当前位置:文档之家› 专题训练5 数学建模思想

专题训练5 数学建模思想

专题训练5 数学建模思想
专题训练5 数学建模思想

1

图10.4-2

C

专题训练五 数学建模思想

一、 思想方法领悟:

数学思想方法:把实际问题转化为数学问题,即为数学模型。

数学建模步骤:一是建立数学模型(建模);二是运用有关知识求解数学模型(解模)。 核心与关键点:让原来的问题情境转化为易于解决的和熟知的数学问题。 二、 典型例题解析:

【例1】(1)某班级为筹备运动会,准备用365元购买两种运动服,其中甲种运动服20元/套,乙种运动服35元/套,

在钱都用尽的条件下,有 种购买方案.

(2)如图10.4-1,铁路MN 和公路PQ 在点O 处交汇,∠QON =30°.公路PQ 上A 处距离O 点240米.如果火车行驶时,周围200米以内会受到噪音的影响.那么火车在铁路MN 上沿ON 方向以72千米/时的速度行驶时,A 处受噪音影响的时间为 秒

(3)如图10.4-2,在等腰Rt △ABC 中,∠BAC =90°,AB =AC ,

BC =D 是AC 边上一动点,连接BD ,以AD 为直径的圆交BD 于点E ,则线段CE 长度的最小值为 .

【例2】一堆玩具分给若干个小朋友,若每人分3件,则剩余4件;若前面每人分4件,则最后一人得到了玩具但不足3

件.求小朋友的人数与玩具数.

【例3】某文具零售店老板到批发市场选购A 、B 两种文具,批发价分别为12元/件、8元/件;若该店零售的A 、B 两种

文具的日销售量y (件)与零售价x (元/件)均成一次函数关系(如图10.4-3). (1)求y 关于x 的函数关系式;

(2)该店老板计划这次选购A 、B 两种文具的数量共100件,所花资金不超过1000元,并希望全部售完后获利不

低于296元,若按A 种文具日销售4件和B 种文具每件可获利2元计算,他这次有哪几种进货方案? (3)若A 种文具的零售价比B 种文具的零售价高2元/件,求这两种文具每天的销售利润W (元)与A 种文具零售价

x (元/ 件)之间的函数关系式.并说明A 、B 两种文具的零售价分别为多少时,每天的销售利润最大?

【例4】如图10.4-4,有一座圆弧形拱桥,桥下水面AB 宽7.2m ,拱顶高出水面2.4m.现有一艘宽EF 为3m ,船舱顶部为

长方形并高出水面2m 的船要经过这里,此船能顺利通过这座桥吗?

图10.4-1

图10.4- 3

10

图10.4-4

N

M F

E

D

C B

A

P O

【例5】高考英语听力测试期间,需要杜绝考点周围的噪音.如图10.4-5,点A是某市一高考考点,在位于A考点南偏西15°方向距离125米的C点处有一消防队.在听力考试期间,消防队突然接到报警电话,告知在位于C点北偏东75°方向的F点处突发火灾,消防队必须立即赶往救火.已知消防车的警报声传播半径为100米,若消防车的警报声对听力

测试造成影响,则消防车必须改道行驶.试问:消防车是否需要改道行驶?说明理由. 1.732)

三、能力梯级提高:

(一)中档训练

1.某电器按成本价提高30%后标价,再打8折(标价的80%)销售,售价为2080元.设该电器的成本价为x元,根据题

意,下面所列方程正确的是()

A.(130%)80%2080

x+?= B.30%80%2080

x??= C.208030%80%x

??= D.30%208080%

x?=?

2.如图,一艘旅游船从A点驶向C点. 旅游船先从A点沿以D为圆心的弧AB行驶到B点,然后从B点沿直径行驶到圆D 上的C点.假如旅游船在整个行驶过程中保持匀速,则下面各图中,能反映旅游船与D点的距离随时间变化的图象大致是( )

3.吴某打算用同一大小的正多边形地板砖铺设家中的地面,则该地板砖的形状不能是( )

A.正三角形

B. 正方形

C. 正六边形

D. 正八边形

4.某商品原价289元,经连续两次降价后售价为256元,设平均每次降价的百分率为x,则下面所列方程正确的是( )

A.

2892

(1)x

-=256 B.2562

(1)x

-=289 C.289(12)x

-=256 D.256(12)x

-=289

5. 如图,在平面直角坐标系中,直线33

y x

=-+与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD 沿x轴负方向平移a个单位长度后,点C恰好落在双曲线上则a的值是( )

A.1

B.

C.3

D.4

6. 如图,已知点A

是第一象限内横坐标为的一个定点,AC⊥x轴于点M,交直线y x

=-于点N.若点P是线段ON上的一个动点,∠APB=30°,BA⊥PA,则点P

在线段ON上运动时,A点不变,B点随之运动,求当点P从点O运动到点N时,点B 运动的路径长是_______.

C

A

15°

75°

F

图10.4-5

H

第6题图

2

3

7.一天晚上,小伟帮妈妈清洗茶杯,三个茶杯只有花色不同,其中一个无盖,突然停电了,小伟只好把杯盖与茶杯随机地搭配在一起,则花色完全搭配正确的概率是 .

8.如图,长方体的底面边长分别为1cm 和3cm ,高为6cm .如果用一根细线从点A 开始经过4个侧面缠绕一圈到达点B ,那么所用细线最短需要 cm.

9.为了估计湖里有多少条鱼,从湖里捕上100条做上标记,然后放回湖里,经过一段时间,第二次再捕上200条,若其中带标记的鱼有25条,那么你估计湖里大约有_________条鱼.

10.如图的一座拱桥,当水面宽AB 为12m 时,桥洞顶部离水面4m ,已知桥洞的拱形是抛物线,以水平方向为x 轴,建立平面直角坐标系,若选取点A 为坐标原点时的抛物线解析式是21(6)49

y x =--+,则选取点B 为坐标原点时的抛物线解析式是 .

11.如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,求∠ABC 的度数.

12. 某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:(注:获利=售价-进价

(1)若商店计划销售完这批商品后能获利1100元,问甲、乙两种商品应分别购进多少件?

(2)若商店计划投入资金少于4300元,且销售完这批商品后获利多于

1260元,请问有哪几种购货方案?直接写出其

中获利最大的购货方案.

(二)中考延伸

13. 要在一块长52m ,宽48m 的矩形绿地上,修建同样宽的两条互相垂直的甬路.下面分别是小亮和小颖的设计方案.

(1)求小亮设计方案中甬路的宽度x ;

(2)求小颖设计方案中四块绿地的总面积(小颖设计方案与小亮设计方案中的取值相同)

第8题图

6

3

1B

A

第10题图

14. 为了节约资源,科学指导居民改善居住条件,小王向房管部分提出了一个购买商品房的政策性方案.

根据这个购房方案:

(1)若某三口之家欲购买120平方米的商品房,求其应缴纳的房款;

(2)设该家庭购买商品房的人均面积为x平方米,缴纳房款y万元,请求出y关于x的函数关系式;

(3)若该家庭购买商品房的人均面积为50平方米,缴纳房款为y万元,且57<y≤60时,求m的取值范围.

4

谈谈初中数学建模思想

谈谈初中数学建模思想 随着数学教育界中数学建模理念地不断深化,提高数学建模教学势在必行。通过数学建模能力的培养,既能使学生可以从熟悉的情境中引入数学问题,拉近数学与生活、生产的联系,激发学生学习数学的兴趣,又能培养学生的数学应用意识;既能使学生掌握学习数学的方法又能培养学生的创新意识以及分析和解 决实际问题的能力,使“人人学有价值的数学”。这正是新课程改革和数学教育的目的。 数学课程标准指出:数学模型可以有效地描述自然现象和社会现象,数学课程应体现“问题情境——建立数学模型——理解、应用与拓展”,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感、态度与价值观等多方面得到进步和发展. 对复杂的实际问题进行分析,发现其中的可以用数学语言来描述的关系或规律,把这个实际问题转化成一个数学问题,这就称为数学模型. 数学建模就是将某一领域或部门的某一实际问题,通过一定的假设找出这个问题的数学模型,求出模型的解,并对它进行验证的全过程.从广义来说,数学建模伴随着数学学习的全过程.数学概念、数学法则、数学方法的学习与应用都属于数学建模的范畴. 一、初中数学建模教学常见的几种模型

1.建立“方程(组)”模型 现实生活中广泛存在着数量之间的相等关系,“方程(组)”模型是研究现实世界数量关系的最基本的数学模型,它可以帮助人们从数量关系的角度更正确、清晰的认识、描述和把握现实世界。诸如纳税问题、分期付款、打折销售、增长率、储蓄利息、工程问题、行程问题、浓度配比等问题,常可以抽象成“方程(组)”模型,通过列方程(组)加以解决。 例:学校准备在图书馆后面的场地边上建一个面积为50平方米的长方形自行车棚,一边利用图书馆的后墙,并利用已有的总长为25米的铁围栏,请你设计,如何搭建比较合理? [简析]:设与墙面垂直的边长为x米,可得方程x(25-2x)=50。解方程可得答案。 2、不等式模型 现实世界中不等关系是普遍存在的,许多现实问题很难确定(有时也不需要确定)具体的数值。但可以求出或确定这一问题中某个量的变化范围,从而对所有研究问题的面貌有一个比较清楚的认识。 例 2 某体育用品商场采购员要到厂家批发购进篮球和排球共100只,付款总额不得超过11815元。已知两种球厂家的批发价和商场的零售价如下表,试解答下列问题:

初中数学建模

初中数学建模教学有感 摘要:数学模型可以有效地描述自然现象和社会现象.数学课程应体现“问题情境——建立数学模型——理解、应用与拓展”,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程.初中数学建模教学宜低起点、小步子、多活动.数学思想是数学知识的结晶,是高度概括的数学理论.数学建模教学要重视数学知识,更应突出数学思想方法,让学生通过观察、实验、猜测、验证、推理与交流等数学学习活动,在获得对数学理解的同时,在思维能力、情感、态度与价值观等多方面得到进步和发展.关键词:初中数学;数学建模;建模教学 数学课程标准指出:数学模型可以有效地描述自然现象和社会现象,数学课程应体现“问题情境——建立数学模型——理解、应用与拓展”,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感、态度与价值观等多方面得到进步和发展[1]. 对复杂的实际问题进行分析,发现其中的可以用数学语言来描述的关系或规律,把这个实际问题转化成一个数学问题,这就称为数学模型.[2]数学建模就是将某一领域或部门的某一实际问题,通过一定的假设找出这个问题的数学模型,求出模型的解,并对它进行验证的全过程.[2]从广义来说,数学建模伴随着数学学习的全过程.数学概念、数学法则、数学方法的学习与应用都属于数学建模的范畴. 数学建模的基本过程大致为: 一、初中数学建模教学宜低起点、小步子、多活动 过去数学建模只作为高等院校数学专业和部分计算机专业的课程.初中

数学建模教学和高校的数学建模教学有很大的不同,初中数学建模教学一般先提出问题、引入正题;然后分析问题,在“引导——探索——创造”中建立模型;最后利用模型解决问题.[3]根据初中学生的身心发展水平、已经掌握的知识结构,初中数学建模教学宜“低起点、小步子、多活动”.低起点,就是根据学生的现有水平,结合课程标准的要求,降低教学的起点,以便全体学生都能真正进入到教学活动中去.小步子,就是按照由易到难,由浅入深,由单一到综合,由简单到复杂的原则,安排层次分明,但梯度较小的教学情境,分散教学难点,突出教学重点,引领学生沿着数学学习活动的台阶拾级而上,最终达到课程标准的要求.多活动,就是恰当地设计问题情境,引领学生动眼看、动脑想、动口说、动手做,引领学生开展自主学习、合作交流、提问质疑等数学学习活动,引领学生在活动中获得知识,引领学生在活动中发展思维. [案例1]销售中的盈亏问题的建模教学 1、背景问题 某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏? (人教版数学七年级上册第104页) 2、数学建模 (1)问题分析 ①假设一件衣服的进价是x元,以60元卖出,卖出后盈利25%,那么这件衣服的利润是多少元? ②假设一件衣服的进价是y元,以60元卖出,卖出后亏损25%,那么这件衣服的利润是多少元? (2)模型建立 问题1 你认为销售价与进价之间具有怎样的关系时是盈利的?

数学建模方法大全

数学中国国赛专题培训(一) 《数学建模思想方法大全及方法适用范围》 主讲人:厚积薄发(冰强,Bruce Jan) 第一篇:方法适用范围 一、统计学方法 1.1多元回归 1、方法概述: 在研究变量之间的相互影响关系模型时候,用到这类方法,具体地说:其可以定量地描述某一现象和某些因素之间的函数关系,将各变量的已知值带入回归方程可以求出因变量的估计值,从而可以进行预测等相关研究。 2、分类 分为两类:多元线性回归和非线性线性回归;其中非线性回归可以通过一定的变化转化为线性回归,比如:y=lnx可以转化为y=u u=lnx来解决;所以这里主要说明多元线性回归应该注意的问题。 3、注意事项 在做回归的时候,一定要注意两件事: (1)回归方程的显著性检验(可以通过sas和spss来解决) (2)回归系数的显著性检验(可以通过sas和spss来解决) 检验是很多学生在建模中不注意的地方,好的检验结果可以体现出你模型的优劣,是完整论文的体现,所以这点大家一定要注意。 4、使用步骤: (1)根据已知条件的数据,通过预处理得出图像的大致趋势或者数据之间的大致关系; (2)选取适当的回归方程; (3)拟合回归参数; (4)回归方程显著性检验及回归系数显著性检验 (5)进行后继研究(如:预测等) 1.2聚类分析 1、方法概述 该方法说的通俗一点就是,将n个样本,通过适当的方法(选取方法很多,大家可以自行查找,可以在数据挖掘类的书籍中查找到,这里不再阐述)选取m聚类中心,通过研究各样本和各个聚类中心的距离Xij,选择适当的聚类标准,通常利用最小距离法(一个样本归于一个类也就意味着,该样本距离该类对应的中心距离最近)来聚类,从而可以得到聚类结果,如果利用sas软件或者spss软件来做聚类分析,就可以得到相应的动态聚类图。 这种模型的的特点是直观,容易理解。 2、分类 聚类有两种类型: (1)Q型聚类:即对样本聚类; (2)R型聚类:即对变量聚类;

数学建模 练习题1

2.14成绩与体重数学建模 一、问题 举重比赛按照体育运动员的体重分组,你能在一些合理、简单的假设下,建立比赛成绩与体重之间的关系吗?下面是下一届奥运会的成绩,可供检验你的模型。 一、问题分析 成绩与肌肉的力度有直接关系,随着力度的增加,成绩呈上升趋势。 假设力度与肌肉横截面积成正比,而截面积和体重都与身体的某个特征尺寸有直接关联。由此可以找到成绩和体重之间的关系。可以以此建立模型。

二、模型假设以及符号说明 1.本模型主要考虑运动员举重总成绩和体重的关系,所以假设运动员其他条件相差不大。 2.运动员的举重能力用其举重的总成绩来刻画 3.符号说明: 人的体重 W 人的身高 h 肌肉横截面积 S 人的体积 V 肌肉强度 T 举重成绩 C 非肌肉重量 W1 斜率 K 三、模型构成 模型一 1.题中给出举重比赛按照体育运动员的体重分组,所以我们猜测成绩与体重应该是正比关系。 2.画出坐标图,体重越重,成绩越好,进一步验证了正比关系。 最大体重

从上图可以看出,体重越大,举重总成绩相对越好,所以我们猜测举重总成绩与体重大概成线性关系。则,我们可以用一次函数C=kW+b对三个体重进行拟合,根据图中数据,可得: = = 2.66, = = 1.45, = = 1.17 把b代入得出三个一次函数为: = 2.66W+143.8, = 1.45W+75.1, = 1.17W+69.7, 用上述模型计算得到的理论值,并画出图表与原图表进行比较: 最大体重

通过比较两个图表,我们可以推测体重与成绩数据的推测图表和已知图标的拟合度并不是特别的理想,所以我们可以认为用线性函数对举重总成绩与体重进行拟合的模型过于简单、粗略,考虑的因素比较少。 模型二 我们这一次综合各种因素来进行分析建模。 通过查阅各种自然科学磁疗,我们可以近似以为:一般举重运动员的举重能力是用举重成绩来衡量,而举重运动员的举重能力与其肌肉强度近似成正比关系,从而举重运动员的举重总成绩与其肌肉强度近似成正比,即: C = T (为常数且>0) ○1从运动生理学得知,肌肉的强度与其横截面积近似成正比,即: T = S (为常数且>0) ○ 2综合○1,○2可得 C=T=S ○3通过查阅资料,我们可以假设肌肉的横截面积正比于身高的平方,人的体重正比于身高的三次方,即可得: S = , W = (,为常数且>0,>0) 综合上述所有算式,我们有: C= S = ○ 4 因为W = ,我们可以推测出举重运动员举重总成绩与其体重的关系为: C = 利用题目表格中所给的体重和举重总成绩数据,求出上述模型的常数M。利用题目表格中所给的体重和举重总成绩数据,运用最小二乘法求出上述模型的系数 K 。因为体重超过108千克的运动员的体重没有具体的数据,为了模型的准确性,故将这个数据舍去。经过代入9次运算得出平均常数,为=20.3,=9.6,=9.0。于是举重运动员的举重总成绩与体重的关系模型为

中考数学几何模型能力 共顶点

中考数学几何模型2:共顶点模型 共顶点模型,亦称“手拉手模型”,是指两个顶角相等的等腰或者等边三角形的顶点重合,两个三角形的两条腰分别构成的两个三角形全等或者相似。寻找共顶点旋转模型的步骤如下: (1)寻找公共的顶点 (2)列出两组相等的边或者对应成比例的边 (3)将两组相等的边分别分散到两个三角形中去,证明全等或相似即可。 两等边三角形 两等腰直角三角形 两任意等腰三角形 *常见结论: 连接BD 、AE 交于点F ,连接CF ,则有以下结论: (1)BCD ACE ?△△ (2)AE BD = (3)AFB DFE ∠=∠ (4)FC BFE ∠平分 例题1. 以点A 为顶点作等腰Rt △ABC ,等腰Rt △ADE ,其中∠BAC =∠DAE =90°,如图1所示放置,使 得一直角边重合,连接BD 、CE . (1)试判断BD 、CE 的数量关系,并说明理由; (2)延长BD 交CE 于点F 试求∠BFC 的度数; (3)把两个等腰直角三角形按如图2放置,(1)、(2)中的结论是否仍成立?请说明理由.

变式练习>>> 1. 已知:如图,△ABC和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°. (1)求证:BD=AE. (2)若∠ABD=∠DAE,AB=8,AD=6,求四边形ABED的面积. 例题2. 如图,等边△ABC,等边△ADE,等边△DBF分别有公共顶点A,D,且△ADE,△DBF都在△ADB内,求证:CD与EF互相平分.

变式练习>>> 2. 已如图,已知等边三角形ABC,在AB上取点D,在AC上取点E,使得AD=AE,作等边三角形PCD,QAE和RAB,求证:P、Q、R是等边三角形的三个顶点. 例题3. 在等边△ABC与等边△DCE中,B,C,E三点共线,连接BD,AE交于点F,连接CF. (1)如图1,求证:BF=AF+FC,EF=DF+FC;

论数学建模思想教学(1)

论数学建模思想教学 1在线性代数教学中融入数学建模思想的意义 1.1激发学生的学习兴趣,培养学生的创新水平 教育的本质是让学生在掌握知识的同时能够学以致用。但是当前的线性代数教学重理论 轻应用,学生上课觉得索然无味,主动学习的积极性差,创新性就更无从谈起。如果教师能够将数学建模的思想和方法融入到线性代数的日常教学中,不但能够激发学生学习线性代数的兴趣,而且能够调动学生使用线性代数的知识解决实际问题的积极性,使学生理解到线性代数的真正价值,从而改变线性代数无用的观点,同时还能够培养学生的创新水平。 1.2提升线性代数课程的吸引力,增加学生的受益面 数学建模是培养学生使用数学工具解决实际问题的最好表现。若在线性代数的教学中渗透数学建模的思想和方法,除了能够激发学生学习线性代数的兴趣,使学生了解到看似枯燥的定义、定理并非无源之水,而是具有现实背景和实际用途的,这能够大大改善线性代数课堂乏味沉闷的现状,从而提升线性代数课程的吸引力。由数学建模的教学现状能够看到学生的受益面很小,不过任何高校的理工类、经管类专业都会开设高等数学、线性代数以及概率统计这3门公共数学必修课,若能在线性代数、高等数学及概率统计等公共数学必修课的教学中渗透数学建模的思想和方法,学生的受益面将会大大增加。 1.3促动线性代数任课教师的自我提升 要想将数学建模的思想和方法融入线性代数课程中,就要求线性代数任课教师不但要具有良好的理论知识讲授技能,更需要具备利用线性代数知识解决实际问题的水平,这就迫使线性代数任课教师要持续学习新知识和新技术,促动自身知识的持续更新,进而达到提升教 学和科研水平的效果。 2在线性代数教学中融入数学建模

什么是数学模型与数学建模

1. 什么是数学模型与数学建模 简单地说:数学模型就是对实际问题的一种数学表述。 具体一点说:数学模型是关于部分现实世界为某种目的的一个抽象的简化的数学结构。 更确切地说:数学模型就是对于一个特定的对象为了一个特定目标,根据特有的内在规律,做出一些必要的简化假设,运用适当的数学工具,得到的一个数学结构。数学结构可以是数学公式,算法、表格、图示等。 数学建模就是建立数学模型,建立数学模型的过程就是数学建模的过程(见数学建模过程流程图)。数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻划并"解决"实际问题的一种强有力的数学手段。 2.美国大学生数学建模竞赛的由来: 1985年在美国出现了一种叫做MCM的一年一度大大学生数学模型(1987年全称为Mathematical Competition in Modeling,1988年改全称为Mathematical Contest in Modeling,其所写均为MCM)。这并不是偶然的。在1985年以前美国只有一种大学生数学竞赛(The william Lowell Putnam mathematial Competition,简称Putman(普特南)数学竞赛),这是由美国数学协会(MAA--即Mathematical Association of America的缩写)主持,于每年12月的第一个星期六分两试进行,每年一次。在国际上产生很大影响,现已成为国际性的大学生的一项著名赛事。该竞赛每年2月或3月进行。 我国自1989年首次参加这一竞赛,历届均取得优异成绩。经过数年参加美国赛表明,中国大学生在数学建模方面是有竞争力和创新联想能力的。为使这一赛事更广泛地展开,1990年先由中国工业与应用数学学会后与国家教委联合主办全国大学生数学建模竞赛(简称CMCM),该项赛事每年9月进行。

数学建模训练题

数学建模训练题 1、个人住房贷款,根据中国人民银行颁布的《个人住房贷款管理办法》的规定,个人住房贷款的最长期限为30年,5年(含5年)的年利率为5.31%(折合月利率为4.425‰),5年以上年利率为5.58%(折合月利率为4.65‰)。同时还规定了个人住房贷款的两种按月还本付息的办法。第一种是等额本息还款法,即在贷款期间借款人以月均还款额偿还银行贷款本金和利息;第二种是等额本金还款法(又叫等本不等息还款法),即在贷款期间除了要还清当月贷款的利息外,还要以相等的额度偿还贷款的本金。 (1)试给出两种还款法的每月还款额、还款总额和利息负担总和的计算公式。 (2)若一借款人从银行得到贷款40万元,计划20年还清。试以此为例说明借款人选择何种还款法更为合算? 2、某居民区有一供居民用水的圆柱形水塔,一般可以通过测量其水位来估计水的流量。面临的困难是,当水塔水位下降到设定的最底水位时,水泵自动启动向水塔供水,到设定的最高水位的时候停止供水,这段时间无法测量水塔的水位和水泵的供水量。通常水泵每天供水一两次,每次约3h. 水塔是一个高为12.2m,直径为17.4m的正圆柱。按照设计。水塔水位降至约8.2m时,水泵自动启动,水位升至约10.8m时水泵停止工作。 下表是某一天的水位测量记录(符号“//”表示水泵启动),试估计任何时刻(包括水泵正供水时)从水塔流出的水流量,及一天的总用水量。 表1 水位测量记录 (符号//表示水泵启动) 3、某探险队驾驶一越吉普车穿行2000km的大沙漠。除起点能得到足够的汽油供应外,行车途中的燃料供应必须在沿途设立若干的储油点,依靠自己运输汽油来解决。该车在沙漠中行车平均每公里耗油0.25L,车载油箱及油桶总共只能装载250L汽油。请设计一个最优的行车方案,使行车耗油最少而通过沙漠。试根据实际情况进行推广和评价。 4、由于军事上的需要,需将甲地n名战斗人员(不包括驾驶员)紧急调往乙地,但是由于运输车辆不足,m辆车无法保证每个战斗人员都能同时乘车,显然,部分战斗人员乘车,部分战斗人员急行军是可行的方案。设每辆车载人数目相同,只有一条道路,但足以允许车辆,人员同时进行,请制定一个调运方案,能最快地实现兵力调运,并证明方案的最优性。 5、为向灾区空投一批救灾物资,共2000kg,需选购一些降落伞,已知空投高度为500m,要求降落伞落地时的速度不能超过20米每秒,降落伞的伞面为半径为r的半球面,用每根长

中考数学常见几何模型简介教学总结

初中几何常见模型解析 模型一:手拉手模型-旋转型全等 (1)等边三角形 ?条件:均为等边三角形 ?结论:①;②;③平分。(2)等腰 ?条件:均为等腰直角三角形 ?结论:①;②; ?③平分。 (3)任意等腰三角形 ?条件:均为等腰三角形 ?结论:①;②; ?③平分 模型二:手拉手模型-旋转型相似 (1)一般情况 ?条件:,将旋转至右图位置 ?结论: ?右图中①; ?②延长AC交BD于点E,必有

(2)特殊情况 ?条件:,,将旋转至右图位置 ?结论:右图中①;②延长AC交BD于点E,必有;③; ④; ⑤连接AD、BC,必有; ⑥(对角线互相垂直的四边形)

模型三:对角互补模型 (1)全等型-90° ?条件:①;②OC平分 ?结论:①CD=CE; ②;③ ?证明提示: ①作垂直,如图,证明; ②过点C作,如上图(右),证明; ?当的一边交AO的延长线于点D时: 以上三个结论:①CD=CE(不变); ②;③ 此结论证明方法与前一种情况一致,可自行尝试。 (2)全等型-120° ?条件:①; ?②平分; ?结论:①;②; ?③ ?证明提示:①可参考“全等型-90°”证法一; ②如图:在OB上取一点F,使OF=OC,证明为等边三角形。(3)全等型-任意角 ?条件:①;②; ?结论:①平分;②; ?③.

?当的一边交AO的延长线于点D时(如右上图): 原结论变成:①;②; ③; 可参考上述第②种方法进行证明。请思考初始条件的变化对模型的影响。 ?对角互补模型总结: ①常见初始条件:四边形对角互补;注意两点:四点共圆及直角三角形斜边中线; ②初始条件“角平分线”与“两边相等”的区别; ③两种常见的辅助线作法; ④注意平分时,相等如何推导?

把数学建模的思想和方法融入到大学数学教学中去

把数学建模的思想和方法 融入到大学数学教学中去 北京理工大学叶其孝 一.数学和数学建模的重要性 二.为什么要把数学建模的思想和方法融入 大学的主干数学课程? 三.怎样融入? A.融入的几个原则 B.具体做法: 两个例子 1. 复利和抵押贷款买房问题 2. 易拉罐问题—一个想法改变了可 口可乐易拉罐的形状 四. 几个值得注意的问题 五. 困难和可能的解决办法 一.数学和数学建模的重要性 高技术本质上是数学技术. 戴维(E. David, 1972年曾任尼克松总统的科学顾问,1966年入选美国工程院院士)在1984年说的一段话:

“…对数学研究的低水平的资助只能来自对于数学研究带来的好处的完全不妥的评价,显然,很少有人认识到当今被如此称颂的‘高技术’本质上是数学技术。” ... the low levels of support for mathematics research can only flow from a totally inadequate preciation of the benefits it confers. Apparently, too few people recognize that the "high technology" that is so celebrated today is essentially mathematical technology. E. E. David Jr., Notices of American Mathematical Society, v. 31(1984), no. 2, p. 142. ********************************** 21世纪是科学和工程数学化的世纪. 美国科学基金会数学部主任Eisenstein在评述 该基金会把数学科学列为2002-2006该基金会 五大创新项目(其他四个分别为: 环境中的生物复杂性,信息技术研究,纳米科学和工程,以及 21世纪的劳动力)之首时所说的,“该重大创新 项目背后的推动力就是一切科学和工程领域的数学化(Mathematization).” "The driving force behind the initiative is the 'mathematization' of all areas of science and

浅谈初中数学建模思想的培养

浅谈初中数学建模思想的培养 作者姓名:邓小宏单位:于都县乱石初中邮编:342321 内容摘要:数学建模教育旨在拓展学生的思维空间,让数学贴近现实生活,从而使学生在进行数学知识和实际生活双向建构的过程中,体会到数学的价值,享受到学习数学的乐趣,体验到充满生命活力的学习过程。这对于培养学生的应用意识和创新精神是一个很好的途径,也是新大纲中提出的“学数学,做数学,用数学”理念的体现。数学建模是对日常生活和社会中的实际问题进行抽象化,建立数学模型,然后求解数学模型的过程。 关键词:初中数学建模思想培养 数学建模教育旨在拓展学生的思维空间,让数学贴近现实生活,从而使学生在进行数学知识和实际生活双向建构的过程中,体会到数学的价值,享受到学习数学的乐趣,体验到充满生命活力的学习过程。这对于培养学生的应用意识和创新精神是一个很好的途径,也体现出新大纲中提出的“学数学,做数学,用数学”的理念。数学建模是对日常生活和社会中的实际问题进行抽象化,建立数学模型,然后求解数学模型的过程。现在谈谈如何在教学中渗透数学建模的思想过程: 1、激发学生的学习兴趣,培养学生数学建模思想 数学建模活动的实际结果告诉我们,它不仅对好学生、而且对学习有一定困难的学生都能起到培养兴趣、激发创造的目的。例如:如果你有自行车,并骑车上学,你能借助于自行车,测量出从你的家到学校的路程吗?请你设计一个测量方案,并尽可能地通过实际操作测量出从你的家到学校的路程;例如,在水塘中投进一块石头,水面上产生圈圈荡漾的水波,便是一个个圆的形象,然后使学生抽象出圆的概念以及圆心、半径等等。研究这样问题,学生积极性很高,就可以激发学生的创造欲望。数学建模的成果还可以为学生建立一种更表现学生素质的评价体系。数学建模的过程可以为不同水平的学生都提供体验成功的机会。 2、重视课本知识的功能,形成学生数学建模思想 数学建模应结合正常的教学内容切入。把培养学生的应用意识落实到平时的教学过程中。从课本的内容出发,联系实际,以教材为载体,拟编与教材有关的建模问题或把课本的

数学建模常用方法

数学建模常用方法 建模常用算法,仅供参考: 1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必 用的方法) 2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用M a t l a b作为工具) 3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通 常使用L i n d o、L i n g o软件实现) 4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备) 5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中) 6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用) 7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种 暴力方案,最好使用一些高级语言作为编程工具) 8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计 算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的) 9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用) 10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文 中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用M a t l a b进行处理) 一、在数学建模中常用的方法: 1.类比法 2.二分法 3.量纲分析法 4.差分法 5.变分法 6.图论法 7.层次分析法 8.数据拟合法 9.回归分析法 10.数学规划(线性规划、非线性规划、整数规划、动态规划、目标规划) 11.机理分析 12.排队方法

中考数学必会模型全汇总

中考数学必会模型全汇总! 全等变换 平移:平行等线段(平行四边形)。 对称:角平分线或垂直或半角。 旋转:相邻等线段绕公共顶点旋转。 对称全等模型 说明: 以角平分线为轴在角两边进行截长补短或者作边的垂线,形成对称全等。两边进行边或者角的等量代换,产生联系。垂直也可以做为轴进行对称全等。 对称半角模型 说明: 上图依次是45°、30°、22.5°、15°及有一个角是30°直角三角形的对称(翻折),翻折成正方形或者等腰直角三角形、等边三角形、对称全等。

半角:有一个角含1/2角及相邻线段。 自旋转:有一对相邻等线段,需要构造旋转全等。 共旋转:有两对相邻等线段,直接寻找旋转全等。 中点旋转:倍长中点相关线段转换成旋转全等问题。 旋转半角模型 说明: 旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。 自旋转变换 构造方法: 遇60度旋60度,造等边三角形; 遇90度旋90度,造等腰直角; 遇等腰旋顶点,造旋转全等; 遇中点旋180度,造中心对称。

说明: 旋转中所成的全等三角形,第三边所成的角是一个经常考察的内容。通过“8”字模型可以证明。 模型变形 说明: 模型变形主要是两个正多边形或者等腰三角形的夹角的变化,另外是等腰直角三角形与正方形的混用。 当遇到复杂图形找不到旋转全等时,先找两个正多边形或者等腰三角形的公共顶点,围绕公共顶点找到两组相邻等线段,分组组成三角形证全等。

说明: 两个正方形、两个等腰直角三角形或者一个正方形一个等腰直角三角形及两个图形顶点连线的中点,证明另外两个顶点与中点所成图形为等腰直角三角形。证明方法是倍长所要证等腰直角三角形的一直角边,转化成要证明的等腰直角三角形和已知的等腰直角三角形(或者正方形)公旋转顶点,通过证明旋转全等三角形证明倍长后的大三角形为等腰直角三角形从而得证。 几何最值模型 对称最值(两点间线段最短)

浅谈如何培养初中生的数学建模思想

浅谈如何培养初中生的数学建模思想 [摘要]本文简明扼要的阐述了初中数学建模的两种类型,说明了数学建模思想在人才培养的作用和地位。 [关键词] 类型;数学建模;创新作用 21世纪课程改革的一个重要目标就是要加强综合性、应用性内容,重视联系学生生活实际和社会实践.这是在课程、教学中注入素质教育内容的具体要求.因此,进入21世纪以后,数学应用题的数量和分值在中考中将逐步增加,中、低档题目将逐渐齐全,并将在命题中转变传统的学科体系观念,结合生活实际和社会实践,突出理论与知识结合,理论与实践结合,引导学生关心社会、关心未来,实现中考命题改革与中学教育、教学观念改革的结合,成为推动素质教育发展的重要内容。 数学可以帮助人们更好地探求客观世界的规律,并对现代社会中大量纷繁复杂的信息作出恰当的选择与判断,同时为人们交流信息提供了一种有效、简捷的手段。数学作为一种普遍适用的技术,有助于人们收集、整理、描述信息,建立数学模型,进而解决问题,直接为社会创造价值。中学数学教学中建模思想的培养与应用是数学教育的重要内容,呼唤数学应用意识,提高数学应用质量,已成为广大数学教育工作者的共识。开展中学数学建模教学与应用的研究,对提高学生数学应用意识,培养学生灵活的思维能力,分析问题、解决问题的能力,促进中学数学教学改革,全面推进中学数学素质教育有重要意义。本文结合教学实践,谈谈初中建模教学在人才培养中的作用和体会。 初中教学建模的类型主要是数学概念模式、数学原理教学模式、数学习题教学题模式、数学复习课教学模式、数学讲评课模式、数学思想方法教学模式等十一类。本文主要就前两种模式谈一些看法。 数学概念模式分“讨论模式”“自学辅导模式”。“启发讨论式”将教师教学的着力点放在:“导”上,在课堂教学中,教师通过启发、引导、指导、辅导等方式与讲授结合起来,以提高学生的参与程度,加强学生学习的主动性,另处学生通过自主探究、发现、尝试、提问、讨论、反馈、练习等,经历数学概念形成的过程,从而加深对概念的理解,使其主体作用得到更充分的发挥,从而使教学与学法能够较好的相融相进,同时,学生在此过程中所获得的体验和经历,可以使他们在后继的学习中,逐渐理解能力,掌握教学思维方法、学会数学思维。“自学--辅导”教学模式。该模式以学生为主,以培养学生学会学习、适应未来社会发展的需要为目的,在教学过程中,强调以学生为主体,以教师为主导,在教师的辅导下,学生通过系统的自学,彼此交流、合作、研讨,掌握概念、获取新知。同时在获取新知的过程中,掌握自主学习的方法,提高学习数学的能力。建构主义理论认为,知识产生于主体与客体的作用过程之中,数学知识不是简单机械地从一个人迁移到另一个人,而是基于个人对经验的操作、交流,通过反省来建构的,学生可以充分感受到成功与失败的情感体验为建构新的认识结构奠定扎实的基

[数学建模,高职,能力]关于利用数学建模训练增强高职学生创新能力

关于利用数学建模训练增强高职学生创新能力 当前,随着我国现代化教育技术的逐步发展,为了确保人才质量,高校数学教学必须注重联系实际生活与生产实践,强调创新意识的培养.数学建模为数学学科同其他学科之间的联结提供了桥梁和枢纽,采用数学建模不仅可以对实际问题加以数学形式的描述,还为实际问题的理论分析及科学解决提供了强有力的工具.由于数学建模均来源于生活实践,并非固定、唯一的答案,其目的在于激发学生的思维,提高学生的动手能力,能够深入生产及生活实践,去寻找并解决问题,因此,提高学生的数学建模能力,有助于培养学生的创新意识及实践能力. 1、数学建模的内涵及其重要性分析 数学建模,即采用数学思想及方法解决实际生活及生产实践中所遇到的各种问题,是将数学理论知识同实际问题进行有效联系的枢纽,并直接展现了数学教育对于大学生创新意识及能力培养方面的重要作用.如今,数学建模的重要性已经受到了社会各界的广泛认同,并在多个领域得到了广泛的应用.因此,各高校纷纷开设了数学建模课程,并积极组织大学生参与数学建模竞赛,将数学教育有效地融入社会生活实践中,转变了传统数学教学过程中的自我封闭、自成体系的局面,为数学同现实世界之间的联接提供了可行之道. 在如今这个注重素质教育,强调个性化发展的新时代,提高大学生的数学建模能力显得尤为重要.我国著名数学家丁石孙先生曾经说过:数学公式更为重要的作用,在于培养大学生树立科学的思想方法,同时,根据自身所学知识,不断创新,寻求更多新的途径,这远非在课堂中死啃定理即可实现的.我们采用何种方法,才能使更多学生意识到这个问题?我认为,建模竞赛就是一种很可行的方法.数学建模使学生应用所学数学知识解决问题,并通过实践进一步创新,寻求更多解决途径,在此过程中,不仅游戏提高了学生的动手能力,还培养了其创新意识,提高了自身的综合素质,推动了应用型人才的成长与发展.这不仅是数学教学改革的结果,也是我国经济社会发展对于数学教育所提出的要求.数学建模为大学生有效运用数学思想、理论知识及方法体系提供了途径.在数学建模教学过程中,应将重点放在基础理论知识,如微分方程、概率统计、优化方法、拟合等理论知识方面,同时,还应加强前沿理论成果的介绍,注重提高学生常用数学软件的使用等等,以逐步积累建模知识,开拓思路,提高寻找问题、分析问题及解决问题等能力,使大学生逐步养成创新意识及创新能力,推动其综合素质的全面提高. 2、数学建模与创新之间的关系 数学建模采用了计算机、信息查询等数学工具,针对实际生活及生产过程中所遇到的各种问题,将数学研究同工业、农业、经济管理等多个领域进行交叉组合所产生的一门新兴学科.数学建模是针对所研究事物的实际特征及数量关系,借助于形式化数学语言进行近似性表达所形成的数学结构,具体而言,常常表现为一套具体算法,或一系列数学关系式.在构建数学模型时,不仅要全面反映出问题的实质,还要将问题予以适当简化,以方便进行分析和推导,回到实际研究对象中将问题予以顺利解决,此外,合适的数学模型还应能够对误差范围进行科学估计.图1为数学建模的基本流程,是由简单问题出发,通过师生共同努力,进行数学模型的构建,从而初步理解数学模型构建的思路及方法,培养自身的创新意识及能力,利用活动小组或实习作业等多种形式进行讨论和分析,对不同模型的利弊进行分析,提出相

中考数学几何五大模型.docx

五大模型 一、等积变换模型 ⑴等底等高的两个三角形面积相等; 其它常见的面积相等的情况 ⑵两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比。 如上图 S1 : S2 a : b ⑶夹在一组平行线之间的等积变形,如下图S△ACD = S△BCD; 反之,如果S△ACD S△BCD,则可知直线AB 平行于CD。 ⑷正方形的面积等于对角线长度平方的一半; ⑸三角形面积等于与它等底等高的平行四边形面积的一半; 二、鸟头定理(共角定理)模型 两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。 共角三角形的面积比等于对应角( 相等角或互补角 ) 两夹边的乘积之比。 如图,在△ ABC 中,D,E分别是AB, AC上的点(如图1)或D在BA的延长线上,

E 在AC上(如图2),则S△ABC: S△ADE( AB AC ) : ( AD AE ) 图 1图2 三、蝴蝶定理模型 任意四边形中的比例关系( “蝴蝶定理” ) : ① S1 : S2S4 : S3或者 S1S3S2S4② AO : OC S1S2 : S4S3 蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系。 梯形中比例关系 ( “梯形蝴蝶定理”) 2 2 ①S1 : S3 a : b ② S1 : S3 : S2 : S4a2 : b2 : ab : ab ; ③梯形 S 的对应份数为 a b 2。 四、相似模型 相似三角形性质: 金字塔模型沙漏模型

初中数学“数学建模”的教学研究

初中数学“数学建模”的教学研究 张思明(北大附中,数学特级教师) 鲍敬谊(北大附中数学学科主任,高级教师) 白永潇(北京教育学院数学教师) 一、什么是数学建模? 1.1数学建模(Mathematical Modeling)是建立数学模型并用它解决问题这一过程的简称,有代表的定义如下: (1)普通高中数学课程标准中认为,数学建模是运用数学思想、方法和知识解决实际问题的过程,已经成为不同层次数学教育的重要内容和基本内容。 (2)叶其孝在《数学建模教学活动与大学数学教育改革》一书中认为,数学建模(M athematical Modeling)就是应用建立数学模型来解决各种实际问题的方法,也就是通过对实际问题的抽象、简化,确定变量和参数,并应用某些“规律”建立起变量、参数间的确定的数学问题(也可称为一个数学模型),求解该数学问题,解释、验证所得到的解,从而确定能否用于解决实际问题的多次循环、不断深化的过程。 两种定义的区别在于课程标准对数学建模的定义没有强调建立特定的解决问题的数学模型。数学建模的过程中当然会运用数学思想、方法和知识解决实际问题,但仅仅如此很难称得上是“数学建模”。处理很多事情,比如法律和组织上的问题,常常会用到分类讨论的思想、转化的思想、类比的思想,而并没有建立数学模型,这就不能说是进行了数学建模。这里所谈(实际上,同大部分人认为的一样)的数学建模,其过程是要建立具体的数学模型的。 什么是数学模型?根据徐利治先生在《数学方法论选讲》一书中所谈到,所谓“数学模型”(Mathematic Model)是一个含义很广的概念,粗略的讲,数学模型是指参照某种事物系统的特征或数量相依关系,采用形式化数学语言,概括地或近似地表达出来的一个数学结构。广义的说,一切数学概念、数学理论体系、数学公式、数学方程以及由之构成的算法系统都可以称为数学模型;狭义的解释,只有那些反应特定问题或特定的具体事物系统的数学关系结构才叫数学模型。 本论文所谈到的数学建模,其过程一定是建立了一定的数学结构。 另外,我们所谈的数学建模主要侧重于解决非数学领域内的问题。这类问题往往来自于日常生活、经济、工程、医学等其他领域,呈现“原胚”状态,需要分析、假设、抽象等加

2019年数学建模训练题

西安市蔬菜价格变动分析及采购计划的制定 摘要 食品价格是居民消费价格指数的重要组成部分,食品价格波动直接影响居民生活成本和农民收入,是关系国计民生的重要战略问题。在收入增长缓慢的情况下,食品价格上涨将使人民群众明显感到生活成本增加,特别是蔬菜价格的变化关系到千家万户的日常生活,菜价的上涨将严重影响城市低收入群体的生活质量。本文应用时间序列法来研究蔬菜价格的变动以及蔬菜价格指数的编制问题,并运用所构建的模型来进行蔬菜价格的短期预测。 针对问题一,要求根据所选的5种蔬菜近几年的价格数据,建立数学模型研究这5种蔬菜价格随月份的变化规律,并预测2015年这5种蔬菜每月的价格。通过绘制5种蔬菜价格随月份变化的折线图,发现蔬菜价格具有较明显的季节性变动。显然,5种蔬菜价格分别是5个时间序列,利用EViews软件对5个时间序列进行稳定性检验,结果显示全部5个时间序列都是平稳时间序列。因此,本文分别对5个时间序列建立了ARMA模型,利用EViews和MATLAB软件进行参数求解和模型检验得出具体的时间序列模型,并通过所建立的模型对未来一年内的蔬菜价格进行了预测。 针对问题二,本文首先利用SPSS软件对17种蔬菜进行了系统聚类,将17种蔬菜分为三类,通过分别计算三类蔬菜价格的平均值来给各类蔬菜对价格指数的影响程度赋予不同的权重值。然后考虑人们的消费习惯对价格指数的影响,本文查找网上资料,按销量将17种蔬菜分为五类,用各类蔬菜的销量在一定程度上反映人们的消费习惯。通过各类蔬菜的销量来给各类蔬菜对价格指数的影响程度赋予不同的权重值。最后对于上述两种因素,本文凭借生活经验,人为的对两种因素赋予不同的权重值,进而计算每月蔬菜价格的加权平均价格,求出每月的定基价格指数。通过检验发现价格指数仍是一平稳的时间序列,因此同第一问一样建立ARMA模型进行研究。 针对问题三,本文对问题二所得到的蔬菜价格指数进行回归分析,利用SPSS软件绘制散点图,发现在95%的置信区间内可以进行线性回归分析。然后利用SPSS软件做线性回归,得到显著性水平为0.05时,线性回归模型整体显著。由回归方程可知近几年蔬菜价格总体升高,结合蔬菜价格指数的变动情况可知西安市每年一月至四月蔬菜价格总体处于高位。 针对问题四,本文根据题目要求,在满足所有约束条件的情况下,以采购蔬菜的最大重量为目标函数,分别对四个蔬菜批发市场建立整数规划模型。通过LINGO软件进行求解,得出到胡家庙蔬菜批发市场进行一次采购可以使得当天采购蔬菜的总重量最大。 关键词:蔬菜价格时间序列 ARMA模型价格指数线性回归整数规划 一、问题重述 为监测食品价格的实际变化情况,西安市物价局对食品价格一直进行着严密的监测,每周都会在其官方网站上公布食品价格监测数据。为了跟踪研究西安市农副产品价格变动的规律,请从该网站下载查阅相关监测数据,建立数学模型解决如下问题:

(完整版)中考数学压轴题破解策略专题18《弦图模型》

专题18《弦图模型》 破解策略 1.内弦图 如图,在正方形ABCD中,BF⊥CG,CG⊥DH,DH⊥AE,AE⊥BF,则△ABE≌△BCF≌△CDG≌△DAH.证明因为∠ABC=∠BFC=90° 所以∠ABE+∠FBC=∠FBC+∠FCB-90°. 所以∠ABE=∠FC B. 又因为AB=B C.所以△ABE≌△BCF, 同理可得△ABE≌△BCF≌△CDG≌△DAH. D C 2.外弦圈 如图,在正方形ABCD中,点M,N,P,Q在正方形ABCD边上,且 四边形MUPQ为正方形,则△QBM≌△MCN≌△NDP≌△PAQ. 证明因为∠B=∠QMN=∠C=90°, 所以∠BQM+∠QMB=∠QMB+∠NMC=90°, 所以∠BQM=∠NM C. 又因为QM=MN,所以△QBM≌△MCN. 同理可得△QHM≌△MCN≌△NDP≌△PAQ. N Q D A 3.括展 (1)如图,在Rt△ABH中.∠ABH=90°,BE⊥AH于点E.所以 △A BE≌△BHE≌△AH B. (2)如图,在Rt △QBM和Rt△BLK中,QB=BL,QM⊥BK,所以 △QBM≌△BLK.

证明因为∠BLK=90°,QM⊥BK, 所以∠KBL+∠QMB=∠KBI十∠K=90° 所以∠QMB=∠K, 又因为QB=BL. 所以△QBM≌△BLK. 例题讲解 例1四边形ABCD是边长为4的正方形,点E在边AD所在的直线上,连结CE,以CE 为边,作正方形CEFG(点D,F在直线CE的同侧),连结BF.当点E在线段AD上时,AE =1,求BF的长. G 解如图,过点F作FH⊥AD交AD的延长线于点H, 延长FH交BC的延长线于点K. 因为四边形ABCD和四边形CEFG是正方形, 根据“弦图模型”可得△ECD≌△FEH,所以FH=ED=AD-AE=3,EH=CD=4.因为CDHK为矩形,所以HK=CD=4,CK=DH=EH-ED=1. 所以FK=FH十HK=7,BK=BC+CK=. 5. 所以BF

相关主题
文本预览
相关文档 最新文档