变量就不再是自变量,而是作为一个被说明对象的因变量出现在经济模型中。因此,需要对以前讨论虚拟变量的分析方法进行扩展,以便使其能够适应分析类似家庭是否购房的问题。因为在家庭是否购房问题中,虚拟因变量的具体取值仅是为了区别不同的状态,所以将通过虚拟因变量讨论备择对象选择的回归模型称为离散选择模型。 三、线性概率模型 现在约定备择对象的0 和1 两项选择模型中,下标i 表示各不同的经济主体,取值

0或l的因变量 y i表示经济主体的具体选择结果,而影响经济主体进行选择的自变量 x i 。如果选择响应YES 的概率为 p(y i 1/ x i ) ,则经济主体选择响应NO 的概率为 1 p(y i 1/ x i), 则E(y i /x i) 1 p(y i 1/x i) 0 p(y i 0/x i)= p(y i 1/x i)。根据经典线性回归,我们知道其总体回归方程是条件期望建立的,这使我们想象可以构造线性概率模型 p(y i 1/ x i) E(y i / x i) x iβ 0 1 x i1 L k x ik u i 描述两个响应水平的线性概率回归模型可推知,根据统计数据得到的回归结果并不一定能够保证回归模型的因变量拟合值界于[0,1]。如果通过回归模型式得到的因变量拟合值完全偏离0或l两个数值,则描述两项选择的回归模型的实际用途就受到很大的限制。为避免出现回归模型的因变量预测值偏离0或1的情形,需要限制因变量的取值范围并对回归模型式进行必要的修正。由于要对其进行修正,那么其模型就会改变,模型改变会导致似然函

数学建模的作用意义

数学建模的背景: 人们在观察、分析和研究一个现实对象时经常使用模型,如展览馆里的飞机模型、水坝模型,实际上,照片、玩具、地图、电路图等都是模型,它们能概括地、集中地反映现实对象的某些特征,从而帮助人们迅速、有效地了解并掌握那个对象。数学模型不过是更抽象些的模型。 当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言,把它表述为数学式子(称为数学模型),然后用通过计算得到的模型结果来解释实际问题,并接受实际的检验。这个全过程就称为数学建模。 近半个多世纪以来, 随着计算机技术的迅速发展,数学的应用不仅在工程技术、自然科学等领域发挥着越来越重要的作用, 而且以空前的广度和深度向经济、金融、生物、医学、环境、地质、人口、交通等新的领域渗透,所谓数学技术已经成为当代高新技术的重要组成部分。 不论是用数学方法在科技和生产领域解决哪类实际问题,还是与其它学科相结合形成交叉学科,首要的和关键的一步是建立研究对象的数学模型,并计算求解。人们常常把数学建模和计算机技术在知识经济时代的作用比喻为如虎添翼。 数学建模日益显示其重要作用,已成为现代应用数学的一个重要领域。为培养高质量、高层次人才,对理工、经济、金融、管理科学等各专业的大学生都提出“数学建模技能和素质方面的要求”。 数学建模在现代社会的一些作用 (1)在一般工程技术领域,数学建模仍然大有用武之地。在以声、光、热、力、电这些物理学科为基础的诸如机械、电机、土木、水利等工程技术领域中,数学建模的普遍性和重要性不言而喻,虽然这里的基本模型是已有的,但是由于新技术、新工艺的不断涌现,提出了许多需要用数学方法解决的新问题;高速、大型计算机的飞速发展,使得过去即便有了数学模型也无法求解的课题(如大型水坝的应力计算,中长期天气预报等)迎刃而解;建立在数学模型和计算机模拟基础上的CAD技术,以其快速、经济、方便等优势,大量地替代了传统工程设计中的现场实验、物理模拟等手段。 (2)在高新技术领域,数学建模几乎是必不可少的工具。无论是发展通讯、航天、微电子、自动化等高新技术本身,还是将高新技术用于传统工业去创造新工艺、开发新产品,计算机技术支持下的建模和模拟都是经常使用的有效手段。数学建模、数值计算和计算机图形学等相结合形成的计算机软件,已经被固化于产品中,在许多高新技术领域起着核心作用,被认为是高新技术的特征之一。在这个意义上,数学不再仅仅作为一门科学,它是许多技术的基础,而且直接走向了技术的前台。国际上一位学者提出了“高技术本质上是一种数学技术”的观点。 (3)数学迅速进入一些新领域,为数学建模开拓了许多新的处女地。随着数学向诸如经济、人口、生态、地质等所谓非物理领域的渗透,一些交叉学科如计量经济学、人口控制论、数学生态学、数学地质学等应运而生。一般地说,不存在作为支配关系的物理定律,当用数学方法研究这些领域中的定量关系时,数学建模就成为首要的、关键的步骤和这些学科发展与应用的基础。在这些领域里建立不同类型、不同方法、不同深浅程度模型的余地相当大,为数学建模提供了广阔的新天地。马克思说过,一门科学只有成功地运用数学时,才

(完整word版)数学建模四大模型总结,推荐文档

四类基本模型 1 优化模型 1.1 数学规划模型 线性规划、整数线性规划、非线性规划、多目标规划、动态规划。 1.2 微分方程组模型 阻滞增长模型、SARS 传播模型。 1.3 图论与网络优化问题 最短路径问题、网络最大流问题、最小费用最大流问题、最小生成树问题(MST)、旅行商问题(TSP)、图的着色问题。 1.4 概率模型 决策模型、随机存储模型、随机人口模型、报童问题、Markov 链模型。 1.5 组合优化经典问题 ● 多维背包问题(MKP) 背包问题:n 个物品,对物品i ,体积为i w ,背包容量为W 。如何将尽可能多的物品装入背包。 多维背包问题:n 个物品,对物品i ,价值为i p ,体积为i w ,背包容量为W 。如何选取物品装入背包,是背包中物品的总价值最大。 多维背包问题在实际中的应用有:资源分配、货物装载和存储分配等问题。该问题属于NP 难问题。 ● 二维指派问题(QAP) 工作指派问题:n 个工作可以由n 个工人分别完成。工人i 完成工作j 的时间为ij d 。如何安排使总工作时间最小。 二维指派问题(常以机器布局问题为例):n 台机器要布置在n 个地方,机器i 与k 之间的物流量为ik f ,位置j 与l 之间的距离为jl d ,如何布置使费用最小。 二维指派问题在实际中的应用有:校园建筑物的布局、医院科室的安排、成组技术中加工中心的组成问题等。 ● 旅行商问题(TSP) 旅行商问题:有n 个城市,城市i 与j 之间的距离为ij d ,找一条经过n 个城

市的巡回(每个城市经过且只经过一次,最后回到出发点),使得总路程最小。 ● 车辆路径问题(VRP) 车辆路径问题(也称车辆计划):已知n 个客户的位置坐标和货物需求,在可供使用车辆数量及运载能力条件的约束下,每辆车都从起点出发,完成若干客户点的运送任务后再回到起点,要求以最少的车辆数、最小的车辆总行程完成货物的派送任务。 TSP 问题是VRP 问题的特例。 ● 车间作业调度问题(JSP) 车间调度问题:存在j 个工作和m 台机器,每个工作由一系列操作组成,操作的执行次序遵循严格的串行顺序,在特定的时间每个操作需要一台特定的机器完成,每台机器在同一时刻不能同时完成不同的工作,同一时刻同一工作的各个操作不能并发执行。如何求得从第一个操作开始到最后一个操作结束的最小时间间隔。 2 分类模型 判别分析是在已知研究对象分成若干类型并已经取得各种类型的一批已知样本的观测数据,在此基础上根据某些准则建立判别式,然后对未知类型的样品进行判别分析。 聚类分析则是给定的一批样品,要划分的类型实现并不知道,正需要通过局内分析来给以确定类型的。 2.1 判别分析 ● 距离判别法 基本思想:首先根据已知分类的数据,分别计算各类的重心即分组(类)的均值,判别准则是对任给的一次观测,若它与第i 类的重心距离最近,就认为它来自第i 类。 至于距离的测定,可以根据实际需要采用欧氏距离、马氏距离、明科夫距离等。 ● Fisher 判别法 基本思想:从两个总体中抽取具有p 个指标的样品观测数据,借助方差分析的思想构造一个判别函数或称判别式1p i i i y c x ==∑。其中系数i c 确定的原则是使两 组间的区别最大,而使每个组内部的离差最小。 对于一个新的样品,将它的p 个指标值代人判别式中求出 y 值,然后与判别临界值(或称分界点(后面给出)进行比较,就可以判别它应属于哪一个总体。在两个总体先验概率相等的假设下,判别临界值一般取: (1)(2)1 2012n y n y y n n +=+

浅谈对数学建模的认识

浅谈对数学建模的认识 【摘要】数学建模在数学和其他学科的发展过程中具有重要的意义。数学 建模有助于学生感受数学在解决实际问题中的价值和作用,体验综合运用知识和方法解决实际问题的过程;有助于激发学生学习数学的兴趣,培养学生的创新意识和实践能力。数学建模竞赛的开展有力地推动了高等院校数学教学体系、教学内容和教学方式的改革。 【关键词】数学建模认识数学建模竞赛 目录 引言 (2) 第一章数学建模 (3) 一、数学建模的起源 (3) 二、数学建模的定义 (3) 三、数学建模的特点 (4) 四、数学建模的分类 (5) 五、数学建模过程 (6) 六、数学建模的实际意义 (8) 第二章数学建模竞赛 (9) 一、数学建模竞赛的形式 (9) 二、对数学建模竞赛的认识 (9) 三、数模竞赛的团队 (9) 四、参加数学建模活动的好处 (10) 五、数学建模竞赛的局限性 (10) 六、数学建模竞赛对学生能力的培养 (11) 小结 (12) 参考文献 (13)

引言 世界上一切事物都是按照一定的客观规律运动变化着,事物之间彼此联系和相互制约,无论是从浩瀚的宇宙到渺小的粒子,还是从自然科学到社会科学都是这样。恩格斯精辟地指出:数学是研究现实世界的空间形式与数量关系的科学。数学区分于其它学科的明显特点有三个:高度的抽象性;严谨的逻辑性;应用的广泛性。事物的变化规律和事物之间的联系,必然蕴含着一定的数量关系,所以数学是认识世界和改造世界的必不可少的重要工具。著名数学家华罗庚教授曾指出的:宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,无处不在,凡是出现量的地方就少不了用数学,研究量的关系,量的变化,量的变化关系,量的关系的变化等现象都少不了数学。 随着科学技术的飞速发展,人们越来越认识到数学科学的重要性:数学的思考方式具有根本的重要性,数学为组织和构造知识提供了方法,将它用于技术时能使科学家和工程师生产出系统的、能复制的、且可以传播的知识……数学科学对于经济竞争是必不可少的,数学科学是一种关键性的、普遍的、可实行的技术。 在当今高科技与计算机技术日新月异且日益普及的社会里,高新技术的发展离不开数学的支持,没有良好的数学素养已无法实现工程技术的创新与突破。因此,如何在数学教育的过程中培养人们的数学素养,让人们学会用数学的知识与方法去处理实际问题,值得数学工作者的思考。 大学生数学建模活动及全国大学生数学建模竞赛正是在这种形势下开展并发展起来的,其目的在于激励学生学习数学的积极性,提高学生建立数学模型和运用计算机技术解决实际问题的综合能力,拓宽学生的知识面,培养创造精神及合作意识,推动大学数学教学体系、教学内容和教学方法的改革。 在现代的社会生活中,到处可见模型的存在,而各种模型的存在都在一定的程度上离不开数学建模的学习。数学是研究现实世界数量关系和空间形式的学科,在它产生和发展的历史长河中,一直是和各种各样的应用问题紧密相关的。 数学技术的全球化、计算机的迅猛发展、数学理论与方法的不断扩充,使得数学已经成为当代高科技的一个重要组成部分和思想库,数学已经成为一种能够普遍实施的技术。近半个多世纪以来,随着计算机技术的迅速发展,数学的应用不仅在工程技术、自然科学等领域发挥着越来越重要的作用,而且以空前的广度和深度向经济,管理,金融、生物、医学、环境、地质、人口、交通等新的领域渗透,所谓数学技术已经成为当代高新技术的重要组成部分。 数学模型(Mathematical Model)是一种模拟,是用数学符号,数学式子,程序,图形等对实际课题本质属性的抽象而又简洁的刻画,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略。数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识。这种应用知识从实际课题中抽象、提炼出数学模型的过程就称为数学建模(Mathematical Modeling)。 不论是用数学方法在科技和生产领域解决哪类实际问题,还是与其它学科相结合形成交叉学科,首要的和关键的一步是建立研究对象的数学模型,并加以计算求解(通常借助计算机);数学建模和计算机技术在知识经济时代的作用可谓是如虎添翼。

数学建模在经济学中的应用

数学建模在经济学中的应用 摘要:高校的经济学教学中经常会融入一些数学模型的思想,实际上数学模型的建立与经济学的教学和研究有着很大的内在联系,两者之间有着必然的关系,文本笔者将会从数学与经济学的关系出发,具体的介绍数学经济模型及其重要性,并对构建数学经济模型以及一些实例进行具体的论述。 关键词:数学模型;经济学;高校教学;应用 现如今的高校教学当中可以说数学建模与经济学之间有着密切的关系,任何一项经济学的研究和计算都离不开数学模型的建立,采用数学模型来辅助经济学的发展可以更加直观的让人们从中看出经济的发展形势。例如在经济学的宏观控制和价格控制中,都有数学建模的融入,利用数学建模可以有助于经济学实验的宏观经济分析,在一些实验和价格控制当中,都经常会涉及到数学问题在微观经济中数理统计的实验设计,这时候就体现出了数学建模对于经济学的促进性作用。下面笔者将会针对数学建模对于经济学的重要作用进行具体的分析。 1.数学经济模型对于经济学研究的重要性: 一般情况下,单独的依靠数学模型是不够解决所有的经济学问题,很多经济领域中的问题是需要从微观角度进行细致的分析才能够总结出其中的规律。要想利用数学知识来

解决经济学中所出现的问题,就一定要建立适当的经济学模型。运用数学建模来解决经济学中的问题并不是没有道理的,很多时候从经济学的角度仅仅能够知道问题的方向和目的,至于其中的过程并不能有着详细的分析,而利用数学模型就可以彻底的解决这一问题。数学建模可以通过自身在数字、图像以及框图等形式来更加真实地反映出现有经济的实际状况。 2.构建经济数学模型的一般步骤: 要想利用数学模型来更好的解决现有的经济学问题,主要分为两个步骤,第一先要分清楚问题发生的背景并且熟悉问题,然后要通过假设的形式来完善现有的经济学问题,通过抽象以及形象化的方式来构建一些合理的数学模型。运用数学知识和技巧来描述问题中变量参数之间的关系。这样可以得出一些有关经济类的数据,进而将建模中得到的数据与实际情况进行对比和分析,最终得出结果。 3.应用实例: 商品提价问题的数学模型: 3.1问题: 现如今经济学在很多的商场中都有所运用,例如同样的商品要想获得最大的经济效益,既要考虑到规定的售价,又要考虑到销售的数量,如果定价过低,则销售数量较多,如果定价较高,利润是大了,但是却影响了销售数量。怎样

数学建模专题方法总结

最短路问题、公路连接问题、指派问题、中国邮递员问题、推销员问题、旅行商问题、运输问题 上述问题有两个共同的特点: 一是它们的目的都是从若干可能的安排或方案中寻求某种意义下的最优安排或方案,数学上把这种问题称为最优化或优化问题; 二是它们都易于用图形的形式直观地描述和表达,数学上把这种与图相关的结构称为网络。 与图和网络相关的最优化问题就是网络最优化或称网络优化问题。所以上面例子中介绍的问题都是网络优化问题。

离散数据的处理可用插值、拟合。 插值:已知某些离散点的函数值,构造一个简单的函数通过所有离散点,可求离散点区域内其他中间点的值。若要求所求曲线(面)通过所给所有数据点,就是插值问题。 拟合:不要求通过所有数据点,可预测以前的值。若不要求曲线(面)通过所有数据点,而是要求它反映对象整体的变化趋势,这就是数据拟合,又称曲线拟合或曲面拟合。 函数插值与曲线拟合都是要根据一组数据构造一个函数作为近似,由于近似的要求不同,二者在数学方法上是完全不同的。

元法建模3用模拟近似法建模。 微分方程数值解求近似解。 有限差分法--------偏微分方程的一种数值解法

非线性------曲线线性-------直线

预测方法总结:1回归拟合预测------最小二乘法(数据较多、不能太多也不能太少、适合中 等数据量的问题) 2灰色预测(小样本的预测,数据量少)需做数据预处理 3模糊数学预测

模糊数学是研究和揭示模糊现象的定量处理方法。 分类、识别、评判、预测、控制、排序、选择 模糊聚类分析--------对所研究的事物按一定标准进行分类。对客观事物按一定的标准进行分类的数学方法称为聚类分析,它是多元统计的一种分类方法。 模糊模式识别------已知某类事物的若干标准模型,给出一个具体的对象,确定把它归于哪一类模型。 模糊综合评判------从某一事物的多个方面进行综合评价 模糊线性规划-----将线性规划的约束条件或目标函数模糊化,引入隶属函数,从而导出一个新的线性规划问题, 其最优解称为原问题的模糊最优解。

数学建模案例

2014年河南科技大学模拟训练一 承诺书 我们仔细阅读了数学建模选拔赛的规则. 我们完全明白,在做题期间不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人研究、讨论与选拔题有关的问题。 我们知道,抄袭别人的成果是违反选拔规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守选拔规则,以保证选拔的公正、公平性。如有违反选拔规则的行为,我们将受到严肃处理。 我们选择的题号是(从A/B/C中选择一项填写): C 队员签名:1. 2. 3. 日期: 2014 年 8 月 19 日

2014年河南科技大学数学建模竞赛选拔 编号专用页 评阅编号(评阅前进行编号): 评阅记录(评阅时使用): 评 阅 人 评 分 备 注

搜索黑匣子 摘要

一、问题重述 2014年3月8号,马来西亚航空370号班机从马来西亚吉隆坡前往中国北京途中失联,被认为是有史以来“最离奇”的飞机失联案例。空难的谜团不能解开,很大程度上取决于能不能打捞到“黑匣子”。MH370的失联,各国为此出动了25架飞机,40艘舰艇,甚至包括若干卫星。 我们要解决的问题如下: 1.我们首先将单独对船只这种搜寻工具分析,根据假设确定最后失联地点,找出大概搜索区域,确定飞机残骸和黑夹子疑似地点,利用性变形最短路径模型确定搜索完所有可疑地点的最短路径,最后求出最小风险系数下的最优搜索方案,并明确这种搜索方案的优缺点。 2.所有的飞机船舰及卫星都有一个国家统一调度,则根据卫星、飞机、船舰的各自的探索方式划分搜寻区域,进行统一分工合作,提高搜索的效率和降低搜索的费用。分别建立模型得出每种单一搜索工具的最优搜索你方案,最终利用多人TST问题计算整合出多种搜索工具共同参与下的最优搜索方案。 二、模型假设 1.马航370残骸和黑夹子落点的可疑位置已确定。 2.专家对搜索船只在搜索过程中的权重确定真是可靠。 3.船只在搜索过程中只受到文中因素的影响,其余因素影响很小。 4.在搜索过程中,风速和浪高等环境因素是不变的。 5.搜索过程中各种搜索工具不会出现故障。 6.搜救船只只能按照特定航道行驶。 7.搜索船只的设备都比较齐全,船只的类别对搜索的影响不大。 8.在搜索过程中,风速和浪高等环境因素是不变的。 9.各种搜索人员之间能够实现理想状态下的无障碍交流和信息共享。 三、符号说明 变量和缩略语定义 WC 风飘矢量位移 Vt 海流t时刻的速度 S1 只在洋流影响下的漂流位移 S0 初始位移 La1 A线上相邻顶点之间的距离 A 顶点的分组A即搜索路线A线 M 关联矩阵

关于数学建模的分析

关于数学建模的分析 一、应用数学的发展与现状 最初的应用数学在创立的时候,只有很少的几个分支,经过时 间的沉淀和进一步的开拓,到如今,应用数学已经有了非常迅速的发展,几乎可以将应用数学的方法融入到各个科学领域,尤其是与其它很多学科的联系越来越趋于紧密,起着举足轻重的作用。应用数学早已不仅仅局限于传统学科如物理学、医学、经济学的原始问题,而随着信息化时代的到来,应用数学更多的应用于新兴信息学、生态学一些划时代的学科中,在边缘科学中也发挥这越来越重要的作用,甚至进入了金融、保险等行业,给应用科学带来了巨大的前途和发展空间,充满了更多的机遇和挑战。 应用数学是一门数学,更是一门科学。很久以来,在应用数学 的教学和实践中,很多人一直不了解如何把理论知识与实际很好的结合,其根本原因就是没有将数学建模思想渗透到真正的应用数学中去。很多熟知应用数学的人员却不能将其运用到实际领域中去,他们也许很多人都还不知道什么是数学建模,也不了解数学建模的过程是什么,更不会知道数学建模能有这么大的用处。马克思曾经说过:一门科学只有当它充分利用了数学之后,才能成为一门精确的科学。随着应用数学的发展,给它提供了更广阔的空间,也给应用者们带来了巨大的挑战。这就迫使应用数学的学习者要自觉学习了解各个行业的知识,进入充满悬念的非传统领域,在高尖端的应用领域中放手一搏,能及时跟上应用数学的变化并走在时代的前沿。

二、数学建模在应用数学中的重要作用 数学模型是用数学来解决实际问题的桥梁。数学模型与数学建 模不仅仅展示了解决实际问题时所使用的数学知识与技巧,更重要的是它告诉我们如何挖掘实际问题中的数学内涵并使用所学数学知识 来解决它。数学建模就是应用数学理论和方法去分析和解决实际问题,简单的说,就是用数学语言描述实际现象的过程。数学源于生活实践,是研究现实世界数量关系和空间形式的科学,最终也将应用于生活。在如今,数学以空前的广度和深度向其他科学技术领域渗透,过去很少应用数学的领域现在也在迅速的贴近数学,特别是新技术、新工艺蓬勃兴起,计算机的普及和广泛应用,数学在许多高新技术上起着十分关键的作用。因此,数学建模不仅凸现出其重要性,而且已成为现代应用数学的一个重要组成部分。 从马克思方法论来说,数学建模实质上就是一种数学思想方法。从工程、金融、设计等各个角度来运用数学建模,就是用数学的语言和方法,通过抽象、简化建立数学模型,近似勾勒出数学模型,在对数学模型的研究中完成对实际的模拟。数学建模能解决各个领域的实际问题,它从模型和量去考察实际问题,尽可能用数学的规律和参数变量来模拟实际问题的发展和结果,数学模型的建立可分为以下几个步骤:用理论和定律来确定变量,建立各个参数之间的定量或定性关系,进一步建立出数学模型;用数学的计算方法进行分析、求解;然后尽可能用实验的、观察的、历史的数据来验证该数学模型。若检验符合实际,则建模成功;若不符合实际,则需要重新考虑抽象、简化建

第1节 数学建模与数学探究

第1节数学建模与数学探究 【内容要求】 数学建模活动是对现实问题进行数学抽象,用数学语言表达问题、用数学方法构建模型解决问题的过程.主要包括:在实际情境中从数学的视角发现问题、提出问题,分析问题、构建模型,确定参数、计算求解,检验结果、改进模型,最终解决实际问题.数学建模活动是基于数学思维运用模型解决实际问题的一类综合实践活动,是高中阶段数学课程的重要内容. 【基本过程】 数学建模活动的基本过程如下: 数学探究活动是围绕某个具体的数学问题,开展自主探究、合作研究并最终解决问题的过程.具体表现为:发现和提出有意义的数学问题,猜测合理的数学结论,提出解决问题的思路和方案,通过自主探索、合作研究论证数学结论.数学探究活动是运用数学知识解决数学问题的一类综合实践活动,也是高中阶段数学课程的重要内容. 【过程解读】 掌握建模基本过程,会对实际问题进行问题分析,善于合理假设. ·问题分析也常称为模型准备或问题重述.由于数学模型是建立数学与实际现象之

间的桥梁,因此,首要的工作是要设法用数学的语言表述实际现象.所谓问题重述是指把实际现象尽量地使用贴近数学的语言进行重新描述.为此,要充分了解问题的实际背景,明确建模的目的,尽可能弄清对象的特征,并为此搜集必需的各种信息或数据.要善于捕捉对象特征中隐含的数学因素,并将其一一列出.至此,我们便有了一个很好的开端,而有了这个良好的开端,不仅可以决定建模方向,初步确定用哪一类模型,而且对下面的各个步骤都将产生影响. ·模型假设(即合理假设)是与问题分析紧密衔接的又一个重要步骤.根据对象的特征和建模目的,在问题分析基础上对问题进行必要的、合理的取舍简化,并使用精确的语言作出假设,这是建模至关重要的一步.这是因为,一个实际问题往往是复杂多变的,如不经过合理的简化假设,将很难于转化成数学模型,即便转化成功,也可能是一个复杂的难于求解的模型从而使建模归于失败.当然,假设作得不合理或过分简单也同样会因为与实际相去甚远而使建模归于失败.一般地,作出假设时要充分利用与问题相关的有关学科知识,充分发挥想象力和观察判断力,分清问题的主次,抓住主要因素,舍弃次要因素. 【实际意义】 数学建模的实际意义 1.在一般工程技术领域,数学建模仍然大有用武之地. 在以声、光、热、力、电这些物理学科为基础的诸如机械、电机、土木、水利等工程技术领域中,数学建模的普遍性和重要性不言而喻,虽然这里的基本模型是已有的,但是由于新技术、新工艺的不断涌现,提出了许多需要用数学方法解决的新问题;高速、大型计算机的飞速发展,使得过去即便有了数学模型也无法求解的课题(如大型水坝的应力计算,中长期天气预报等)迎刃而解;建立在数学模型和计算机模拟基础上的CAD技术,以其快速、经济、方便等优势,大量地替代了传统工程设计中的现场实验、物理模拟等手段. 2.在高新技术领域,数学建模几乎是必不可少的工具. 无论是发展通讯、航天、微电子、自动化等高新技术本身,还是将高新技术用于传统工业去创造新工艺、开发新产品,计算机技术支持下的建模和模拟都是经常使用的有效手段.数学建模、数值计算和计算机图形等相结合形成的计算机软件,已经被固化于产品中,在许多高新技术领域起着核心作用,被认为是高新技术的特征之一.

数学建模学习心得体会

数学建模学习心得体会 【1】数学建模学习心得体会 数学建模是一个经历观察、思考、归类、抽象与总结的过程,也是一个信息捕捉、筛选、整理的过程,更是一个思想与方法的产生 与选择的过程。它给学生再现了一种“微型科研”的过程。数学建 模教学有利于激发学生学习数学的兴趣,丰富学生数学探索的情感 体验;有利于学生自觉检验、巩固所学的数学知识,促进知识的深化、发展;有利于学生体会和感悟数学思想方法。同时教师自身具备数学 模型的构建意识与能力,才能指导和要求学生通过主动思维,自主 构建有效的数学模型,从而使数学课堂彰显科学的魅力。 为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。使用数学语言描述的事物就称为数学模型。有时候我们需要做一些 实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代 替而进行相应的实验,实验本身也是实际操作的一种理论替代。1. 只有经历这样的探索过程,数学的思想、方法才能沉积、凝聚,从 而使知识具有更大的智慧价值。动手实践、自主探索与合作交流是 学生学习数学的重要方式。学生的数学学习活动应当是一个主动、 活泼的、生动和富有个性的过程。因此,在教学时我们要善于引导 学生自主探索、合作交流,对学习过程、学习材料、学习发现主动 归纳、提升,力求建构出人人都能理解的数学模型。 教师不应只是“讲演者”,而应不时扮演下列角色:参谋——提一些求解的建议,提供可参考的信息,但并不代替学生做出决断。 询问者——故作不知,问原因、找漏洞,督促学生弄清楚、说明白,完成进度。仲裁者和鉴赏者——评判学生工作成果的价值、意义、 优劣,鼓励学生有创造性的想法和作法。 2.数学建模对教师、对学生都有一个逐步的学习和适应的过程。教师在设计数学建模活动时,特别应考虑学生的实际能力和水平,

初中数学建模案例41374

中学数学建模论文指导 中学阶段常见的数学模型有:方程模型、不等式模型、函数模型、几何模型和统计模型等。我们也把运用数学模型解决实际问题的方法统称为应用建模。可以分五种模型来写。论文最好自己写,如果是参加竞赛的话从网上找的会被搜出来的。 一、建模论文的标准组成部分 建模论文作为一种研究性学习有意义的尝试,可以锻炼学生发现问题、解决问题的能力。一般来说,建模论文的标准组成部分由论文的标题、摘要、正文、结论、参考文献等部分组成。现就每个部分做个简要的说明。 1. 题目 题目是给评委的第一印象,所以论文的题目一定要避免指代不清,表达不明的现象。建议将论文所涉及的模型或所用的计算方式写入题目。如“用概率方法计算商场打折与返券的实惠效应”。 2. 摘要 摘要是论文中重要的组成部分。摘要应该使用简练的语言叙述论文的核心观点和主要思想。如果你有一些创新的地方,一定要在摘要中说明。进一步,必须把一些数值的结果放在摘要里面,例如:“我们的最终计算得出,对于消费者来说,打折比返券的实惠率提高了23%。”摘要应该最后书写。在论文的其他部分还没有完成之前,你不应该书写摘要。因为摘要是论文的主旨和核心内容的集中体现,只有将论文全部完成且把论文的体系罗列清楚后,才可写摘要。 摘要一般分三个部分。用三句话表述整篇论文的中心。 第一句,用什么模型,解决什么问题。 第二句,通过怎样的思路来解决问题。 第三句,最后结果怎么样。 当然,对于低年级的同学,也可以不写摘要。 3. 正文 正文是论文的核心,也是最重要的组成部分。在论文的写作中,正文应该是从“提出问题—分析问题—选择模型—建立模型—得出结论”的方式来逐渐进行的。其中,提出问题、分析问题应该是清晰简短。而选择模型和建立模型应该是目标明确、数据详实、公式合理、计算精确。在正文写作中,应尽量不要用单纯的文字表述,尽量多地结合图表和数据,尽量多地使用科学语言,这会使得论文的层次上升。 4. 结论 论文的结论集中表现了这篇论文的成果,可以说,只有论文的结论经得起推敲,论文才可以获得比较高的评价。结论的书写应该注意用词准确,与正文所描述或论证的现象或数据保持绝对的统一。并且一定要对结论进行自我点评,最好是能将结论推广到社会实践中去检验。 5. 参考资料 在论文中,如果使用了其他人的资料。必须在论文后标明引用文章的作者、应用来源等信息。 二、建模论文的写作步骤 1. 确定题目 选择一个你感兴趣的生活中的问题作为研究对象,并根据研究对象设置论文题目。最好是找一位或几位老师帮助安排研究课题。在确定好课题后,应该写一个写作计划给指导老师看看,并征求他们对该计划的建议。 2. 开展科研课题

数学建模实验

数学建模课程实验报告 专题实验7 班级数财系1班学号2011040123 丛文 实验题目常微分方程数值解 实验目的 1.掌握用MATLAB求微分方程初值问题数值解的方法; 2.通过实例学习微分方程模型解决简化的实际问题; 3.了解欧拉方法和龙格库塔方法的基本思想。 实验容 (包括分 析过程、 方法、和 代码,结 果) 1. 用欧拉方法和龙格库塔方法求下列微分方程初值问题的数值 解,画出解的图形,对结果进行分析比较 解;M文件 function f=f(x,y) f=y+2*x; 程序; clc;clear; a=0;b=1; %求解区间 [x1,y_r]=ode45('f',[a b],1); %调用龙格库塔求解函数求解数值 解; %% 以下利用Euler方法求解 y(1)=1;N=100;h=(b-a)/N; x=a:h:b;

for i=1:N y(i+1)=y(i)+h*f(x(i),y(i)); end figure(1) plot(x1,y_r,'r*',x,y,'b+',x,3*exp(x)-2*x-2,'k-');%数值解与真解图 title('数值解与真解图'); legend('RK4','Euler','真解'); xlabel('x');ylabel('y'); figure(2)

plot(x1,abs(y_r-(3*exp(x1)-2*x1-2)),'k-');%龙格库塔方法的误差 title('龙格库塔方法的误差') xlabel('x');ylabel('Error'); figure(3) plot(x,abs(y-(3*exp(x)-2*x-2)),'r-')%Euler方法的误差 title('Euler方法的误差') xlabel('x');ylabel('Error');

数学建模的学习心得体会

数学建模的学习心得体会 通过对专题七的学习,我知道了数学探究与数学建模在中学中学习的重要性,知道了什么是数学建模,数学建模就是把一个具体的实际问题转化为一个数学问题,然后用数学方法去解决它,之后我们再把它放回到实际当中去,用我们的模型解释现实生活中的种种现象和规律。 知道了数学建模的几点要求:一个是问题一定源于学生的日常生活和现实当中,了解和经历解决实际问题的过程,并且根据学生已有的经验发现要提出的问题。同时,希望同学们在这一过程中感受数学的实用价值和获得良好的情感体验。当然也希望同学们在这样的过程当中,学会通过实际上数学探究本身应该说在平时教学当中,老师有些在课堂上也是这样教学的,他更重要的意义就是引导老师增加一种教学方式,首先就是这个问题就是有点儿全新性,解决的方案不是很明了,这样学生要有一个尝试,一个探索的过程查询资料等手段来获取信息,之后采取各种合作的方式解决问题,养成与人交流的能力。 实际上数学探究本身应该说在平时教学当中,老师有些在课堂上也是这样教学的,他更重要的意义就是引导老师增加一种教学方式,首先就是这个问题就是有点儿全新性,解决的方案不是很明了,这样的话学生要有一个尝试,一个探索的过程。数学探究活动的关健词就是探究,探究是一个活动或者是一个过程,也是一种学习方式,我们比较强调是用这样的方式影响学生,让他主动的参与,在这个活动当中得到更多的知识。 探究的结果我们认为不一定是最重要的,当然我们希望探究出来一个结果,通过这种活动影响学生,改变他的学习方式,增加他的学习兴趣和能力。我们也关心,大家也可以看到在标准里面,有非常突出的数学建模的这些内容,但是它的要求、定位和为什么把这些领域加到我的标准当中,你应该怎么看待这部分内容。

数学建模背景

数学建模背景: 数学技术 近半个多世纪以来,随着计算机技术的迅速发展,数学的应用不仅在工程技术、自然科学等领域发挥着越来越重要的作用,而且以空前的广度和深度向经济、管理、金融、生物、医学、环境、地质、人口、交通等新的领域渗透,所谓数学技术已经成为当代高新技术的重要组成部分。 数学模型(Mathematical Model)是一种模拟,是用数学符号、数学式子、程序、图形等对实际课题本质属性的抽象而又简洁的刻划,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略。数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识。这种应用知识从实际课题中抽象、提炼出数学模型的过程就称为数学建模(Mathematical Modeling)。[1] 不论是用数学方法在科技和生产领域解决哪类实际问题,还是与其它学科相结合形成交叉学科,首要的和关键的一步是建立研究对象的数学模型,并加以计算求解(通常借助计算机)。数学建模和计算机技术在知识经济时代的作用可谓是如虎添翼。 建模应用 数学是研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和各种各样的应用问题紧密相关的。数学的特点不仅在于概念的抽象性、逻辑的严密性,结论的明确性和体系的完整性,而且在于它应用的广泛性,自从20世纪以来,随着科学技术的迅速发展和计算机的日益普及,人们对各种问题的要求越来越精确,使得数学的应用越来越广泛和深入,特别是在21世纪这个知识经济时代,数学科学的地位会发生巨大的变化,它正在从国家经济和科技的后备走到了前沿。经济发展的全球化、计算机的迅猛发展,数理论与方法的不断扩充使得数学已经成为当代高科技的一个重要组成部分和思想库,数学已经成为一种能够普遍实施的技术。培养学生应用数学的意识和能力已经成为数学教学的一个重要方面。 2建模过程 模型准备 了解问题的实际背景,明确其实际意义,掌握对象的各种信息。以数学思想来包容问题的精髓,数学思路贯穿问题的全过程,进而用数学语言来描述问题。要求符合数学理论,符合数学习惯,清晰准确。 模型假设 根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设。 模型建立 在假设的基础上,利用适当的数学工具来刻划各变量常量之间的数学关系,建立相应的数学结构(尽量用简单的数学工具)。 模型求解 利用获取的数据资料,对模型的所有参数做出计算(或近似计算)。 模型分析 对所要建立模型的思路进行阐述,对所得的结果进行数学上的分析。 模型检验 将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。如果模型与实际吻合较差,则应该修改假设,再次重复建模过程。

相关主题
文本预览
相关文档 最新文档