当前位置:文档之家› 高中数学-基本初等函数图像及性质小结

高中数学-基本初等函数图像及性质小结

高中数学-基本初等函数图像及性质小结
高中数学-基本初等函数图像及性质小结

基本初等函数

1?函数的五个要素:自变量,因变量,定义域,值域,对应法则

2.函数的四种特性:有界限,单调性,奇偶性,周期性复习的时候一定要从这四个方面去研究函数。

3.每个函数的图像很重要

O.幕函数(a为实数)

定义域:随a的不同而不同,但无论a取什么值,x A a在「’内总有定义值域:随a的不同而不同有界性:

单调性:若a>0,函数在;…内单调增加;若a<0,函数在人-内单调减少。

奇偶性: - 「要知道这些函数那

些事奇函数,那些是偶函数

周期性:

0.指数函数

定义域:.,■‘ I

有界性:

单调性:

若a>1函数单调增加;若0

奇偶性: 周期性:

、、亠

注意:

图形过(0, 1)点暨a A

0=1 直线y=0为函数图形的水平渐近线

今后」"用的较多 这个函数的图形,性质要记清楚

值域

1-16

O.对数函数"司唯口几3>0卫圧1)

1、定义域::? r值域:'」‘)

有界性:

单调性:a>1时,函数单调增加;0

奇偶性:

周期性:

主要性质:与指数函数互为反函数,图形过(1, 0)点,

直线x=0为函数图形的铅直渐近线

“丄「—- - e=2.7182……,无理数经常用到以e为底的对数

?. 三角函数强调:图像

(―巩+

正弦函数: j/ = sin

定义域:

(-0D,十8)

有界性:[-1,1]有界函数

单调性:(-T/2,T/2)单调递增

奇偶性:奇函数

周期性:以心巧为周期的周期函数;

值域:[-1,1]

余弦函数:兀(一叫十

00)

定义域:I ■" 1值域:[-1,1] 有界性:[-1,1]有界函数

单调性:

奇偶性:偶函数

周期性:(腕)

)11

y-^ln x

. o-八

■1

________ y = f 孚= ----

正切函数:CE

x = 0,±l±2. ■■■

定义域:值域: 有界性:

单调性:

奇偶性:奇函数

周期性:'

cos X

---------------y =税歹二-一

余切函数:泗工

定义域: ' …:有界性:值域:

单调性:

奇偶性:奇函数

周期性:二

y =esc x = -- ----

sin x

id

?-

I

V o.反三角函数

反正弦函数:厂吐沁&定义域: [-1,1]

rt

[-U]

值域:

:

有界性:

单调性: 单调增加

奇偶性: 奇函数

周期性:

反余弦函数:厂址込【T」L--定义域值域:

定义域:[-1,1] 有界性: 单调性:单调减少 奇偶性: 周期性:

I 反正切函数:也环 gg ---定义域

定义域: 值域:

有界性:

圈 l-aj

值域:

(完整版)六大基本初等函数图像及其性质

六大基本初等函数图像及其性质一、常值函数(也称常数函数)y =C(其中C 为常数); α

1)当α为正整数时,函数的定义域为区间为),(+∞-∞∈x ,他们的图形都经过原点,并当α>1时在原点处与x 轴相切。且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称; 2)当α为负整数时。函数的定义域为除去x=0的所有实数; 3)当α为正有理数 n m 时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞,+∞),函数的图形均经过原点和(1 ,1); 4)如果m>n 图形于x 轴相切,如果ma ,1≠a ),定义域是R ; [无界函数] 1.指数函数的图象: 2. 1)当1>a 时函数为单调增,当10<

3.(选,补充)指数函数值的大小比较* N ∈a ; a.底数互为倒数的两个指数函数 x a x f =)(, x a x f ? ? ? ??=1)( 的函数图像关于y 轴对称。 b.1.当1>a 时,a 值越大,x a y = 的图像越靠近y 轴; b.2.当10<∈>=n Z n m a a a n m n m (2)) 1,,,0(1 1*>∈>= =- n Z n m a a a a n m n m n m y x f x x x x g ? ? ?=1)(

(完整版)基本初等函数图像及其性质表

函数名 一次函数 二次函数 反比例函数 指数函数 解析式 )0()(≠+=a b ax x f )0()(≠= k x k x f 图像 定义域 R R {}0|≠x x R 值域 R ) ,(∞+0 必过点 )(b ,0 ) ,(c 0 ) 1,(1,--k k ) ( ) (1,0 周期性 不是周期函数 不是周期函数 不是周期函数 不是周期函数 单调性 在R 上单增 )2-a b -∞,(为减 ),2+∞-a b (为增 )为减,(0-∞)为减,(∞+0 为减 为增,101<<>a a 最大最小值 在R 不存在最大最小值 开口向上有最小值 a b a c y 442min -= 不存在最大最小值 在R 上不存在最大最小值 奇偶性 非奇非偶函数 为奇函数00≠=b b 偶函数 为非奇非为偶函数,00≠=b b 奇函数 非奇非偶函数 对称性 为常数。 对称, 函数图像关于直线任何一点对称;关于图像上t t x a y +=1 - 对称 直线函数图像关于 a b x 2-= 函数图像关于原点对称; 对称。 直线和关于 对称,直线图像关于x y x y -== 既不成中心对称也不成轴对称。 渐近线 无 无 . 00==y x 直线或者直线 .0=y 直线 ) 0()(2≠++=a c bx ax x f ) 10()(≠=a a a x f x 且>0>a >a 0 >k ) ,44[ 2 +∞-a b a c ),(),(∞+?∞00-x a y =) 10(<a x y O 1

函数名 对数函数 幂函数的一个例子 双钩函数 含绝对值函数 解析式 ) 10(log ≠>=a a y x a 且 ) 0(≥=x x y b a b x a x y <-+-=设为了研究方便 图像 O 1 y x ) 10(log <<=a y x a ) 1(log >=a y x a O y x x y =1 1 定义域 ()∞+,0 [)∞+,0 0}x |{x ≠ R 值域 R [) ∞+,0 (][) ∞+∞,,ab ab 22--Y [)+∞-,a b 必过点 )(0,1 () 1,1 )2,(2,ab a b ab a b -- )( ) ,(,a b b a b a --)( 周期性 不是周期函数 不是周期函数 不是周期函数 不是周期函数 单调性 单调递减。 单调递增。,, 101<<>a a 为增函数 定义域内 递增。递减,,递减,递增,,???? ??+∞???? ????? ? ? ????? ??∞,00,---a b a b a b a b (][)函数。 上为常值为增函数。 为减函数。 ,],[,-b a b a +∞∞ 最大最小值 无最大最小值 最小值为 0min =y ,无最 大值 无最大最小值 a b y -=min 奇偶性 非奇非偶 非奇非偶 奇函数 对称性 既不是轴对称也不是中心对称 既不是轴对称也不是中心对称 关于原点成中心对称 关 于 直 线 2 b a x += 对称。 渐近线 直线x=0 ax y =和0=x O y x a b a b -ab 2ab 2-O y x a b a b -的情况 只了解中学研究方便通常 ) (00>>+=b a x b ax y 为偶函数0=+b a

高中数学常见函数图像

高中数学常见函数图像1. 2.对数函数:

3.幂函数: 定义形如αx y=(x∈R)的函数称为幂函数,其中x是自变量,α是常数. 图像 性质过定点:所有的幂函数在(0,) +∞都有定义,并且图象都通过点(1,1).单调性:如果0 α>,则幂函数的图象过原点,并且在[0,) +∞上为增函数.如果0 α<,则幂函数的图象在(0,) +∞上为减函数,在第一象限内,图象无限接近x轴与y轴.

函数 sin y x = cos y x = tan y x = 图象 定义域 R R ,2x x k k ππ??≠+∈Z ???? 值域 []1,1- []1,1- R 最值 当 22 x k π π=+ () k ∈Z 时, max 1y =; 当22 x k π π=- ()k ∈Z 时,min 1y =-. 当()2x k k π =∈Z 时, max 1y =; 当2x k π π=+ ()k ∈Z 时,min 1y =-. 既无最大值也无最小值 周期性 2π 2π π 奇偶性 奇函数 偶函数 奇函数 单调性 在 2,222k k ππππ? ?-+???? ()k ∈Z 上是增函数;在 32,222k k π πππ??++???? ()k ∈Z 上是减函数. 在[]() 2,2k k k πππ-∈Z 上 是 增 函 数 ; 在 []2,2k k πππ+ ()k ∈Z 上是减函数. 在,2 2k k π ππ π? ? - + ?? ? ()k ∈Z 上是增函数. 对称性 对称中心 ()(),0k k π∈Z 对称轴 ()2 x k k π π=+ ∈Z 对称中心 (),02k k ππ??+∈Z ?? ? 对称轴()x k k π =∈Z 对称中心(),02k k π?? ∈Z ??? 无对称轴

正余弦函数的图像与性质

正余弦函数的图像与性质 案场各岗位服务流程 销售大厅服务岗: 1、销售大厅服务岗岗位职责: 1)为来访客户提供全程的休息区域及饮品; 2)保持销售区域台面整洁; 3)及时补足销售大厅物资,如糖果或杂志等; 4)收集客户意见、建议及现场问题点; 2、销售大厅服务岗工作及服务流程 阶段工作及服务流程 班前阶段1)自检仪容仪表以饱满的精神面貌进入工作区域 2)检查使用工具及销售大厅物资情况,异常情况及时登记并报告上级。 班中工作程序服务 流程 行为 规范 迎接 指引 递阅 资料 上饮品 (糕点) 添加茶水 工作 要求 1)眼神关注客人,当客人距3米距离 时,应主动跨出自己的位置迎宾,然后 侯客迎询问客户送客户

注意事项 15度鞠躬微笑问候:“您好!欢迎光临!”2)在客人前方1-2米距离领位,指引请客人向休息区,在客人入座后问客人对座位是否满意:“您好!请问坐这儿可以吗?”得到同意后为客人拉椅入座“好的,请入座!” 3)若客人无置业顾问陪同,可询问:请问您有专属的置业顾问吗?,为客人取阅项目资料,并礼貌的告知请客人稍等,置业顾问会很快过来介绍,同时请置业顾问关注该客人; 4)问候的起始语应为“先生-小姐-女士早上好,这里是XX销售中心,这边请”5)问候时间段为8:30-11:30 早上好11:30-14:30 中午好 14:30-18:00下午好 6)关注客人物品,如物品较多,则主动询问是否需要帮助(如拾到物品须两名人员在场方能打开,提示客人注意贵重物品); 7)在满座位的情况下,须先向客人致歉,在请其到沙盘区进行观摩稍作等

待; 阶段工作及服务流程 班中工作程序工作 要求 注意 事项 饮料(糕点服务) 1)在所有饮料(糕点)服务中必须使用 托盘; 2)所有饮料服务均已“对不起,打扰一 下,请问您需要什么饮品”为起始; 3)服务方向:从客人的右面服务; 4)当客人的饮料杯中只剩三分之一时, 必须询问客人是否需要再添一杯,在二 次服务中特别注意瓶口绝对不可以与 客人使用的杯子接触; 5)在客人再次需要饮料时必须更换杯 子; 下班程 序1)检查使用的工具及销售案场物资情况,异常情况及时记录并报告上级领导; 2)填写物资领用申请表并整理客户意见;3)参加班后总结会; 4)积极配合销售人员的接待工作,如果下班时间已经到,必须待客人离开后下班;

6类基本初等函数的图形及性质(考研数学基础)_完美版

基本初等函数及图形 (1) 常值函数(也称常数函数) y =c (其中c 为常数) (2) 幂函数 μ x y =,μ是常数; (3) 指数函数 x a y = (a 是常数且01a a >≠,),),(+∞-∞∈x ; (4) 对数函数 x y a log =(a 是常数且01a a >≠,),(0,)x ∈+∞; 1. 当u 为正整数时,函数的定义域为区间) ,(+∞-∞∈x ,他们的图形都经过原点,并当 u>1时在原点处与X 轴相切。且u 为奇数时,图形关于原点对称;u 为偶数时图形关于Y 轴对称; 2. 当u 为负整数时。函数的定义域为除去x=0的所有实数。 3. 当u 为正有理数m/n 时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞+∞)。函数的图形均经过原点和(1 ,1). 如果m>n 图形于x 轴相切,如果m1时函数为单调增,当a<1时函数为单调减. 2. 不论x 为何值,y 总是正的,图形在x 轴上方. 3. 当x=0时,y=1,所以他的图形通过(0,1)点. 1. 他的图形为于y 轴的右方.并通过点(1,0) 2. 当a>1时在区间(0,1),y 的值为负.图形位于x 的下方, 在区间(1, +∞),y 值为正,图形位于x 轴上方.在定义域是单调增函数. a<1在实用中很少用到/

正弦函数 x y sin =,),(+∞-∞∈x ,]1,1[-∈y , 余弦函数 x y cos =,),(+∞-∞∈x ,]1,1[-∈y , 正切函数 x y tan =, 2π π+ ≠k x ,k Z ∈,),(+∞-∞∈y , 余切函数 x y cot =,πk x ≠,k Z ∈,),(+∞-∞∈y ;

高中数学函数图象高考题

函数图象B1 .函数y = a| x | (a > 1)的图象是( ) B() B3.当a>1时,函数y=log a x和y=(1-a)x的图象只可能是() A4.已知y=f(x)与y=g(x)的图象如图所示 则函数F(x)=f(x)·g(x)的图象可以是(A) B5.函数(1) || x xa y a x =>的图像大致形状是()D

A B C D D 7.函数x x y cos -=的部分图象是( ) A 8.若函数f(x)=x 2+b x +c 的图象的顶点在第四象限,则函数f /(x)的图象是 ( ) A 9.一给定函数) (x f y =的图象在下列图中,并且对任意)1,0 (1∈a ,由关系式) (1n n a f a =+得到的数列}{n a 满足)(* 1N n a a n n ∈>+,则该函数的图象是 ( ) A B C D C 10.函数y=kx+k 与y=x k 在同一坐标系是的大致图象是( ) A D C

A 12. 当a >1时,在同一坐标系中,函数y =a - x 与y =log a x 的图像( ) B 13. 函数1 1 1--=x y 的图象是( ) D 14.函数b x a x f -=)(的图象如图,其中a 、b 为常数,则下列结论正确的是 ( ) A .0,1<>b a B .0,1>>b a C .0,10><

基本初等函数图像及性质大全

一、一次函数与二次函数 (一)一次函数 (1)二次函数解析式的三种形式 ①一般式:2 ()(0)f x ax bx c a =++≠ ②顶点式:2 ()()(0)f x a x h k a =-+≠ ③两根式:12()()()(0)f x a x x x x a =--≠ (2)求二次函数解析式的方法 ①已知三个点坐标时,宜用一般式. ②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便. (3)二次函数图象的性质

定义域 (),-∞+∞ 对称轴 2b x a =- 顶点坐标 24,24b ac b a a ??-- ??? 值域 24,4ac b a ??-+∞ ? ?? 24,4ac b a ??--∞ ? ?? 单调区间 ,2b a ? ?-∞- ? ? ?递减 ,2b a ??- +∞ ??? 递增 ,2b a ? ?-∞- ? ? ?递增 ,2b a ?? - +∞ ??? 递减 ①.二次函数2 ()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2x a =- 顶点坐标是2 4(,)24b ac b a a -- ②当0a >时,抛物线开口向上,函数在(,]2b a -∞- 上递减,在[,)2b a -+∞上递增,当2b x a =-时,2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2b a -∞-上递 增,在[,)2b a -+∞上递减,当2b x a =- 时,2max 4()4ac b f x a -=. 二、幂函数 (1)幂函数的定义 叫做幂函数,其中x 为自变量,α是常数. (2

高中数学常见函数图像

高中数学常见函数图像 1.指数函数: 定义 函数 (0x y a a =>且1)a ≠叫做指数函数 图象 1a > 01a << 定义域 R 值域 (0,)+∞ 过定点 图象过定点(0,1),即当0x =时,1y =. 奇偶性 非奇非偶 单调性 在R 上是增函数 在R 上是减函数 2.对数函数: 定义 函数 log (0a y x a =>且1)a ≠叫做对数函数 图象 1a > 01a << 定义域 (0,)+∞ 值域 R 过定点 图象过定点(1,0),即当1x =时,0y =. 奇偶性 非奇非偶 单调性 在(0,)+∞上是增函数 在(0,)+∞上是减函数 x a y =x y (0,1) O 1 y =x a y =x y (0,1) O 1 y =x y O (1,0) 1 x =log a y x =x y O (1,0) 1 x =log a y x =

3.幂函数: 定义形如αx y=(x∈R)的函数称为幂函数,其中x是自变量,α是常数. 图像 性质过定点:所有的幂函数在(0,) +∞都有定义,并且图象都通过点(1,1).单调性:如果0 α>,则幂函数的图象过原点,并且在[0,) +∞上为增函数.如果0 α<,则幂函数的图象在(0,) +∞上为减函数,在第一象限内,图象无限接近x轴与y轴.

4. 函数 sin y x = cos y x = tan y x = 图象 定义域 R R ,2x x k k ππ??≠+∈Z ???? 值域 []1,1- []1,1- R 最值 当 22 x k π π=+ () k ∈Z 时, max 1y =; 当22 x k π π=- ()k ∈Z 时,min 1y =-. 当()2x k k π =∈Z 时, max 1y =; 当2x k ππ=+ ()k ∈Z 时,min 1y =-. 既无最大值也无最小值 周期性 2π 2π π 奇偶性 奇函数 偶函数 奇函数 单调性 在 2,222k k ππππ? ?-+???? ()k ∈Z 上是增函数;在 32,222k k π πππ? ?++??? ? ()k ∈Z 上是减函数. 在[]() 2,2k k k πππ-∈Z 上 是 增 函 数 ; 在 []2,2k k πππ+ ()k ∈Z 上是减函数. 在,2 2k k π ππ π? ? - + ?? ? ()k ∈Z 上是增函数. 对称性 对称中心 ()(),0k k π∈Z 对称轴 ()2 x k k π π=+ ∈Z 对称中心 (),02k k ππ??+∈Z ?? ? 对称轴()x k k π =∈Z 对称中心(),02k k π?? ∈Z ??? 无对称轴

正弦函数和余弦函数的图像与性质

6.1正弦函数和余弦函数的图像与性质 一、复习引入 1、复习 (1)函数的概念 在某个变化过程中有两个变量x 、y ,若对于x 在某个实数集合D 内的每一个确定的值,按照某个对应法则f ,y 都有唯一确定的实数值与它对应,则y 就是x 的函数,记作 ()x f y =,D x ∈。 (2)三角函数线 设任意角α的顶点在原点O ,始边与x 轴的非负半轴重合,终边与单位圆相交于点(,)P x y ,过P 作x 轴的垂线,垂足为M ;过点(1,0)A 作单位圆的切线,设它与角α的终边(当α在第一、四象限角时)或其反向延长线(当α为第二、三象限角时)相交于T . 规定:当OM 与x 轴同向时为正值,当OM 与x 轴反向时为负值; 当MP 与y 轴同向时为正值,当MP 与y 轴反向时为负值; 当AT 与y 轴同向时为正值,当AT 与y 轴反向时为负值; 根据上面规定,则,OM x MP y ==, 由正弦、余弦、正切三角比的定义有: sin 1 y y y MP r α====; cos 1 x x x OM r α====; tan y MP AT AT x OM OA α= ===; 这几条与单位圆有关的有向线段,,MP OM AT 叫做角α的正弦线、余弦线、正切线。 二、讲授新课 【问题驱动1】——结合我们刚学过的三角比,就以正弦(或余弦)为例,对于每一个给定的 角和它的正弦值(或余弦值)之间是否也存在一种函数关系?若存在,请对这种函数关系下一个定义;若不存在,请说明理由. 1、正弦函数、余弦函数的定义 (1)正弦函数:R x x y ∈=,sin ; (2)余弦函数:R x x y ∈=,cos 【问题驱动2】——如何作出正弦函数R x x y ∈=,sin 、余弦函数R x x y ∈=,cos 的函数 图象? 2、正弦函数R x x y ∈=,sin 的图像 (1)[]π2,0,sin ∈=x x y 的图像 【方案1】——几何描点法 步骤1:等分、作正弦线——将单位圆等分,作三角函数线(正弦线)得三角函数值;

高中各种函数图像画法与函数性质

一次函数 二次函数

反比例函数 1、反比例函数图象:反比例函数的图像属于以原点为对称中心的中心对称的双曲线 反比例函数图像中每一象限的每一支曲线会无限接近X轴Y轴但不会与坐标轴相交(K≠0)。 2、性质: 1.当k>0时,图象分别位于第一、三象限,同一个象限内,y随x的增大而减小;当k<0时,图象分别位于二、四象限,同一个象限内,y随x的增大而增大。 2.k>0时,函数在x<0上同为减函数、在x>0上同为减函数;k<0时,函数在x<0上为增函数、在x>0上同为增函数。 定义域为x≠0;值域为y≠0。 3.因为在y=k/x(k≠0)中,x不能为0,y也不能为0,所以反比例函数的图象不可能与x轴相交,也不可能与y轴相交。 4. 在一个反比例函数图象上任取两点P,Q,过点P,Q分别作x轴,y轴的平行线,与坐标轴围成的矩形面积为S1,S2则S1=S2=|K| 5. 反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴 y=x y=-x(即第一三,二四象限角平分线),对称中心是坐标原点。

指数函数y=a x (a>0,a≠1) 注意:⒈指数函数对外形要求严格,前系数要为1,否则不能为指数函数。 ⒉指数函数的定义仅是形式定义。 指数函数的图像与性质 规律:1. 当两个指数函数中的a互为倒数时,两个函数关于y轴对称,但这两个函数都不具有奇偶性。 2.当a>1时,底数越大,图像上升的越快,在y轴的右侧,图像越靠近y轴; 当0<a<1时,底数越小,图像下降的越快,在y轴的左侧,图像越靠近y轴。 在y轴右边“底大图高”;在y轴左边“底大图低”。

3.四字口诀:“大增小减”。即:当a>1时,图像在R上是增函数; 当0<a<1时,图像在R上是减函数。 4. 指数函数既不是奇函数也不是偶函数 比较幂式大小的方法: 1.当底数相同时,则利用指数函数的单调性进行比较; 2.当底数中含有字母时要注意分类讨论; 3.当底数不同,指数也不同时,则需要引入中间量进行比较; 4.对多个数进行比较,可用0或1作为中间量进行比较 底数的平移: 在指数上加上一个数,图像会向左平移;减去一个数,图像会向右平移。 在f(X)后加上一个数,图像会向上平移;减去一个数,图像会向下平移。

正余弦函数的图像与性质(周期性)

第一课时 题目:正弦函数、余弦函数的图象 授课时间:3月25日,星期一 课型:新授课 教学目标: 理解借助单位圆中的三角函数线(正弦线)画出y sin x =的图象,进而画出 y cos x =的图象;会用“五点法”画y sin x =和y cos x =在一个周期内的简图。 教学重点和难点: 重点:利用三角函数线画正弦函数[]x 0,2 蝡的图象,用“五点法”画y sin x =和 y cos x =在一个周期内的简图。 难点:正弦函数与余弦函数图象间的关系、图象变换。 学情分析: 学生在之前已经学了一次函数、二次函数、指数函数、对数函数和幂函数,已掌握了一些基础函数的图像和性质,并了解一些函数图像的画法。而且刚分班学生的学习动力很足,但学生分析、理解能力较差,对具体形象的事物比较感兴趣,但对学习抽象理论知识存在畏难情绪,缺乏学习主动性,因此在教学中要注意引导学生积极思考和多动手画图练习。 教学方法: 通过多媒体展示正弦函数的形成,是学生更直观形象的了解正弦函数的形成,加深印象增加兴趣。并配合适当讲授法。在五点法画图中要学生动手实践,加深印象和理解。 教具、学具的准备:多媒体、直尺、圆规 教学过程: (一)知识链接 1、正弦线的概念 2、诱导公式(六) (二)情景设置 在初中和必修一的函数学习中,我们知道函数的图像为我们解决相关的函数问题提供了重要的方法和工具,那么三角函数的图像是怎样的呢? 这节课让我们来共同探讨正、余弦函数的图像问题。 【设计意图】从原有知识出发,类比联想,引入问题情景,学生主动参与,积极思考 (三)课题导入 提问1、如何作正弦函数的图象? ①列表描点法: 步骤:列表、描点、连线 大家试着画出正弦函数sin y x =[]0,2x π∈的图像

(新)高中数学复习专题一---函数图象问题

专题一 函数图象 数形结合是中学数学的重要的数学思想方法,尤其是函数的图象更是历年高考的热点.函数图象是函数的一种表达形式,形象的显示了函数的性质,为研究数量关系提供了“形”的直观性,它是探求解题途径,获得问题的结果的重要工具. 一、知识方法 1.函数图象作图方法 (1)描点法:列表、描点(注意关键点:如图象与x 、y 轴的交点,端点,极值点等))、连线(注 意关键线:如;对称轴,渐近线等) (2)利用基本函数图象变换。 2.图象变换(由一个图象得到另一个图象):平移变换、对称变换和伸缩变换等。 (1)平移变换 ① 水平平移:函数()y f x a =+的图象可以把函数()y f x =的图象沿x 轴方向向左 (0)a >或向右(0)a <平移||a 个单位即可得到; ② 竖直平移:函数()y f x a =+的图象可以把函数()y f x =的图象沿y 轴方向向上(0)a >或向下(0)a <平移||a 个单位即可得到. (2)对称变换 ① 函数()y f x =-的图象可以将函数()y f x =的图象关于y 轴对称即可得到; ② 函数()y f x =-的图象可以将函数()y f x =的图象关于x 轴对称即可得到; ③ 函数()y f x =--的图象可以将函数()y f x =的图象关于原点对称即可得到; (3)翻折变换 ① 函数|()|y f x =的图象可以将函数()y f x =的图象的x 轴下方部分沿x 轴翻折到x 轴上方,去掉原x 轴下方部分,并保留()y f x =的x 轴上方部分即可得到; ② 函数(||)y f x =的图象可以将函数()y f x =的图象右边沿y 轴翻折到y 轴左边替代原y 轴左边部分并保留()y f x =在y 轴右边部分即可得到. (4)伸缩变换 ① 函数()y af x =(0)a >的图象可以将函数()y f x =的图象中的每一点横坐标不变纵坐标伸长(1)a >或压缩(01a <<)为原来的a 倍得到; ② 函数()y f ax =(0)a >的图象可以将函数()y f x =的图象中的每一点纵坐标不变横坐标伸长(01a <<)或压缩(1)a >为原来的 1 a 倍得到. 3.函数图象的对称性:对于函数)(x f y =,若对定义域内的任意x 都有 ①)()(x a f x a f +=-(或))2()(x a f x f -=,则)(x f 的图象关于直线a x =对称; ②b x a f x a f 2)()(=++-(或)2)2()(b x a f x f =-+,,则)(x f 的图象关于点),(b a P 对称. 4、熟练掌握基本初等函数(如正、反比例函数,一次、二次函数,指数、对数函数,幂函数,三角函数)的图象 5、作函数图象的一般步骤: (1)求出函数的定义域;(2)化简函数式;(3)讨论函数的性质(如奇偶性、周期性、单调性)以及图像上的特殊点、线(如极值点、渐近线、对称轴等);(4)利用基本函数的图像(5)利

六大基本初等函数图像及其性质

六大基本初等函数图像及其性质 一、常值函数(也称常数函数) y =C (其中C 为常数); α 1)当α为正整数时,函数的定义域为区间为),(+∞-∞∈x ,他们的图形都经过原点,并当α>1时在原点处与x 轴相切。且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称; 2)当α为负整数时。函数的定义域为除去x=0的所有实数; 3)当α为正有理数 n m 时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞,+∞),函数的图形均经过原点和(1 ,1); 4)如果m>n 图形于x 轴相切,如果m

除x=0以外的一切实数。 三、指数函数x a y =(x 是自变量,a 是常数且0>a ,1≠a ),定义域是R ; [无界函数] 1.指数函数的图象: 2. 1)当1>a 时函数为单调增,当10<

(完整版)高中数学中的函数图象变换及练习题

高中数学中的函数图象变换及练习题 ①平移变换: Ⅰ、水平平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向左 (0)a >或向右(0)a <平移||a 个单位即可得到; 1)y =f (x )h 左移→y =f (x +h);2)y =f (x ) h 右移→y =f (x -h); Ⅱ、竖直平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向上 (0)a >或向下(0)a <平移||a 个单位即可得到; 1)y =f (x ) h 上移→y =f (x )+h ;2)y =f (x ) h 下移→y =f (x )-h 。 ②对称变换: Ⅰ、函数()y f x =-的图像可以将函数()y f x =的图像关于y 轴对称即可得到; y =f (x ) 轴 y →y =f (-x ) Ⅱ、函数()y f x =-的图像可以将函数()y f x =的图像关于x 轴对称即可得到; y =f (x ) 轴 x →y = -f (x ) Ⅲ、函数()y f x =--的图像可以将函数()y f x =的图像关于原点对称即可得到; y =f (x ) 原点 →y = -f (-x ) Ⅳ、函数)(y f x =的图像可以将函数()y f x =的图像关于直线y x =对称得到。 y =f (x ) x y =→直线x =f (y ) Ⅴ、函数)2(x a f y -=的图像可以将函数()y f x =的图像关于直线a x =对称即可得到 ③翻折变换: Ⅰ、函数|()|y f x =的图像可以将函数()y f x =的图像的x 轴下方部分沿x 轴翻折到x 轴上方,去掉原x 轴下方部分,并保留()y f x =的x 轴上方部分即可得到; Ⅱ、函数(||)y f x =的图像可以将函数()y f x =的图像右边沿y 轴翻折到y 轴左边替代原 y 轴左边部分并保留()y f x =在y 轴右边部分即可得到 ④伸缩变换: Ⅰ、函数()y af x =(0)a >的图像可以将函数()y f x =的图像中的每一点横坐标不变纵坐 标伸长(1)a >或压缩(01a <<)为原来的a 倍得到;y =f (x )a y ?→y =af (x ) Ⅱ、函数()y f ax =(0)a >的图像可以将函数()y f x =的图像中的每一点纵坐标不变横坐 标伸长(1)a >或压缩(01a <<)为原来的1 a 倍得到。f (x )y =f (x )a x ?→y =f (ax ) 1.画出下列函数的图像 (1))(log 2 1x y -= (2)x y )2 1(-= (3)x y 2log = (4)12-=x y (5)要得到)3lg(x y -=的图像,只需作x y lg =关于_____轴对称的图像,再向____平移 3个单位而得到。 (6)当1>a 时,在同一坐标系中函数x a y -=与x y a log =的图像( )

高中函数图像大全

指数函数 概念:一般地,函数y=a^x(a>0,且a≠1)叫做指数函数,其中x是自变量,函数的定义域是R。 注意:⒈指数函数对外形要求严格,前系数要为1,否则不能为指数函数。 ⒉指数函数的定义仅是形式定义。 指数函数的图像与性质: 规律:1. 当两个指数函数中的a互为倒数时,两个函数关于y轴对称,但这两个函数都不具有奇偶 性。 2.当a>1时,底数越大,图像上升的越快,在y轴的右侧,图像越靠近y轴; 当0<a<1时,底数越小,图像下降的越快,在y轴的左侧,图像越靠近y轴。 在y轴右边“底大图高”;在y轴左边“底大图低”。

3.四字口诀:“大增小减”。即:当a >1时,图像在R 上是增函数;当0<a <1时,图像在R 上是减函数。 4. 指数函数既不是奇函数也不是偶函数。 比较幂式大小的方法: 1. 当底数相同时,则利用指数函数的单调性进行比较; 2. 当底数中含有字母时要注意分类讨论; 3. 当底数不同,指数也不同时,则需要引入中间量进行比较; 4. 对多个数进行比较,可用0或1作为中间量进行比较 底数的平移: 在指数上加上一个数,图像会向左平移;减去一个数,图像会向右平移。 在f(X)后加上一个数,图像会向上平移;减去一个数,图像会向下平移。 对数函数 1.对数函数的概念 由于指数函数y=a x 在定义域(-∞,+∞)上是单调函数,所以它存在反函数, 我们把指数函数y=a x (a >0,a ≠1)的反函数称为对数函数,并记为y=log a x(a >0,a ≠1). 因为指数函数y=a x 的定义域为(-∞,+∞),值域为(0,+∞),所以对数函数y=log a x 的定义域为(0,+∞),值域为(-∞,+∞). 2.对数函数的图像与性质对数函数与指数函数互为反函数,因此它们的图像对称于直线y=x . 据此即可以画出对数函数的图像,并推知它的性质. 为了研究对数函数y=log a x(a >0,a ≠1)的性质,我们在同一直角坐标系中作出函数 y=log 2x ,y=log 10x ,y=log 10x,y=log 2 1x,y=log 10 1x 的草图

高中数学教参——函数图像

第八节函数的图象[备考方向要明了] 考什么怎么考 1.掌握函数图象画法. 2.会利用变换作函数图象. 3.会运用函数图象理解和研究函 数的性质,解决方程解的个数与 不等式的解的问题. 4.会用数形结合思想、转化与化 归思想解决函数问题. 1.由于题型的限制江苏没有单独对图象的画法进行考查, 但不单独考查,并不意味基本作图的方法不用掌握. 2.函数图象的考查主要是其应用如求函数的值域、单调区 间,求参数的取值范围,判断非常规解的个数等,以此考 查数形结合思想的运用,在每一年的江苏高考中大量存 在,如2012高考T13、T18等. [归纳知识整合] 1.利用描点法作函数图象 其基本步骤是列表、描点、连线. 首先:①确定函数的定义域;②化简函数解析式;③讨论函数的性质(奇偶性、单调性、周期性、对称性等). 其次:列表(尤其注意特殊点、零点、最大值点、最小值点、与坐标轴的交点等),描点,连线. 2.利用图象变换法作函数的图象 (1)平移变换: y=f(x)――――――――――→ a>0,右移a个单位 a<0,左移|a|个单位 y=f(x-a); y=f(x)――――――――――→ b>0,上移b个单位 b<0,下移|b|个单位 y=f(x)+b. (2)伸缩变换: y=f(x)―――――――――――→ 0<ω<1,伸长为原来的 1 ω倍 ω>1,缩短为原来的 1 ω y=f(ωx); y=f(x)――――――――――→ A>1,伸为原来的A倍 0

(3)对称变换: y =f (x )――――――→关于x 轴对称 y =-f (x ); y =f (x )――――――→关于y 轴对称 y =f (-x ); y =f (x )――――――→关于原点对称 y =-f (-x ). (4)翻折变换: y =f (x )―――――――――――――→去掉y 轴左边图,保留y 轴右边图将y 轴右边的图象翻折到左边去y =f (|x |); y =f (x )――――――――→留下x 轴上方图 将x 轴下方图翻折上去 y =|f (x )|. [探究] 1.函数y =f (x )的图象关于原点对称与函数y =f (x )与y =-f (-x )的图象关于原点对称一致吗? 提示:不一致,前者是本身的对称,而后者是两个函数图象间的对称. 2.一个函数的图象关于y 轴对称与两个函数的图象关于y 轴对称有何区别? 提示:一个函数的图象关于y 轴对称与两个函数的图象关于y 轴对称不是一回事.函数y =f (x )的图象关于y 轴对称是自身对称,说明该函数为偶函数;而函数y =f (x )与函数y =f (-x )的图象关于y 轴对称,是两个函数的图象对称. 3.若函数y =f (x )的图象关于点(a,0)(a >0)对称,那么其图象如何变换才能使它变为奇函数?其解析式变为什么? 提示:向左平移a 个单位即可;解析式变为y =f (x +a ). [自测 牛刀小试] 1.函数y =x |x |的图象经描点确定后的形状大致是________(填序号). 解析:y =x |x |=???? ? x 2,x >0,0,x =0, -x 2,x <0为奇函数,奇函数图象关于原点对称. 答案:① 2.函数y =ln(1-x )的图象大致为________. 解析:y =ln(1-x )=ln [-(x -1)],其图象可由y =ln x 关于y 轴对称的图象向右平移一个

正、余弦函数的图象和性质

xx -xx 学年度下学期 高中学生学科素质训练 高一数学同步测试(6)—正、余弦函数的图象和性质 一、选择题(每小题5分,共60分,请将正确答案填在题后的括号内) 1.函数)4 sin(π +=x y 在闭区间( )上为增函数. ( ) A .]4 ,43[ππ- B .]0,[π- C .]4 3 ,4[ππ- D .]2 ,2[π π- 2.函数)4 2sin(log 2 1π + =x y 的单调减区间为 ( ) A .)(],4(Z k k k ∈- ππ π B .)(]8,8(Z k k k ∈+- π πππ C .)(] 8 ,83(Z k k k ∈+-π πππ D .)(]8 3 ,8(Z k k k ∈++ππππ 3.设a 为常数,且π20,1≤≤>x a ,则函数1sin 2cos )(2 -+=x a x x f 的最大值为 ( ) A .12+a B .12-a C .12--a D .2 a 4.函数)2 5 2sin(π+=x y 的图象的一条对称轴方程是 ( ) A .2 π - =x B .4 π - =x C .8π=x D .π4 5=x 5.方程x x lg sin =的实根有 ( ) A .1个 B .2个 C .3个 D .无数个 6.下列函数中,以π为周期的偶函数是 ( ) A .|sin |x y = B .||sin x y = C .)32sin(π + =x y D .)2 sin(π +=x y 7.已知)20(cos π≤≤=x x y 的图象和直线y=1围成一个封闭的平面图形,该图形的面积 是 ( ) A .4π B .2π C .8 D .4 8.下列四个函数中为周期函数的是 ( )

高一数学函数的图象

§2.7函数的图象 1.描点法作图 方法步骤:(1)确定函数的定义域.(2)化简函数的解析式.(3)讨论函数的性质即奇偶性、周期性、单调性、最值(甚至变化趋势).(4)描点连线,画出函数的图象.2.图象变换(1)平移变换 (2)对称变换 ①y =f (x )―――――→关于x 轴对称 y =-f (x ).②y =f (x )―――――→关于y 轴对称y =f (-x ).③y =f (x )―――――→关于原点对称y =-f (-x ). ④y =a x (a >0且a ≠1)―――――→关于y =x 对称 y =log a x (a >0且a ≠1).(3)伸缩变换 ①y =f (x )――――――――――――――――――――→ a >1,横坐标缩短为原来的 倍,纵坐标不变 01,纵坐标伸长为原来的a 倍,横坐标不变 0

概念方法微思考 1.函数f(x)的图象关于直线x=a对称,你能得到f(x)解析式满足什么条件? 提示f(a+x)=f(a-x)或f(x)=f(2a-x). 2.若函数y=f(x)和y=g(x)的图象关于点(a,b)对称,则f(x),g(x)的关系是g(x)=2b-f(2a -x). 题组一思考辨析 1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)函数y=f(1-x)的图象,可由y=f(-x)的图象向左平移1个单位得到.(×) (2)当x∈(0,+∞)时,函数y=|f(x)|与y=f(|x|)的图象相同.(×) (3)函数y=f(x)的图象关于y轴对称即函数y=f(x)与y=f(-x)的图象关于y轴对称.(×) (4)若函数y=f(x)满足f(1+x)=f(1-x),则函数y=f(x)的图象关于直线x=1对称.(√)题组二教材改编 2.函数f(x)=x+1 x的图象关于() A.y轴对称B.x轴对称 C.原点对称D.直线y=x对称 答案C 解析函数f(x)的定义域为(-∞,0)∪(0,+∞)且f(-x)=-f(x),即函数f(x)为奇函数,其图象关于原点对称,故选C. 3.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间后,为了赶时间加快速度行驶,与以上事件吻合得最好的图象是________.(填序号) 答案③

相关主题
文本预览
相关文档 最新文档