当前位置:文档之家› 基本初等函数的运算和意义

基本初等函数的运算和意义

基本初等函数的运算和意义
基本初等函数的运算和意义

必修1 第二章 基本初等函数(Ⅰ)

〖2.1〗指数函数

【2.1.1】指数与指数幂的运算

(1)根式的概念

①如果,,,1n

x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的

n 当n 是偶数时,正数a 的正的n 表示,负的n 次方根用

符号表示;0的n 次方根是0;负数a 没有n 次方根.

n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.

③根式的性质:n

a =;当n 为奇数时,

a =;当n 为偶数时,

(0)

|| (0) a a a a a ≥?==?

-

(2)分数指数幂的概念

①正数的正分数指数幂的意义是:0,,,m n

a a m n N +=>∈且1)n >.0的正分数指数幂等

于0.

②正数的负分数指数幂的意义是: 1()0,,,m m n n a

a m n N a -+==>∈且1)n >.0的负分数指数幂没有意义.注意口诀:底数取倒数,指数取相反数.

(3)分数指数幂的运算性质

①(0,,)r

s

r s

a a a

a r s R +?=>∈ ②()(0,,)r s rs a a a r s R =>∈

③()(0,0,)r r r

ab a b a b r R =>>∈

【2.1.2】指数函数及其性质

〖2.2〗对数函数

【2.2.1】对数与对数运算

(1)对数的定义

①若(0,1)x

a N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底

数,N 叫做真数. ②负数和零没有对数.

③对数式与指数式的互化:log (0,1,0)x

a x N a N a a N =?=>≠>.

(2)几个重要的对数恒等式

(3)常用对数与自然对数

常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…).

(4)对数的运算性质

如果0,1,0,0a a M N >≠>>,那么 ①加法:log log log ()a a a M N MN += ②减法:log log log a a a

M M N N

-= ③数乘:log log ()n

a a n M M n R =∈

④log a N

a

N =

⑤log log (0,)b n

a a n

M M b n R b

=

≠∈ ⑥换底公式:log log (0,1)log b a b N

N b b a

=>≠且

【2.2.2】对数函数及其性质

单调

在(0,)

+∞上是增函数

在(0,

)

+∞上是减函数

函数

值的

变化

情况

log0(1)

log0(1)

log0(01)

a

a

a

x x

x x

x x

>>

==

<<<

log0(1)

log0(1)

log0(01)

a

a

a

x x

x x

x x

<>

==

><<

a变

化对

图象的

影响

在第一象限内,a越大图象越靠低;在第四象限内,a越大图象越靠高.设函数()

y f x

=的定义域为A,值域为C,从式子()

y f x

=中解出x,得式子()

x y

?

=.如果对于y在C中的任何一个值,通过式子()

x y

?

=,x在A中都有唯一确定的值和它对应,那么式子()

x y

?

=表示x是y的函数,函数()

x y

?

=叫做函数()

y f x

=的反函数,记作1()

x f y

-

=,习惯上改写成1()

y f x

-

=.

(7)反函数的求法

①确定反函数的定义域,即原函数的值域;

②从原函数式()

y f x

=中反解出1()

x f y

-

=;

③将1()

x f y

-

=改写成1()

y f x

-

=,并注明反函数的定义域.

(8)反函数的性质

①原函数()

y f x

=与反函数1()

y f x

-

=的图象关于直线y x

=对称.

②函数()

y f x

=的定义域、值域分别是其反函数1()

y f x

-

=的值域、定义域.

③若(,)

P a b在原函数()

y f x

=的图象上,则'(,)

P b a在反函数1()

y f x

-

=的图象上.

④一般地,函数()

y f x

=要有反函数则它必须为单调函数.

〖2.3〗幂函数

(1)幂函数的定义

一般地,函数y xα

=叫做幂函数,其中x为自变量,α是常数.

(2

(3)幂函数的性质

①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);

是非奇非偶函数时,图象只分布在第一象限.

②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1).

③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴.

④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当q

p

α=

(其中,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则q

p

y x =是奇函数,若p 为奇数q 为偶数时,则q

p

y x =是偶函数,若p 为偶数q 为奇数时,则q p

y x =是非奇非偶函数.

⑤图象特征:幂函数,(0,)y x x α

=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直线y x =下方.

〖补充知识〗二次函数

(1)二次函数解析式的三种形式

①一般式:2

()(0)f x ax bx c a =++≠ ②顶点式:2

()()(0)f x a x h k a =-+≠ ③两根式:12()()()(0)f x a x x x x a =--≠

(2)求二次函数解析式的方法

①已知三个点坐标时,宜用一般式.

②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式.

③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便.

(3)二次函数图象的性质

①二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2b

x a

=-

顶点坐标是2

4(,)24b ac b a a

--.

时,2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2b a -∞-上递增,在[,)

2b

a -+∞上递减,当2b

x a

=-时,2max 4()4ac b f x a -=.

③二次函数2

()(0)f x ax bx c a =++≠当2

40b ac ?=->时,图象与x

轴有两个交点

11221212(,0),(,0),||||||

M x M x M M x x a =-=

. (4)一元二次方程2

0(0)ax bx c a ++=≠根的分布

一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.

设一元二次方程20(0)ax bx c a ++=≠的两实根为12,x x ,且12x x ≤.令2

()f x ax bx c =++,从

以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2b

x a

=- ③判别式:? ④端点函数值符号.

①k <x 1≤x 2 ? ?

??△=b 2

-4ac ≥0af (k )>0

-b 2a

>k

②x 1≤x 2<k ? ?

??△=b 2

-4ac ≥0af (k )>0

-b 2a

<k

④k 1

<x 1

≤x 2

<k 2

? ?

??

?

?△=b 2

-4ac ≥0a >0f (k 1)>0f (k 2)>0

k 1<-b 2a

<k 2

或?

????△=b 2

-4ac ≥0a <0f (k 1)<0

f (k 2)<0

k 1<-b 2a

<k 2

⑤有且仅有一个根x 1(或x 2)满足k 1<x 1

(或x 2)<k 2

? f (k 1)f (k 2)<0,并同时考虑f (k 1)=0或f (k 2)=0这两种情况是否也符合

⑥k 1

<x 1

<k 2

≤p 1

<x 2

<p 2

? ?????a >0f (k 1

)>0

f (k 2)<0

f (p 1)<0f (p 2

)>0

或?????a <0

f (k 1)<0f (k 2)>0

f (p 1)>0f (p 2

)<0

此结论可直接由⑤推出.

(5)二次函数2

()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值 设()f x 在区间[,]p q 上的最大值为M ,最小值为m ,令01

()2

x p q =

+. (Ⅰ)当0a >时(开口向上)

① 若2b p a -<,则()m f p = ②若2b p q a ≤-≤,则()2b m f a

=-

③若2b

q a

->,则()m f q =

最大值

① 若02b x a -≤,则()M f q = ②02b x a

->,则()M f p =

(Ⅱ)当0a <时(开口向下)

最大值

①若2b p a -<,则()M f p = ②若2b p q a ≤-≤,则()2b M f a

=-

x

x

x

x

x x

(q)0x

③若2b

q a

->,则()M f q =

最小值

①若02b x a -≤,则()m f q = ②02b x a

->,则()m f p =.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~·~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

第1讲 §2.1.1 指数与指数幂的运算

¤学习目标:理解有理指数幂的含义,通过具体实例了解实数指数幂的意义,掌握根式与分数指数幂的

互化,掌握有理数指数幂的运算.

¤知识要点: n *x

f

x

x

x

(2)n 次方根(*1,n n N >∈且)有如下恒等式:

()n n a a =;,||,n n a n a a n ?=??

为奇数

为偶数;np n mp m a a =,(a ≥0).

2. 规定正数的分数指数幂:m

n m n

a a = (0,,,1a m n N n *

>∈>且); 1m n

m n

m

n

a a

a

-

=

=

.

¤例题精讲:

【例1】求下列各式的值:

(1)3n n

π-()(*1,n n N >∈且); (2)2()x y -.

【例2】已知221n

a =+,求33n n

n n

a a a a --++的值.

【例3】化简:(1)2

115113

3

6

6

2

2

(2)(6)(3)a b a b a b -÷-; (2)

3322114

4

23

()a b ab b a b a

?(a >0,b >0); (3)2

4

3

819?.

【例4】化简与求值:

(1)642642++-; (2)

13

35

57

2121

n n +

+

+???+

+++-++.

第2讲 §2.1.2 指数函数及其性质(一)

¤学习目标:理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的图像,探索并理

解指数函数的单调性与特殊点,掌握指数函数的性质.

¤知识要点:

1. 定义:一般地,函数(0,1)x y a a a =>≠且叫做指数函数(exponential function ),其中x 是自变量,函数的定义域为R .

2. 以函数2x y =与1()2

x y =的图象为例,观察这一对函数的图象,可总结出如下性质:

定义域为R ,值域为(0,)+∞;当0x =时,1y =,即图象过定点(0,1);当01a <<时,在R 上是减函数,当1a >时,在R 上是增函数.

(1)132

x

y -=; (2)51

()

3

x

y -=; (3)10100

10100

x x y +=-.

【例2】求下列函数的值域:

(1)231

1()3

x y -=; (2)421x x y =++

【例3】(05年福建卷.理5文6)函数()x b f x a -=的图象如图,其中a 、b 为常数,则下列结论正确的是( ).

A .1,0a b ><

B .1,0a b >>

C .01,0a b <<>

D .01,0a b <<<

【例4】已知函数23()(0,1)x f x a a a -=>≠且.

(1)求该函数的图象恒过的定点坐标;(2)指出该函数的单调性.

第3讲 §2.1.2 指数函数及其性质(二)

¤学习目标:在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型.

掌握指数函数的性质及应用.

¤知识要点:

以函数2x y =与1()2

x y =的图象为例,得出这以下结论: (1)函数()y f x =的图象与()y f x =-的图象关于y 轴对称.

(2)指数函数(0,1)x y a a a =>≠且的图象在第一象限内,图象由下至上,底数由下到大. ¤例题精讲:

【例1】按从小到大的顺序排列下列各数:23,20.3,22,2

0.2.

【例2】已知21

()x x f x -=. (1)讨论()f x 的奇偶性; (2)讨论()f x 的单调性.

【例3】求下列函数的单调区间:(1)2

23

x

x y a +-=; (2)1

0.21

x y =-.

第4讲 §2.2.1 对数与对数运算(一)

¤学习目标:理解对数的概念;能够说明对数与指数的关系;掌握对数式与指数式的相互转化,并能运

用指对互化关系研究一些问题.

¤知识要点:

1. 定义:一般地,如果x a N =(0,1)a a >≠,那么数 x 叫做以a 为底 N 的对数(logarithm ).记作

log a x N =,其中a 叫做对数的底数,N

2. 我们通常将以10为底的对数叫做常用对数(common logarithm ),并把常用对数10log N 简记为lg N

在科学技术中常使用以无理数e=2.71828……为底的对数,以e 为底的对数叫自然对数,并把自然对数log e N 简记作ln N

3. 根据对数的定义,得到对数与指数间的互化关系:当0,1a a >≠时,log b a N b a N =?=.

4. 负数与零没有对数;log 10a =, log 1a a = ¤例题精讲:

【例1】将下列指数式化为对数式,对数式化为指数式:

(1)71

2128

-=

; (2)327a =; (3)1100.1-=; (4)12

log 325=-; (5)lg0.0013=-; (6)ln100=4.606.

【例2】计算下列各式的值:(1)lg0.001; (2)4log 8; (3).

【例3】求证:(1)log n a a n =; (2)log log log a a a M M N -=.

【例4】试推导出换底公式:log log log c a c b

b a

=

(0a >,且1a ≠;0c >,且1c ≠;0b >).

第5讲 §2.2.1 对数与对数运算(二)

¤学习目标:通过阅读材料,了解对数的发现历史以及对简化运算的作用;理解对数的概念及其运算

性质,知道用换底公式能将一般对数转化成自然对数或常用对数;理解推导这些运算性质的依据和过程;能较熟练地运用运算性质解决问题.

¤知识要点:

1. 对数的运算法则:log ()log log a a a M N M N =+,log log log a

a a M

M N N

=-,log log n a a M n M =,其中0,1a a >≠且,0,0,M N n R >>∈. 三条法则是有力的解题工具,能化简与求值复杂的对数式.

2. 对数的换底公式log log log b a b N N a =

. 如果令b =N ,则得到了对数的倒数公式1

log log a b b a

=. 同样,也可以推导出一些对数恒等式,如log log n n a a N N =,log log m n a a n

N N m

=

,log log log 1a b c b c a =等. ¤例题精讲:

【例1】化简与求值:(1

)21lg2lg5(lg 2

++(2

)2log .

【例2】若2510a b ==,则

11

a b

+= . (教材P 83 B 组2题)

【例3】 (1)方程lg lg(3)1x x ++=的解x =________;

(2)设12,x x 是方程2lg lg 0x a x b ++=的两个根,则12x x 的值是 .

【例4】(1)化简:

532111

log 7log 7log 7

++

; (2)设23420052006log 3log 4log 5log 2006log 4m ???=,求实数m 的值.

第6讲 §2.2.2 对数函数及其性质(一)

¤学习目标:通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体

会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图像,探索并了解对数函数的单调性与特殊点.

¤知识要点:

1. 定义:一般地,当a >0且a ≠1时,函数a y=log x 叫做对数函数(logarithmic function). 自变量是x ; 函数的定义域是(0,+∞).

2. 由2log y x =与12

log y x =的图象,可以归纳出对数函数的性质:定义域为(0,)+∞,值域为R ;当1

x =时,0y =,即图象过定点(1,0);当01a <<时,在(0,)+∞上递减,当1a >时,在(0,)+∞上递增.

¤例题精讲:

【例1】比较大小:(1)0.9log 0.8,0.9log 0.7,0.8log 0.9; (2)3log 2,2log 3,41log 3

.

【例2】求下列函数的定义域:(1

)y =2

)y =

【例3】已知函数()log (3)a f x x =+的区间[2,1]--上总有|()|2f x <,求实数a 的取值范围.

【例4】求不等式log (27)log (41)(0,1)a a x x a a +>->≠且中x 的取值范围.

第7讲 §2.2.2 对数函数及其性质(二)

¤学习目标:掌握对数函数的性质,并能应用对数函数解决实际中的问题. 知道指数函数y =a x 与对数函

数y =log a x 互为反函数. (a > 0, a ≠1)

¤知识要点:

1. 当一个函数是一一映射时, 可以把这个函数的因变量作为一个新函数的自变量, 而把这个函数的自变量新的函数的因变量. 我们称这两个函数为反函数(inverse function ). 互为反函数的两个函数的图象关于直线y x =对称.

2. 函数(0,1)x y a a a =>≠与对数函数log (0,1)a y x a a =>≠互为反函数.

3. 复合函数(())y f x ?=的单调性研究,口诀是“同增异减”,即两个函数同增或同减,复合后结果为增函数;若两个函数一增一减,则复合后结果为减函数. 研究复合函数单调性的具体步骤是:(i )求定义域;(ii )拆分函数;(iii )分别求(),()y f u u x ?==的单调性;(iv )按“同增异减”得出复合函数的单调性.

¤例题精讲:

【例1】讨论函数0.3log (32)y x =-的单调性.

【例2】(05年山东卷.文2)下列大小关系正确的是( ). A. 30.440.43log 0.3<< B. 30.440.4log 0.33<< C. 30.44log 0.30.43<< D. 0.434log 0.330.4<<

【例3】指数函数(0,1)x y a a a =>≠的图象与对数函数log (0,1)

a y x a a =>≠的图象有何关系?

【例4】2005年10月12日,我国成功发射了“神州”六号载人飞船,这标志着中国人民又迈出了具有历史意义的一步.已知火箭的起飞重量M 是箭体(包括搭载的飞行器)的重量m 和燃料重量x 之和.在不考虑空气阻力的条件下,假设火箭的最大速度y 关于x 的函数关系式为:

[ln()ln(2)]4ln 2(0)y k m x m k =+-+≠其中. 当燃料重量为(1)e m -吨(e 为自然对数的底数, 2.72e ≈)时,该火箭的最大速度为4(km/s ).

(1)求火箭的最大速度(/)y km s 与燃料重量x 吨之间的函数关系式()y f x =; (2)已知该火箭的起飞重量是544吨,是应装载多少吨燃料,才能使该火箭的最大飞行速度达到8km/s ,顺利地把飞船发送到预定的轨道?

第8讲 §2.3 幂函数

¤学习目标:通过实例,了解幂函数的概念;结合函数y=x, y=x 2, y=x 3, y =1/x , y=x 1/2 的图像,了解它们

的变化情况.

知识要点:

1. 幂函数的基本形式是y x α=,其中x 是自变量,α是常数. 要求掌握y x =,

2y x =,3y x =,1/2y x =,1y x -=这五个常用幂函数的图象. 2. 观察出幂函数的共性,总结如下:(1)当0α>时,图象过定点(0,0),(1,1);在(0,)+∞上是增函数.(2)当0α<时,图象过定点(1,1);在(0,)+∞上是减函数;在第一象限内,图象向上及向右都与坐标轴无限趋近.

3. 幂函数y x α=的图象,在第一象限内,直线1x =的右侧,图象由下至上,指数α由小到大. y 轴和直线1x =之间,图象由上至下,指数α由小到大.

¤例题精讲:

【例1】已知幂函数()y f x =的图象过点(27,3),试讨论其单调性.

【例2】已知幂函数6()m y x m Z -=∈与2()m y x m Z -=∈的图象都与x 、y 轴都没有公共点,且 2()m y x m Z -=∈的图象关于y 轴对称,求m 的值.

【例3】幂函数m y x =与n y x =在第一象限内的图象如图所示,则( ).

A .101n m -<<<<

B .1,01n m <-<<

C .10,1n m -<<>

D .1,1n m <->

【例4】本市某区大力开展民心工程,近几年来对全区2a m 的老房子进行平改坡(“平改坡”是指在建筑结构许可条件下,将多层住宅平屋面改建成坡屋顶,并对外墙面进行整修粉饰,达到改善住宅性能和建筑物外观视觉效果的房屋修缮行为),且每年平改坡面积的百分比相等. 若改造到面积的一半时,所用时间需

10年. 已知到今年为止,平改坡剩余面积为原来的2

2

.

(1)求每年平改坡的百分比;(2)问到今年为止,该平改坡工程已进行了多少年?

(3)若通过技术创新,至少保留24

a

m 的老房子开辟新的改造途径. 今后最多还需平改坡多少年?

与讨论、数与形结合等重要的数学思想、能力. 通过对指数函数、对数函数等具体函数的研究,加深对函数概念的理解.

¤例题精讲:

【例1】若()(0,1)x f x a a a =>≠且,则1212()()

()22

x x f x f x f ++≤

.

【例2】已知函数2

()(0,0)1

bx

f x b a ax =≠>+. (1)判断()f x 的奇偶性; (2)若3211

(1),log (4)log 422

f a b =-=,求a ,b 的值.

【例3】(01天津卷.19)设a >0, ()x x

e a

f x a e =+是R 上的偶函数.

(1)求a 的值; (2)证明()f x 在(0,)+∞上是增函数.

【例4】已知1992年底世界人口达到54.8亿.

(1)若人口的平均增长率为1.2%,写出经过t 年后的世界人口数y (亿)与t 的函数解析式; (2)若人口的平均增长率为x %,写出2010年底世界人口数为y (亿)与x 的函数解析式. 如果要使2010年的人口数不超过66.8亿,试求人口的年平均增长率应控制在多少以内?

函数极限及运算法则

教学目标:掌握函数极限的运算法则,并会求简单的函数的极限 教学重点:运用函数极限的运算法则求极限 教学难点:函数极限法则的运用 教学过程: 一、引入: 一些简单函数可从变化趋势找出它们的极限,如o x x x x x x o ==→∞→lim ,01 lim .若求极限的函数比较复杂,就要分析已知函数是由哪些简单函数经过怎样的运算结合而成的,已知函数 的极限与这些简单函数的极限有什么关系,这样就能把复杂函数的极限计算转化为简单函数的极限的计算. 二 、新课讲授 对于函数极限有如下的运算法则: 限,分别等于这两个函数的极限的和、差、积、商(作为除数的函数的极限不能为0). 说明:当C 是常数,n 是正整数时,)(lim )]([lim x f C x Cf o o x x x x →→= n x x n x x x f x f o o )](lim [)]([lim →→= 这些法则对于∞→x 的情况仍然适用. 三 典例剖析 例1 求)3(lim 2 2 x x x +→ 例2 求1 1 2lim 231++-→x x x x 例3 求4 16 lim 24--→x x x 分析:当4→x 时,分母的极限是0,不能直接运用上面的极限运用法则.注意函数

4 162--=x x y 在定义域4≠x 内,可以将分子、分母约去公因式4-x 后变成4+x ,由此即 可求出函数的极限. 例4 求1 3 3lim 22++-∞→x x x x 分析:当∞→x 时,分子、分母都没有极限,不能直接运用上面的商的极限运算法则.如果分子、分母都除以2 x ,所得到的分子、分母都有极限,就可以用商的极限运用法则计算。 总结:),(lim ,lim * N k x x C C k o k x x x x o o ∈==→→ )(01lim ,lim * N k x C C k x x ∈==∞→∞ → 例5 求1 34 2lim 232+--+∞→x x x x x 分析:同例4一样,不能直接用法则求极限. 如果分子、分母都除以3 x ,就可以运用法则计算了。 四 课堂练习(利用函数的极限法则求下列函数极限) (1))32(lim 2 1-→ x x ; (2))132(lim 2 2 +-→x x x (3))]3)(12[(lim 4 +-→x x x ; (4)1431 2lim 221-++→x x x x (5)11lim 21+--→x x x (6)9 6 5lim 223-+-→x x x x (7)13322lim 232+--+∞→x x x x x (8)5 2lim 32--∞→y y y y 五 小结

基本初等函数测试题

基本初等函数综合测试 一、选择题: 1.下列关系中,成立的是( ) A .03131log 4()log 105>> B .0 1331log 10()log 45>> C .03131log 4log 10()5>> D .0 1331log 10log 4()5>> 2 .函数y = ) . A .[1,)+∞ B .2(,)3+∞ C .2[,1]3 D .2(,1]3 3.若11|log |log 44 a a =,且|log |log b b a a =-,则,a b 满足的关系式是( ). A .1,1a b >>且 B .1,01a b ><<且 C .1,01b a ><<且 D .01,01a b <<<<且 4.已知函数x y e =的图象与函数()y f x =的图象关于直线y x =对称,则( ). A .2(2)()x f x e x R =∈ B .(2)ln 2ln (0)f x x x =?> C .(2)2()x f x e x R =∈ D .(2)ln 2ln (0)f x x x =+> 5.已知,,x y z 都是大于1的正数,0m >,且log 24,log 40,log 12x y xyz m m m ===,则log z m 的值为 A .160 B .60 C .2003 D .320 6.设函数||()(01)x f x a a a -=>≠且,若(2)4f =,则( ). A .(2)(1)f f ->- B .(1)(2)f f ->- C .(1)(2)f f > D .(2)(2)f f -> 7.942--=a a x y 是偶函数,且在),0(+∞是减函数,则整数a 组成的集合为( ). A .{1,3,5} B .{1,3,5}- C .{1,1,3}- D .{1,1,3,5}- 8.若ln 2ln 3ln 5,,235 a b c ===,则( ). A .a b c << B .c b a << C .c a b << D .b a c << 9.函数2(0)21 x x y x =>+的值域是( ). A .(1,)+∞ B .1(,) (1,)2-∞+∞ C .1(,)2-∞ D .1(,1)2 10.若函数122 log (2log )y x =-的值域是(,0)-∞,那么它的定义域是( ). A .(0,2) B .(2,4) C .(0,4) D .(0,1)

基本初等函数测试题及答案解析

基本初等函数测试题 一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.有下列各式: ①n a n =a ; ②若a ∈R ,则(a 2-a +1)0 =143 x y +; ④ 6 - 2 = 3 -2. 其中正确的个数是( ) A .0 B .1 C .2 D .3 2.函数y =a |x | (a >1)的图象是( ) 3.下列函数在(0,+∞)上是增函数的是( ) A .y =3-x B .y =-2x C .y =log 0.1x D .y =x 12 4.三个数log 215 ,20.1,2-1 的大小关系是( ) A .log 215<20.1<2-1 B .log 215<2-1<20.1 C .20.1<2-10} B .{y |y >1} C .{y |0y >z B .x >y >x C .y >x >z D .z >x >y 8.函数y =2x -x 2 的图象大致是( )

基本初等函数的导数公式及运算法则

课时授课计划

教师活动 教学过程: 一?创设情景 2 1 四种常见函数y=c、y = x、y =x、y —的导数公式及应用 :■?新课讲授 学生活动学生自行预习

(二)导数的运算法则导数运算法则 1. 〔f(X)土g(x)i = f'(x) ±g'(x) 2. [f(x) g(x)]' = f'(x)g(x)±f(x)g'(x) I f (x) I f (x) g (x) - f (x) g (x) / . . 3. = ——(g(x)HO) ]g(x) 一[g(x)f (2)推论:lcf(x) I - Cf'(x) (常数与函数的积的导数,等于常数乘函数的导数) 三.典例分析 例1 .假设某国家在20年期间的年均通货膨胀率为5% ,物价p (单位:元)与时间t (单位:年)有如下函数关系p(t) = p0(1 - 5%亍,其中p0 为t = 0时的物价.假定某种商品的p0 = 1,那么在第10个年头,这种商品的价格上涨的速度大约是多少(精确到0.01)? 解:根据基本初等函数导数公式表,有p'(t) =1.0“ In 1.05 所以p (10) =1.0510|n1.05 : 0.08 (元/年) 因此,在第10个年头,这种商品的价格约为0.08元/年的速度上涨. 例2?根据基本初等函数的导数公式和导数运算法则,求下列函数的导数. (1) y = x3 -2x 3 (2) y 1 1 (3) y = x sin x ln x; (4)y (5)y (6)y 4x 1 -ln x 1 l n x (2 x2—5 x + 1) e x / 、sin x—xcosx (7) y =-------------------------- cosx +xsin x 通过预习自行完成 在老师的指导下独立完成后面几道题

人教A版高中数学必修1第二章基本初等函数单元测试题(含参考答案)

高一数学单元测试题 必修1第二章《基本初等函数》 班级 姓名 序号 得分 一.选择题.(每小题5分,共50分) 1.若0m >,0n >,0a >且1a ≠,则下列等式中正确的是 ( ) A .()m n m n a a += B .1 1m m a a = C .log log log ()a a a m n m n ÷=- D 4 3()mn = 2.函数log (32)2a y x =-+的图象必过定点 ( ) A .(1,2) B .(2,2) C .(2,3) D .2 (,2)3 3.已知幂函数()y f x =的图象过点2 ,则(4)f 的值为 ( ) A .1 B . 2 C .12 D .8 4.若(0,1)x ∈,则下列结论正确的是 ( ) A .1 22lg x x x >> B .1 22lg x x x >> C .1 22lg x x x >> D .1 2lg 2x x x >> 5.函数(2)log (5)x y x -=-的定义域是 ( ) A .(3,4) B .(2,5) C .(2,3)(3,5) D .(,2)(5,)-∞+∞ 6.某商品价格前两年每年提高10%,后两年每年降低10%,则四年后的价格与原来价格比较, 变化的情况是 ( ) A .减少1.99% B .增加1.99% C .减少4% D .不增不减 7.若1005,102a b ==,则2a b += ( ) A .0 B .1 C .2 D .3 8. 函数()lg(101)2 x x f x =+- 是 ( ) A .奇函数 B .偶函数 C .既奇且偶函数 D .非奇非偶函数 9.函数2 log (2)(01)a y x x a =-<<的单调递增区间是 ( ) A .(1,)+∞ B .(2,)+∞ C .(,1)-∞ D .(,0)-∞ 10.已知2log (2)y ax =- (0a >且1a ≠)在[0,1]上是x 的减函数,则a 的取值范围是( )

高一基本初等函数测试题

第二章:基本初等函数 第I 卷(选择题) 一、选择题5分一个 1.已知f (x)=ax 5+bx 3+cx+1(a≠0),若f=m ,则f(﹣2014)=( ) A.﹣m B.m ? C.0 D .2﹣m 2.已知函数f (x )=log a (6﹣ax )在[0,2]上为减函数,则a 的取值范围是( ) A .(0,1)?B.(1,3)?C .(1,3]?D .[3,+∞) 3.已知有三个数a=( )﹣ 2,b =4 0.3 ,c=80.25,则它们之间的大小关系是( ) A.a <c <b ? B.a <b <c ?C .b0,a≠1,f(x)=x 2 ﹣a x .当x ∈(﹣1,1)时,均有f(x )<,则实数a 的取值范围是( ) A .(0,]∪[2,+∞) B.[,1)∪(1,2]?C.(0,]∪[4,+∞) D .[,1)∪(1,4] 5.若函数y=x 2 ﹣3x ﹣4的定义域为[0,m],值域为[﹣,﹣4],则m 的取值范围是( ) A.(0,4]?B. ?C. ?D. 6.下列函数中,在其定义域内既是奇函数又是减函数的是( ) A.y = (x ∈R且x≠0) B.y=()x (x∈R) C.y=x(x∈R)?D.y=x3(x ∈R) 7.函数f(x )=2x﹣1+l og 2x 的零点所在的一个区间是( ) A .( 81,41)?B .(41,21) C.(2 1 ,1)?D.(1,2) 8.若函数y=x2 ﹣3x ﹣4的定义域为[0,m],值域为,则m 的取值范围是( ) A.(0,4]?B . C. ?D . 9.集合M={x|﹣2≤x≤2},N={y |0≤y≤2},给出下列四个图形,其中能表示以M 为定义域,N 为值域的函数关系的是( ) A .?B. C. D. 10.已知函数f(x)对任意的x 1,x 2∈(﹣1,0)都有0 ) ()(2 121<--x x x f x f ,且函数y=f(x ﹣1)是偶函数. 则下列结论正确的是( )

基本初等函数公式定理

指数与指数函数 1 同次公式:; n a =,||,a n a n = 为奇数 为偶数 2指数幂的运算法则:m n m n a a a +?=;m m n n a a a -=;()m n mn a a = 4几种图形的作法: ①(||)y f x =:先画出()y f x =函数在y 轴右边的图像,然后再根据y 轴对称画出左边的函数图像 ②|()|y f x =:先画出()y f x =函数的图像,然后将x 轴下边的图像翻折到x 轴上边。 5 ① || x y a = ②||y x a =-

如图三 ③2 2 ||(40)y ax bx c b ac =++-> ④1 y b x a =+-的图像,如图五 对数与对数函数 1如果b a N =,那么 b 叫做以a 为底N 为对数,即为log a b N = 2 ①log 10,log 1a a a == ②两个恒等式:log ,log a N b a a N a b == ③常用对数10log lg N N =,自然对数记作ln N 3.对数的运算法则:①log ()log log a a a MN M N =+; ②log log log a a a M M N N =-; ③log log n a a M n M = 4..换底公式:log log log m a m N N a = ①1log log a N N a = ②log log m n a a n N N m = ③log log log 1a b c b c a ??= 5对数函数和指数函数互为反函数,互为反函数的图像关于y=x 对称 两个特别的反函数(理解,不需掌握) ① 函数11x x a y a -=+与函数1log 1a x y x +=-互为反函数 ② 函数2 x x a a y --=与函数log )a y x =互为反函数 对数函数log a x 有两个很重要的点(1,0),(a ,1),在高考题中经常出现比较大小的值,要利用x 与1和a ,来判断其

高一数学必修1《基本初等函数》测试题

高一数学必修1《基本初等函数》测试题 一、选择题.(共50分每小题5分.每题都有且只有一个正确选项.) 1、若0a >,且,m n 为整数,则下列各式中正确的是 ( ) A 、m m n n a a a ÷= B 、n m n m a a a ?=? C 、()n m m n a a += D 、01n n a a -÷= 2、对于0,1a a >≠,下列说法中,正确的是 ( ) ①若M N =则log log a a M N =;②若log log a a M N =则M N =;③若22log log a a M N =则 M N =;④若M N =则22log log a a M N =。 A 、①②③④ B 、①③ C 、②④ D 、② 3、设集合2{|3,},{|1,}x S y y x R T y y x x R ==∈==-∈,则S T 是 ( ) A 、? B 、T C 、S D 、有限集 4、函数22log (1)y x x =+≥的值域为 ( ) A 、()2,+∞ B 、(),2-∞ C 、[)2,+∞ D 、[)3,+∞ 5、设 1.50.90.4812314,8,2y y y -??=== ???,则 ( ) A 、312y y y >> B 、213y y y >> C 、132y y y >> D 、123y y y >> 6、在(2)log (5)a b a -=-中,实数a 的取值范围是 ( ) A 、52a a ><或 B 、2335a a <<<<或 C 、25a << D 、34a << 7、计算lg52lg2)lg5()lg2(22?++等于 ( ) A 、0 B 、1 C 、2 D 、3 8、已知3log 2a =,那么33log 82log 6-用a 表示是 ( ) A 、52a - B 、2a - C 、23(1)a a -+ D 、 231a a -- 9、已知幂函数f(x)过点(2,2 2),则f(4)的值为 ( )

(完整版)基本初等函数知识点

指数函数及其性质 一、指数与指数幂的运算 (一)根式的概念 1、如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 次方根用符号n 是偶数时,正数a 的正的n 表示,负的n 次方根用符号0的n 次方根是0;负数a 没有n 次方根. 2 n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥. 3、根式的性质 :n a =;当n 为奇数时 , a =;当n 为偶数时, (0) || (0) a a a a a ≥?==? -∈且1)n >.0的正分数指数幂等于0. 2 、正数的负分数指数幂的意义是: 1()0,,,m m n n a a m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数. 3、a 0=1 (a ≠0) a -p = 1/a p (a ≠0;p ∈N *) 4、指数幂的运算性质 (0,,)r s r s a a a a r s R +?=>∈ ()(0,,)r s rs a a a r s R =>∈ ()(0,0,)r r r ab a b a b r R =>>∈ 5、0的正分数指数幂等于0,0的负分数指数幂无意义。 二、指数函数的概念 一般地,函数)1a ,0a (a y x ≠>=且叫做指数函数,其中x 是自变量,函数的定义域为R . 注意:○ 1 指数函数的定义是一个形式定义; ○ 2 注意指数函数的底数的取值范围不能是负数、零和1.

第2章基本初等函数测试题(答案)(1)

第二章基本初等函数测试题 一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.有下列各式: ① n a n=a;②若a∈R,则(a 2-a+1)0=1;③ 4 43 33 x y x y +=+; ④ 6 -22= 3 -2. 其中正确的个数是() A.0B.1 C.2 D.3 2.函数y=a|x|(a>1)的图象是() 3.下列函数在(0,+∞)上是增函数的是() A.y=3-x B.y=-2x C.y=D.y=x 1 2 [ 4.三个数log2 1 5,,2 -1的大小关系是() A.log2 1 5<<2 -1B.log2 1 5<2 -10} B.{y|y>1} C.{y|0y>z B.x>y>x C.y>x>z D.z>x>y 8.函数y=2x-x2的图象大致是() ; 9.已知四个函数①y=f1(x);②y=f2(x);③y=f3(x);④y=f4(x)的图象如下图: 则下列不等式中可能成立的是() A.f1(x1+x2)=f1(x1)+f1(x2) B.f2(x1+x2)=f2(x1)+f2(x2) C.f3(x1+x2)=f3(x1)+f3(x2) D.f4(x1+x2)=f4(x1)+f4(x2) 10.设函数 1 2 1 () f x x =,f2(x)=x-1,f3(x)=x2,则f1(f2(f3(2010)))等于() A.2010 B.20102

数学:1.2.2基本初等函数的导数公式及导数的运算法则教案

§1.2.2基本初等函数的导数公式及导数的运算法则 教学目标: 1.熟练掌握基本初等函数的导数公式; 2.掌握导数的四则运算法则; 3.能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数。 教学重点:基本初等函数的导数公式、导数的四则运算法则 教学难点: 基本初等函数的导数公式和导数的四则运算法则的应用 教学过程: 一.创设情景 四种常见函数y c =、y x =、2y x =、1y x = 的导数公式及应用 二.新课讲授 (一)基本初等函数的导数公式表 )

(2)推论:[]''()()cf x cf x = (常数与函数的积的导数,等于常数乘函数的导数) 三.典例分析 例1.假设某国家在20年期间的年均通货膨胀率为5%,物价p (单位:元)与时间t (单 位:年)有如下函数关系0()(15%)t p t p =+,其中0p 为0t =时的物价.假定某种商品的 01p =,那么在第10个年头,这种商品的价格上涨的速度大约是多少(精确到0.01)? 解:根据基本初等函数导数公式表,有'() 1.05ln1.05t p t = 所以'10(10) 1.05ln1.050.08p =≈(元/年) 因此,在第10个年头,这种商品的价格约为0.08元/年的速度上涨. 例2.根据基本初等函数的导数公式和导数运算法则,求下列函数的导数. (1)323y x x =-+ (2)y =x x --+1111; (3)y =x · sin x · ln x ; (4)y = x x 4; (5) y =x x ln 1ln 1+-.

(6)y =(2 x 2-5 x +1)e x (7) y =x x x x x x sin cos cos sin +- 【点评】 ① 求导数是在定义域内实行的.② 求较复杂的函数积、商的导数,必须细心、耐心. 例3日常生活中的饮水通常是经过净化的.随着水纯净度的提高,所需净化费用不断增加.已知将1吨水净化到纯净度为%x 时所需费用(单位:元)为 5284()(80100)100c x x x =<<- 求净化到下列纯净度时,所需净化费用的瞬时变化率:(1)90% (2)98% 解:净化费用的瞬时变化率就是净化费用函数的导数. '' ' '252845284(100)5284(100)()()100(100)x x c x x x ?--?-==-- 20(100)5284(1)(100)x x ?--?-=-25284(100) x =- (1) 因为' 25284(90)52.84(10090)c ==-,所以,纯净度为90%时,费用的瞬时变化率是52.84元/吨. (2) 因为'25284(98)1321(10090) c ==-,所以,纯净度为98%时,费用的瞬时变化率是1321元/吨. 函数()f x 在某点处导数的大小表示函数在此点附近变化的快慢.由上述计算可知,''(98)25(90)c c =.它表示纯净度为98%左右时净化费用的瞬时变化率,大约是纯净度为90%左右时净化费用的瞬时变化率的25倍.这说明,水的纯净度越高,需要的净化费用就越多,而且净化费用增加的速度也越快.

高中数学教案:极限与导数函数极限的运算法则

函数极限的运算法则(4月30日) 教学目标:掌握函数极限的运算法则,并会求简单的函数的极限 教学重点:运用函数极限的运算法则求极限 教学难点:函数极限法则的运用 教学过程: 一、引入: 一些简单函数可从变化趋势找出它们的极限,如o x x x x x x o ==→∞→lim ,01lim .若求极限的函数比较复杂,就要分析已知函数是由哪些简单函数经过怎样的运算结合而成的,已知函数的极限与这些简单函数的极限有什么关系,这样就能把复杂函数的极限计算转化为简单函数的极限的计算. 二 、新课讲授 限,分别等于这两个函数的极限的和、差、积、商(作为除数的函数的极限不能为0). 说明:当C 是常数,n 是正整数时,)(lim )]([lim x f C x Cf o o x x x x →→= n x x n x x x f x f o o )](lim [)]([lim →→= 这些法则对于∞→x 的情况仍然适用. 三 典例剖析 例1 求)3(lim 2 2x x x +→

例2 求1 12lim 231++-→x x x x 例3 求4 16lim 24--→x x x 分析:当4→x 时,分母的极限是0,不能直接运用上面的极限运用法则.注意函数 4 162--=x x y 在定义域4≠x 内,可以将分子、分母约去公因式4-x 后变成4+x ,由此即可求出函数的极限. 例4 求1 33lim 22++-∞→x x x x 分析:当∞→x 时,分子、分母都没有极限,不能直接运用上面的商的极限运算法则.如果分子、分母都除以2 x ,所得到的分子、分母都有极限,就可以用商的极限运用法则计算。 总结:),(lim ,lim *N k x x C C k o k x x x x o o ∈==→→ )(01lim ,lim *N k x C C k x x ∈==∞→∞→

高中数学第二章基本初等函数测试题(含答案)人教版

《基本初等函数》检测题 一.选择题.(每小题5分,共50分) 1.若0m >,0n >,0a >且1a ≠,则下列等式中正确的是 ( ) A .()m n m n a a += B .1 1m m a a = C .log log log ()a a a m n m n ÷=- D 43 () mn = 2.函数log (32)2a y x =-+的图象必过定点 ( ) A .(1,2) B .(2,2) C .(2,3) D .2(,2)3 3.已知幂函数()y f x =的图象过点(2, 2 ,则(4)f 的值为 ( ) A .1 B . 2 C .1 2 D .8 4.若(0,1)x ∈,则下列结论正确的是 ( ) A . 12 2lg x x x >> B . 12 2lg x x x >> C .12 2lg x x x >> D .12lg 2x x x >> 5.函数(2)log (5)x y x -=-的定义域是 ( ) A . (3,4) B .(2,5) C .(2,3)(3,5) D . (,2)(5,)-∞+∞ 6.某商品价格前两年每年提高10%,后两年每年降低10%,则四年 后的价格与原来价格比较,变化的情况是 ( )

A .减少1.99% B .增加1.99% C .减少4% D .不增不减 7.若1005,102a b ==,则2a b += ( ) A .0 B .1 C .2 D .3 8. 函数()lg(101)2 x x f x =+-是 ( ) A .奇函数 B .偶函数 C .既奇且偶函数 D .非奇非偶函数 9.函数2log (2)(01)a y x x a =-<<的单调递增区间是 ( ) A .(1,)+∞ B .(2,)+∞ C .(,1)-∞ D .(,0)-∞ 10.若2log (2)y ax =- (0a >且1a ≠)在[0,1]上是x 的减函数,则a 的取值范围是 ( ) A .(0,1) B .(0,2) C .(1,2) D .[2,)+∞ 二.填空题.(每小题5分,共25分) 11.计算:459log 27log 8log 625??= . 12.已知函数3log (0)()2(0) x x x >f x x ?=?≤?, , ,则1[()]3 f f = . 13. 若 3())2 f x a x bx =++,且 (2) f =,则 (2f - = . 14.若函数()log (01)f x ax a =<<在区间[,2]a a 上的最大值是最小值的3

必修一基本初等函数单元练习题(含答案)

《函数》周末练习 一、选择题(本大题共12小题,每小题4分,共48分) 1.已知集合A ={x |x <3},B ={x |2x -1>1},则A ∩B = ( ) A.{x |x >1} B.{x |x <3} C.{x |1<x <3} D. ? 2、已知函数f(x)的定义域为[-1,5],在同一坐标系下,函数y =f(x)的图像与直线x =1的交点个数为( ). A .0个 B .1个 C .2个 D .0个或1个均有可能 3设函数2 2 11()21x x f x x x x ?-?=? +->??, ,,, ≤则1(2)f f ?? ??? 的值为( ) A . 15 16 B .2716 - C . 89 D .18 4.判断下列各组中的两个函数是同一函数的为( ) (1)3 9 -)(2+=x x x f ,-3)(t 3)(≠-=t t g ; (2)11)(-+= x x x f ,)1)(1()(-+=x x x g ; (3)x x f =)(,2)(x x g =; (4)x x f =)(,33)(x x g =. A.(1),(4) B. (2),(3) C. (1) D. (3) 5.函数f (x )=ln x -1 x 的零点所在的区间是 ( ) A.(0,1) B.(1,e) C.(e,3) D.(3,+∞) 6.已知f +1)=x +1,则f(x)的解析式为( ) A .x 2 B .x 2 +1(x ≥1) C .x 2 -2x +2(x ≥1) D .x 2 -2x(x ≥1) 7.设{}=|02A x x ≤≤,{}B=y|12y ≤≤,下列图形表示集合A 到集合B 的函数图形的是( ) 8.函数 的递减区间是( ) A .(-3,-1) B .(-∞,-1) C .(-∞,-3) D .(-1,-∞) 9.若函数f(x)= 是奇函数,则m 的值是( ) A .0 B . C .1 D .2 10.已知f (x )=314<1log 1.a a x a x x x -+? ??(),,≥是R 上的减函数,那么a 的取值范围是 ( ) A.(0,1) B.(0,13) C.[17,13) D.[1 7 ,1) 11.函数?????<≤-+≤≤-=0 2,63 0,2)(22 x x x x x x x f 的值域是( ) A. R B. ),1[+∞ C. ]1,8[- D. ]1,9[- 12.定义在R 的偶函数f (x )在[0,+∞)上单调递减,且f (12)=0,则满足f (log 1 4 x )<0的x 的集合为( ) A.(-∞,12)∪(2,+∞) B.(12,1)∪(1,2) C.(12,1)∪(2,+∞) D.(0,1 2 )∪(2,+∞) 二、填空题(本大题共4小题,每小题4分,共16分) 13. 函数2 ()f x = 的定义域是 ______ . 14、若3 0.5 30.5,3,log 0.5a b c ===,则a ,b ,c 的大小关系是 15、函数() 2 223 1m m y m m x --=--是幂函数且在(0,)+∞上单调递减,则实数m 的值为 . 16. 若112 2 (1) (32)a a - - +<-,则a 的取值范围是________. 三、解答题(共5个大题,17,18各10分,19,20,21各12分,共56分) 17、求下列表达式的值 (1) ;)(65 3 12 12 113 2b a b a b a ????--(a>0,b>0) (2)2 1lg 49 32-3 4lg 8+lg 245 .

《函数极限的运算法则》教案(优质课)

《函数极限的运算法则》教案 【教学目标】:掌握函数极限的运算法则,并会求简单的函数的极限 【教学重点】:运用函数极限的运算法则求极限 【教学难点】:函数极限法则的运用 【教学过程】: 一、引入: 一些简单函数可从变化趋势找出它们的极限,如o x x x x x x o ==→∞→lim ,01 lim .若求极限的函数比较复杂,就要分析已知函数是由哪些简单函数经过怎样的运算结合而成的,已知函数的极限与这些简单函数的极限有什么关系,这样就能把复杂函数的极限计算转化为简单函数的极限的计算. 二 、新课讲授 对于函数极限有如下的运算法则: 也就是说,如果两个函数都有极限,那么这两个函数的和、差、积、商组

成的函数极限,分别等于这两个函数的极限的和、差、积、商(作为除数的函数的极限不能为0). 说明:当C 是常数,n 是正整数时,)(lim )]([lim x f C x Cf o o x x x x →→= n x x n x x x f x f o o )](lim [)]([lim →→= 这些法则对于∞→x 的情况仍然适用. 三 典例剖析 例1 求)3(lim 22 x x x +→ 例2 求1 1 2lim 231++-→x x x x 例3 求4 16 lim 24--→x x x 分析:当4→x 时,分母的极限是0,不能直接运用上面的极限运用法则.

注意函数4 16 2--=x x y 在定义域4≠x 内,可以将分子、分母约去公因式4-x 后变 成4+x ,由此即可求出函数的极限. 例4 求1 3 3lim 22++-∞→x x x x 分析:当∞→x 时,分子、分母都没有极限,不能直接运用上面的商的极限运算法则.如果分子、分母都除以2x ,所得到的分子、分母都有极限,就可以用商的极限运用法则计算。 总结:),(lim ,lim *N k x x C C k o k x x x x o o ∈==→→ )(01lim ,lim * N k x C C k x x ∈==∞→∞ →

基本初等函数知识点总结

基本初等函数 一、指数函数 (一)指数与指数幂的运算 1.根式的概念:一般地,如果a x n =,那么x 叫做 a 的n 次方根,其中n >1,且n ∈N * . ◆ 负数没有偶次方根;0的任何次方根都是0,记作00=n 。 当n 是奇数时,a a n n =,当n 是偶数时, ? ? ?<≥-==)0() 0(||a a a a a a n n 2.分数指数幂 正数的分数指数幂的意义,规定: )1,,,0(*>∈>=n N n m a a a n m n m , )1,,,0(1 1*>∈>= = -n N n m a a a a n m n m n m ◆ 0的正分数指数幂等于0,0的负分数指数幂没有意义 3.实数指数幂的运算性质 (1)r a ·s r r a a += ),,0(R s r a ∈>; (2)rs s r a a =)( ),,0(R s r a ∈>; (3) s r r a a ab =)( ),,0(R s r a ∈>. (二)指数函数及其性质 1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域为R . 注意:指数函数的底数的取值范围,底数不能是负数、零和1. 2、指数函数的图象和性质

注意:利用函数的单调性,结合图象还可以看出: (1)在[a ,b]上,)1a 0a (a )x (f x ≠>=且值域是)]b (f ),a (f [或)]a (f ),b (f [; (2)对于指数函数)1a 0a (a )x (f x ≠>=且,总有a )1(f =; 二、对数函数 (一)对数 1.对数的概念:一般地,如果N a x =)1,0(≠>a a ,那么数x 叫做以.a 为底..N 的对数,记作:N x a log =(a — 底数,N — 真数,N a log — 对数式) 说明:○1 注意底数的限制0>a ,且1≠a ; ○ 2 x N N a a x =?=log ; ○ 3 注意对数的书写格式. 两个重要对数: ○ 1 常用对数:以10为底的对数N lg ; ○ 2 自然对数:以无理数 71828.2=e 为底的对数的对数N ln . 指数式与对数式的互化

§1-2 函数极限的运算规则

第1章 函数的极限和连续函数 8 §1-2 函数极限的运算规则·单调有界原理 1.极限的运算规则 记号“(,)x c c c -+→”和“(,)x →∞+∞-∞”都称为极限过程.若把它们统一地表示成“x →?”,则各种形式的函数极限,都具有像数列极限那样的运算 规则.要证明它们,也属于高等微积分(证明在第二篇中). 设在同一个极限过程中,有极限)(lim x f x ? →和)(lim x g x ? →. ⑴ lim[()]lim ()x x c f x c f x →? →? =(c 为常数); (齐次性) ⑵ lim[()()]lim ()lim ()x x x f x g x f x g x →? →? →? ±=±; (可加性) ⑶ lim[()()]lim ()lim ()x x x f x g x f x g x →? →? →? =?; (乘积的极限等于极限的乘积) ⑷ lim ()()lim lim ()0()lim () x x x x f x f x g x g x g x →? →?→?→? ??=≠???? ; (商的极限等于极限的商) ⑸ 若()()f x g x ≤,则lim ()lim ()x x f x g x →? →? ≤; (极限运算的单调性) ⑹ 若()()()f x h x g x ≤≤,且lim ()lim ()x x f x g x C →? →? ==,则也有极限lim ()x h x C →? =. (夹挤规则) 根据夹挤规则,若lim ()0x f x →? =,且)(x g 在极限过程?→x 中是有界变量(())g x B ≤, 则应直接写成 lim[()()]0x f x g x →? = 因为 0()()()0()f x g x B f x x ≤≤→→?且lim ()()0lim[()()]0x x f x g x f x g x →? →? =??= 而不能写成 []lim ()()lim ()lim ()0x x x f x g x f x g x →? →? →? =?=[逻辑错误!] 例如函数1sin y x x =(图1-15),应当直接写成 01 lim sin 0x x x →=(因为1sin 1x ≤) 而不能写成 00011 lim sin lim limsin 0x x x x x x x →→→=?= 因为不存在极限01 limsin x x →(图1-10). 例3 设有多项式 2012()(0)n n n P x a a x a x a x a =+++ +≠ 则 2012lim ()lim lim()lim()lim()n n x c x c x c x c x c P x a a x a x a x →→→→→=+++ + 2012(lim )(lim )(lim )n n x c x c x c a a x a x a x →→→=+++ +

高中数学必修一基本初等函数练习题及答案

高中数学必修一第二章基本初等函数试题 一、选择题: 1 、若()f x =(3)f =() A 、2 B 、4 C 、、10 2、对于函数()y f x =,以下说法正确的有() ①y 是x 的函数;②对于不同的,x y 的值也不同;③()f a 表示当x a =时函数()f x 的值,是一个常量;④()f x 一定可以用一个具体的式子表示出来。 A 、1个B 、2个C 、3个D 、4个 3、下列各组函数是同一函数的是() ①()f x = ()g x =()f x x = 与2 ()g x =;③0 ()f x x =与0 1()g x x = ;④2()21f x x x =--与2()21g t t t =--。 A 、①②B 、①③C 、③④D 、①④ 4、二次函数245y x mx =-+的对称轴为2x =-,则当1x =时,y 的值为() A 、7-B 、1 C 、17D 、25 5 、函数y =的值域为() A 、[]0,2B 、[]0,4C 、(],4-∞D 、[)0,+∞ 6、下列四个图像中,是函数图像的是() A 、(1) B 、(1)、(3)、 (4)C 、(1)、 (2)、(3)D 、(3)、(4) 7、若:f A B →能构成映射,下列说法正确的有() (1) (2) (3) (4)

(1)A 中的任一元素在B 中必须有像且唯一;(2)B 中的多个元素可以在A 中有相同的原像;(3)B 中的元素可以在A 中无原像;(4)像的集合就是集合B 。 A 、4个B 、3个C 、2个D 、1个 8、)(x f 是定义在R 上的奇函数,下列结论中,不正确...的是() A 、()()0f x f x -+=B 、()()2()f x f x f x --=-C 、()()0f x f x -g ≤D 、 () 1() f x f x =-- 9、如果函数2()2(1)2f x x a x =+-+在区间(],4-∞上是减少的,那么实数a 的取值范围是() A 、3a -≤B 、3a -≥C 、a ≤5D 、a ≥5 10、设函数()(21)f x a x b =-+是R 上的减函数,则有() A 、12a > B 、12a < C 、12a ≥ D 、12 a ≤ 11、定义在R 上的函数()f x 对任意两个不相等实数,a b ,总有()() 0f a f b a b ->-成立,则必有() A 、函数()f x 是先增加后减少 B 、函数()f x 是先减少后增加 C 、()f x 在R 上是增函数 D 、()f x 在R 上是减函数 12、下列所给4个图象中,与所给3件事吻合最好的顺序为() (1)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学; (2)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间; (3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速。 A 、(1)(2)(4) B 、(4)(2)(3) C 、(4) (1)(3)D 、(4)(1)(2) 二、填空题: 13、已知(0)1,()(1)()f f n nf n n N +==-∈,则(4)f =。 14、将二次函数22y x =-的顶点移到(3,2)-后,得到的函数的解析式为。 (1) (2) (3) (4) 间

相关主题
文本预览
相关文档 最新文档