当前位置:文档之家› 2020年高考数学(理)总复习:基本初等函数性质及应用(解析版)

2020年高考数学(理)总复习:基本初等函数性质及应用(解析版)

2020年高考数学(理)总复习:基本初等函数性质及应用(解析版)
2020年高考数学(理)总复习:基本初等函数性质及应用(解析版)

2020年高考数学(理)总复习:基本初等函数性质及应用

题型一 求函数值 【题型要点解析】

已知函数的解析式,求函数值,常用代入法,代入时,一定要注意函数的对应法则与自变量取值范围的对应关系,有时要借助函数性质与运算性质进行转化.

例1.若函数f (x )=a |2x -

4|(a >0,且a ≠1),满足f (1)=19,则f (x )的单调递减区间是( )

A .(-∞,2]

B .[2,+∞)

C .[-2,+∞)

D .(-∞,-2]

【解析】 由f (1)=19,得a 2=19,解得a =13或a =-13(舍去),即f (x )=4

23

1-??

?

??x 由于y

=|2x -4|在(-∞,2]上递减,在[2,+∞)上递增,所以f (x )在(-∞,2]上递增,在[2,+∞)上递减.

【答案】 B

例2.已知函数f (x )=???

3x 2+ln 1+x 2+x ,x ≥0,3x 2+ln 1+x 2-x ,x <0,

若f (x -1)

围为________.

【解析】 若x >0,则-x <0,f (-x )=3(-x )2+ln (1+(-x )2+x )=3x 2+ln (1+x 2+x )=f (x ),同理可得,x <0时,f (-x )=f (x ),且x =0时,f (0)=f (0),所以f (x )是偶函数.因为当x >0时,函数f (x )单调递增,所以不等式f (x -1)0,解得x >0或x <-2.

【答案】 (-∞,-2)∪(0,+∞)

例3.已知a >b >1,若log a b +log b a =5

2,a b =b a ,则a =________,b =________.

【解析】 ∵log a b +log b a =log a b +

1log a b =52,∴log a b =2或1

2

.∵a >b >1,∴log a b

2

,∴a =b 2.∵a b =b a ,∴(b 2)b =bb 2,即b 2b =bb 2.∴2b =b 2,∴b =2,a =4.

【答案】 4;2 题组训练一 求函数值

1.已知函数f (x )是定义在R 上的偶函数,且在区间[0,+∞)单调递增.若实数a 满足f (log 2 a )+f (log 1

2

a )≤2f (1),则a 的最小值是( )

A.3

2 B .1

C.1

2

D .2

【解析】 log 12a =-log 2a ,f (log 2 a )+f (log 1

2 a )≤2f (1),所以2f (log 2 a )≤2f (1),所以|log 2

a |≤1,解得12≤a ≤2,所以a 的最小值是1

2

,故选C.

【答案】 C

2.若函数f (x )=a x -

2-2a (a >0,a ≠1)的图象恒过定点??

? ?

?

31,0x ,则函数f (x )在[0,3]上的最

小值等于________.

【解析】令x -2=0得x =2,且f (2)=1-2a ,所以函数f (x )的图象恒过定点(2,1-2a ),因此x 0=2,a =1

3,于是f (x )=????13x -2-23,f (x )在R 上单调递减,故函数f (x )在[0,3]上的最小值为f (3)=-13

.

【答案】 -1

3

题型二 比较函数值大小 【题型要点解析】

三招破解指数、对数、幂函数值的大小比较问题

(1)底数相同,指数不同的幂用指数函数的单调性进行比较; (2)底数相同,真数不同的对数值用对数函数的单调性比较;

(3)底数不同、指数也不同,或底数不同、真数也不同的两个数,常引入中间量或结合图

象比较大小.

例1.已知a =3

421-?

?? ??,b =5

241-??? ??,c =3

1251-??

?

??,则( ) A .a

D .b

【解析】 因为a =3

4

21-??? ??=243,b =5

241-??? ??=245,c =3

1251-??

? ??=523,显然有b

3

=c ,故b

例2.已知a =π3,b =3π,c =e π,则a 、b 、c 的大小关系为( ) A .a >b >c B .a >c >b C .b >c >a

D .b >a >c

【解析】 ∵a =π3,b =3π,c =e π,∴函数y =x π是R 上的增函数,且3>e>1,∴3π>e π,即b >c >1;设f (x )=x 3-3x ,则f (3)=0,∴x =3是f (x )的零点,∵f ′(x )=3x 2-3x ·ln 3,∴f ′(3)=27-27ln 3<0,f ′(4)=48-81ln 3<0,∴函数f (x )在(3,4)上是单调减函数,∴f (π)a >c .故选D.

【答案】 D

题组训练二 比较函数值大小 1.若a >b >1,0

D .log a c

【解析】 对A :由于0b >1?a c >b c ,A 错误;对B :由于-1

-1

在(1,+∞)上单调递减,又∴a >b >1,∴a c -

1

-1

?ba c

ln c

b ln b

和ln c

a ln a,只需

b ln b和a ln a;构造函数f(x)=x ln x(x>1),则f′(x)=ln x+1>1>0,f(x)在(1,

+∞)上单调递增,因此f(a)>f(b)>0?a ln a>b ln b>0?1

a ln a<1

b ln b,又由0

ln c a ln a>ln c

b ln b?b log a c>a log b c,C正确;对D:要比较log a c和log b c,只需比较ln c

ln a和ln c

ln b,而函

数y=ln x在(1,+∞)上单调递增,故a>b>1?ln a>ln b>0?1

ln a<

1

ln b,又由0

∴ln c

ln a>

ln c

ln b?log a c>log b c,D错误.故选C.

【答案】C

2.设函数f(x)=e x+2x-4,g(x)=ln x+2x2-5,若实数a,b分别是f(x),g(x)的零点,

则()

A.g(a)<0

C.0

【解析】依题意,f(0)=-3<0,f(1)=e-2>0,且函数f(x)是增函数,因此函数f(x)的零点在区间(0,1)内,即00,函数g(x)的零点在区间(1,2)内,即1f(1)>0.又函数g(x)在(0,1)内是增函数,因此有g(a)

【答案】A

题型三求参数的取值范围

【题型要点解析】

利用指、对数函数的图象与性质可以求解的两类热点问题及其注意点

(1)对一些可通过平移、对称变换作出其图象的对数型函数,在求解其单调性(单调区间)、值域(最值)、零点时、常利用数形结合思想求解.

(2)一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解.

(3)注意点:利用对数函数图象求解对数型函数性质及对数方程、不等式问题时切记图象的范围、形状一定要准确,否则数形结合时将误解.对于含参数的指数、指数问题,在应用单调性时,要注意对底数进行讨论.解决对数问题时,首先要考虑定义域,其次再利用性质求解.

例1.已知f (x )=?

????

(1-2a )x +3a ,x <1,

ln x ,x ≥1的值域为R ,那么a 的取值范围是( )

A .(-∞,-1]

B.??

? ?

?

-21,1

C.??

???

?-21,1

D.??

? ?

?21,0

【解析】 要使函数f (x )的值域为R ,需使?????

1-2a >0,

ln 1≤1-2a +3a ,∴??

???

a <1

2

,a ≥-1,

∴-1≤a

<1

2

.故选C. 【答案】 C

例2.设函数f (x )=?????

x +1,x ≤0,2x ,x >0,则满足f (x )+f ??

?

?

?

-

21x >1的x 的取值范围是________.

【解析】 由题意,当x >12时,f (x )+f ??? ??

-21x =2x +2x -12>1恒成立,即x >12满足题意;

当0

?

-21x =2x +x -12+1>1恒成立,即0

f (x )+f ??? ?

?-

21x =x +1+x -12+1>1,解得x >-14,即-14

??+∞,41 【答案】??

?

??+∞,41 题组训练三 求参数的取值范围

例1.若函数f (x )=?

????

-x +6,x ≤2,

3+log a x ,x >2

(a >0,且a ≠1)的值域是[4,+∞),则实数a 的取值范围是________.

【解析】 当x ≤2时,f (x )=-x +6,f (x )在(-∞,2]上为减函数,∴f (x )∈[4+∞).当x >2时,若a ∈(0,1),则f (x )=3+log a x 在(2,+∞)上为减函数,f (x )∈(-∞,3+log a 2),显

示不满足题意,∴a >1,此时f (x )在(2,+∞)上为增函数,f (x )∈(3+log a 2,+∞),由题意可知(3+log a 2,+∞)?[4,+∞),则3+log a 2≥4,即log a 2≥1,∴1

【答案】 (1,2]

例2.设函数

f (x )=???

x 2-2x +a ,x <1

2,4x

-3,x ≥1

2

的最小值为-1,则实数a 的取值范围是

________.

【解析】 当x ≥12时,4x -3为增函数,最小值为f ???

??21=-1,故当x <12时,x 2-2x +

a ≥-1.分离参数得a ≥-x 2+2x -1=-(x -1)2,函数y =-(x -1)2开口向下,且对称轴为x

=1,故在??? ??∞-21,上单调递增,所以函数在x =12处有最大值,最大值为-2

21??

?

??-=-14,

即a ≥-1

4

.

【答案】??

?

???+∞-

,41 【专题训练】 一、选择题

1.定义在R 上的函数f (x )满足f (-x )=-f (x ),f (x -2)=f (x +2),且x ∈(-1,0)时,f (x )=2x +1

5

,则f (log 220)等于( )

A .1

B.4

5 C .-1

D .-45

【解析】 由f (x -2)=f (x +2),得f (x )=f (x +4),因为4

5

)=-1.

【答案】C

2.定义在R 上的偶函数f (x )满足:对任意的x 1,x 2∈(-∞,0)(x 1≠x 2),都有

f (x 1)-f (x 2)

x 1-x 2

<0,则下列结论正确的是( )

A .f (0.32)

B .f (log 25)

C .f (log 25)

D .f (0.32)

【解析】 ∵对任意的x 1,x 2∈(-∞,0), 且x 1≠x 2,都有f (x 1)-f (x 2)

x 1-x 2<0,

∴f (x )在(-∞,0)上是减函数. 又∵f (x )是R 上的偶函数, ∴f (x )在(0,+∞)上是增函数. ∵0<0.32<20.3

∴f (0.32)

3.已知f (x )是奇函数,且f (2-x )=f (x ),当x ∈[2,3]时,f (x )=log 2(x -1),则f ??

? ??31等于( )

A .2-log 23

B .log 23-log 27

C .log 27-log 23

D .log 23-2

【解析】 因为f (x )是奇函数,且f (2-x )=f (x ),所以f (x -2)=-f (x ),所以f (x -4)=f (x ),

所以f ??

?

??31=f ??? ?

?-312=f ??

? ??35

=-f ??? ?

?-354=-f ??

? ??37.

又当x ∈[2,3]时,f (x )=log 2(x -1),

所以f ??? ??37=log 2??

?

??-137=log 243=2-log 23, 所以f ??

? ??31=log 23-2,故选D.

【答案】 D

4.已知函数y =f (x )是R 上的偶函数,设a =ln 1

π,b =(ln π)2,c =ln π,当对任意的

x 1,x 2∈(0,+∞)时,都有(x 1-x 2)·[f (x 1)-f (x 2)]<0,则( )

A .f (a )>f (b )>f (c )

B .f (b )>f (a )>f (c )

C .f (c )>f (b )>f (a )

D .f (c )>f (a )>f (b )

【解析】 由(x 1-x 2)[f (x 1)-f (x 2)]<0可知,

f (x 1)-f (x 2)

(x 1-x 2)

<0,所以y =f (x )在(0,+∞)上单调递减.又因为函数y =f (x )是R 上的偶函

数,所以y =f (x )在(-∞,0)上单调递增,由于a =ln 1

π=-ln π<-1,b =(ln π)2,c =ln π

=1

2

ln π,所以|b |>|a |>|c |,因此f (c )>f (a )>f (b ),故选D. 【答案】 D

5.已知函数y =f (x )的图象关于y 轴对称,且当x ∈(-∞,0)时,f (x )+xf ′(x )<0成立,a =(20.2)·f (20.2),b =(log π3)·f (log π3),c =(log 39)·f (log 39),则a ,b ,c 的大小关系是( )

A .b >a >c

B .c >a >b

C .c >b >a

D .a >c >b 【解析】 因为函数y =f (x )关于y 轴对称,所以函数y =xf (x )为奇函数.因为[xf (x )]′=f (x )+xf ′(x ),且当x ∈(-∞,0)时,[xf (x )]′=f (x )+xf ′(x )<0,则函数y =xf (x )在(-∞,0)上单调递减;因为y =xf (x )为奇函数,所以当x ∈(0,+∞)时,函数y =xf (x )单调递减.因为1<20.2<2,0a >c ,选A.

【答案】 A

6.设a =0.23,b =log 0.30.2,c =log 30.2,则a ,b ,c 大小关系正确的是( ) A .a >b >c B .b >a >c C .b >c >a

D .c >b >a

【解析】 根据指数函数和对数函数的增减性知,因为0log 0.30.3=1,c =log 30.2a >c ,故选B.

【答案】B

7.对任意实数a ,b 定义运算“Δ”:aΔb =?????

a ,a -

b ≤2,b ,a -b >2,

设f (x )=3x +

1Δ(1-x ),若函

数f (x )与函数g (x )=x 2-6x 在区间(m ,m +1)上均为减函数,则实数m 的取值范围是( )

A .[-1,2]

B .(0,3]

C .[0,2]

D .[1,3]

【解析】 由题意得f (x )=?

????

-x +1,x >0,

3x +1,x ≤0,

∴函数f (x )在(0,+∞)上单调递减,函数g (x )=(x -3)2-9在(-∞,3]上单调递减,若

函数f (x )与g (x )在区间(m ,m +1)上均为减函数,则?

????

m ≥0,

m +1≤3,得0≤m ≤2,故选C.

【答案】 C

8.已知函数f (x )=a |log 2 x |+1(a ≠0),定义函数F (x )=?

???

?

f (x ),x >0,f (-x ),x <0,给出下列命题:

①F (x )=|f (x )|;②函数F (x )是偶函数;③当a <0时,若00时,函数y =F (x )-2有4个零点.其中正确命题的个数为( )

A .0

B .1

C .2

D .3

【解析】 ①∵函数f (x )=a |log 2x |+1(a ≠0),定义函数F (x )=?

????

f (x ),x >0

f (-x ),x <0,∴|f (x )|=

|a |log 2x |+1|,∴F (x )≠|f (x )|,①不对;

②∵F (-x )=?

????

f (-x ),x <0

f (x ),x >0=F (x ),∴函数F (x )是偶函数,故②正确;

③∵当a <0时,若0|log 2n |,∴a |log 2m |+1

④∵f (x )=a |log 2x |+1(a ≠0),定义函数F (x )=?

????

f (x ),x >0,

f (-x ),x <0,

∴x >0时,(0,1)单调递减,(1,+∞)单调递增, ∴x >0时,F (x )的最小值为F (1)=1, 故x >0时,F (x )与y =-2有2个交点,

∵函数F (x )是偶函数,∴x <0时,F (x )与y =-2有2个交点,故当a >0时,函数y =F (x )-2有4个零点,所以④正确.

【答案】D 二、填空题

1.已知奇函数f (x )在R 上是增函数,g (x )=xf (x ).若a =g (-log 25.1),b =g (20.8),c =g (3),则a ,b ,c 的大小关系为____________.

【解析】 依题意a =g (-log 25.1) =(-log 25.1)·f (-log 25.1) =log 25.1f (log 25.1)=g (log 25.1).

因为f (x )在R 上是增函数,可设0<x 1<x 2,则f (x 1)<f (x 2). 从而x 1f (x 2)<x 2f (x 2),即g (x 1)<g (x 2). 所以g (x )在(0,+∞)上亦为增函数.

又log 25.1>0,20.8>0,3>0,且log 25.1<log 28=3,20.8<21<3,而20.8<21=log 24<log 25.1,所以3>log 25.1>20.8>0,所以c >a >b .

【答案】 b

2.已知函数f (x )=?

????

2x ,x ≤1

ln (x -1),1

范围是________.

【解析】 设g (x )=5-mx ,则函

数g (x )的图象是过点(0,5)的直线.在同一坐标系内画出函数y =f (x )和g (x )=5-mx 的图象,如图所示.∵不等式f (x )≤5-mx 恒成立,∴函数y =f (x )图象不在函数g (x )=5-mx 的图象的上方.结合图象可得,①当m <0时不成立;②当m =0时成立;③当m >0时,需满足当x =2时,g (2)=5-2m ≥0,解得0

2.∴实数m 的取值范围

是???

?0,5

2. 3.已知函数f (x )=?

????

x ln (1+x )+x 2,x ≥0-x ln (1-x )+x 2,x <0,若f (-a )+f (a )≤2f (1),则实数a 的取值范围是( )

A .(-∞,-1]∪[1,+∞)

B .[-1,0]

C .[0,1]

D .[-1,1]

【解析】 函数f (x )=?

????

x ln (1+x )+x 2,x ≥0-x ln (1-x )+x 2,x <0,

将x 换为-x ,函数值不变,即有f (x )图象关于y 轴对称,即f (x )为偶函数,有f (-x )=f (x ),当x ≥0时,f (x )=x ln(1+x )+x 2的导数为f ′(x )=ln (1+x )+

x

1+x

+2x ≥0,则f (x )在[0,+∞)递增,f (-a )+f (a )≤2f (1),即为2f (a )≤2f (1),可得f (|a |))≤f (1),可得|a |≤1,解得-1≤a ≤1.

【答案】 D

4.已知函数f (x )=?????

(3a -1)x -4a ,(x <1),

log a

x , (x ≥1)在R 上不是单调函数,则实数a 的取值范

围是________.

【解析】 当函数f (x )在R 上为减函数时,有3a -1<0且0

3,当函数f (x )在R 上为增函数时,有3a -1>0且a >1且(3a -1)·1+4a ≤log a 1,a

无解.

∴当函数f (x )在R 上为单调函数时,有17≤a <1

3,∴当函数f (x )在R 上不是单调函数时,

有a >0且a ≠1且a <17或a ≥13即0

3

≤a <1或a >1.

5.定义函数y =f (x ),x ∈I ,若存在常数M ,对于任意x 1∈I ,存在唯一的x 2∈I ,使得f (x 1)+f (x 2)

2=M ,则称函数f (x )在I 上的“均值”为M ,已知f (x )=log 2x ,x ∈[1,22 016],则函数f (x )=log 2x 在[1,22 016]上的“均值”为 ________.

【解析】 根据定义,函数y =f (x ),x ∈I ,若存在常数M ,对于任意x 1∈I ,存在唯一的x 2∈I ,使得f (x 1)+f (x 2)

2=M ,则称函数f (x )在I 上的“均值”为M ,令x 1x 2=1·22 016=22 016,

x 1∈[1,22 016]时,选定x 2=22 016x 1∈[1,22 016],可得M =12

log 2(x 1x 2)=1 008.

【答案】 1 008

高中数学基本初等函数知识点梳理

第二章 基本初等函数(Ⅰ) 〖2.1〗指数函数 【2.1.1】指数与指数幂的运算 (1)根式的概念 ①如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇 数时,a 的n n 是偶数时,正数a 的正的n 表示,负的n 次方根用符号0的n 次方根是0;负数a 没有n 次方根. n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥. ③根式的性质:n a =;当n 为奇数时, a =;当n 为偶数时, (0) || (0) a a a a a ≥?==? -∈且1)n >.0的正分 数指数幂等于0. ②正数的负分数指数幂的意义是: 1()0,,,m m n n a a m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数. (3)分数指数幂的运算性质 ①(0,,)r s r s a a a a r s R +?=>∈ ②()(0,,)r s rs a a a r s R =>∈ ③()(0,0,)r r r ab a b a b r R =>>∈

【2.1.2】指数函数及其性质(4)指数函数

〖2.2〗对数函数 【2.2.1】对数与对数运算 (1)对数的定义 ①若(0,1)x a N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫 做底数,N 叫做真数. ②负数和零没有对数. ③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =?=>≠>. (2)几个重要的对数恒等式:log 10a =,log 1a a =,log b a a b =. (3)常用对数与自然对数 常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…). (4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么 ①加法:log log log ()a a a M N MN += ②减法:log log log a a a M M N N -= ③数乘:log log ()n a a n M M n R =∈ ④log a N a N = ⑤log log (0,)b n a a n M M b n R b = ≠∈ ⑥换底公式:log log (0,1)log b a b N N b b a = >≠且

高中数学三角函数公式大全全解

三角函数公式 1.正弦定理: A a sin = B b sin =C c sin = 2R (R 为三角形外接圆半径) 2.余弦定理:a 2=b 2+c 2-2bc A cos b 2=a 2+c 2-2ac B cos c 2=a 2+b 2-2ab C cos bc a c b A 2cos 2 22-+= 3.S ⊿= 21a a h ?=21ab C sin =21bc A sin =21ac B sin =R abc 4=2R 2A sin B sin C sin =A C B a sin 2sin sin 2=B C A b sin 2sin sin 2=C B A c sin 2sin sin 2=pr=))()((c p b p a p p --- (其中)(2 1 c b a p ++=, r 为三角形内切圆半径) 4.诱导公试 注:奇变偶不变,符号看象限。 注:三角函数值等于α的同名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名不变,符号看象限 注:三角函数值等于α的 异名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:

函数名改变,符号看象限 5.和差角公式 ①βαβαβαsin cos cos sin )sin(±=± ②βαβαβαsin sin cos cos )cos( =± ③β αβ αβαtg tg tg tg tg ?±= ± 1)( ④)1)((βαβαβαtg tg tg tg tg ?±=± 6.二倍角公式:(含万能公式) ①θ θ θθθ2 12cos sin 22sin tg tg += = ②θ θ θθθθθ2 22 2 2 2 11sin 211cos 2sin cos 2cos tg tg +-=-=-=-= ③θθθ2122tg tg tg -= ④22cos 11sin 222θθθθ-=+=tg tg ⑤22cos 1cos 2 θθ+= 7.半角公式:(符号的选择由 2 θ 所在的象限确定) ①2cos 12 sin θθ -± = ②2 cos 12sin 2θ θ-= ③2cos 12cos θθ+±= ④2cos 12 cos 2 θθ += ⑤2sin 2cos 12θθ=- ⑥2 cos 2cos 12θθ=+ ⑦2 sin 2 cos )2 sin 2 (cos sin 12θ θθθθ±=±=± ⑧θ θ θθθθθ sin cos 1cos 1sin cos 1cos 12 -=+=+-± =tg 8.积化和差公式: [])sin()sin(21cos sin βαβαβα-++=[] )sin()sin(21 sin cos βαβαβα--+=[])cos()cos(21cos cos βαβαβα-++= ()[]βαβαβα--+-=cos )cos(2 1 sin sin 9.和差化积公式:

6类基本初等函数的图形及性质(考研数学基础)_完美版

基本初等函数及图形 (1) 常值函数(也称常数函数) y =c (其中c 为常数) (2) 幂函数 μ x y =,μ是常数; (3) 指数函数 x a y = (a 是常数且01a a >≠,),),(+∞-∞∈x ; (4) 对数函数 x y a log =(a 是常数且01a a >≠,),(0,)x ∈+∞; 1. 当u 为正整数时,函数的定义域为区间) ,(+∞-∞∈x ,他们的图形都经过原点,并当 u>1时在原点处与X 轴相切。且u 为奇数时,图形关于原点对称;u 为偶数时图形关于Y 轴对称; 2. 当u 为负整数时。函数的定义域为除去x=0的所有实数。 3. 当u 为正有理数m/n 时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞+∞)。函数的图形均经过原点和(1 ,1). 如果m>n 图形于x 轴相切,如果m1时函数为单调增,当a<1时函数为单调减. 2. 不论x 为何值,y 总是正的,图形在x 轴上方. 3. 当x=0时,y=1,所以他的图形通过(0,1)点. 1. 他的图形为于y 轴的右方.并通过点(1,0) 2. 当a>1时在区间(0,1),y 的值为负.图形位于x 的下方, 在区间(1, +∞),y 值为正,图形位于x 轴上方.在定义域是单调增函数. a<1在实用中很少用到/

正弦函数 x y sin =,),(+∞-∞∈x ,]1,1[-∈y , 余弦函数 x y cos =,),(+∞-∞∈x ,]1,1[-∈y , 正切函数 x y tan =, 2π π+ ≠k x ,k Z ∈,),(+∞-∞∈y , 余切函数 x y cot =,πk x ≠,k Z ∈,),(+∞-∞∈y ;

2021届高考数学核按钮【新高考广东版】3.1 函数的概念及其表示

第三章函数的概念与基本初等函数Ⅰ 1.函数的概念与性质 (1)了解构成函数的要素,能求简单函数的定义域和值域. (2)在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数. (3)了解简单的分段函数,并能简单应用. (4)理解函数的单调性、最大值、最小值及其几何意义;结合具体函数,了解奇偶性的含义. (5)会运用函数图象理解和研究函数的性质. 2.指数函数 (1)了解指数函数模型的实际背景. (2)理解有理指数幂的含义,了解实数指数幂的意义,掌握指数幂的运算性质. (3)理解指数函数的概念,理解指数函数的单调性,掌握指数函数图象通过的特殊点. (4)知道指数函数是一类重要的函数模型. 3.对数函数 (1)理解对数的概念和运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用. (2)了解对数函数的概念,了解对数函数的单调性,了解对数函数图象通过的特殊点. (3)知道对数函数是一类重要的函数模型. (4)知道指数函数y=a x与对数函数y=log a x互为反函数(a>0,且a≠1). 4.幂函数 (1)了解幂函数的概念. (2)结合函数y=x,y= 1 x,y=x2,y=x,y=x3的图象,理解它们的变化规律. 5.函数与方程 (1)结合二次函数的图象,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数. (2)结合具体连续函数及其图象的特点,能够用二分法求相应方程的近似解. 6.函数模型及其应用 (1)了解指数函数、对数函数以及幂函数的增长特征,知道“对数增长”“直线上升”“指数爆炸”等不同函数类型增长的含义. (2)了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用. 3.1函数的概念及其表示 1.函数的概念 一般地,设A,B是两个非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个________,记作y=f(x),x∈A,其中,x叫做,x的取值范围A叫做函数的;与x的值相对应的y值叫做,其集合{f(x)|x∈A}叫做函数的. 2.函数的表示方法 (1)解析法:就是用表示两个变量之间的对应关系的方法. (2)图象法:就是用表示两个变量之间的对应关系的方法. (3)列表法:就是来表示两个变量之间的对应关系的方法. 3.构成函数的三要素 (1)函数的三要素是:,, . (2)两个函数相等:如果两个函数的相同,并且完全一致,则称这两个函数相等. 4.分段函数 若函数在定义域的不同子集上的对应关系也不同,这种形式的函数叫做分段函数,它是一类重要的函数. 5.补充几个常用概念

高中数学必修1第二章基本初等函数测试题(含答案)人教版

《基本初等函数》检测题 一.选择题.(每小题5分,共50分) 1.若0m >,0n >,0a >且1a ≠,则下列等式中正确的是 ( ) A .()m n m n a a += B .1 1m m a a = C .log log log ()a a a m n m n ÷=- D 43 ()mn = 2.函数log (32)2a y x =-+的图象必过定点 ( ) A .(1,2) B .(2,2) C .(2,3) D .2 (,2)3 3.已知幂函数()y f x =的图象过点,则(4)f 的值为 ( ) A .1 B . 2 C .12 D .8 4.若(0,1)x ∈,则下列结论正确的是 ( ) A .12 2lg x x x >> B .12 2lg x x x >> C .12 2lg x x x >> D .12 lg 2x x x >> 5.函数(2)log (5)x y x -=-的定义域是 ( ) A . (3,4) B .(2,5) C .(2,3)(3,5) D .(,2)(5,)-∞+∞ 6.某商品价格前两年每年提高10%,后两年每年降低10%,则四年 后的价格与原来价格比较,变化的情况是 ( )

A .减少1.99% B .增加1.99% C .减少4% D .不增不减 7.若1005,102a b ==,则2a b += ( ) A .0 B .1 C .2 D .3 8. 函数()lg(101)2 x x f x =+-是 ( ) A .奇函数 B .偶函数 C .既奇且偶函数 D .非奇非偶函数 9.函数2log (2)(01)a y x x a =-<<的单调递增区间是 ( ) A .(1,)+∞ B .(2,)+∞ C .(,1)-∞ D .(,0)-∞ 10.若2log (2)y ax =- (0a >且1a ≠)在[0,1]上是x 的减函数,则a 的取值范围是 ( ) A .(0,1) B .(0,2) C .(1,2) D .[2,)+∞ 二.填空题.(每小题5分,共25分) 11.计算:459log 27log 8log 625??= . 12.已知函数3log (0)()2(0) x x x >f x x ?=?≤?, , ,则1[()]3 f f = . 13. 若 3())2 f x a x bx =++,且 (2) f =,则 (2f - = . 14.若函数()log (01)f x ax a =<<在区间[,2]a a 上的最大值是最小值的3

五大基本初等函数性质及其图像

五、基本初等函数及其性质和图形 1.幂函数 函数称为幂函数。如,, ,都是幂函数。没有统一的定义域,定义域由值确定。如 ,。但在内 总是有定义的,且都经过(1,1)点。当 时,函数在上是单调增加的,当时,函数在内是单调减少的。下面给出几个常用的幂函数: 的图形,如图1-1-2、图1-1-3。 图1-1-2

图1-1-3 2.指数函数 函数称为指数函数,定义域 ,值域;当时函数为单调增加 的;当时为单调减少的,曲线过点。高等 数学中常用的指数函数是时,即。以与 为例绘出图形,如图1-1-4。 图1-1-4 3.对数函数

函数称为对数函数,其定义域 ,值域。当时单调增加,当 时单调减少,曲线过(1,0)点,都在右半平面 内。与互为反函数。当时的对数 函数称为自然对数,当时,称为常用对数。以为例绘出图形,如图1-1-5。 图1-1-5 4.三角函数有 ,它们都是周期函 数。对三角函数作简要的叙述: (1)正弦函数与余弦函数:与定义域都是,值域都是。它们都是有界函数,周期都是,为奇函数,为偶函数。图形为图1-1-6、图1-1-7。

图1-1-6正弦函数图形 图1-1-7余弦函数图形 (2)正切函数,定义域,值 域为。周期,在其定义域内单调增加的奇函数,图形为图1-1-8 图1-1-8 (3)余切函数,定义域,值域为 ,周期。在定义域内是单调减少的奇函数,图形如图1-1-9。

图1-1-9 (4)正割函数,定义域,值域为,为无界函数,周期的偶函数,图形如图1-1-10。 图1-1-10 (5)余割函数,定义域,值域为 ,为无界函数,周期在定义域为奇函 数,图形如图1-1-11。

高中数学函数概念

函数 1、 函数的概念 定义:一般地,给定非空数集A,B,按照某个对应法则f ,使得A 中任一元素x ,都有B 中唯一确定的y 与之对应,那么从集合A 到集合B 的这个对应,叫做从集合A 到集合B 的一个函数。记作:x→y=f(x),x ∈A.集合A 叫做函数的定义域,记为D,集合{y ∣y=f(x),x ∈A}叫做值域,记为C 。定义域,值域,对应法则称为函数的三要素。一般书写为y=f(x),x ∈D.若省略定义域,则指使函数有意义的一切实数所组成的集合。 两个函数相同只需两个要素:定义域和对应法则。 已学函数的定义域和值域 一次函数b ax x f +=)()0(≠a :定义域R, 值域R; 二次函数 c bx ax x f ++=2 )() 0(≠a :定义域R ,值域:当 2、 函数图象 定义:对于一个函数y=f(x),如果把其中的自变量x 视为直角坐标系上的某一点的横坐标,把对应的唯一的函数值y 视为此点的纵坐标,那么,这个函数y=f(x),无论x 取何值,都同时确定了一个点,由于x 的取值范围是无穷大,同样y 也有无穷个,表示的点也就有无穷个。这些点在平面上组成的图形就是此函数的图象,简称图象。 常数函数f(x)=1 一次函数f(x)=-3x+1 二次函数f(x)=2x 2+3x+1 反比例函数f(x)=1/x 3、定义域的求法 已知函数的解析式,若未加特殊说明,则定义域是使解析式有意义的自变量的取值范围。一般有以下几种情况: 分式中的分母不为零; 偶次根式下的数或式大于等于零; 实际问题中的函数,其定义域由自变量的实际意义确定; 定义域一般用集合或区间表示。 4、值域的求法 ①观察法 通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。 例1求函数y=3+√(2-3x) 的值域。 ②反函数法 当函数的反函数存在时,则其反函数的定义域就是原函数的值域。 例2求函数y=(x+1)/(x+2)的值域。 练习:求函数y=(10x+10-x)/(10x -10-x)的值域。 ③配方法 当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域 例3:求函数y=√(-x 2+x+2)的值域。 练习:求函数y=2x -5+√15-4x 的值域. ④判别式法 若可化为关于某变量的二次方程的分式函数或无理函数,可用判别式法求函数的值域。 ⑤图象法 通过观察函数的图象,运用数形结合的方法得到函数的值域。 例4求函数y=∣x+1∣+√(x-2) 2的值域。 ⑥换元法 以新变量代替函数式中的某些量,使函数转化为以新变量为自变量的函数形式,进而求出值域。 例5求函数y=x-3+√2x+1 的值域。 练习:求函数y=√x-1 –x 的值域。 ⑦不等式法 例6求函数y=(2x-1)/(x+1) (1≤x ≤2) 的值域。 5、复合函数 设y=f(u ),u=g(x ),当x 在u=g(x )的定义域Dg 中变化时,u=g(x )的值在y=f(u )的定义域D f 内变化,因此变量x 与y 之间通过变量u 形成的一种函数关系,记为:y=f(u)=f[g(x)]称为复合函数,其中x 称为自变量,u 为中间变量,y 为因变量(即函数)。 6、函数的表示方法:列表法,解析法,图像法 7、分段函数:对于自变量x 的不同的取值范围,有着不同的对应法则,这样的函数通常叫做分段函数.它是一个函数,而不是几个函数:分段函数的定义域是各段函数定义域的并集,值域也是各段函数值域的并集. 分段函数经常使用图像法 8、函数解析式的求法 ①代入法 例1已知f(x)=x 2-1,求f(x+x 2) ②待定系数法 若已知函数为某种基本函数,可设出解析式的表达形式的一般式,再利用已知条件求出系数。 例2已知f(x)是一次函数,f(f(x))=4x+3,求f(x) ③换元法 ④特殊值法 例4已知函数)(x f 对于一切实数y x ,都有x y x y f y x f )12 ()()(++=-+成立,且0)1(=f 。 (1)求 )0(f 的值;(2)求)(x f 的解析式。 ⑤方程组法 1、求下列函数的定义域: 2、求下列函数的值域 3 函数? ?? ??>+-≤<+≤+=1,51 0,30 ,32x x x x x x y 的最大值是 。 4已知:x x x f 2)1(2 += +,求)(x f 。 6已知()3()26,f x f x x --=+求()f x .

高中数学必修1基本初等函数常考题型幂函数

幂函数 【知识梳理】 1.幂函数的概念 一般地,函数y=xα叫做幂函数.其中x是自变量,α是常数. 2.常见幂函数的图象与性质 (1)所有的幂函数在区间(0,+∞)上都有定义,并且图象都过点(1,1). (2)α>0时,幂函数的图象通过原点,并且在区间[0,+∞)上是增函数. 特别地,当α>1时,幂函数的图象下凸; 当0<α<1时,幂函数的图象上凸. (3)α<0时,幂函数的图象在区间(0,+∞)上是减函数.在第一象限内,当x从右边趋向原点时,图象在y轴右方无限地逼近y轴正半轴;当x趋于+∞时,图象在x轴上方无限地逼近x 轴正半轴. 【常考题型】 题型一、幂函数的概念 【例1】(1)下列函数:①y=x3;②y= 1 2 x ?? ? ?? ;③y=4x2;④y=x5+1;⑤y=(x-1)2; ⑥y=x;⑦y=a x(a>1).其中幂函数的个数为() A.1B.2

C .3 D .4 (2)已知幂函数y =( ) 22 23 1m m m m x ----,求此幂函数的解析式,并指出定义域. (1)[解析] ②⑦为指数函数,③中系数不是1,④中解析式为多项式,⑤中底数不是自变量本身,所以只有①⑥是幂函数,故选B. [答案] B (2)[解] ∵y =() 2 223 1m m m m x ----为幂函数, ∴m 2-m -1=1,解得m =2或m =-1. 当m =2时,m 2-2m -3=-3,则y =x - 3,且有x≠0; 当m =-1时,m 2-2m -3=0,则y =x 0,且有x≠0. 故所求幂函数的解析式为y =x - 3,{x|x≠0}或y =x 0,{x|x≠0}. 【类题通法】 判断一个函数是否为幂函数的方法 判断一个函数是否为幂函数的依据是该函数是否为y =x α (α为常数)的形式,即函数的解析式为一个幂的形式,且需满足:(1)指数为常数;(2)底数为自变量;(3)系数为1.反之,若一个函数为幂函数,则该函数应具备这一形式,这是我们解决某些问题的隐含条件. 【对点训练】 函数f(x)=( ) 22 3 1m m m m x +---是幂函数,且当x ∈(0,+∞)时,f(x)是增函数,求f(x)的 解析式. 解:根据幂函数的定义得 m 2-m -1=1.解得m =2或m =-1. 当m =2时,f(x)=x 3在(0,+∞)上是增函数; 当m =-1时,f(x)=x -3 在(0,+∞)上是减函数,不符合要求. 故f(x)=x 3. 题型二、幂函数的图象 【例2】 (1)如图,图中曲线是幂函数y =x α 在第一象限的大致图象,已知α取-2,-12,1 2,2四个值,则相应于曲线C 1,C 2,C 3,C 4 的α的值依次为( ) A .-2,-12,1 2 ,2 B .2,12,-1 2 ,-2

基本初等函数图像及性质大全

一、一次函数与二次函数 (一)一次函数 (1)二次函数解析式的三种形式 ①一般式:2 ()(0)f x ax bx c a =++≠ ②顶点式:2 ()()(0)f x a x h k a =-+≠ ③两根式:12()()()(0)f x a x x x x a =--≠ (2)求二次函数解析式的方法 ①已知三个点坐标时,宜用一般式. ②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便. (3)二次函数图象的性质

①.二次函数2 ()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2x a =- 顶点坐标是2 4(,)24b ac b a a -- ②当0a >时,抛物线开口向上,函数在(,]2b a -∞- 上递减,在[,)2b a -+∞上递增,当2b x a =-时,2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2b a -∞-上递 增,在[,)2b a -+∞上递减,当2b x a =- 时,2max 4()4ac b f x a -=. 二、幂函数 (1)幂函数的定义 一般地,函数y x α =叫做幂函数,其中x 为自变量,α是常数. (2)幂函数的图象

过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1). 三、指数函数 (1)根式的概念:如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根. (2)分数指数幂的概念 ①正数的正分数指数幂的意义是:0,,,m n a a m n N +=>∈且1)n >.0的正分数 指数幂等于0. ②正数的负分数指数幂的意义是: 1()0,,,m m n n a a m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. (3)运算性质

高考理科数学专题二 函数概念与基本初等函数 第三讲函数的概念和性质

专题二 函数概念与基本初等函数Ⅰ 第三讲 函数的概念和性质 一、选择题 1.(2018全国卷Ⅱ)函数2 ()--=x x e e f x x 的图像大致为 2.(2018全国卷Ⅲ)函数4 2 2y x x =-++的图像大致为 3.(2018浙江)函数|| 2sin 2x y x =的图象可能是

A . B . C . D . 4.(2018全国卷Ⅱ)已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)-=+f x f x . 若(1)2=f ,则(1)(2)(3)(50)++++=…f f f f A .50- B .0 C .2 D .50 5.(2017新课标Ⅰ)函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(1)1f =-,则满足1(2)1f x --≤≤ 的x 的取值范围是 A . B . C . D . 6.(2017浙江)若函数2 ()f x x ax b =++在区间[0,1]上的最大值是M ,最小值是m ,则M m - A .与a 有关,且与b 有关 B .与a 有关,但与b 无关 C .与a 无关,且与b 无关 D .与a 无关,但与b 有关 7.(2017天津)已知奇函数()f x 在R 上是增函数,()()g x xf x =.若2(log 5.1)a g =-,0.8(2)b g =,(3)c g =, 则a ,b ,c 的大小关系为 A .a b c << B .c b a << C .b a c << D .b c a << 8.(2017北京)已知函数1()3()3 x x f x =-,则()f x A .是奇函数,且在R 上是增函数 B .是偶函数,且在R 上是增函数 C .是奇函数,且在R 上是减函数 D .是偶函数,且在R 上是减函数 9.(2016山东)已知函数f (x )的定义域为R .当x <0时,3 ()1f x x =- ;当11x -≤≤ 时, ()()f x f x -=-;当12x > 时,11 ()()22 f x f x +=-,则f (6)=

2020年高考理科数学原创专题卷:《基本初等函数》

原创理科数学专题卷 专题 基本初等函数 考点07:指数与指数函数(1—3题,8—10题,13,14题,17-19题) 考点08:对数与对数函数(4—7题,8—10题,15题,17题,20-22题) 考点09:二次函数与幂函数(11,12题,16题) 考试时间:120分钟 满分:150分 说明:请将选择题正确答案填写在答题卡上,主观题写在答题纸上 第I 卷(选择题) 一、选择题(本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是最符合题目要求的。) 1.【来源】2017届黑龙江虎林一中高三期中 考点07 易 函数 2212x x y -+??= ? ?? 的值域是( ) A.R B.1,2??+∞???? C.()2,+∞ D.()0,+∞ 2. 【来源】2017届黑龙江虎林一中高三期中 考点07 中难 设函数 ()1221,0,0 x x f x x x -?-≤? =??>? 如果 ()01f x >,则0x 的取值范围是( ) A. () 1,1- B. ()() 1,01,-+∞U C. ()(),11,-∞-+∞U D.()(),10,1-∞-U 3.【2017课标1,理11】 考点07 难 设x 、y 、z 为正数,且235x y z ==,则( ) A .2x <3y <5z B .5z <2x <3y C .3y <5z <2x D .3y <2x <5z 4.【来源】2016-2017学年黑龙江虎林一中月考 考点08 易 已知函数()()3log 472a f x x =-+(0a >且1a ≠)过定点P ,则P 点坐标( ) A .()1,2 B .7 ,24?? ??? C.()2,2 D .()3,2 5.【来源】2016-2017学年河北定州中学周练考点08 易 若函数[)[]?? ???∈-∈=1,0,40,1,41)(x x x f x x )( ,则411log 33f f ??? ?=?? ?? ???( ) A.3 1 B.3 C.4 1 D.4

高考数学三角函数公式

高考数学三角函数公式 同角三角函数的基本关系式 倒数关系: 商的关系:平方关系: tanα·cotα=1 sinα·cscα=1 cosα·secα=1 sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα sin2α+cos2α=1 1+tan2α=sec2α 1+cot2α=csc2α (六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。”) 诱导公式(口诀:奇变偶不变,符号看象限。) sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα sin(2kπ+α)=sinα

(完整word版)六大基本初等函数图像与性质

六大基本初等函数图像及其性质一、常值函数(也称常数函数) y =C(其中C 为常数); α

1)当α为正整数时,函数的定义域为区间为),(+∞-∞∈x ,他们的图形都经过原点,并当α>1时在原点处与x 轴相切。且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称; 2)当α为负整数时。函数的定义域为除去x=0的所有实数; 3)当α为正有理数 n m 时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞,+∞),函数的图形均经过原点和(1 ,1); 4)如果m>n 图形于x 轴相切,如果ma ,1≠a ),定义域是R ; [无界函数] 1.指数函数的图象: 2. 1)当1>a 时函数为单调增,当10<

3.(选,补充)指数函数值的大小比较* N ∈a ; a.底数互为倒数的两个指数函数 x a x f =)(, x a x f ? ? ? ??=1)( 的函数图像关于y 轴对称。 b.1.当1>a 时,a 值越大,x a y = 的图像越靠近y 轴; b.2.当10<∈>=n Z n m a a a n m n m (2)) 1,,,0(1 1*>∈>= =- n Z n m a a a a n m n m n m y x f x x x x g ? ? ?=1)(

高中数学:函数的概念及其表示

高中数学:函数的概念及其表示 1.函数与映射的概念 2.函数的三要素 函数由________、________和对应关系三个要素构成,在函数y =f (x ),x ∈A 中,x 叫作自变量,x 的取值范围A 叫作函数的________;与x 的值相对应的y 值叫作函数值,函数值的集合{f (x )|x ∈A }叫作函数的________. 3. 函数的表示法 函数的常用表示方法有:________、________、________. 4.分段函数 若函数在其定义域内,对于定义域内的不同取值区间,有着不同的________,这样的函数通常叫作分段函数.分段函数虽由几个部分组成,但它表示的是一个函数. 常用结论 1.常见函数定义域: (1)分式函数中分母不等于0. (2)偶次根式函数的被开方式大于或等于0. (3)一次函数、二次函数的定义域为R . (4)y =a x (a >0且a ≠1),y =sin x ,y =cos x 的定义域均为R . (5)y =tan x 的定义域为???? ??xx ∈R 且x =k π+π 2,k ∈Z . 2.基本初等函数的值域: (1)y =kx +b (k ≠0)的值域是R . (2)y =ax 2 +bx +c (a ≠0)的值域是:当a >0时,值域为??? ?4ac -b 2 4a ,+∞;当a <0时,值 域为? ??? -∞,4ac -b 2 4a .

(3)y =k x (k ≠0)的值域是{y |y ≠0}. (4)y =a x (a >0且a ≠1)的值域是(0,+∞). (5)y =log a x (a >0且a ≠1)的值域是R . 题组一 常识题 1.[教材改编] 以下属于函数的有________.(填序号) ①y =±x ;②y 2=x -1;③y =x -2+1-x ; ④y =x 2-2(x ∈N ). 2.[教材改编] 已知函数f (x )=? ????ln x -2,x >0, x +a ,x ≤0,若f [f (e)]=2a ,则实数a =________. 3.[教材改编] 函数f (x )= 8-x x +3 的定义域是________. 题组二 常错题 ◆ 索引:函数概念理解不透彻;分段函数解不等式忘记范围;换元法求解析式,反解忽视范围;函数值域理解不透彻. 4.已知集合P ={x |0≤x ≤4},Q ={y |0≤y ≤2},下列从P 到Q 的各对应关系f 不是函数的是________. ①f :x →y =12x; ②f :x →y =1 3x ; ③f :x →y =2 3 x; ④f :x →y =x . 5.设函数f (x )=???(x +1)2 ,x <1, 4-x -1,x ≥1, 则使得f (x )≥1的自变量x 的取值范围为 ______________. 6.已知f (x )=x -1,则f (x )=________. 7.若一系列函数的解析式相同、值域相同,但其定义域不同,则称这些函数为“同族函数”,那么函数解析式为y =x 2,值域为{1,4}的“同族函数”共有________个. 题组三 常考题 8.[2015·重庆卷改编] 函数f (x )=lg(x 2+x -6)的定义域是________. 9.[2015·全国卷Ⅱ改编] 函数f (x )=? ????1+log 3(3-x ),x <1,x 2+2,x ≥1,则f (-6)+f (2)=________. 探究点一 函数的定义域 考向1 求给定函数解析式的定义域

2015高考数学(文)一轮方法测评练:2-方法强化练——函数与基本初等函数

方法强化练——函数与基本初等函数 (建议用时:75分钟) 一、填空题 1.(2014·珠海模拟)函数y =(x +1)0 2x +1的定义域为______. 解析 由??? x +1≠0,2x +1>0,得x ∈? ???? -12,+∞. 答案 ? ?? ?? -12,+∞ 2.(2013·金华十校联考)下列函数中既不是奇函数也不是偶函数的是________. ①y =2|x |;②y =lg(x +x 2+1);③y =2x +2-x ;④y =lg 1 x +1 . 解析 根据奇偶性的定义易知①、③为偶函数,②为奇函数,④的定义域为{x |x >-1},不关于原点对称. 答案 ④ 3.(2013·山东省实验中学诊断)已知幂函数f (x )的图象经过(9,3),则f (2)-f (1)=________. 解析 设幂函数为f (x )=x α,则f (9)=9α=3,即32α=3,所以2α=1,α=12,即f (x )= =x ,所以f (2)-f (1)=2-1. 答案 2-1 4.(2014·无锡调研)已知方程2x =10-x 的根x ∈(k ,k +1),k ∈Z ,则k =________. 解析 设f (x )=2x +x -10,则由f (2)=-4<0,f (3)=1>0,所以f (x )的零点在(2,3)内. 答案 2 5.(2014·天水调研)函数f (x )=(x +1)ln x 的零点有________个. 解析 函数的定义域为{x |x >0},由f (x )=(x +1)ln x =0得,x +1=0或ln x =0,即x =-1(舍去)或x =1,所以函数的零点只有一个. 答案 1 6.(2014·烟台月考)若a =log 20.9,b = ,c = ,则a 、b 、c 大小

高中数学三角函数公式大全

高中数学三角函数公式大全 三角函数看似很多,很复杂,而掌握三角函数的内部规律及本质也是学好三角函数的关键所在,下面是三角函数公式大全:操作方法 01 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) = (tanA+tanB)/(1-tanAtanB) tan(A-B) = (tanA-tanB)/(1+tanAtanB) cot(A+B) = (cotAcotB-1)/(cotB+cotA) cot(A-B) = (cotAcotB+1)/(cotB-cotA)

02 倍角公式 tan2A = 2tanA/(1-tan^2 A) Sin2A=2SinA?CosA Cos2A = Cos^2 A--Sin^2 A =2Cos^2 A—1 =1—2sin^2 A 三倍角公式 sin3A = 3sinA-4(sinA)^3; cos3A = 4(cosA)^3 -3cosA -a) tan3a = tan a ? tan(π/3+a)? tan(π/3 半角公式 --cosA)/2} sin(A/2) = √{(1 cos(A/2) = √{(1+cosA)/2} --cosA)/(1+cosA)} tan(A/2) = √{(1 cot(A/2) = √{(1+cosA)/(1 -cosA)} tan(A/2) = (1--cosA)/sinA=sinA/(1+cosA)

高中数学-基本初等函数图像及性质小结

基本初等函数 1?函数的五个要素:自变量,因变量,定义域,值域,对应法则 2.函数的四种特性:有界限,单调性,奇偶性,周期性复习的时候一定要从这四个方面去研究函数。 3.每个函数的图像很重要 O.幕函数(a为实数) 定义域:随a的不同而不同,但无论a取什么值,x A a在「’内总有定义值域:随a的不同而不同有界性: 单调性:若a>0,函数在;…内单调增加;若a<0,函数在人-内单调减少。 奇偶性: - 「要知道这些函数那 些事奇函数,那些是偶函数 周期性:

0.指数函数 八 定义域:.,■‘ I 有界性: 单调性: 若a>1函数单调增加;若0

O.对数函数"司唯口几3>0卫圧1) 1、定义域::? r值域:'」‘) 有界性: 单调性:a>1时,函数单调增加;0

?. 三角函数强调:图像 (―巩+ 正弦函数: j/ = sin 定义域: (-0D,十8) 有界性:[-1,1]有界函数 单调性:(-T/2,T/2)单调递增 奇偶性:奇函数 周期性:以心巧为周期的周期函数; 值域:[-1,1] 余弦函数:兀(一叫十 00) 定义域:I ■" 1值域:[-1,1] 有界性:[-1,1]有界函数 单调性: 奇偶性:偶函数 周期性:(腕)

高考文科数学专题练习三《基本初等函数》

专题三 基本初等函数 考点07:指数与指数函数(1—3题,8—10题,13,14题,17-19题) 考点08:对数与对数函数(4—7题,8—10题,15题,17题,20-22题) 考点09:二次函数与幂函数(11,12题,16题) 考试时间:120分钟 满分:150分 说明:请将选择题正确答案填写在答题卡上,主观题写在答题纸上 第I 卷(选择题) 一、选择题(本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是最符合题目要求的。) 1. 考点07 易 下列各式中成立的一项是( ) A. 7 1 77n n m m ??= ??? B. = ()34 x y =+ =2. 考点07 中难 函数1 1x y a -=+,(0a >且1a ≠)的图像必经过一个定点,则这个定点的坐标是( ) A. ()0,1 B.()1,2 C.()2,3 D.()3,4 3. 考点07 难 函数2 212x x y -??= ??? 的值域为( ) A. 1,2 ??+∞???? B. 1,2 ??-∞ ?? ?

C. 10,2 ?? ?? ? D. [)0,2 4. 考点08 易 已知函数|lg |,010,()16,10.2 x x f x x x <≤?? =?-+>??若,,a b c 互不相等,且()()(),f a f b f c ==则abc 的 取值范围是( ) A. (1,10) B. (5,6) C. (10,12) D. (20,24) 5.考点08 易 已知2log 0.3a =,0.12b =, 1.30.2c =,则,,a b c 的大小关系是( ) A. a b c << B.c a b << C. a c b << D. b c a << 6. 考点08中难 函数y = ) A .(0,8] B .(2,8]- C .(2,8] D .[8,)+∞ 7. 考点08中难 函数212 log (617)y x x =-+的值域是( ) A. R B. [8,)+∞ C. (,3)-∞- D. [)3,+∞ 8.考点07,考点08 易 函数()log (1)x a f x a x =++ (0a >且1a ≠)在[]0,1上的最大值与最小值之和为a ,则a 的值为( ) A. 12 B. 14

相关主题
文本预览
相关文档 最新文档