当前位置:文档之家› 电动机的旋转原理

电动机的旋转原理

电动机的旋转原理
电动机的旋转原理

电动机知识

电动机的旋转原理

目前较常用的交流电动机有两种:1、三相异步电动机。2、单相交流电动机。第一种多用在工业上,而第二种多用在民用电器上。

一、三相异步电动机的旋转原理

三相异步电动机要旋转起来的先决条件是具有一个旋转磁场,三相异步电动机的定子绕组就是用来产生旋转磁场的。我们知道,但相电源相与相之间的电压在相位上是相差120度的,三相异步电动机定子中的三个绕组在空间方位上也互差120度,这样,当在定子绕组中通入三相电源时,定子绕组就会产生一个旋转磁场,其产生的过程如图1所示。图中分四个时刻来描述旋转磁场的产生过程。电流每变化一个周期,旋转磁场在空间旋转一周,即旋转磁场的旋转速度与电流的变化是同步的。旋转磁场的转速为:n=60f/P 式中f为电源频率、P是磁场的磁极对数、n的单位是:每分钟转数。根据此式我们知道,电动机的转速与磁极数和使用电源的频率有关,为此,控制交流电动机的转速有两种方法:1、改变磁极法;2、变频法。以往多用第一种方法,现在则利用变频技术实现对交流电动机的无级变速控制。

二、单相交流电动机的旋转原理

单相交流电动机只有一个绕组,转子是鼠笼式的。当单相正弦电流通过定子绕组时,电动机就会产生一个交变磁场,这个磁场的强弱和方向随时间作正弦规律变化,但在空间方位上是固定的,所以又称这个磁场是交变脉动磁场。这个交变脉动磁场可分解为两个以相同转速、旋转方向互为相反的旋转磁场,当转子静止时,这两个旋转磁场在转子中产生两个大小相等、

方向相反的转矩,使得合成转矩为零,所以电动机无法旋转。当我们用外力使电动机向某一方向旋转时(如顺时针方向旋转),这时转子与顺时针旋转方向的旋转磁场间的切割磁力线运动变小;转子与逆时针旋转方向的旋转磁场间的切割磁力线运动变大。这样平衡就打破了,转子所产生的总的电磁转矩将不再是零,转子将顺着推动方向旋转起来。

要使单相电动机能自动旋转起来,我们可在定子中加上一个起动绕组,起动绕组与主绕组在空间上相差90度,起动绕组要串接一个合适的电容,使得与主绕组的电流在相位上近似相差90度,即所谓的分相原理。这样两个在时间上相差90度的电流通入两个在空间上相差90度的绕组,将会在空间上产生(两相)旋转磁场,如图2所示。在这个旋转磁场作用下,转子就能自动起动,起动后,待转速升到一定时,借助于一个安装在转子上的离心开关或其他自动控制装置将起动绕组断开,正常工作时只有主绕组工作。因此,起动绕组可以做成短时工作方式。但有很多时候,起动绕组并不断开,我们称这种电动机为电容式单相电动机,要改变这种电动机的转向,可由改变电容器串接的位置来实现。

观察图1还可发现,旋转磁场的旋转方向与绕组中电流的相序有关。相序A、B、C顺时针排列,磁场顺时针方向旋转,若把三根电源线中的任意两根对调,例如将B相电流通入C相绕组中,C相电流通入B相绕组中,则相序变为:C、B、A,则磁场必然逆时针方向旋转。利用这一特性我们可很方便地改变三相电动机的旋转方向。定子绕组产生旋转磁场后,转子导条(鼠笼条)将切割旋转磁场的磁力线而产生感应电流,转子导条中的电流又与旋转磁场相互作用产生电磁力,电磁力产生的电磁转矩驱动转子沿旋转磁场方向以n1的转速旋转起来。一

般情况下,电动机的实际转速n1低于旋转磁场的转速n。因为假设n=n1,则转子导条与旋转磁场就没有相对运动,就不会切割磁力线,也就不会产生电磁转矩,所以转子的转速n1必然小于n。为此我们称三相电动机为异步电动机。

在单相电动机中,产生旋转磁场的另一种方法称为罩极法,又称单相罩极式电动机。此种电动机定子做成凸极式的,有两极和四极两种。每个磁极在1/3--1/4全极面处开有小槽,如图3所示,把磁极分成两个部分,在小的部分上套装上一个短路铜环,好象把这部分磁极罩起来一样,所以叫罩极式电动机。单相绕组套装在整个磁极上,每个极的线圈是串联的,连接时必须使其产生的极性依次按N、S、N、S排列。当定子绕组通电后,在磁极中产生主磁通,根据楞次定律,其中穿过短路铜环的主磁通在铜环内产生一个在相位上滞后90度的感应电流,此电流产生的磁通在相位上也滞后于主磁通,它的作用与电容式电动机的起动绕组相当,从而产生旋转磁场使电动机转动起来。

·热继电器的工作原理

·半波能耗制动的应用

·单相和三相电动机是怎样转起来的

·变频器与电机容量匹配问题

·直流电动机知识:分类、特点、原理、构

·EMO99展览会上的刀具展品

·关于电动机的4个常识

·三相异步电动机(一)

·三相异步电动机的旋转原理

·电动机的绝缘等级的划分

·单相异步电动机的磁场

·农用电动机的选择与使用说明

Domain:https://www.doczj.com/doc/ee13980351.html, dnf辅助More:d2gs2f ·三相异步电动机原理

·电机的分类

·三相异步电动机(二)

·NDJ-79旋转粘度计工作原理简要

·自学成专家空调常见六大故障解析

·三相异步电动机:绕组短路

·应用案例:浅谈中型变频电机的绕组型式

·三相异步电动机结构

·烘干电动机绕组常用哪些方法?

·电动机配件绕组短路和断路故障的检查和

·三相异步电动机绕组短路怎么办

·直线电动机实现机床进给系统零传动(四

·同步电动机的原理

·无刷直流电动机工艺

·直线电动机的原理和分类

·鼠笼式三相异步电动机Y-△降压手动控

·定子三相绕组异步电动机误接成三角形接

·开关磁阻电动机调速系统在矿用设备中的

匿名

随着起重机的不断发展,传统控制技术难以满足起重机越来越高的调速和控制要求。在电子技术飞速发展的今天,起重机与电子技术的结合越来越紧密,如采用PLC取代继电器进行逻辑控制,交流变频调速装置取代传统的电动机转子串电阻的调速方式等。在选型对比基础上,本项目电动机调速装置采用了先进的变频调速方案,变频器最终选型为ABB变频器ACS800,电动机选用专用鼠笼变频电动机。在众多交流变频调

速装置中,ABB变频器以其性能的稳定性,选件扩展功能的丰富性,编程环境的灵活性,力矩特性的优良性和在不同场合使用的适应性,使其在变频器高端市场中占有相当重要的地位。ACC800变频器是ACS800系列中具有提升机应用程序的重要一员,

它在全功率范围内统一使用了相同的控制技术,例如起动向导,自定义编程,DTC控制等,非常适合作为起重机主起升变频器使用。本文结合南京梅山冶金发展有限公司设备分公司所负责维修管理的宝钢集团梅钢冷轧厂27台桥式起重机变频调速控制系统,详细介绍ACC800变频器在起重机主起升中的应用。

1DTC控制技术

DTC(直接转矩控制,DirectTorqueControl)技术是ACS800变频器的核心技术,是交流传动系统的高性能控制方法之一,它具有控制算法简单,易于数字化实现和鲁棒性强的特点。其实质是利用空间矢量坐标的概念,在定子坐标系下建立异步电动机空间矢量数学模型,通过测量三相定子电压和电流(或中间直流电压)直接计算电动机转矩和磁链的实际值,并与给定转矩和磁链进行比较,开关逻辑单元根据磁链比较器和转矩比较器的输出选择合适的逆变器电压矢量(开关状态)。定子给定磁链和对应的电磁转矩的实际值,可以用定子电压和电流测量值直接计算得到。在计算中,只需要一个电动机参数―――定子电阻,这一点和几乎需要全部电动机参数的直接转子磁链定向控制(矢量控制)形成了鲜明对比,极大地减轻了微处理器的计算负担,提高了运算速度

。直接转矩控制结构较为简单,可以实现快速的转矩响应(不大于5ms)。

2防止溜钩控制

作为起重用变频系统,其控制重点之一是在电动机处于回馈制动状态下系统的可靠性("回馈"是指电动机处于发电状态时通过逆变桥向变频器中间直流回路注入电能),尤其需要引起注意的是主起升机构的防止溜钩控制。溜钩是指在电磁制动器抱住之前和松开之后的瞬间,极易发生重物由停止状态出现下滑的现象。

电磁制动器从通电到断电(或从断电到通电)

需要的时间大约为016s(视起重机型号和起重量大小而定),变频器如过早停止输出,将容易出现溜钩,因此变频器必须避免在电磁制动器抱闸的情况下输出较高频率,以免发生"过流"而跳闸的误动作。

防止溜钩现象的方法是利用变频器零速全转矩功能和直流制动励磁功能。零速全转矩功能,即变频器可以在速度为零的状态下,保持电动机有足够大的转矩,从而保证起重设备在速度为零时,电动机能够使重物在空中停止,直到电磁制动器将轴抱住为止,以防止溜钩的发生。直流制动励磁功能,即变频器在起动之前自动进行直流强励磁,使电动机有足够大的起动转矩,维持重物在空中的停止状态,以保证电磁制动器在释放过程中不会发生溜钩。

3系统硬件配置

梅钢冷轧桥式起重机上应用的ACS800变频器调速系统由电控柜,大小车变频控制柜,起升变频控制柜,联动控制台等组成。主起升采用1台ACC800变频器驱动1台起升专用电动机,并在电动机轴尾安装1台速度编码器,做速度反馈用。

该速度编码器用来提高低速状态下电动机模型的速度和转矩计算精度,保证转矩验证,开闭闸等功能。主起升采用斩波

器加制动电阻实现制动功能,斩波器与制动电阻串联后接入变频器整桥与逆变桥之间的直流回路中,并由变频器根据中间直流回路电压高低控制斩波器接通与否(即控制制动电阻的投切)。变频器配有RPBA201接口卡件,提供标准的Profibus2DP 现场总线接口,用于与PLC通信控制,并接收PLC发来的开,停车命令和速度设定值等控制参数。

4起升变频器功能参数设置

ABB变频器在出厂时,所有功能码都已设置。

但是,起重机变频调速系统的要求与工厂设定值不尽相同,所以,ACC800中一些重要的功能参数需要重新设定。

(1)起动数据(参数组99)

参数99102(用于提升类传动,但不包括主/从总线通信功能):CRANE;参数99104(电动机控制模式):DTC(直接转矩控制);参数99105~99109(电动机常规铭牌参数):按照电动机的铭牌参数输入。

(2)数字输入(参数组10)

参数10101~10113(数字输入接口预置参数):按照变频器外围接口定义进行设置,限于篇幅,不再赘述。

(3)限幅(参数组20)

参数20101(运行范围的最小速度):-1000 r/min(根据实际电动机参数进行设定);参数20102(运行范围的最大速度):1000r/min(根据实际电动机参数进行设定);参数20103(最大输出电流):120%;参数20104(最大正输出转矩):150%;参数20104(最大负输出转矩):-150%;参数20106(直流过压控制器参数):OFF(本例中ACC800变频器使用了动力制动方式,此参数设为OFF后,制动斩波器才能投入运行)。

(4)脉冲编码器(参数组50)

参数50101(脉冲编码器每转脉冲数):1024;参数50103(编码器故障):FAULT(如果监测到编码器故障或编码器通信失败时,ACC800变频器显示故障并停机)。

(5)提升机(参数组64)

参数64101(独立运行选择):FALSE;64103(高速值1):98%;64106(给定曲线形状):0(直线);参数64110(控制类型选择):FBJOYSTICK.(6)逻辑处理器(参数组65)参数65101(电动机停止后是否保持电动机磁场选择):TRUE(在电动机停止后保持电动机磁场为"ON");参数65102(ON脉冲延时时间):5s.(7)转矩验证(参数组66)参数66101(转矩验证选择):TRUE(转矩验证有效,要求有脉冲编码器)。

(8)机械制动控制(参数组67)

参数67106(相对零速值):3%;参数67109(起动转矩选择器):AUTOTQMEM(自动转矩记忆)。

(9)给定处理器(参数组69)

参数69101(对应100%给定设置电动机速度):980r/min (根据实际电动机参数进行设定);参数69102(正向加速时间):3s;参数69103(反向加速时间):3s;参数69104(正向减速时间):3s;参数69105(反向减速时间):3s.(10)可选模块(参数组98)

参数98101(脉冲编码器模块选择):RTAC2 SLOT2(脉冲编码器模块类型为RTAC,连接接口为传动控制单元的选件插槽2);参数98102(通信模块选择):FIELDBUS(激活外部串行通信并选择外部串行通信接口)。

5试运行

变频调速系统的功能参数设定完后,就可进行系统试运行。

应先在变频器操作盘上进行速度给定,手动起动变频器,让起升电动机空载运转一段时间,并且这种试运行可以在5,10,15,20,25,35,50Hz等几个频率点进行,注意观察电动机的运转方向是否正确,转速是否平稳,显示数据是否正确,温升是否正常,加减速是否平滑等

。单台变频器试运行正确后,再接入脉冲编码器模块进行速度闭环调试,试运行起升机构变频调速系统。

起升变频器手动运行无误后,就可接入PLC控制系统,进行整机联调。整机联调中,关键要注意观察变频器起动与停止时,主起升机械制动器的开闭反应是否快速,钩头是否存在溜钩现象等。

其次还要注意观察钩头在下降过程中,制动单元和制动电阻投运后,其温升是否正常。在重物下放过程中,重物的势能会释放出来,此时电动机将工作在反向发电状态。在钩头下降过程中,电动机通过逆变桥向变频器中间直流回路充电,当直流回路的电压高于变频器系统设定值时,变频器控制斩波器接通,进而使制动电阻投入工作,以消耗变频器中间直流回路多余的电能,确保变频器中间直流回路电压稳定在一个特定电压范围内。

随着起重机的不断发展,传统控制技术难以满足起重机越来越高的调速和控制要求。在电子技术飞速发展的今天,起重机与电子技术的结合越来越紧密,如采用PLC取代继电器进行逻辑控制,交流变频调速装置取代传统的电动机转子串电阻的调速方式等。在选型对比基础上,本项目电动机调速装置采用了先进的变频调速方案,变频器最终选型为ABB变频器ACS800,电动机选用专用鼠笼变频电动机。在众多交流变频调速装置中,ABB变频器以其性能的稳定性,选件扩展功能的丰

富性,编程环境的灵活性,力矩特性的优良性和在不同场合使用的适应性,使其在变频器高端市场中占有相当重要的地位。ACC800变频器是ACS800系列中具有提升机应用程序的重要一员,

它在全功率范围内统一使用了相同的控制技术,例如起动向导,自定义编程,DTC控制等,非常适合作为起重机主起升变频器使用。本文结合南京梅山冶金发展有限公司设备分公司所负责维修管理的宝钢集团梅钢冷轧厂27台桥式起重机变频调速控制系统,详细介绍ACC800变频器在起重机主起升中的应用。

1DTC控制技术

DTC(直接转矩控制,DirectTorqueControl)技术是ACS800变频器的核心技术,是交流传动系统的高性能控制方法之一,它具有控制算法简单,易于数字化实现和鲁棒性强的特点。其实质是利用空间矢量坐标的概念,在定子坐标系下建立异步电动机空间矢量数学模型,通过测量三相定子电压和电流(或中间直流电压)直接计算电动机转矩和磁链的实际值,并与给定转矩和磁链进行比较,开关逻辑单元根据磁链比较器和转矩比较器的输出选择合适的逆变器电压矢量(开关状态)。定子给定磁链和对应的电磁转矩的实际值,可以用定子电压和电流测量值直接计算得到。在计算中,只需要一个电动机参数―――定子电阻,这一点和几乎需要全部电动机参数的直接转子磁链定向控制(矢量控制)形成了鲜明对比,极大地减轻了微处理器的计算负担,提高了运算速度

。直接转矩控制结构较为简单,可以实现快速的转矩响应(不大于5ms)。

2防止溜钩控制

作为起重用变频系统,其控制重点之一是在电动机处于回馈制动状态下系统的可靠性("回馈"是指电动机处于发电状态时通过逆变桥向变频器中间直流回路注入电能),尤其需要引起注意的是主起升机构的防止溜钩控制。溜钩是指在电磁制动器抱住之前和松开之后的瞬间,极易发生重物由停止状态出现下滑的现象。

电磁制动器从通电到断电(或从断电到通电)

需要的时间大约为016s(视起重机型号和起重量大小而定),变频器如过早停止输出,将容易出现溜钩,因此变频器必须避免在电磁制动器抱闸的情况下输出较高频率,以免发生"过流"而跳闸的误动作。

防止溜钩现象的方法是利用变频器零速全转矩功能和直流制动励磁功能。零速全转矩功能,即变频器可以在速度为零的状态下,保持电动机有足够大的转矩,从而保证起重设备在速度为零时,电动机能够使重物在空中停止,直到电磁制动器将轴抱住为止,以防止溜钩的发生。直流制动励磁功能,即变频器在起动之前自动进行直流强励磁,使电动机有足够大的起动转矩,维持重物在空中的停止状态,以保证电磁制动器在释放过程中不会发生溜钩。

3系统硬件配置

梅钢冷轧桥式起重机上应用的ACS800变频器调速系统由电控柜,大小车变频控制柜,起升变频控制柜,联动控制台等组成。主起升采用1台ACC800变频器驱动1台起升专用电动机,并在电动机轴尾安装1台速度编码器,做速度反馈用。

该速度编码器用来提高低速状态下电动机模型的速度和转矩计算精度,保证转矩验证,开闭闸等功能。主起升采用斩波器加制动电阻实现制动功能,斩波器与制动电阻串联后接入变

频器整桥与逆变桥之间的直流回路中,并由变频器根据中间直流回路电压高低控制斩波器接通与否(即控制制动电阻的投切)。变频器配有RPBA201接口卡件,提供标准的Profibus2DP 现场总线接口,用于与PLC通信控制,并接收PLC发来的开,停车命令和速度设定值等控制参数。

4起升变频器功能参数设置

ABB变频器在出厂时,所有功能码都已设置。

但是,起重机变频调速系统的要求与工厂设定值不尽相同,所以,ACC800中一些重要的功能参数需要重新设定。

(1)起动数据(参数组99)

参数99102(用于提升类传动,但不包括主/从总线通信功能):CRANE;参数99104(电动机控制模式):DTC(直接转矩控制);参数99105~99109(电动机常规铭牌参数):按照电动机的铭牌参数输入。

(2)数字输入(参数组10)

参数10101~10113(数字输入接口预置参数):按照变频器外围接口定义进行设置,限于篇幅,不再赘述。

(3)限幅(参数组20)

参数20101(运行范围的最小速度):-1000 r/min(根据实际电动机参数进行设定);参数20102(运行范围的最大速度):1000r/min(根据实际电动机参数进行设定);参数20103(最大输出电流):120%;参数20104(最大正输出转矩):150%;参数20104(最大负输出转矩):-150%;参数20106(直流过压控制器参数):OFF(本例中ACC800变频器使用了动力制动方式,此参数设为OFF后,制动斩波器才能投入运行)。

(4)脉冲编码器(参数组50)

参数50101(脉冲编码器每转脉冲数):1024;参数50103

(编码器故障):FAULT(如果监测到编码器故障或编码器通信失败时,ACC800变频器显示故障并停机)。

(5)提升机(参数组64)

参数64101(独立运行选择):FALSE;64103(高速值1):98%;64106(给定曲线形状):0(直线);参数64110(控制类型选择):FBJOYSTICK.(6)逻辑处理器(参数组65)参数65101(电动机停止后是否保持电动机磁场选择):TRUE(在电动机停止后保持电动机磁场为"ON");参数65102(ON脉冲延时时间):5s.(7)转矩验证(参数组66)参数66101(转矩验证选择):TRUE(转矩验证有效,要求有脉冲编码器)。

(8)机械制动控制(参数组67)

参数67106(相对零速值):3%;参数67109(起动转矩选择器):AUTOTQMEM(自动转矩记忆)。

(9)给定处理器(参数组69)

参数69101(对应100%给定设置电动机速度):980r/min (根据实际电动机参数进行设定);参数69102(正向加速时间):3s;参数69103(反向加速时间):3s;参数69104(正向减速时间):3s;参数69105(反向减速时间):3s.(10)可选模块(参数组98)

参数98101(脉冲编码器模块选择):RTAC2 SLOT2(脉冲编码器模块类型为RTAC,连接接口为传动控制单元的选件插槽2);参数98102(通信模块选择):FIELDBUS(激活外部串行通信并选择外部串行通信接口)。

5试运行

变频调速系统的功能参数设定完后,就可进行系统试运行。应先在变频器操作盘上进行速度给定,手动起动变频器,让起

升电动机空载运转一段时间,并且这种试运行可以在5,10,15,20,25,35,50Hz等几个频率点进行,注意观察电动机的运转方向是否正确,转速是否平稳,显示数据是否正确,温升是否正常,加减速是否平滑等

。单台变频器试运行正确后,再接入脉冲编码器模块进行速度闭环调试,试运行起升机构变频调速系统。

起升变频器手动运行无误后,就可接入PLC控制系统,进行整机联调。整机联调中,关键要注意观察变频器起动与停止时,主起升机械制动器的开闭反应是否快速,钩头是否存在溜钩现象等。

其次还要注意观察钩头在下降过程中,制动单元和制动电阻投运后,其温升是否正常。在重物下放过程中,重物的势能会释放出来,此时电动机将工作在反向发电状态。在钩头下降过程中,电动机通过逆变桥向变频器中间直流回路充电,当直流回路的电压高于变频器系统设定值时,变频器控制斩波器接通,进而使制动电阻投入工作,以消耗变频器中间直流回路多余的电能,确保变频器中间直流回路电压稳定在一个特定电压范围内。

17.2《探究电动机转动的原理》研究课教学设计及反思

《探究电动机转动的原理》 课题组研究课、学期公开课教学概述 讲授:罗英俊时间:2016年1月4日 一、教学设想:本节课是初中物理中比较难以讲好、学好的一节课,即使在高二,教师讲好这一节课依然有很大的难度。尽管高二教学中有左手定则来帮助判断推理,学生听完课想顺利掌握电动机的工作原理也还有困难。所以本节课我想调动更多有用的感性的手段来协助,增加操作性,降低理性要求,减小难度,使学生更顺利的掌握电动机的工作原理。 第一,要紧紧地顺着《磁场对电流的作用》实验现象,得出磁场对电流作用力的方向与两个有关因素来判断。 第二,着力点在于认识通电线圈在磁场中只能摆动,不能顺利转动的冲突,发现摆动原因,并找到顺利转动的改进方法。 第三,利用作简图方法让学生自己体会理解线圈中的电流方向是如何在换向器的作用下变换的。 二、教学思路: ①实验:通入直流电的导线(简单线圈组)在U形磁铁中受到一个力的作用不同作用; ②总结结论:磁场对电流的作用力方向跟电流方向和磁场方向有关; ③练习巩固; ④模拟电动机的工作转动半周后摆动,找原因,想方法; ⑤换向器变换线圈内电流方向,使线圈持续转动下去; ⑥真实电动机的结构,换向器的作用,电动转动快慢、方向,如何改变。及常见故障。 三、教学过程: 1、演示实验:(通电导体在磁场中受到力的作用)

从最简单的通入直流电的导线(简单线圈组)在U 形磁铁中受到一个力的作用开始,让学生认识到,通电导体在磁场中受到力的作用,实际上是磁场对电流的作用力,而不是对线圈的作用; 改变电源两极接线,变换导线(简单线圈组)电流方向,则它们在U 形磁铁中受到相反方向的作用; 调换磁极方向,导线(简单线圈组)在U 形磁铁中受到另一个力的作用。而这个力跟第一个力的方向一样。由此总结出结论如2。 2、结论:磁场对电流的作用力方向跟电流方向和磁场方向两个因素有关。两个因素只改变一个,力的方向必然改变;两个因素全部改变,方向则必然不变。 接着介绍简图法,让学会用简图表示通电导线的剖面图,即电流流入和流出的剖面图。并利用它们来表示刚才实验中的各个现象,受力的对应情况。结合已经总结的两个因素,进行下列练习。 练习1:如何判断磁场对电流作用力的方向,从而能够推断通电导体或线圈的各段在不同条件下在磁场中受到的力的方向如何改变。 (1) (2) 练习中的磁场、导线通电情况与后面的电动机剖面图情况一致,为认识电动机做准备。并指出(2)是电动机转动中重要位置:平衡位置――受到一对平衡力的作用。而(1)的受力情况很有利于转动称为启动位置。 3、利用课件展示模拟电动机。 先根据磁场、导线通电情况剖面图判断电动机的转向,接着进行模拟演示,认学生了解这样的电动机只能摆动而不能转动。如下图: 课件: 版图:

交流电动机的旋转原理

交流电动机的旋转原理 目前较常用的交流电动机有两种:1、三相异步电动机。 2、单相交流电动机。第一种多用在工业上,而第二种多用在民用电器上。 一、三相异步电动机的旋转原理 三相异步电动机要旋转起来的先决条件是具有一个旋转磁场,三相异步电动机的定子绕组就是用来产生旋转磁场的。我们知道,但相电源相与相之间的电压在相位上是相差120度的,三相异步电动机定子中的三个绕组在空间方位上也互差120度,这样,当在定子绕组中通入三相电源时,定子绕组就会产生一个旋转磁场,其产生的过程如图1所示。图中分四个时刻来描述旋转磁场的产生过程。电流每变化一个周期,旋转磁场在空间旋转一周,即旋转磁场的旋转速度与电流的变化是同步的。旋转磁场的转速为:n=60f/P式中f 为电源频率、P是磁场的磁极对数、n的单位是:每分钟转数。根据此式我们知道,电动机的转速与磁极数和使用电源的频率有关,为此,控制交流电动机的转速有两种方法:1、改变磁极法;2、变频法。以往多用第一种方法,现在则利用变频技术实现对交流电动机的无级变速控制。

交流电动机的旋转原理 观察图1还可发现,旋转磁场的旋转方向与绕组中电流的相序有关。相序A、B、C顺时针排列,磁场顺时针方向旋转,若把三根电源线中的任意两根对调,例如将B相电流通入C相绕组中,C相电流通入B相绕组中,则相序变为:C、B、A,则磁场必然逆时针方向旋转。利用这一特性我们可很方便地改变三相电动机的旋转方向。定子绕组产生旋转磁场后,转子导条(鼠笼条)将切割旋转磁场的磁力线而产生感应电流,转子导条中的电流又与旋转磁场相互作用产生电磁力,电磁力产生的电磁转矩驱动转子沿旋转磁场方向以n1的转速旋转起来。一般情况下,电动机的实际转速n1低于旋转磁场的转速n。因为假设n=n1,则转子导条与旋转磁场就没有相对运动,就不会切割磁力线,也就不会产生电磁转矩,所以转子的转速n1必然小于n。为此我们称三相电动机为异步电动机。 二、单相交流电动机的旋转原理

九年级物理探究电动机的转动原理

探究电动机的转动原理 教学目标 知识与技能:了解通电导线在磁场中受力的作用,并且受力的方向与电流方向、磁场的方向有关;了解电动机的构造和原理。 过程与方法:经历制作简单电动机的过程,探究电动机连续转动的原理。 情感、态度与价值观:了解科学知识转化成应用技术的过程,提高学习科学技术的兴趣,培养创造发明的意识。 重点:直流电动机的工作原理。 难点:直流电动机工作过程中的特点。 教学方法:演示实验法,讲授法 归纳总结法 教具准备:挂图,直流电动机模型 一、复习引入,实验激趣。 磁场对电流的作用 1. 通电导体在磁场里受到力的作用 我们可以做这样的实验,如图所示,把一根直导体AB放在蹄形磁体的磁场里,并与电源、开关、滑动变阻器组成一闭合电路。 (1)合上开关,接通电路,导体AB中产生由A向B流动的电流,这时导体AB向左运动起来。 (2)将电源上的正、负极接线对换,合上开关,导体AB中产生由B向A流动的电流,这时导体AB向右运动起来。 (3)将蹄形磁体的磁极上下翻转,导体AB的运动方向也发生变化。 通过上面的实验我们可以得出这样的结论: ①通电导体在磁场里受到力的作用。 ②通电导体在磁场里受力的方向,跟电流方向和磁场方向有关。 二、进行新课 1、磁场对通电线圈的作用 如图所示,在图甲中,通电线圈的ab边和cd边在磁场里受到力的作用,因两边中电流方向相反,所以两力方向相反且不在同一条直线上,所以线圈就转动起来。当转到图乙所示位置时,这两个力恰好在同一直线上,而且大小相等,方向相反,线圈保持平衡。我们把这个位置叫做平衡位置。通过这个实验我们发现,通电的线圈在磁场中要受力而转动。

换向器的作用:当线圈刚转过平衡位置时,换向器能自动改变线圈中电流的方向,从而改变线圈受力方向,使线圈连续转动。 如甲图所示:电刷B和半环E接触,电刷A和半环F接触,此时线圈中电流方向是a→b→c→d,受力方向是ab边受力向上,cd边受力向下,线圈的转动方向是顺时针。 如图乙所示:当线圈转到平衡位置时,此时电刷正好接触了两个金属半环中间的绝缘部分,所以线圈中没有电流流过,此时线圈在磁场中也不受力的作用。 如丙图所示:当线圈由于惯性刚刚转过平衡位置时,电刷B和半环F接触,电刷A和半环E接触,此时线圈中电流方向是d→c→b→a,受力方向是ab边受力向下,cd边受力向上,转动方向是顺时针。 如图丁所示:当线圈转到平衡位置时,此时电刷正好接触了两个金属半环中间的绝缘部分,所以线圈中没有电流流过,此时线圈在磁场中也不受力的作用。由于线圈的惯性,当其刚转过平衡位置时,就又返回到了如图甲所示的情况了,这样这个直流电动机就能连续不断的转动下去了。

各种交流电动机的旋转原理

各种交流电动机的旋转原理 目前较常用的交流电动机有两种:1、三相异步电动机。2、单相交流电动机。第一种多用在工业上,而第二种多用在民用电器上。 一、三相异步电动机的旋转原理 三相异步电动机要旋转起来的先决条件是具有一个旋转磁场,三相异步电动机的定子绕组就是用来产生旋转磁场的。我们知道,但相电源相与相之间的电压在相位上是相差120度的,三相异步电动机定子中的三个绕组在空间方位上也互差120度,这样,当在定子绕组中通入三相电源时,定子绕组就会产生一个旋转磁场,其产生的过程如图1所示。图中分四个时刻来描述旋转磁场的产生过程。电流每变化一个周期,旋转磁场在空间旋转一周,即旋转磁场的旋转速度与电流的变化是同步的。旋转磁场的转速为:n=60f/P式中f为电源频率、P是磁场的磁极对数、n的单位是:每分钟转数。根据此式我们知道,电动机的转速与磁极数和使用电源的频率有关,为此,控制交流电动机的转速有两种方法:1、改变磁极法;2、变频法。以往多用第一种方法,现在则利用变频技术实现对交流电动机的无级变速控制。 观察图1还可发现,旋转磁场的旋转方向与绕组中电流的相序有关。相序A、B、C顺时针排列,磁场顺时针方向旋转,若把三根电源线中的任意两根对调,例如将B相电流通入C相绕组中,C相电流通入B相绕组中,则相序

变为:C、B、A,则磁场必然逆时针方向旋转。利用这一特性我们可很方便地改变三相电动机的旋转方向。定子绕组产生旋转磁场后,转子导条(鼠笼条)将切割旋转磁场的磁力线而产生感应电流,转子导条中的电流又与旋转磁场相互作用产生电磁力,电磁力产生的电磁转矩驱动转子沿旋转磁场方向以n1的转速旋转起来。一般情况下,电动机的实际转速n1低于旋转磁场的转速n。因为假设n=n1,则转子导条与旋转磁场就没有相对运动,就不会切割磁力线,也就不会产生电磁转矩,所以转子的转速n1必然小于n。为此我们称三相电动机为异步电动机。 二、单相交流电动机的旋转原理 单相交流电动机只有一个绕组,转子是鼠笼式的。当单相正弦电流通过定子绕组时,电动机就会产生一个交变磁场,这个磁场的强弱和方向随时间作正弦规律变化,但在空间方位上是固定的,所以又称这个磁场是交变脉动磁场。这个交变脉动磁场可分解为两个以相同转速、旋转方向互为相反的旋转磁场,当转子静止时,这两个旋转磁场在转子中产生两个大小相等、方向相反的转矩,使得合成转矩为零,所以电动机无法旋转。当我们用外力使电动机向某一方向旋转时(如顺时针方向旋转),这时转子与顺时针旋转方向的旋转磁场间的切割磁力线运动变小;转子与逆时针旋转方向的旋转磁场间的切割磁力线运动变大。这样平衡就打破了,转子所产生的总的电磁转矩将不再是零,转子将顺着推动方向旋转起来。 要使单相电动机能自动旋转起来,我们可在定子中加上一个起动绕组,起动绕组与主绕组在空间上相差90度,起动绕组要串接一个合适的电容,使得与主绕组的电流在相位上近似相差90度,即所谓的分相原理。这样两个在时间上相差90度的电流通入两个在空间上相差90度的绕组,将会在空间上产生(两相)旋转磁场,如图2所示。在这个旋转磁场作用下,转子就能自动起动,起动后,待转速升到一定时,借助于一个安装在转子上的离心开关

探究电动机的转动原理

17.2 探究电动机的转动原理 一、教学目标: (1)了解通电导体在磁场中会受到力的作用,知道力的方向与电流及磁场方向都有关系,了解磁场对通电导线的作用力的作用规律。 (2)经历实验探究“磁场对电流作用”的过程,进一步熟悉科学探究过程的主要环节。 (3)从物理规律的探究中感受成功的喜悦,认识从理论到实际应用过程中的技术的价值。 二、教具: 线圈、电源、开关、“U”形磁铁、导线,共16组。 三、教学过程: 1。探究磁场对电流的作用 (1)复习引入: 在上一节我们猜想了电动机为什么会转动,通电线圈有磁性与永磁体作用应能转动。 为了探究我们的猜想,探究通电线圈受力转动的具体情况,需要对电动机的主要部件进行合理的简化。 最后线圈简化成一段导线。 电动机的磁铁(或电磁铁),我们用蹄形磁铁来代替。 这样,通电线圈受力转动问题就可用单根导线或线圈和蹄形磁铁进行研究。 课本中的图15-6,是同学们设计的三种实验装置,请学生分析这三幅图的优缺点。讲解我们今天选择用线圈的理由。 给同学们讲解这三种方案的原理,那么你的设计方案与这三种方案作比较,如不理想作修改,然后确定你的实验方案,进行实验。 ● 进行实验与收集证据

实验前与学生一起分析实验中应注意的事项,先让学生讲解,再总结。 1).按如图三装置准备,接好线路,闭合开关,观察线圈的运动情况。 2).磁极方向不变,改变电流方向(将电池两极对调),重复1实验,观察线圈的运动情况。 3).在步骤1基础上,不改变电流方向,只改磁场方向(将磁极对调),观察线圈的运动情况。 4).在实验3)的基础上,再对磁极进行对调,观察磁场中线圈的运动方向。将以上结果填写在表格中。 电流方向磁场方向导体AB运动方向(向左、向右) 由A到B N极在上 由B到A N极在上 由A到B N极在下 由B到A N极在下 通过实验,可以得出结论:(可由学生总结) 通电导体在磁场中受到________________,力的方向跟________________、___________________都有关系。 2。换向器的作用 利用磁场对电流作用的规律,电动机中的线圈通电后也会运动,但为什么会能一直转动下去呢? 请学生先阅读课本,问学生,从这段文字中,我们发现了,使电动机转动的关键部件是什么? 学生不难回答出是换向器。 由于换向器的作用是难点,在这里要给学生作重点讲解。 拿出自制的电动机模型,讲解线圈平面在平行于磁场的位置受力转动到线圈平面与磁场 垂直时的受力情况。 问:1)线圈在左图位置时,线圈abcd的两边ab、cd中的电流方向分别如何?两边的磁场方向如何?如果ab边的受力方向向上,则边cd的受力方向是怎样的?为什么? 2)此时线圈会怎样运动?不什么? 3)当线圈转动到右图的位置时,线圈的受力情况又是怎样?为什么? 讲解:由于右图位置线圈到一对平衡力的作用,所以此位置叫“平衡位置”。

探究电动机的转动原理教案

二、探究电动机的转动原理 一、情景引入 电动机的发明和改进,将大大推动人类的文明进程,如车辆不再依赖石油了,利用电能或太阳能的电动机将交通工具驶向了高速公路……。但我们知道电动机有两个主要的组成部分:磁体和线圈。通电线圈在磁场中高速运转,线圈是用导线和电池连在一起的,线圈的转动必然导致和电池连在一起的导线扭断!我们怎样解决这个问题呢? 二、教材研究 问题1——怎样改变电动机的转动方向? 探究课本P5图16-6所示实验,将观察到的现象填写在下面空格上: 当接通电源时,看到金属杆_____________,这说明了_________________________________.。 当保持磁场方向不变,改变电流方向时,金属杆____________________________________。 当保持电流方向不变,改变磁场方向时,金属杆____________________________________。 结论:磁场对通电导体具有_____________的作用,其作用的方向与____________、______________有关。 问题2——怎样解决电动机的线圈高速运转时,和电池连在一起的导线不会被扭断? 我们有两个问题:(1)请观察课本图16-7中(b)图,这是平衡位置,就是线圈中上下二根导线受到二力平衡(大小相等、方向相反),怎样使线圈转动下去?(2)如果线圈可以转动,和电池连在一起的导线怎样才不会被扭断?

试着动手解决这些问题,并和同学一起交流讨论。 请阅读“活动——探究换向器的作用”,认真观察换向器(图16-8),回答下列问题: (1)换向器的构造:。 (2)换向器的作用:。 问题3——电动机转动的原理是什么? 1、电动机的工作原理是如何的呢?请认真阅读课本P16-9图16-9,并与同学们交流讨论。 2、请你解释动圈式扬声器的工作原理。 三、典例分析 例2.如图所示是直流电动机在两个不同时刻的工作原理图,以下是小明和小华所在科技小组的同学对直流电动机工作原理的分析,其中正确的是() A.导线ab在这两个时刻电流方向不同,受到磁 场力方向也不同 B.导线ab和cd分别在这两个时间所受到的力的 作用效果不相同

沪粤版九年级物理下册《探究电动机转动的原理》教学设计与反思

沪粤版九年级物理下册《探究电动机转动的原理》 教学设计与反思 沪粤版九年级物理下册《探究电动机转动的原理》教学设计与反思 17.2探究电动机转动的原理 教学目标 知识目标 1.了解磁场对通电导线的作用。 2.初步认识科学与技术之间的关系。 教学重点:磁场对电流的作用。 教学难点 1.分析概括通电导体在磁场中的受力方向跟哪两个因素有关。 2.理解通电线圈在磁场里为什么会转动。 器材准备 电源、蹄形磁体、开关、导线、铜棒(导体)、滑动变阻器、线圈、导轨。 教学过程 一、引入新课 1.磁场的基本性质是什么?磁场对放入其中的磁体产生力的作用。 2.电流的磁效应是什么?通电导体周围存在着磁场,磁场的方向跟电流的方向有关,这种情况叫作电流的磁效应。 播放课件:播放有关电动机动画。 分别点击开关(2个方向)和拖动滑动变阻器,观察电动机和车轮的旋转方向,由学生描述并猜测出现这种现象的原因。

电动机为什么会转呢?引导学生回忆奥斯特实验,知道通电导体周围存在磁场,能使小磁针偏转,即电流对磁体有力的作用,启发学生逆向思维。磁场对电流有没有力的作用呢? 我们知道生产和生活中的许多电器都需要电动机来带动,下面我们就来研究电动机的工作原理。 二、新课教学 探究点一:磁场对通电导线的作用 1.如上图,把导线ab放在磁场里,接通电源,让电流通过导线ab,观察它的运动,说出观察到的现象,讨论得出结论。 现象:接通电源,导线ab向外(或向里)运动。 结论:通电导体在磁场中受到力的作用。 2.把电源的正负极对调后接入电路,使通过导线ab的电流方向与原来相反,观察导线ab的运动方向。 现象:合上开关,导线ab向里(或向外)运动,与刚才运动方向相反。 结论:这说明通电导体在磁场中受到的力的方向与电流通过导体的方向有关。 3.保持导线ab中的电流方向不变,但把蹄形磁体上下磁极调换一下,使磁场方向与原来相反,观察导线ab的运动方向。 现象:磁极调换后观察到导线ab的运动方向改变。 结论:这表明通电导体在磁场中运动方向与磁感线方向有关。 实验表明:通电导线在磁场中要受到力的作用,力的方向跟电流的方向、磁感线的方向都有关系,当电流的方向或者磁感线的方向变得相反时,通电导线受力的方向也变得相反。 引导:当电流方向或者磁感线方向变的相反时,通电导体受力方向也变的相反。那么,把一个通电的线框放到磁场中,它会怎样运动?想一想,做做看。

同步电动机的工作原理

同步电动机的工作原理 同步电动机 转子转速与定子旋转磁场的转速相同的交流电动机。其转子转速n 与磁极对数p、电源频率f之间满足n=f/p。转速n决定于电源频率f,故电源频率一定时,转速不变,且与负载无关。具有运行稳定性高和过载能力大等特点。常用于多机同步传动系统、精密调速稳速系统和大型设备(如轧钢机)等。 同步电动机是属于交流电机,定子绕组与异步电动机相同。它的转子旋转速度与定子绕组所产生的旋转磁场的速度是一样的,所以称为同步电动机。正由于这样,同步电动机的电流在相位上是超前于电压的,即同步电动机是一个容性负载。为此,在很多时候,同步电动机是用以改进供电系统的功率因数的。 同步电动机在结构上大致有两种: 1、转子用直流电进行励磁。它的转子做成显极式的,安装在磁极铁芯上面的磁场线圈是相互串联的,接成具有交替相反的极性,并有两根引线连接到装在轴上的两只滑环上面。磁场线圈是由一只小型直流发电机或蓄电池来激励,在大多数同步电动机中,直流发电机是装在电动机轴上的,用以供应转子磁极线圈的励磁电流。 由于这种同步电动机不能自动启动,所以在转子上还装有鼠笼式绕组而作为电动机启动之用。鼠笼绕组放在转子的周围,结构与异步电动机相似。 当在定子绕组通上三相交流电源时,电动机内就产生了一个旋转磁

场,鼠笼绕组切割磁力线而产生感应电流,从而使电动机旋转起来。电动机旋转之后,其速度慢慢增高到稍低于旋转磁场的转速,此时转子磁场线圈经由直流电来激励,使转子上面形成一定的磁极,这些磁极就企图跟踪定子上的旋转磁极,这样就增加电动机转子的速率直至与旋转磁场同步旋转为止。 2、转子不需要励磁的同步电机 转子不励磁的同步电动机能够运用于单相电源上,也能运用于多相电源上。这种电动机中,有一种的定子绕组与分相电动机或多相电动机的定子相似,同时有一个鼠笼转子,而转子的表面切成平面。所以是属于显极转子,转子磁极是由一种磁化钢做成的,而且能够经常保持磁性。鼠笼绕组是用来产生启动转矩的,而当电动机旋转到一定的转速时,转子显极就跟住定子线圈的电流频率而达到同步。显极的极性是由定子感应出来的,因此它的数目应和定子上极数相等,当电动机转到它应有的速度时,鼠笼绕组就失去了作用,维持旋转是靠着转子与磁极跟住定子磁极,使之同步 同步电动机的起动方法: 同步电动机只有在定子旋转磁场与转子励磁磁场相对静止时,才能得到平均电磁转矩。如将静止的同步电动机励磁后直接投入电网,这时定子旋转磁场与转子磁场间以同步转速n1作相对运动,转子受到交变的脉动转矩,其平均值为零,电机不能起动。所以必须借助其他方式来起动。

电动机转动的原理教学设计教案

探究电动机的转动原理 名师精品教案 【教学目标】 1.知道通电导体在磁场中要受到力的作用。 2.知道通电导体在磁场中受力的方向与电流方向、磁场方向有关。 3.知道电动机的构造和原理。 【教学重难点】 1.通电导体在磁场中受到力的作用; 2.电动机连续转动的工作过程。 【教学过程】 导入新课 出示教具(如图所示)一一玩具电动机,并演示.。 这是一只玩具电动机,通电后它就转动了,为了弄清楚电 动机通电后为什么会转动这个问题,就需研究电动机的基本原 理。我们把电动机简化一下,先观察直流电动机模型。 出示教具(如图所示)一一大型直流电动机模型,介绍并 演示。 这里由一个蹄形磁铁,有一个矩形线圈放置在磁场里,其他部件以后再讨论。现在给矩形线圈通电,请注意观察。通电线圈在磁场里为什么会转动呢? 为了便于研究,我们讨论矩形线圈的一条边,即研究通电的直导体放置在磁场里,会产生怎样的现象。下面请同学们利用课桌上的器材,自己做实验。 (教学说明:从观察常见的玩具小电动机的转动着手,引出观察大型直流电动机模型——通电矩形线圈在磁场中的转动,然后提出要观察和研究通电直导体在磁场中的现象。课题的引入分为三个层次,逐一简化,最后指出本课的课题是研究磁场对电流的作用。既激发了学生的学习兴趣,又符合学生的认知规律。) 推进新课 一、探究磁场对电流的作用 结合电动机模型讲解电动机的构造:转子(转动部分)緾绕有很多线圈;定子电动机外壳安装有永磁体或电磁体,磁体的周围存在磁场。线圈通电后会转动。 演示:电动机通电转动。 线圈要转动必须要施加旋转的力,电动机通电后这个力是怎么产生的? 演示:探究电动机的工作原理(如图所示)。

交流电动机工作原理

交流电动机分类及工作原理 一、交流电机的分类 交流电机是实现机械能与交流电能之间互相转换的一种装置,其分类可以分为以下几类: 1.按其功能分交流发电机和交流电动机两大类,交流电动机是将交流电能转换成机械能的装置。 2.按其原理不同,交流电动机可分为同步电动机和异步电动机两大类,同步电动机的旋转速度与交流电源的频率有严格的对应关系,在运行中转速严格保持恒定不变;异步电动机的转速随着负载的变化稍有变化。 3.按所需交流电源相数的不同,交流电动机又可分为单相和三相两大类,目前使用最广泛的是三相异步电动机,这是由于三相异步电动机具有结构简单、价格低廉、坚固耐用、使用维护方便等优点。在没有三相电源的场合及一些功率较小的电动机则广泛使用单相异步电动机。 4.三相异步电动机根据其转子结构的不同又可分鼠笼式和绕线式两大类,其中鼠笼式应用最为广泛。 二、三相异步电动机的结构 三相异步电动机主要由定子和转子两个部分组成,结构如图1所示 图1异步电动机结构 1.定子部分 包括机座,定子铁心和定子绕组。机座通常用铸铁或铸钢制成,铁

心用硅钢片叠成圆筒形,铁心的内圆上有若干分布均匀的平行槽,槽内安装定子绕组。定子绕组是电动机的电路部分,三相电动机的定子绕组由三相对称的绕组组成。三相绕组的各相绕组彼此独立,按互差1200电角度嵌放在定子,各绕组起绐端分别为U1、U2、V1、V2、W1、W2,从机座上的接线盒中引出。根据要求将三相定子绕组接成星形(Y形)或三角形(△形),具体接线方式如图2所示。 图2三相异步电动机定子绕组的接线图 电动机如果接成星形,则电机每相绕组承受电压是电源的相电压,如果接成三角形,则电机每相绕组承受电压是电源的线电压。具体是星形连接还是三角形连接应考虑电机的额定电压值。 例如:电机额定电压是220V应采用星形连接,如额定电压是380V 应采用三角形连接。 2.转子部分 由转子铁心、转子绕组和转轴等部分组成。转子铁心也由硅钢片叠成,并固定在转轴上。转子的外圆周上也有若干分布均匀的平行槽,用于安置转子绕组。 转子绕组根据其结构可分为鼠笼式和绕线式两种 (1)鼠笼式转子 鼠笼式转子是在转子铁心的每一条槽内,插入一根裸导条,在铁心两端分别用两处短路环把导条连接成一个整体,形成一个自身闭合的短路绕组。如去掉铁心,整个绕组就像一个鼠笼,所以称为鼠笼式电动机,中小型电动机的笼型转子一般采用铸铝,大型电动机则采用铜导条,如图3所示。

单相交流电机的工作原理

单相交流电机的工作原理 一、单相交流电动机只有一个绕组,转子是鼠笼式的。当单相正弦电流通过定子绕组时,电动机就会产生一个交变磁场,这个磁场的强弱和方向随时间作正弦规律变化,但在空间方位上是固定的,所以又称这个磁场是交变脉动磁场。这个交变脉动磁场可分解为两个以相同转速、旋转方向互为相反的旋转磁场,当转子静止时,这两个旋转磁场在转子中产生两个大小相等、方向相反的转矩,使得合成转矩为零,所以电动机无法旋转。当我们用外力使电动机向某一方向旋转时(如顺时针方向旋转),这时转子与顺时针旋转方向的旋转磁场间的切割磁力线运动变小;转子与逆时针旋转方向的旋转磁场间的切割磁力线运动变大。这样平衡就打破了,转子所产生的总的电磁转矩将不再是零,转子将顺着推动方向旋转起来。 要使单相电动机能自动旋转起来,我们可在定子中加上一个起动绕组,起动绕组与主绕组在空间上相差90度,起动绕组要串接一个合适的电容,使得与主绕组的电流在相位上近似相差90度,即所谓的分相原理。这样两个在时间上相差90度的电流通入两个在空间上相差90度的绕组,将会在空间上产生(两相)旋转磁场,在这个旋转磁场作用下,转子就能自动起动,起动后,待转速升到一定时,借助于一个安装在转子上的离心开关或其他自动控制装置将起动绕组断开,正常工作时只有主绕组工作。因此,起动绕组可以做成短时工作方式。但有很多时候,起动绕组并不断开,我们称这种电动机为电容式单相电动机,要改变这种电动机的转向,可由改变电容器串接的位置来实现。 在单相电动机中,产生旋转磁场的另一种方法称为罩极法,又称单相罩极式电动机。此种电动机定子做成凸极式的,有两极和四极两种。每个磁极在1/3--1/4全极面处开有小槽,把磁极分成两个部分,在小的部分上套装上一个短路铜环,好象把这部分磁极罩起来一样,所以叫罩极式电动机。单相绕组套装在整个磁极上,每个极的线圈是串联

17.2 探究电动机转动的原理 教案

课 题 17.2 探究电动机的转动原理 教学目标(1)了解通电导体在磁场中会受到力的作用,力的方向与电流及磁场的方向都有关系,了解磁场对通电导体的力的作用规律. (2)通过实验探究磁场对通电导体的力的作用规律的过程.进一步熟悉科学探究的主要环节. 重点了解磁场对通电导体的力的作用规律 难点通过实验探究磁场对通电导体的力的作用规律 教法实验探究[来源学,科,网Z,X,X,K] 教具三用导轨(支架)、小蹄形磁铁、直导体、带转轴的两用小线圈、电池盒、开关、导线等、玩具电动机、直流电动机模型 教学过程

一、引入新课: 出示教具:玩具电动机,并演示。这是—只玩具电动机,通电后它就转动了。为弄清楚电动机通电后为什么会转动这个问题,就需研究电动机的基本原理。我们把电动机简化一下,先观察直流电动机模型。 出示直流电动机模型,介绍并演示。 教师:这是蹄形磁铁,有一个矩形线圈放置在磁场里,其他部件以后再讨论。现在给矩形线圈通电,请注意观察。 提问:观察到了什么现象。 学生:通电线圈在磁场里转动。 设问:通电线圈在磁场里为什么会转动呢? 为了便于研究,我们讨论矩形线圈的一条边,即研究通电的直导体放置在磁场里,会产生怎样的现象。下面请问学们利用课桌上的器材,自己做实验。 二、研究通电导体在磁场里是否受到力的作用[来源:https://www.doczj.com/doc/ee13980351.html,] 出示教具:介绍课桌上的器材,并提出实验要求,特别提醒学生在实验时,通电时

学生从实验中观察到了通电直导体在导轨上的运动,这是通电直导体受到了磁场的作用力的缘故。 讨论:为什么你们认为这是磁场施的力而不是其他物体施的力呢,能不能做个实验来验证? 学生实验:拿走磁铁,通电直导体不运动。教师:同学们分析了现象,初步认识了通电导体在磁场里受到了力的作用,这种作用,物理学上就叫做磁场对电流的作用,这也就是电动机的基本原理。 教师:通电导体在磁场里受到了力的作用,力是有大小和方向的量,通电直导体在磁场中受到力的大小的问题比较复杂,暂不讨论,今天重点来研究通电导体在磁场里的受力方向问题。[来源学&科&网] 提问:请同学们汇报一下刚才实验时,磁极的位置、通入的电流力向以及通电导体的受力方向。[来源:Z。xx。https://www.doczj.com/doc/ee13980351.html,] 讨论:为什么在这一个实验中通电导体在磁场中的受力方向有的向左,有的向右呢?请同学们分析一下,可能是什么原因?在讨论交流中,有的学生猜想受力方向可能与电流方向有关,有的认为可能与磁感应线方向有关,有的认为受力方向可能与电流方向及磁感应线方向都有关系。 教师:根据刚才同学们的实验与分析,让我们再来做一个实验,研究一下它们三个方向之间是否有关系。请同学们注意,这是研究三个方向关系的实验,该怎样做?讨论:请讨论一下实验方案。 实验结论: (1)通电导体在磁场里受力方向与电流方向有关;

交流变频调速电机原理

交流变频调速基本原理 一.异步电动机概述 1.异步电动机旋转原理 异步电动机的电磁转矩是由定子主磁通和转子电流相互作用产生的。 ⑴磁场以n0转速顺时针旋转,转子绕组切割磁力线,产生转子 电流 ⑵通电的转子绕组相对磁场运动,产生电磁力 ⑶电磁力使转子绕组以转速n旋转,方向与磁场旋转方向相同 2.旋转磁场的产生 旋转磁场实际上是三个交变磁场合成的结果。这三个交变磁场应满足: ⑴在空间位置上互差2π/3 rad电度角。这一点,由定子三相绕 组的布置来保证

⑵在时间上互差2π/3 rad相位角(或1/3周期)。这一点,由通 入的三相交变电流来保证 3.电动机转速 产生转子电流的必要条件是转子绕组切割定子磁场的磁力线。因此,转子的转速n必须低于定子磁场的转速n0,两者之差称为转差: Δn=n0-n 转差与定子磁场转速(常称为同步转速)之比,称为转差率:s=Δn / n0 同步转速n0由下式决定: n0=60 f / p 式中,f为输入电流的频率,p为旋转磁场的极对数。 由此可得转子的转速 n=60 f(1-s)/ p 二.异步电动机调速 由转速n=60 f(1-s)/ p可知异步电动机调速有以下几方法: 1.改变磁极对数p (变极调速) 定子磁场的极对数取决于定子绕组的结构。所以,要改变p,必须将定子绕组制为可以换接成两种磁极对数的特殊形式。 通常一套绕组只能换接成两种磁极对数。 变极调速的主要优点是设备简单、操作方便、机械特性较硬、

效率高、既适用于恒转矩调速,又适用于恒功率调速;其缺点是有极调速,且极数有限,因而只适用于不需平滑调速的场合。2.改变转差率s (变转差率调速) 以改变转差率为目的调速方法有:定子调压调速、转子变电阻调速、电磁转差离合器调速、串极调速等。 ⑴定子调压调速 当负载转矩一定时,随着电机定子电压的降低,主磁通减少,转子感应电动势减少,转子电流减少,转子受到的电磁力减少,转差率s增大,转速减小,从而达到速度调节的目;同理,定子电压升高,转速增加。 调压调速的优点是调速平滑,采用闭环系统时,机械特性较硬,调速范围较宽,缺点是低速时,转差功率损耗较大,功率因素低,电流大,效率低。调压调速既非恒转矩调速,也非恒功率调速,比较适合于风机泵类特性的负载。 分体机上的室内风机就是利用定子电压调速的方法进行调速的,其调速电路如下图。 根据风机速度的反馈信号,控制晶闸管SCR导通的相角,从而控制风机定子的输入电压,以控制风机的风速。 前面讲在空间位置上互差2π/3 rad电度角的三相绕组通以在时间上互差2π/3 rad相位角(或1/3周期)三相交变电流可产生旋转磁场,同样,在空间位置上互差π/2 rad电度角的两相绕组通以在时间上互差π/2 rad相位角(或1/2周期)两相交变电

九年级物理下16.2探究电动机的转动原理教案沪粤版

“电动机”第一课时教学设计 一、【教材分析】 电动机是我们生活中常见的一种电气化设备,电动机将电能转化为机械能,从而带动各种生产机械和生活用电器的运转。电动机的应用很广,种类也很多,但它们工作的原理都是一样的。如何从日常生活中常见的现象入手,激发学生探究的欲望是新课标的新体现。在旧教材中,这节书的内容分为三部分:磁场对电流的作用,直流电动机,实验:装配直流电动机模型。这就是传统的教学模式,先讲理论再进行实践。而新教材从与生产、生活密切相关的现象入手,激发学生的兴趣,再探讨电动机的原理,“从生活走向物理”,这样使学生更易于接受。旧教材要求学生用左手定则判断通电导线在磁体中的受力方向,而新标准则要求“通过观察,了解通电导线在磁场中会受到力的作用,力的方向与电流及磁场的方向都有关系”,与旧教材相比,要求已经降低,减轻了学生的学习负担;再者,新教材中由学生探究模拟电动机的实验对于学生了解电动机的基本构造有很大的帮助,使学生更好地理解电动机的原理和换向器的作用;最后由学生讨论生活中有哪些地方用到电动机,真正体现“从物理走向生活”的新理念。 结合我校的实际情况,我将重组本版本的第一、二节的教材安排。把它们分为2课时来讲,第一节课主要介绍电动机的结构和讨论磁场对电流的作用规律及让学生探究实验“电动机”(由于学校的器材有限,学生分组实验不能进行,主要通过课件演示,学生代表做实验等方式来代替,但也能较好实现本节的教学需求。),最后留下一个问题让学生课外思考,为下一节课做好铺垫。第二节课介绍主换向器的作用。换向器的作用是以探究和比较的方法来介绍的,让学生自己由“电动机的实验”解决相关的问题,最后得出换向器的作用。以下是第一课时的教学设计。 【教学重点】: ①通电导线在磁场中受到力的作用,力的方向跟电流的方向、磁场的方向都有关; ②直流电动机的能量转化。 ③重新掌握科学探究法来研究新问题。 【教学难点】: 通电导线在磁场中受到力的作用,力的方向跟电流的方向、磁场的方向都有关。 二、【教学目标】: 【知识与技能】 ①了解通电导线在磁场中会受到力的作用,知道力的方向与电流及磁场的方向都有关系,了解磁场对通电导线的力的作用规律。 ②初步认识科学与技术、社会之间的关系。 【过程与方法】:

单相交流电动机的旋转原理

单相交流电动机的旋转原理 单相交流电动机是目前较常用的交流电动机,多用在民用电器。 单相交流电动机只有一个绕组,转子是鼠笼式的。当单相正弦电流通过定子绕组时,电动机就会产生一个交变磁场,这个磁场的强弱和方向随时间作正弦规律变化,但在空间方位上是固定的,所以又称这个磁场是交变脉动磁场。这个交变脉动磁场可分解为两个以相同转速、旋转方向互为相反的旋转磁场,当转子静止时,这两个旋转磁场在转子中产生两个大小相等、方向相反的转矩,使得合成转矩为零,所以电动机无法旋转。当我们用外力使电动机向某一方向旋转时(如顺时针方向旋转),这时转子与顺时针旋转方向的旋转磁场间的切割磁力线运动变小;转子与逆时针旋转方向的旋转磁场间的切割磁力线运动变大。这样平衡就打破了,转子所产生的总的电磁转矩将不再是零,转子将顺着推动方向旋转起来。 要使单相电动机能自动旋转起来,我们可在定子中加上一个起动绕组,起动绕组与主绕组在空间上相差90度,起动绕组要串接一个合适的电容,使得与主绕组的电流在相位上近似相差90度,即所谓的分相原理。这样两个在时间上相差90度的电流通入两个在空间上相差90度的绕组,将会在空间上产生(两相)旋转磁场,如图2所示。在这个旋转磁场作用下,转子就能自动起动,起动后,待转速升到一定时,借助于一个安装在转子上的离心开关或其他自动控制装置将起动绕组断开,正常工作时只有主绕组工作。因此,起动绕组可以做成短

时工作方式。但有很多时候,起动绕组并不断开,我们称这种电动机为电容式单相电动机,要改变这种电动机的转向,可由改变电容器串接的位置来实现。 在单相电动机中,产生旋转磁场的另一种方法称为罩极法,又称单相罩极式电动机。此种电动机定子做成凸极式的,有两极和四极两种。每个磁极在1/3--1/4全极面处开有小槽,如图3所示,把磁极分成两个部分,在小的部分上套装上一个短路铜环,好象把这部分磁极罩起来一样,所以叫罩极式电动机。单相绕组套装在整个磁极上,每个极的线圈是串联的,连接时必须使其产生的极性依次按N、S、N、S排列。当定子绕组通电后,在磁极中产生主磁通,根据楞次定律,其中穿过短路铜环的主磁通在铜环内产生一个在相位上滞后90度的感应电流,此电流产生的磁通在相位上也滞后于主磁通,它的作用与电容式电动机的起动绕组相称,从而产生旋转磁场使电动机转动起来。 单相电机的正反转接线原理 单相电机有两个绕组:主绕组又称工作绕组或运行绕组,副绕组又称启动绕组,有的小负载单相电机这两个绕组完全一样,互相可以交换,但多数单相电机(带较大负载的农用电机)为了增大启动力矩,副绕组线圈细、匝数多、阻值大;副绕组与主绕组之间有一启动电容;只要交换两个绕组中的一个绕组的首尾接线就可反转交换电源L/N是无效的。 图1 图2 当两绕组完全一样电机可能是三端子接线,13为两绕组的公共接线端,接交流电源的L, 2/4端子之间联有启动电容,假如交流电源的N端接端子2为正转,则N改接端子4为反转;假如是四端子见图四接线;

《探究电动机的转动原理》教案设计

《探究电动机的转动原理》教案设计 教学目标 知识与技能:了解通电导线在磁场中受力的作用,并且受力的方向与电 流方向、磁场的方向有关;了解电动机的构造和原理。 过程与方法:经历制作简单电动机的过程,探究电动机连续转动的原理。 情感、态度与价值观:了解科学知识转化成应用技术的过程,提高学习科学技术的兴趣,培养创造发明的意识。 重点:直流电动机的工作原理。 难点:直流电动机工作过程中的特点。 教学方法:演示实验法,讲授法 归纳总结法 教具准备:挂图,直流电动机模型

磁场对电流的作用 1.通电导体在磁场里受到力的作用 我们可以做这样的实验,如图所示,把一根直导体AB放在蹄形磁体的磁场里,并与电源、开关、滑动变阻器组成一闭合电路。 (1)合上开关,接通电路,导体AB中产生由A向B流动的电流,这时导体AB向左运动起来。 (2)将电源上的正、负极接线对换,合上开关,导体AB中产生由B向A流动的电流,这时导体AB向右运动起来。 (3)将蹄形磁体的磁极上下翻转,导体AB的运动方向也发生变化。 通过上面的实验我们可以得出这样的结论: ①通电导体在磁场里受到力的作用。 ②通电导体在磁场里受力的方向,跟电流方向和磁场方向有关。 1、磁场对通电线圈的作用

如图所示,在图甲中,通电线圈的ab 边和cd 边在磁场里受到力的作用,因两边中电流方向相反,所以两力方向相反且不在同一条直线上,所以线圈就转动起来。当转到图乙所示位置时,这两个力恰好在同一直线上,而且大小相等,方向相反,线圈保持平衡。我们把这个位置叫做平衡位置。通过这个实验我们发现,通电的线圈在磁场中要受力而转动。 换向器的作用:当线圈刚转过平衡位置时,换向器能自动改变线圈中电流的方向,从而改变线圈受力方向,使线圈连续转动。 如甲图所示:电刷B和半环E接触,电刷A和半环F接触,此时线圈中电流方向是C T d,受力方向是ab边受力向上,cd边受力向下,线圈的转动方向是顺时针。 如图乙所示:当线圈转到平衡位置时,此时电刷正好接触了两个金属半环中间的绝缘部分, 所以线圈中没有电流流过, 此时线圈在磁场中也不受力的作用。 如丙图所示:当线圈由于惯性刚刚转过平衡位置时,电刷B和半环F接触,电刷A和半环E接触,此时线圈中电流方向是d T C T b f a,受力方向是ab边受力向下,cd边受力向上,转动方向是顺时针。 如图丁所示:当线圈转到平衡位置时,此时电刷正好接触了两个金属

交流电机旋转原理

交流电机旋转原理 目前较常用的交流电动机有两种:1、三相异步电动机。2、单相交流电动机。第一种多用在工业上,而第二种多用在民用电器上。一、三相异步电动机的旋转原理 三相异步电动机要旋转起来的先决条件是具有一个旋转磁场,三相异步电动机的定子绕组就是用来产生旋转磁场的。我们知道,但相电源相与相之间的电压在相位上是相差120度的,三相异步电动机定子中的三个绕组在空间方位上也互差120度,这样,当在定子绕组中通入三相电源时,定子绕组就会产生一个旋转磁场,其产生的过程 如图1所示。图中分 四个时刻来描述旋转 磁场的产生过程。电 流每变化一个周期, 旋转磁场在空间旋转 一周,即旋转磁场的 旋转速度与电流的变 化是同步的。旋转磁 场的转速为:n=60f/P 式中f为电源频率、P是磁场的磁极对数、n的单位是:每分钟转数。根据此式我 们知道,电动机的转速与 磁极数和使用电源的频率 有关,为此,控制交流电 动机的转速有两种方法: 1、改变磁极法; 2、变频 法。以往多用第一种方法, 现在则利用变频技术实现 对交流电动机的无级变速控制。 观察图1还可发现,旋转磁场的旋转方向与绕组中电流的相序有关。相序A、B、C顺时针排列,磁场顺时针方向旋转,若把三根电源线中的任意两根对调,

例如将B相电流通入C相绕组中,C相电流通入B相绕组中,则相序变为:C、B、A,则磁场必然逆时针方向旋转。利用这一特性我们可很方便地改变三相电动机的旋转方向。定子绕组产生旋转磁场后,转子导条(鼠笼条)将切割旋转磁场的磁力线而产生感应电流,转子导条中的电流又与旋转磁场相互作用产生电磁力,电磁力产生的电磁转矩驱动转子沿旋转磁场方向以n1的转速旋转起来。一般情况下,电动机的实际转速n1低于旋转磁场的转速n。因为假设n=n1,则转子导条与旋转磁场就没有相对运动,就不会切割磁力线,也就不会产生电磁转矩,所以转子的转速n1必然小于n。为此我们称三相电动机为异步电动机。 二、单相交流电动机的旋转原理 单相交流电动机只有一个绕组,转子是鼠笼式的。当单相正弦电流通过定子绕组时,电动机就会产生一个交变磁场,这个磁场的强弱和方向随时间作正弦规律变化,但在空间方位上是固定的,所以又称这个磁场是交变脉动磁场。这个交变脉动磁场可分解为两个以相同转速、旋转方向互为相反的旋转磁场,当转子静止时,这两个旋转磁场在转子中产生两个大小相等、方向相反的转矩,使得合成转矩为零,所以电动机无法旋转。当我们用外力使电动机向某一方向旋转时(如顺时针方向旋转),这时转子与顺时针旋转方向的旋转磁场间的切割磁力线运动变小;转子与逆时针旋转方向的旋转磁场间的切割磁力线运动变大。这样平衡就打破了,转子所产生的总的电磁转矩将不再是零,转子将顺着推动方向旋转起来。 要使单相电动机能自动旋转起来,我们可在定子中加上一个起动绕组,起动绕组与主绕组在空间上相差90度,起动绕组要串接一个合适的电容,使得与主绕组的电流在相位上近似相差90度,即所谓的分相原理。这样两个在时间上相差90度的电流通入两个在空间上相差90度的绕组,将会在空间上产生(两相)旋转磁场,如图2所示。在这个旋转磁场作用下,转子就能自动起动,起动后,待转速升到一定时,借助于一个安装在转子上的离心开关或其他自动控制装置将起动绕组断开,正常工作时只有主绕组工作。因此,起动绕组可以做成短时工作方式。但有很多时候,起动绕组并不断开,我们称这种电动机为电容式单相电动机,要改变这种电动机的转向,可由改变电容器串接的位置来实现。 在单相电动机中,产生旋转磁场的另一种方法称为罩极法,又称单相罩极式电动机。此种电动机定子做成凸极式的,有两极和四极两种。每个磁极在

相关主题
文本预览
相关文档 最新文档