当前位置:文档之家› 连铸过程中钢液初始凝固过程的机理研究

连铸过程中钢液初始凝固过程的机理研究

连铸过程中钢液初始凝固过程的机理研究
连铸过程中钢液初始凝固过程的机理研究

连铸过程中钢液初始凝固过程的机理研究

xx

(xxxxxxxxxxx,xxxx,xxx,xxx)

摘要:了解钢从液态到固态的转变是连铸最基础的方面,然而它还是一个很多问题尚未解决的复杂课题。作为钢液初始凝固场所,连铸结晶器内铸坯的凝固行为直接影响着铸坯质量。论述了结晶器钢液凝固过程,包括影响因素、皮下缺陷、解决方法。

关键字:连续铸造; 结晶器; 凝固; 钢

Mechanism research of molten steel initial solidification

in continuous casting

xxx

(xxxx, xxx,xxx,xxx, xxx, China)

Abstract: Understanding the transformation of liquid steel to solid steel is the most fundamental aspect of continuous casting, however, itremains complex subject with a number of unresolved issues. The quality of continuous casting billet is always affected by its solidification behavior in mold in which liquid steel initially solidifies.In this paper, the following aspects of liquid steel solidification in mode will be discussed: influencing factors, sub-surface defects, solution..

Key words: Continuous casting; Mold;Solidification; Steel

1、引言

钢铁工业是国民经济的支柱,连铸技术的水平已经成为衡量钢铁工业现代化程度的重要标志。中国是钢铁产量大国,但不是强国,创造高附加值产品是今后钢铁工业的发展方向。连续铸钢生产过程注入结晶器的钢水熔体,连续通过结晶器一冷区,喷水二冷区,及空冷区,在行进过程中由表面向中心凝固,完成铸造钢坯的过程。结晶器作为初始凝固装置,要将钢水放出的热量传给冷却水,并形成足够厚度的坯壳用以支撑钢水产生的静压力。连铸坯大多数缺陷在结晶器内开始形成,并在二冷区扩展[1]。因此,研究钢连铸过程中,初始凝固区域对铸坯质量至关重要。

2、凝固过程描述

连铸坯的凝固过程是一个内部具有液相流动的热量传递过程。钢水从液态转变为固态,释放出的能量包括过热、潜热和显热三个部分。过热是从浇铸温度冷却到液相线温度放出的热量。潜热是从液相线温度冷却到固相线温度放出的能量。显

热则为从固相线温度冷却到环境温度放出的热量。

连铸坯凝固传热是一个分阶段而传热方式又各不相同的热量传递过程。

一次冷却区,钢水在结晶器中传热给结晶器铜板,由冷却水带走,形成足够厚的坯壳,以保证铸坯出结晶器不拉漏。结晶器中的传热包括钢液的对流传热、凝固壳的传导传热、渣膜的导热、气隙的辐射和对流换热、铜板的热传导和冷却水与铜板的对流换热等。

二次冷却区喷水以加速铸坯内部热量的传递,使铸坯完全凝固,二次冷却区的传热包括: 凝固壳的热传导、铸坯表面与轧辊之间的热传导、与冷却水的对流换热和辐射等。

三次冷却区铸坯向空气中辐射传热,使铸坯内外温度均匀化[2]。

钢液的初始凝固发生在结晶器的二次冷却区内。结晶器中主要发生了钢水进入引发的湍流流动、钢水遇冷时的凝固和传热以及熔池液面波动起伏等冶金现象。我们要了解凝固机理[3]、连铸坯质量和工艺。

连铸机弯月面区域的凝固,振动周期影响弯月面的形状和位置,结晶器内的钢液流动也是如此。可以把弯月面区域视为反映结晶器动力学的动态变化之一。每个振动周期中,钢液在弯月面处会发生一次凝固,凝固的痕迹就作为弯月面的历史位置留在板坯表面上。这样这些振动痕迹随弯月面的传热速率(根据结晶器的位置可以变化,比如在角部是二维传热,而在结晶器宽面接近一维传热)、钢的化学成分(当固、液相线差变小时形成的钩状凝固更明显)、厚度、结晶器熔融保护渣的化学成分和状态、振动频率和振幅、拉速、过热度、结晶器流体动力学而变化。弯月面凝固现象的发生和振痕的形成也会导致凝固传热速率发生变化,降低了振痕区域的凝固率,导致了与振痕位置相对应的坯壳厚度下降。因此, 通常而言凝固坯壳厚度可以用一个抛物线状的凝固规律来描述,但实际上它不会遵循此凝固规律。由于弯月面区域的冷却,此区域被视为气泡和夹杂物容易被诱捕的地方。由于拉速和钢种对振痕有很大的影响,因而此现象对拉速和钢种是非常敏感的。

铸坯表面的凝固对波动和钢水注入结晶器的动力学来说是非常敏感的。板坯表面振动或弯月面典型痕迹的数量与水口设计、通钢量、结晶器尺寸形状、氩气的使用和进入系统的气体量有直接关系。虽然每一个振动周期至少有一个振痕,

但是不难发现: 振痕比预期的更多。由于钢液上溢,熔池的波动导致更多的弯月面振痕,尤其在水口堵塞时会更严重[4]。

当然,确保足够的熔融保护渣进入坯壳和结晶器壁之间是很重要的,控制液渣的厚度来保证填充的一致性。如果熔池的深度不恒定,会导致弯月面的凝固行为有很大不同,最终会导致结晶器内黏结和很深的振痕。与熔融保护渣渗入有关的第二个问题是保护渣化学性能的一致性。如果熔融保护渣的性能由于结晶器内二次氧化或水口堵塞物过多剥落而差异较大,那么局部区域的传热速率会下降,坯壳会减薄。

2、凝固环境和因素

为了了解与铸坯表面形成有关的基本问题,必须弄清凝固发生时的现场环境,即结晶器中的操作环境。与现场环境有关的问题包括:

(1)铜板结晶器是水冷的机械装置,通过它热量从钢液中散出,所以在结晶器壁附近和坯壳附近有很大的温度梯度。

(2)钢是合金,凝固过程中会发生化学偏析从而导致凝固壳附近有浓度梯度。(3)结晶器本体是振动的。

(4)钢液连续注入结晶器而同时固态铸坯远离结晶器下部,所以结晶器的液面控制是动态的,并且是以结晶器内某个位置的液面测量和控制为基础的。结晶器液面趋向连续的上下波动。

(5)浸入式水口的浇注机理不是流动控制,多数浇注水口内钢液的流动是紊流流动,并且有横向波穿过结晶器的趋势,因此结晶器的液面和位置是可以变化的。(6)为了使浸入式水口的侵蚀速度平稳,并使水口达到最大寿命,水口上下移动,导致浸入深度和流动状态也是变化的。

(7)由于固态、半固态的材料黏附在浸入式水口内壁,会发生堵塞,这也会导致结晶器内不对称流动。堵塞物是不稳定的,在浇注过程中会不连续地脱落。(8)结晶器内钢坯表面不是水平的, 它是水口设计、水口条件、流量、气量、结晶器尺寸综合作用的结果。以双吐出口浸入式水口为例,从结晶器中心到边部, 绝对的液面位置可能会有显著的差别[5]。

(9)结晶器内使用保护渣会导致钢渣界面发生化学反应。另外,保护渣有吸收夹杂物的作用。

(10)使用保护渣会导致钢渣界面气泡分离困难,高拉速下会引起保护渣的泡沫化。

(11)结晶器液面附近向下的流动会导致保护渣乳化,这在断面小、拉速高的情况下是一个问题[6,7]。

(12)钢液实际是一种复合的液体,包括小的固态或液态的氧化物(与钢的成分有关)和很多气泡。凝固壳附近温度和浓度的梯度可以引起随位置变化的表面张力值,这会导致强烈的“马兰哥尼”流动。气泡和夹杂物是向边界运动还是远离边界运动取决于表面张力的变化情况。

(13)在结晶器振动过程中,弯月面也可能发生凝固,这会导致振痕和凝固壳厚度发生变化。凝固壳厚度的变化会引起弯月面区域内的夹杂物结块。

(14)结晶器保护渣的不均匀流入或误用可以导致结晶器保护渣和钢液的直接接触,造成钢液的二次氧化和渗碳。

(15)在凝固壳和结晶器壁之间的区域内,保护渣的凝固行为决定了结晶器内局部传热速率[8]。

为了了解结晶器操作和与结晶器操作有关的缺陷形成,必须充分掌握所有的细节,包括结晶器设计、操作、钢液的流动和浇注钢的特性[9]。

3、解决办法

(1)结晶器液面自控:铸坯裂纹的产生很大一部分原因是由于结晶器内液面的波动造成的,可以采用电磁式方法进行检测,此项技术在国内已经非常成熟。很多工厂在设计之初对液面自控缺乏足够的认识,只是将重点放在了正常情况下的信号传输与处理,这就导致一段时间之后没有办法进行正常的使用,只能采用人工的方式。在实际使用过程中,高温、潮湿等环境对于放射源发出的脉冲信号有很强的干扰能力,造成其不断的衰减,造成计数模块无法接收信号。为了保证信号能够进行实时的传递,这就需要设置中继箱[10]。

(2)结晶器采用温度扰动、成分扰动和能量扰动凝固细晶。物质由一种状态转变为另一种状态需要经历一种或一系列过程。这个过程中有三个重要的问题: 方向、途径、结果。这三个问题遵循着三条原理:a、沿着能量降低的方向发生;b、沿着阻力最小的途径进行;c、过程的结果是适者生存。即所谓能量降低、捷足先登、适者生存。金属凝固要经过形核和长大两个过程,而形核功远大于长大功。

因此,按照热力学原理,金属在理想平衡条件下凝固时,一定会得到单晶体。但是实际金属凝固组织往往是多晶体。这是由于环境(温度和振动等)和金属自身(溶质偏聚和杂质的存在)的“扰动”,使金属凝固过程偏离了平衡状态。凝固细晶就是通过人为干预, 使金属液的凝固过程最大限度地偏离平衡条件[11]。(3)结晶器表面的流动特性日本NKK公司提出了描述结晶器内钢液表面波动的F数来推断铸坯质量的相关关系。据相关文献报道,结晶器表面的钢液流动速度和湍动能分布与钢液在结晶器表面的波高存在一定的对应关系[12]。

(4)使用湍流模型对结晶器内的钢液流动进行计算,采用糊状区多孔介质法对结晶器内钢液的凝固进行模拟,并使用VOF模型同时考虑钢液和空气的两相流动。VOF模型中每个组分共用一套动量方程,通过追踪每个计算单元的体积分数来确定界面形状[13-15]。

(5)温度扰动凝固细晶思想的最成功实践是上世纪60年代初前苏联提出的悬浮浇注技术。他们在浇注过程中向金属液内加人与金属液成分相同的金属粉末或颗粒,从而改善金属凝固特性, 细化金属的凝固组织。悬浮浇注可以细化铸锭凝固组织,显著拟制柱状晶组织,增加等轴晶组织[16]。超声凝固细晶即在金属凝固过程中引人超声振动,凝固组织从粗大的柱状晶变为均匀细等轴晶,金属的宏观及微观偏析均得到改替。国外关于超声波对金属凝固组织影响的研究已有应用于生产的报道。以及成分扰动凝固细晶,温度与成分双扰动凝固细晶,脉冲电流凝固细晶,脉冲磁场凝固细晶等凝固细晶方法[17]。

(6)用计算机仿真模拟连铸结晶器内钢液凝固性为。计算流场,在此基础上, 使用同一套网格划分,计算温度场。在计算流场时暂不考虑凝固壳的存在对计算区域的影响,在计算温度场的时候,采用动态更新来实现凝固对流场和温度场的影响[18,19]。

(7)结晶器振动技术。结晶器和坯壳间的相互作用影响着坯壳的生长和脱膜,其控制因素是结晶器的振动和润滑。连铸在采用固定结晶器浇铸时,铸坯直接从结晶器向下拉出,由于缺乏润滑,易与结晶器发生粘结,从而导致出现拉不动或者拉漏事故,很难进行浇铸。结晶器振动对于改善铸坯和结晶器界面间的润滑是非常有效的,振动结晶器的发明引进,使得工业上大规模应用连铸技术得以实现。最新有:伺服液压系统驱动的非正弦、数字缸驱动的非正弦等液压非正弦结晶器

振动装置,也有普通电机非正弦、伺服电机非正弦电动缸等机械非正弦结晶器振动装置[20]。

参考文献:

[1] 沙明红, 郑贤淑. 连续铸钢过程中结晶器的传热研究[J].钢铁研究学报, 2007, 3.19(3):19-21.

[2]张富强,王久彬. 热量传输基础知识和连铸坯凝固传热特点[C].鞍钢技术中心,1998第8期.

[3]张胤, 贺友多. 板坯连铸机结晶器内流动及传热过程的数学模型[J].钢铁研究学报, 2001, (5) : 31-34.

[4]Cram b A W, Mannion F J. The measurement ofmeniscusmarksat Bethlehem’s Burns H arbor slab caster[C] M SteelmakingConference Proceedings, ISS-AIME, 1985, 68: 349- 359.

[5]C ram b A, Rastogi R.“C logging”making shaping and treatingof steel [C] //AISE, 2003.

[6]FeldbauerS, Jimbo,I Sharan A, et al. Mold slag properties thatare relevant to clean steel production [C]//78th SteelmakingConference, Nashville, 1995: 655- 667.

[7]Harman JM, Cramb A W. A study on the effect of fluidphysical properties on droplet emulsification [C]// SteelmakingConference Proceedings, 1996, 79: 773-784.

[8]Cramb A W. From liquid to solid: key issues in the future ofsteel casting [J]. Iron and Steel Technology, 2007 (7): 59- 75.

[9]Cram b A W. Fundamentals of initial solidification phenomenaand their relationship to the casting of steels [M] //Fundamentals of Metallurgy, Woodhouse Publishing, 2005: 399- 452. [10]刘铁湘,祁华,王南生.武钢方坯连铸机基础自动化系统[J].可编程控制器与工厂自动化,2007,(02).

[11]翟启杰, 赵沛, 胡汉起, 徐匡迪.金属凝固细晶技术研究[C].2004中国铸造活动周论文集,2004.

[12]Teshima T, Kubota J, et al. Influence of casting conditionson molten steel flow in continuous casting mold at high speedcasting of slab[ J] 1Tetsu-to-hagane, 1993,79(5):40- 461

[13] B.G. Thomas, Q. Yuan, S. Sivaramakrishnan, T. Shi, S.P. Vanka and M.B. Assar, Comparison of four methods to evaluate fluid velocities in a continuous slab casting mold, ISIJ Int, 2001,vol. 41(10), pl262-1271.

[14] B. E. Launder and D. B. Spalding.Numerical computation of turbulent https://www.doczj.com/doc/ee12410426.html,put.Meth. Appl. Mech. Eng, 1974, vol. 3, p269-289.

[15] C. W.Hirt and B. D. Nichol, Volume of fluid(VOF) method for the dynamics of free boundaries, Journal of Computational Physics, 1981, vol. 39, p201-225.

[16]杜怀生, 翟启杰, 线国高, 悬浮铸造对铸钢件缩孔及缩松的影响[J], 特种铸造及有色合金,1988,(5 ): 14-17.

[17]赵志龙, 刘兵, 张蓉, 刘林.电场作用下金属凝固行为研究[J].材料导报,2001, 15(9): 23-25

[18]杨秉俭, 黄尊贤.板坯结晶器内凝固壳的测定和分析[J].特种铸造及有色合金, 1998,(3): 7-9.

[19]伍成波, 李志国, 王谦.连铸结晶器内钢液凝固行为的计算机仿真[J].炼钢,2004

(3):44-47

[20]杨静, 李福进. 连铸结晶器振动技术的发展及现状[J].湖南农机, 2011,11(11):87-88.

钢结构设计原理(答案)

一、 填空题(每空1分,共10分) 1、钢材的两种破坏形式分别为脆性破坏和 。 2、焊接的连接形式按构件的相对位置分为 、搭接、角接和T 形连 接。 3、钢结构中轴心受力构件的应用十分广泛,其中轴心受拉构件需进行钢结构强度和 的验算。 4、轴心受压构件整体屈曲失稳的形式有 、和 。 5、梁整体稳定判别式11l b 中,1l 是 1b 。 6、静力荷载作用下,若内力沿侧面角焊缝没有均匀分布,那么侧面角焊缝的计算长度不宜大于 。 7、当组合梁腹板高厚比0w h t ≤ 时,对一般梁可不配置加劲肋。 二、 单项选择题(每题2分,共40分) 1、有两个材料分别为Q235和Q345钢的构件需焊接,采用手工电弧焊, 采用E43焊条。 (A)不得 (B)可以 (C)不宜 (D)必须 2、工字形轴心受压构件,翼缘的局部稳定条件为y f t b 235) 1.010(1λ+≤,其中λ的含义为 。 (A)构件最大长细比,且不小于30、不大于100 (B)构件最小长细比 (C)最大长细比与最小长细比的平均值 (D)30或100 3、偏心压杆在弯矩作用平面内的整体稳定计算公式

x 1(10.8') mx x x x Ex M f A W N N βN ?γ+≤-中,其中,1x W 代表 。 (A)受压较大纤维的净截面抵抗矩 (B)受压较小纤维的净截面抵抗矩 (C)受压较大纤维的毛截面抵抗矩 (D)受压较小纤维的毛截面抵抗矩 4、承重结构用钢材应保证的基本力学性能内容应是 。 (A)抗拉强度、伸长率 (B)抗拉强度、屈服强度、冷弯性能 (C)抗拉强度、屈服强度、伸长率 (D)屈服强度、伸长率、冷弯性能 5、随着钢材厚度的增加,下列说法正确的是 。 (A)钢材的抗拉、抗压、抗弯、抗剪强度均下降 (B)钢材的抗拉、抗压、抗弯、抗剪强度均有所提高 (C)钢材的抗拉、抗压、抗弯强度提高,而抗剪强度下降 (D)视钢号而定 6、在低温工作(-20oC)的钢结构选择钢材除强度、塑性、冷弯性能指标外,还需要 的指标是 。 (A)低温屈服强度 (B)低温抗拉强度 (C)低温冲击韧性 (D)疲劳强度 7、直角角焊缝的有效厚度e h 的取值为 。 (A)0.7f h (B)4mm (C)1.2f h (D) 1.5f h 8、对于直接承受动力荷载的结构,计算正面直角焊缝时 。 (A)要考虑正面角焊缝强度的提高 (B)要考虑焊缝刚度影响 (C)与侧面角焊缝的计算式相同 (D)取f β=1.22 9、单个螺栓的承压承载力中,[b b c c N d t f =?∑],其中∑t 为 。 (A)a+c+e (B)b+d (C)max{a+c+e ,b+d} (D)min{ a+c+e , b+d} 10、承压型高强度螺栓可用于 。

宝钢集团一钢公司不锈钢连铸工艺特点

宝钢集团一钢公司不锈钢连铸工艺特点 无锡不锈钢市场2007-1-15 21:51:11 1、前言 由于不锈钢所具有的不锈、耐腐蚀等特殊性能,它的应用越来越广泛。不锈钢的浇铸已普遍使用连铸工艺,目前用于浇铸不锈钢方坯、板坯的专用连铸机已达77台,不锈钢连铸比已超过95%。全球2001年生产不锈钢1600万吨,消费总量达1350万吨,我国2000年不锈钢粗钢产量虽已达55万吨,而2001年上半年的消费水平却已达到了140-150万吨,可见我国不锈钢的产量与消费量之间存在着较大缺口,我国作为一个钢铁大国发展不锈钢事业任重而道远。正是在这种形势下宝钢集团一钢公司(以下简称一钢)目前正在建设我国最大的不锈钢精品基地,预计2004年5月正式投产,届时将以每年70万吨的不锈钢产品投入市场,为缓解不锈钢产品的供需矛盾起到应有的作用。 由于在凝固过程中各类不锈钢容易产生裂纹、偏析、夹杂等缺陷,在连铸工艺、设备的配置,以及在精整工艺上不同于其它钢种。本文通过对一钢不锈钢连铸工艺特点的论述,较全面地介绍不锈钢连铸工艺及设备的特点。 2、大包下渣检测技术 由于不锈钢是高附加值产品,在保证钢水纯净度的条件下,应尽量提高钢水的收得率,其最有效的措施是采用大包下渣检测装置。经多方案比较,一钢采用了内装线圈式下渣检测装置。在钢包的出钢口处安装了线圈式的下渣检测装置,钢水和钢渣经过钢包水口时,对于线圈所产生的电磁波有不同的影响,下渣检测信号反馈装置,把不同的电磁波信号转变成显示信号,并传送至主控室PLC,PLC系统据此决定在浇铸后期关闭钢包滑动水口的准确时间。 3、中间包采用的铸流控制和测温技术

3.1采用塞棒控制铸流 中间包铸流的控制方式有塞棒和滑动水口两种,由于塞棒控制有以下优点: ●塞棒的工作条件好,便于更换; ●由塞棒控制铸流,结晶器内的钢水流动性好; ●浸入式水口可采用内装式,使钢水在浇铸过程中不易吸入空气; ●运行成本比滑动水口低。 因此一钢工程的中间包铸流采用了塞棒控制。 3.2中间包连续测温 中间包采用连续测温装置,以便动态地准确地跟踪中间包内钢水的温度,为制定合理拉速、铸坯质量的判定、铸坯温度场的计算提供依据。 4、结晶器液面自动控制 采用结晶器液面自动控制装置。通过检测结晶器内液面的高度,同时将信号反馈到主控室PLC,PLC系统以此作为调节中间包内塞棒开口度的依据。 5、连铸时的辊缝自动控制和动态轻压下 5.1辊缝自动控制技术 采用辊缝自动控制技术,可以使连铸机在不停机的情况下,自动调整各扇形段的辊缝及锥度,以生产不同断面的铸坯,提高连铸机作业率。一钢不锈钢产品大纲覆盖了奥氏体、铁素体和马氏体以及更高级别的钢种,产品的品种必然会随着市场的要求经常变换,而不锈钢不同钢种的收缩率相差较大,辊缝远程自动控制更显得必要。

钢结构设计基本原理课后答案 肖亚明

合肥工业大学出版社出版 (肖亚明主编) 第三章 1. 解:Q235钢、2/160mm N f w f =、kN N 600= (1)采用侧面角焊缝 最小焊脚尺寸:mm t h f 6.5145.15.1max =?=≥ 角钢肢背处最大焊脚尺寸:mm t h f 12102.12.1min =?=≤ 角钢肢尖处最大焊脚尺寸:mm t h f 8~9)2~1(10)2~1(=-=-≤ 角钢肢尖和肢背都取 mm h f 8= 查表3-2得:65.01=K 、35.02=K kN N K N 39060065.011=?==,kN N K N 21060035.022=?== 所需焊缝计算长度: mm f h N l w f f w 63.217160 87.02103907.023 11 =????=?= mm f h N l w f f w 19.11716087.02102107.023 22 =????=?= 焊缝的实际长度为: mm h l l f w 63.2338263.217211=?+=+=,取240mm 。 mm h l l f w 19.1338219.117222=?+=+=,取140mm 。 (2)采用三面围焊缝,取mm h f 6= 正面角焊缝承担的内力为: kN f l h N w f f w f 97.16316022.1100267.07.033=?????==∑β 侧面角焊缝承担的内力为: kN N N K N 01.3082/97.16360065.02/311=-?=-= kN N N K N 02.1282/97.16360035.02/322=-?=-= 所需焊缝计算长度:

钢液凝固的基本原理

钢液凝固的基本原理 1 钢液的凝固与结晶 众所周知,在不同的温度条件下,物质都具有不同的状态。钢也一样,在加热到一定的温度时,可从固态转化成液态;钢液冷却到某个温度时,将从液态转化为固态。钢从液态转化成固态称为凝固;从固态转化成液态叫熔化。钢水凝固的过程主要是晶体或晶粒的生成和长大的过程,所以也叫做结晶。 钢液的结晶条件(钢液凝固的热力学条件) 通常把固体转变为液态的下限温度称为熔点;把液态转变为固态的上限温度叫凝固点,又称理论结晶温度。 凝固点即物质在冷却过程中开始凝固的温度,钢液的结晶只有降温到凝固点以下才能发生。 因为钢液的液相温度在冶炼和浇注操作中是一个关键参数,因此,准确知道要生产的钢的液相线温度对整个炼钢过程至关重要。出于操作安全性和希望得到尽量多的等轴晶凝固组织而采用低过热度浇铸等因素考虑,一般要求浇注温度确定在液相线以上的一个合适的值。一般根据钢中元素含量可以计算出该钢的液相线温度值。 通常用T S表示钢的凝固点或理论结晶温度。对某一具体的钢种,凝固点通常可用以下公式理论计算出: T S=1536℃-(78C%+%+%+34P%+30S%+5Cu%+%+ 2Mo%+2V%+%+%+18Ti%)℃ 降温到T S以下某温度T叫过冷,并把T S与T的温度差值△T叫过冷度,即:△T=T S-T 过冷是钢液结晶的必要条件,过冷度的大小决定结晶趋势的大小,即过冷度越大,结晶速度越快;反之,过冷度越小,结晶速度越慢。 晶核的形成 (1)自发形核 在过冷钢液中,有一些呈规则排列的原子集团,其中尺寸最大的集团,就是晶体产生的胚,称之为晶胚。晶胚时而长大,时而缩小,但最终必有一些晶胚达到某一规定的临界尺寸以上,它就能够稳定成长而不再缩小了,这就形成晶核。(2)非自发开核 因在钢液的凝固过程中,液相中非自发形核比自发形核所要求的过冷度小得多,只要几度到20℃过冷度就可形核,这是因为钢液中存在悬浮质点和表面不光滑的器壁,均可作为非均质形核的核心。由于钢水不可能达到100%的纯净,

钢结构基本原理课程设计

2013级土木工程专业 《钢结构》课程设计任务书 钢结构课程是土木工程专业重要的实践性教学环节,是对学生知识和能力的总结。通过钢结构课程设计,使学生进一步了解钢结构的结构型式、结构布置和受力特点,掌握钢结构的计算简图、荷载组合和内力分析,掌握钢结构的构造要求等。要求在老师的指导下,参考已学过的课本及有关资料,综合应用钢结构的材料、连接和基本构件的基本理论、基本知识,进行基本的钢结构设计计算,并绘制钢结构施工图。 设计题目: 钢结构平台梁板柱的设计 设计资料: (a) (b) (a) 梁格布置(b) 次梁布置简图 钢结构平台的梁格布置如如上图所示。铺板为预制钢筋混凝土板。平台永久荷载(包括铺板重力)为5kN/m2,荷载分项系数为,可变荷载分项系数为m2,荷载分项系数为;活荷载F=,钢材采用Q235,E43型焊条,焊条电弧焊。试对此钢结构平台的次梁、主梁和柱子(包括柱脚)进行设计。 要求: 1.每位同学自己独立完成,不能有任何雷同的课程设计计算书,否则都记为不及格; 2.课程设计计算书可以手写也可以打印,打印使用A4纸张; 3.完成并提交期限时间为第15周周五(12月9日)。 提示:可以参考教材P131例题4-2,P135例题4-4,P149习题4-10,P186习题5-2。

《课程设计说明书》格式规范 一、封面要求 学生提交的正稿封面样式附后。评定成绩必须有教师签名并写出评语。 二、正文规范 1、字体字号要求 ①设计标题用小三号黑体、居中,英文标题对应用小三号Times New Roman、居中,“摘要”用5号黑体,中文摘要内容用5号宋体,“Abstract”用5号黑体,英文摘要内容用5号Times New Roman。 ②课程设计正文内容 第一级标题用四号黑体、靠左;第二级标题用小四号黑体、靠左;正文全文用小四号宋体、英文用Times New Roman 12。 ③页码用小五号居中,页码两边不加修饰符,页码编号从正文开始。 ④图表标题用小五号黑体,居图表幅宽中间位置。 2、内容要求 ①正文必须按照《湖南农业大学学报(自然科学版)》要求,即包括完整的标题、作者、指导教师、中英文摘要、前言、方案比较分析、设计计算、讨论、小结、参考文献、致谢、附录含计算数据、参考手册相关计算表格等。 ②文理通顺、说理有据。 ③图表中文标题下必须有英文对照。

炼钢连铸工艺流程介绍

连铸工艺流程介绍 将高温钢水浇注到一个个的钢锭模内,而是将高温钢水连续不断地浇到一个或几个用强制水冷带有“活底” (叫引锭头)的铜模内(叫结晶 器),钢水很快与“活底”凝结在一起,待钢水凝固成一定厚度的坯壳后,就从铜模的下端拉出“活底”,这样已凝固成一定厚度的铸坯就会连续地从水冷结晶器内被拉出来,在二次冷却区继续喷水冷却。带有液芯的铸坯,一边走一边凝固,直到完全凝固。待铸坯完全凝固后,用氧气切割机或剪切机把铸坯切成一定尺寸的钢坯。这种把高温钢水直接浇注成钢坯的新工艺,就叫连续铸钢。 【导读】:转炉生产出来的钢水经过精炼炉精炼以后,需要将钢水铸造成不同类型、不同规格的钢坯。连铸工段就是将精炼后的钢水连续铸造成钢坯的生产工序,主要设备包括回转台、中间包,结晶器、拉矫机等。本专题将详细介绍转炉(以及电炉)炼钢生产的工艺流程,主要工艺设备的工作原理以及控制要求等信息。由于时间的仓促和编辑水平有限,专题中难免出现遗漏或错误的地方,欢迎大家补充指正。 连铸的目的: 将钢水铸造成钢坯。 将装有精炼好钢水的钢包运至回转台,回转台转动到浇注位置后,将钢水注入中间包,中间包再由水口将钢水分配到各个结晶器中去。结晶器是连铸机的核心设备之一,它使铸件成形并迅速凝固结晶。拉矫机与结晶振动装置共同作用,将结晶器内的铸件拉出,经冷却、电磁搅拌后,切割成一定长度的板坯。 连铸钢水的准备 一、连铸钢水的温度要求: 钢水温度过高的危害:①出结晶器坯壳薄,容易漏钢;②耐火材料侵蚀加快,易导致铸流失控,降低浇铸安全性;③增加非金属夹杂,影响板坯内在质量;④铸坯柱状晶发达;⑤ 中心偏析加重,易产生中心线裂纹。

《钢结构设计基本原理》练习及答案大全完整版

一 填空题 1、 计算结构或构件的强度、稳定性以及连接的强度时,应采用荷载的 设计 值;计算疲劳时,应采用荷载的 标准 值。 2、 钢材Q235B 中,235代表 屈服值 ,按脱氧方法该钢材属于 镇静 钢。 3、 对于普通碳素钢,随含碳量的增加,钢材的屈服点和抗拉强度 升高 ,塑性和韧性 降低 ,焊接性能 降低 。 4、当采用三级质量受拉斜对接焊缝连接的板件,承受轴心力作用,当焊缝轴线与轴心力方向 ,焊缝强度可不计算 。 5 、 等因素综合考虑,选用合适的钢材。 6、钢材受三向同号拉应力作用,数值接近,即使单项应力值很大时,也不易进入 塑性 状态,发生的破坏为 脆性 破坏。 7、在普通碳素结构钢的化学成分中加入适量的硅、锰等合金元素,将会 提高 钢材的强度。 8、 轴心受压柱的柱脚底板厚度是按底板的 受弯 受力工作确定的。 9、如下图突缘式支座加劲肋,应按承受支座反力的轴心受压构件计算梁平面外(绕Z 轴)稳定,钢材Q235 , 其长细比为 21.07 。 1 200 10

10 的影响。 11、按正常使用极限状态计算时,受弯构件要限制挠度,拉、压构件要限制 长细比。 12、钢材经过冷加工后,其强度和硬度会有所提高,却降低了塑性和韧性,这种现象称为钢 。 13 拉伸并卸载后,也称为名义屈服点。14 15和构件或连接的构造形式。 16 17构件的稳定承载力。18 承压型连接。 19、对于单轴对称的轴心受压构件,绕非对称主轴屈曲时,会发生弯曲屈曲;而绕对称主轴 20 高稳定承载力。 21、梁的整体稳定系数φb大于0.6时,需用φb′代替φb,它表明此时梁已经进入 _______ __阶段。 22、弯矩绕虚轴作用的双肢格构式压弯构件,采用缀条式格构柱,其分肢的稳定应按 构件进行验算。 23强度确定的。 24原则。 25、设杆件节点间的几何长度为l,则梯形钢屋架的支座斜杆在屋架平面内的计算长度为 杆件几何长度或l。 26、钢材的冲击韧性越小,。 27。

东大18春学期《连铸坯凝固与质量控制》在线作业1

(单选题) 1: 决定连铸坯的凝固方式的主要因素下面哪一种表述是错误的? A: 钢的成分; B: 凝固过程断面的液相厚度; C: 凝固过程断面的温度梯度; (单选题) 2: 在连铸工艺过程中调整铸坯凝固方式的方法是改变钢的成分,论述是否正 确? A: 论述正确; B: 论述不正确; (单选题) 3: 金属凝固动态曲线是把凝固体的断面上不同位置的点在不同时间达到相同温度的点的连线,此种叙述是否准确? A: 不准确; B: 准确; (单选题) 4: 适当提高铸坯中心等轴晶区的比例,下面哪一种工艺措施的叙述是不正确的? A: 适当降低浇注温度; B: 采用电磁搅拌技术; C: 结晶器内的变质处理; D: 在大包处理钢水; (单选题) 5: 连铸坯在结晶器凝固传热过程中下面的传热顺序哪一种分析是正确的? A: 钢水→坯壳→气隙→渣层→结晶器铜壁→冷却水; B: 钢水→坯壳→渣层→气隙→结晶器铜壁→冷却水;

(单选题) 6: 多相合金的凝固反应不包括下面哪一种反应? A: 偏晶反应; B: 共晶反应; C: 匀晶反应; D: 包晶反应; (单选题) 7: 方坯结晶器传热与板坯结晶器传热有什么不同,下面分析哪一种是正确的? A: 方坯结晶器传热与板坯结晶器传热,扳坯结晶器宽面更容易不均匀; B: 方坯结晶器传热与板坯结晶器传热,方坯结晶器换热强度更大; C: 方坯结晶器传热与板坯结晶器传热,板坯结晶器的液面释放热量更大; (单选题) 8: 两个钢种比较,甲钢种凝固潜热高,乙钢种低,在连铸时哪一个工艺方案 适合甲钢种? A: 低过热度,慢拉速; B: 低过热度,快拉速; C: 高过热度,慢拉速; (单选题) 9: 铸坯中心产生集中缩孔缺陷的主要原因是下面哪一种分析? A: 逐层凝固,且形成发达的柱状晶; B: 发达的枝晶所形成; C: 粗大的等轴晶所形成; (单选题) 10: 连铸坯凝固传热模型中的换热系数的取值一般来说都可以依据推荐值确定,不会影响它的准确性和实用性?判断对错? A: 对; B: 错;

连铸的生产工艺流程

连铸的生产工艺流程:将装有精炼好钢水的钢包运至回转台,回转台转动到浇注位置后,将钢水注入中间包,中间包再由水口将钢水分配到各个结晶器中去。结晶器是连铸机的核心设备之一,它使铸件成形并迅速凝固结晶。拉矫机与结晶振动装置共同作用,将结晶器内的铸件拉出,经冷却、电磁搅拌后,切割成一定长度的板坯。 连铸钢水的准备 一、连铸钢水的温度要求: 钢水温度过高的危害:①出结晶器坯壳薄,容易漏钢;②耐火材料侵蚀加快,易导致铸流失控,降低浇铸安全性;③增加非金属夹杂,影响板坯内在质量;④铸坯柱状晶发达;⑤中心偏析加重,易产生中心线裂纹。钢水温度过低的危害:①容易发生水口堵塞,浇铸中断;②连铸表面容易产生结疱、夹渣、裂纹等缺陷;③非金属夹杂不易上浮,影响铸坯内在质量。 二、钢水在钢包中的温度控制: 根据冶炼钢种严格控制出钢温度,使其在较窄的范围内变化;其次,要最大限度地减少从出钢、钢包中、钢包运送途中及进入中间包的整个过程中的温降。 实际生产中需采取在钢包内调整钢水温度的措施:

1)钢包吹氩调温 2)加废钢调温 3)在钢包中加热钢水技术 4)钢水包的保温 中间包钢水温度的控制 一、浇铸温度的确定 浇铸温度是指中间包内的钢水温度,通常一炉钢水需在中间包内测温3次,即开浇后5min、浇铸中期和浇铸结束前5min,而这3次温度的平均值被视为平均浇铸温度。 浇铸温度的确定可由下式表示(也称目标浇铸温度): T=TL+△T 。 二、液相线温度: 即开始凝固的温度,就是确定浇铸温度的基础。推荐一个计算公式:T=1536-{78[%C]+7.6[%Si]+4.9[%Mn]+34[%P]+30[%S]+5.0[%Cu]+3.1[% Ni]+1.3[%Cr]+3.6[%Al]+2.0[%Mo]+2.0[%V]+18[%Ti]} 三、钢水过热度的确定 钢水过热度主要是根据铸坯的质量要求和浇铸性能来确定。

问题连铸坯

连铸坯质量决定着最终产品的质量, 连铸坯表面缺陷是影响连铸机产量和铸坯质量的重要缺陷。据统计,各类缺陷中裂纹占50%。铸坯出现裂纹,重者会导致拉漏或废品,轻者要进行精整。这样既影响铸机生产率,又影响产品质量,因而增加了成本。铸坯内部缺陷影响产品的机械性能、使用性能和使用寿命。如图6-1所示,铸坯缺陷可分为以下3类: 图6-1 连铸坯表面缺陷示意图 1一角部横裂纹;2一角部纵裂纹; 3一表面横裂纹;4一宽面纵裂纹; 5一星状裂纹;6—振动痕迹; 7一气孔;8一大型夹杂物 (1)表面缺陷:包括表面纵裂纹、横裂纹、网状裂纹、皮下夹渣、皮下气孔、表面凹陷等。 (2)内部缺陷:包括中间裂纹、皮下裂纹、压下裂纹、夹杂、中心裂纹和偏析等。 (3)形状缺陷:方坯菱变(脱方)和板坯鼓肚。 连铸坯凝固过程有哪些特点? 与模铸比较,连铸凝固过程的特点是: (1)连铸坯凝固是热量传递过程。钢水浇入结晶器边传热、边凝固、边运行,形成了液相穴相当长的连铸坯(板坯长20多米),为加速凝固,在连铸机内布置了3个冷却区: —一次冷却区:钢水在结晶器内形成足够厚且均匀的坯壳,保证出结晶器不拉漏。 —二次冷却区:喷水冷却以加速内部热量的传递使铸坯完全凝固。 —三次冷却区:使铸坯温度均匀化。 (2)连铸坯凝固是沿液相在凝固温度区间把液体转变为固体的过程。连铸坯可看成是液相很长的钢锭,以一个固定速度在连铸机内沿弧形轨道运动。铸坯在运动中凝固。实质上是沿液相固液界面的潜热释放和传递过程。而在凝固界面的晶体强度非常小(仅1~3N/mm2),由变形到断裂的应变为0.2~0.4%。因此,当铸坯所受的外力(如鼓肚力、矫直力、热应力等)超过上述临界值,就在固液界面产生裂纹,并沿柱状晶扩展,直到凝固壳能抵抗外力为止。这是铸坯产生内裂纹的原因。 (3)连铸坯凝固是分阶段的凝固过程。凝固生长经历了三个阶段: —钢水在结晶器形成初生坯壳。 —带液芯的铸坯在二次冷却区稳定生长。 —临近凝固末期的液相加速生长。 在凝固过程中,结晶器注流在液相引起的流动和混合对铸坯凝固有重要影响。研究指出:液相上部为强制对流区,对流区高度决定于注流方式、浸入式水口类型和铸坯断面。在液相下部液体流动主要是坯壳收缩、晶体下沉所引起的自然对流,或者是由铸坯鼓肚所引起的流动。流动对铸坯结构、夹杂物上浮及溶质元素偏析有重要影响。 (4)已凝固坯壳在连铸机内冷却可看成是经历形变热处理。凝固壳一方面受到力的作用,另一方面受到喷水冷却,随温度的降低发生相变,组织也发生变化,可能发生硫化物、氮化物质点在晶界沉淀,增加高温脆性,是铸坯产生表面裂纹的根源。 因此,应深入认识上述四个方面相互联系和相互制约的规律,才能在设备和工艺上制订正

连铸坯缺陷及对策

连铸坯在凝固过程中形成裂纹的原因 随着市场竞争的日趋激烈,产品的质量已经成为占有市场的主要砝码,连铸坯作为炼钢厂的终端产品,其质量直接影响着轧材单位的产量和轧材质量,据统计炼钢厂连铸坯质量缺陷中约70%为连铸坯裂纹,连铸坯裂纹成为影响连铸坯产量和质量的重要缺陷之一,下面将对铸坯在凝固过程中裂纹的形成做简要分析: 一、铸坯凝固过程的形成 铸坯在连铸机内的凝固可看成是一个液相穴很长的钢锭,而凝固是沿液相穴的固液界面在液固相温度区间把液体转变为固体把潜热释放出来的过程。在固液界面间刚凝固的晶体强度和塑性都非常小,当作用于凝固壳的热应力、鼓肚力、矫直力、摩擦力、机械力等外力超过所允许的外力值时,在固液界面就产生裂纹,这就形成了铸坯内部裂纹。而已凝固的坯壳在二冷区接受强制冷却,由于铸坯线收缩,温度的不均匀性,坯壳鼓肚、导向段对弧形不准,固相变引起质点如(AlN)在晶界的沉淀等,容易使外壳受到外力和热负荷间歇式的突变,从而产生裂纹就是表面裂纹。 二、连铸坯裂纹形态和影响因素 连铸坯裂纹形态分为表面裂纹和内部裂纹,表面裂纹有纵向、横向角部裂纹、表面横裂和纵裂、网状裂纹和凹陷等,内部裂纹有中间、中心和矫直裂纹等。 连铸坯裂纹的影响因素: 连铸坯表面裂纹主要决定于钢水在结晶器的凝固过程,它是受结晶器传热、振动、润滑、钢水流动和液面稳定性所制约的,铸坯内部裂纹主要决定于二冷区凝固冷却过程和铸坯支撑系统(导向段)的对弧准确性。铸坯凝固过程坯壳形成裂纹,从工艺设备和钢凝固特性来考虑影响裂纹形成的因素可分为: 1、连铸机设备状态方面有: 1)结晶器冷却不均匀 2)结晶器角部形状不当。 3)结晶器锥度不合适。 4)结晶器振动不良。 5)二冷水分布不均匀(如喷淋管变形、喷咀堵塞等)。 6)支承辊对弧不准和变形。

钢结构基本原理及设计测试题

钢结构基本原理及设计 试 题 题号 一 二 三 四 五 六 七 八 九 十 总分 分数 班号 姓名 一、 填空题:(每空1分,共20分) 1、 计算结构或构件的强度、稳定性以及连接的强度时,应采用荷载的 设计值;计算疲劳时,应采用荷载的 标准 值。 2、 钢材Q235B 中,235代表 屈服点 ,按脱氧方法该钢材属于 镇静 钢。 3、 对于普通碳素钢,随含碳量的增加,钢材的屈服点和抗拉强度 增高 , 塑性和韧性 下降 ,焊接性能 变差 。 4、当采用三级质量受拉斜对接焊缝连接的板件,承受轴心力作用,当焊缝轴 线与轴心力方向间夹角满足 tan 1.5θ≤ ,焊缝强度可不计算 。 5、钢材的选用应根据结构的重要性 荷载特征、连接方法、工作环境、应力状态、钢材厚度 等因素综合考虑,选用合适的钢材。 6、钢材受三向同号拉应力作用,数值接近,即使单项应力值很大时,也不易 进入 塑性 状态,发生的破坏为 脆性 破坏。 7、 某梯形钢屋架,屋脊处应设 刚性 性系杆,该系杆按 受压 杆设计。 8、 轴心受压柱的柱脚底板厚度是按底板的 受弯 受力工作确定的。 9、 如下图突缘式支座加劲肋,应按承受支座反力的轴心受压构件计算梁平面外 (绕Z 轴)稳定,钢材Q235钢, 此受压构件截面面积值为 2960mm 2 , 其长细比为 21.07 10、 格构式轴心受压构件绕虚轴的稳定计算采用换算长细比是考虑剪切变形 的影响。 11、实腹式单向偏心受压构件的整体稳定,分为弯矩 作用平面内 的稳定和 弯矩 作用平面外 的稳定。 二、 单项选择题(每题2分,共16分) 1、对于Q235钢板,其厚度越大 D 。 h 0=1000 1 1 20 200 10 8 Z

钢结构设计基本原理练习及答案大全完整版

一填空题 1、计算结构或构件的强度、稳定性以及连接的强度时,应采用荷载的设计值;计算疲劳时,应采用荷载的标准值。 2、钢材Q235B中,235代表屈服值,按脱氧方法该钢材属于镇静钢。 3、对于普通碳素钢,随含碳量的增加,钢材的屈服点和抗拉强度升高,塑性和韧性降低,焊接性能降低。 4 ,焊缝强度可不计算。 5 、等因素 综合考虑,选用合适的钢材。 6、钢材受三向同号拉应力作用,数值接近,即使单项应力值很大时,也不易进入塑性状态,发生的破坏为脆性破坏。 7、在普通碳素结构钢的化学成分中加入适量的硅、锰等合金元素,钢材的强度。 8、轴心受压柱的柱脚底板厚度是按底板的受弯受力工作确定的。 9 Z轴)稳 定,钢材Q235,其长细比为21.07 。 10 的影响。 11、按正常使用极限状态计算时,受弯构件要限制挠度,拉、压构件要限制 长细比。 12 。 13 拉伸并卸载后, 也称为名义屈服点。14 15和构件或连接的构造形式。 16 17构件的稳定承载力。18 承压型连接。 1 2 10

19 20 高稳定承载力。 21、梁的整体稳定系数φb大于0.6时,需用φb′代替φb,它表明此时梁已经进入 性 _______ __阶段。 22 构件进行验算。 23强度确定的。 24、在钢屋架的受压杆件设计中,原则。 25、设杆件节点间的几何长度为l 杆件几何长度或l。 26、钢材的冲击韧性越小,。 27。 28、焊接结构选用焊条的原则是,。 29 。

二、选择题 1、对于Q235钢板,其厚度越大 D 。 A. 塑性越好 B.韧性越好 C.内部缺陷越少 D.强度越低 2、如图采用C 。 A. 1 B. 3 C. 2或4 D. 5 3、工 字形截面轴心受压构件,翼缘外伸部分的宽厚比'/(100.1b t λ≤+ C 。 A.构件绕强轴方向的长细比 B.构件两个方向的长细比平均值 C.构件两个方向的长细比较大值 D.构件两个方向的长细比较小值 4、单向受弯构件的抗弯强度/()x x nx M W f σγ=≤ 其中 1.05x γ=时,为使翼缘不先失去局部稳定, 翼缘外伸部分的宽厚比b`/t 为 B 。 A . D. 5、已知焊接工字形截面简支梁,承受均布荷载作用,钢材Q235,fy =235N/mm 2,并在支座设置支承加劲肋,梁腹板高度900mm ,厚度12mm ,要求考虑腹板稳定性,则 D 。 A 布置纵向和横向加劲肋 B 按计算布置横向加劲肋 C 按构造要求布置加劲肋 D 不用布置加劲肋 6、荷载作用于截面形心的焊接工字形等截面简支梁,最容易发生整体失稳的情况是 C 。 A 跨中集中荷载作用 B 跨间三分点各有一个集中荷载作用 C 梁两端有使其产生同向曲率、数值相等的端弯矩作用 D 全跨均布荷载作用 7、计算梁的抗弯强度M W f x x nx x /()(.)γγ≤?10,与此相应的翼缘外伸肢宽厚比不应超过 A 。

连铸坯凝固与铸坯质量

连铸坯凝固与铸坯质量 50.钢中微量元素对连铸坯质量有何影响? 所谓钢中微量元素分为两类:一类为有意加入的元素,如为改善机械切削性能加入S、Pb、Se、Te,为抗腐蚀加Cu等。另一类不是有意加入而是由炼钢炉料和浇注过程带入的元素,如来自炉料的元素有Cu、As、Sb、Zn、Sn、S、P,来自结晶器的Cu,来自保护渣的S 等。 对于炉料带入的这些微量元素,对用高废钢的电炉冶炼是一个实际问题,在冶炼过程去除这些元素是很困难的,残留在钢中对质量的影响是: (1)结晶器裂纹:结晶器弯月面铜板由于热疲劳的原因常常出现网状裂纹。如果保护渣中的硫和钢中的锌渗入铜板会形成深的裂纹而报废。 (2)铸坯表面裂纹:由于铸坯表面铁的氧化而使Cu、Sn、Sb等元素富集,形成细小表面晶间裂纹。一般对钢筋钢无多大影响,而对特殊钢就会带来危害。铸坯表面Ni的富集,可以抵销Cu的有害作用,因为Cu—Ni形成晶间化合物熔点较高。 (3)铸坯内部裂纹和偏析加重。微量元素S、P偏析是输送酸性气体的高强度管线钢产生裂纹的根源。因此要求把钢中硫降低到5ppm,磷降到25ppm,以满足所要求性能。 只有采用精选炉料或炉料搭配使用(如采用海绵铁),以减少炉料带入的微量元素。提高钢质量。 51.脱氧方式对连铸坯质量有何影响? 脱氧方式会影响钢中夹杂物类型、钢水流动性和钢的清洁度,因此选择脱氧方式是非常重要的。一般的钢常用Si、Mn脱氧较好,这些脱氧剂一般形成可变形的球形硅酸盐夹杂物,这种夹杂物能上浮排除且不影响钢水可浇性。用铝脱氧会形成高熔点(2050℃)成串簇状不变形的Al203夹杂,这种夹杂物会影响钢水的可浇性,还会沉积在中间包水口壁上造成水口堵塞,影响浇注正常进行。采用Si-Ca脱氧,脱氧效果、夹杂物形态和钢水的可浇性都较好,但价格较贵,加入时产生烟雾,污染工作环境。 52.特殊钢凝固有哪些特点? 特殊钢中加入了合金元素,其凝固特性与普碳钢有所不同,这是连铸时要注意之点。 (1)钢中含有较强的活泼元素:如不锈钢中含有Al、Ti等元素容易和0、N结合,生成Al2O3、TiO2、TiN、Ti(CN) (Cr—Al)2O3、(Mn—Ti)2O4等复杂的夹杂物,给浇注操作(如堵水口)和铸坯质量带来危害。 (2)凝固温度区间变化大:合金元素含量较高,意味着液相线和固相线温度区间较大。如奥氏体不锈钢(18~20%Cr,8~10%Ni)的TL(液相线温度)=1449℃,Ts(固相线温度)=1393℃,△T=TL一TS=56℃;铁素体不锈钢(10~11%Cr)的TL=1507℃,Ts=1482℃,△T=25℃。钢中C由0.2%增加到0.5%,△T由30℃增加到60℃。凝固温度区间的变化,在选择钢水过热度、二次冷却水量和水量分配时必须予以考虑。 (3)凝固结构:铸坯凝固结构对产品质量有十分重要影响。根据钢中合金元素含量不同,钢液凝固有3种类型:1)钢水凝固成δ相或γ相,如铁素体的Cr钢和奥氏体的Cr-Ni钢; 2)钢水首先凝固成δ相,然后转变成γ相。如含有δ相的Ni-Cr奥氏体钢;3)钢水首先凝固成δ相,然后发生δ→γ→α相的转变。如C

钢结构设计原理习题及答案

第一章 绪论 1.填空题 (1)某构件当其可靠指标β减小时,相应失效概率将随之 。 (2)承载能力极限状态为结构或构件达到 或达到不适于继续承载的变 形时的极限状态。 (3)在对结构或构件进行 极限状态验算时,应采用永久荷载和可 变荷载的标准值。 2.选择题 (1)在结构设计中,失效概率P f 与可靠指标β的关系为 。 A. P f 越大,β越大,结构可靠性越差 B. P f 越大,β越小,结构可靠性越差 C. P f 越大,β越小,结构越可靠 D. P f 越大,β越大,结构越可靠 (2)按承载力极限状态设计钢结构时,应考虑 。 A. 荷载效应的基本组合 B. 荷载效应的标准组合 C. 荷载效应的基本组合,必要时尚应考虑荷载效应的偶然组合 D. 荷载效应的频遇组合 3.简答题 (1)钢结构和其他建筑材料结构相比的特点。 (2)钢结构的设计方法。 第二章 钢结构的材料 1.(1)假定钢材为理想的弹塑性体,是指屈服点以前材料为 性的。 (2)伸长率10δ和伸长率5δ,分别为标距长l = 和l = 的试件拉 断后的 。 (3)如果钢材具有 性能,那么钢结构在一般情况下就不会因偶然或局 部超载而发生突然断裂。

α是钢材的指标。 (4) k 2.填空题选择题 (1)钢材的设计强度是根据确定的。 A. 比例极限 B. 弹性极限 C. 屈服点 D. 极限强度(2)钢结构设计中钢材的设计强度为。 A. 强度标准值 B. 钢材屈服点 C. 强度极限值 D. 钢材的强度标准值除以抗力分项系数 (3)钢材是理想的体。 A. 弹性 B. 塑性 C. 弹塑性 D. 非弹性(4)钢结构中使用钢材的塑性指标,目前最主要用表示。 A. 流幅 B. 冲击韧性 C. 可焊性 D. 伸长率(5)钢材的伸长率δ用来反映材料的。 A. 承载能力 B. 弹性变形能力 C. 塑性变形能力 D. 抗冲击荷载能力 (6)建筑钢材的伸长率与标准拉伸试件标距间长度的伸长值有关。 A. 达到屈服应力时 B. 达到极限应力时 C. 试件塑性变形后 D. 试件断裂后 (7)钢材的三项主要力学性能为。 A. 抗拉强度、屈服强度、伸长率 B. 抗拉强度、屈服强度、冷弯性能 C. 抗拉强度、冷弯性能、伸长率 D. 冷弯性能、屈服强度、伸长率 (8)钢材的剪切模量数值钢材的弹性模量数值。 A. 高于 B. 低于 C. 相等于 D. 近似于 (9)在构件发生断裂破坏前,有明显先兆的情况是的典型特征。

钢液凝固的基本原理

钢衣凝固的基本原理 1钢液的凝固与结晶众所周知,在不同的温度条件下,物质都具有不同的状态。钢也一样,在加热到一定的温度时,可从固态转化成液态;钢液冷却到某个温度时,将从液态转化为固态。钢从液态转化成固态称为凝固;从固态转化成液态叫熔化。钢水凝固的过程主要是晶体或晶粒的生成和长大的过程,所以也叫做结晶。 钢液的结晶条件(钢液凝固的热力学条件)通常把固体转变为液态的下限温度称为熔点;把液态转变为固态的上限温度叫凝固点,又称理论结晶温度。 凝固点即物质在冷却过程中开始凝固的温度,钢液的结晶只有降温到凝固点以下才能发生。 因为钢液的液相温度在冶炼和浇注操作中是一个尖键参数,因此,准确知道要生产的钢的液相线温度对整个炼钢过程至尖重要。出于操作安全性和希望得到尽量多的等轴晶凝固组织而采用低过热度浇铸等因素考虑,一般要求浇注温度确定在液相线以上的一个合适的值。一般根据钢中元素含量可以计算出该钢的液相线温度值。 通常用Ts表示钢的凝固点或理论结晶温度。对某一具体的钢不中,凝固点通常可用以下公式理论计算出: Ts=1536C—( 78(M%34P耕30S辭5Cu炽如2Mo耕2V炽%%18Ti%°C 降温到Ts以下某温度T叫过冷,并把Ts与T的温度差值△ T叫过冷度,即: △ T=Ts— T 过冷是钢液结晶的必要条件,过冷度的大小决定结晶趋势的大小,即过冷度越大,结晶速度越快;反之,过冷度越小,结晶速度越慢。 晶核的形成 (1)自发形核在过冷钢液中,有一些呈规则排列的原子集团,其中尺寸最大的集团,就是晶体产生的胚,称之为晶胚。晶胚时而长大,时而缩小,但最终必有一些晶胚达到某一规定的临界尺寸以上,它就能够稳定成长而不再缩小了,这就形成晶核。(2)非自发开核因在钢液的凝固过程中,液相中非自发形核比自发形核所要求的过 冷度小得 多,只要几度到20C过冷度就可形核,这是因为钢液中存在悬浮质点和表面不光滑的器壁,均可作为非均质形核的核心。由于钢水不可能达到100%的纯净,故生产中这种形核是主要的形核方式。 树枝晶的形成 晶核一旦形成,液体就开始发生了结晶,结晶的发展依赖于新晶核的继续产生,但更

连铸坯在凝固过程中形成裂纹的原因[终稿]

连铸坯在凝固过程中形成裂纹的原因[终稿] 随着市场竞争的日趋激烈,产品的质量已经成为占有市场的主要砝码,连铸坯作为炼钢厂的终端产品,其质量直接影响着轧材单位的产量和轧材质量,据统计炼钢厂连铸坯质量缺陷中约70%为连铸坯裂纹,连铸坯裂纹成为影响连铸坯产量和质量的重要缺陷之一,下面将对铸坯在凝固过程中裂纹的形成做简要分析: 一、铸坯凝固过程的形成 铸坯在连铸机内的凝固可看成是一个液相穴很长的钢锭,而凝固是沿液相穴的固液界面在液固相温度区间把液体转变为固体把潜热释放出来的过程。在固液界面间刚凝固的晶体强度和塑性都非常小,当作用于凝固壳的热应力、鼓肚力、矫直力、摩擦力、机械力等外力超过所允许的外力值时,在固液界面就产生裂纹,这就形成了铸坯内部裂纹。而已凝固的坯壳在二冷区接受强制冷却,由于铸坯线收缩,温度的不均匀性,坯壳鼓肚、导向段对弧形不准,固相变引起质点如(,,,)在晶界的沉淀等,容易使外壳受到外力和热负荷间歇式的突变,从而产生裂纹就是表面裂纹。 二、连铸坯裂纹形态和影响因素 连铸坯裂纹形态分为表面裂纹和内部裂纹,表面裂纹有纵向、横向角部裂纹、表面横裂和纵裂、网状裂纹和凹陷等,内部裂纹有中间、中心和矫直裂纹等。 连铸坯裂纹的影响因素: 连铸坯表面裂纹主要决定于钢水在结晶器的凝固过程,它是受结晶器传热、振动、润滑、钢水流动和液面稳定性所制约的,铸坯内部裂纹主要决定于二冷区凝固冷却过程和铸坯支撑系统(导向段)的对弧准确性。铸坯凝固过程坯壳形成裂纹,从工艺设备和钢凝固特性来考虑影响裂纹形成的因素可分为: ,、连铸机设备状态方面有:

,)结晶器冷却不均匀 ,)结晶器角部形状不当。 ,)结晶器锥度不合适。 ,)结晶器振动不良。 ,)二冷水分布不均匀(如喷淋管变形、喷嘴堵塞等)。 ,)支承辊对弧不准和变形。 ,、工艺参数控制方面有: ,)化学成份控制不良(如C、Mn\S)。 ,)钢水过热度高。 ,)结晶器液面波动太大。 ,)保护渣性能不良。 ,)水口扩径。 ,)二次冷却水分配不良,铸坯表面温度回升过大。 ,)铸坯带液芯矫直。 ,)铸坯在脆性区(700~900?)矫直。 ,、钢的凝固特性方面有: ,)凝固冷却过程的相变。 ,)铸坯凝固结构(柱状晶与等轴晶的比例)。 ,)凝固壳高温力学行为。 ,)凝固过程的偏析。 三、连铸坯裂纹形成原因分析 表面裂纹起源于结晶器钢水的凝固过程中,在二冷区加速了裂纹的扩展,而内部裂纹起源液相穴固液交界面并伴随有偏析线。 ,、纵裂纹

钢结构设计原理考试重点

1、钢筋和混凝土两种力学性能不同的材料,能结合在一起有效地共同工作的理由 (1)混凝土和钢筋之间有着良好的粘结力,使两者能可靠的结合成一个整体,在荷载作用下能够很好地共同变形,完成其结构功能。 (2)钢筋和混凝土的温度线膨胀系数也较为接近,因此,当温度变化时,钢筋与混凝土之间不致产生较大的相对变形而破坏两者之间的粘结。 (3)质量良好的混凝土,可以保护钢筋免遭锈蚀,保证钢筋与混凝土的共同作用。 2、钢筋和混凝土之间的粘结力是怎样产生的为保证钢筋与混凝土之间的粘结力要采取哪些措施 (1)光圆钢筋与混凝土之间的粘结力主要有摩擦力和咬合力提供;带肋钢筋与混凝土之间的粘结力主要是钢筋表面凸起的肋纹与混凝土的机械咬合作用。(2)提高混凝土强度或使用高强混凝土;使用钢纤维混凝土。 3、什么叫混凝土的徐变影响混凝土徐变的有哪些因素 在荷载的长期作用下,混凝土的变形将随时间而增加,即在应力不变的情况下,混凝土的应变随时间持续增长,这种现象称为混凝土的徐变。 影响因素:(1)混凝土在长期荷载作用下产生应力的大小(2)加载时混凝土的龄期(3)混凝土的组成成分和配合比(4)养生及使用条件下的温度与湿度 4、什么是承载能力极限状态哪些状态认为是超过了承载能力极限状态 承载能力极限状态对应于结构或结构构件达到最大承载能力或不适于继续承载的变形或变位的状态。超过了承载能力极限状态:(1)整个结构或结构的一部分作为刚体失去平衡(2)结构构件或

连接处因超过材料强度而破坏(包括疲劳破坏),或因过度的变形而不能继续承载(3)结构转变成机动结构(4)结构或结构构件丧失稳定(5)结构因局部破坏而发生连续倒塌(6)结构或构件的疲劳破坏(7)地基丧失承载力而破坏 5、什么是正常使用极限状态哪些状态认为是超过了正常使用极限状态 正常使用极限状态对应于结构或结构构件达到正常使用或耐久性的某项限制的状态。超过了正常使用极限状态:(1)影响正常使用或外观的变形(2)影响正常使用或耐久性能的局部损坏(3)影响正常使用的震动(4)影响正常使用的其他特定状态 6、钢筋混凝土梁和板内配置哪些钢筋,其作用是什么 梁内钢筋的配置通常有下列几种: 1)纵向受拉钢筋(主钢筋) 纵向受力钢筋的主要作用是承受外力作用下梁内产生的拉力。因此,纵向受力钢筋应配置在梁的受拉区。 2)弯起钢筋或斜钢筋 弯起钢筋通常是由纵向钢筋弯起形成的。其主要作用是除在梁跨中承受正弯矩产生的拉力外,在梁靠近支座的弯起段还用来承受弯矩和剪力共同作用产生的主拉应力。 3)架立钢筋 架立钢筋的主要作用是固定箍筋保证其正确位置,并形成一定刚度的钢筋骨架。同时,架立钢筋还能承受因温度变化和混凝土收缩而产生的应力,防止裂缝产生。架立钢筋一般平行纵向受力钢筋,放置在梁的受压区箍筋内的两侧。 4)箍筋 箍筋的主要作用是承受剪力。此外,箍筋与其他钢筋通过绑扎或焊接形成一个整体性良好的空间骨架。箍筋一般垂直于纵向受力钢筋。

连铸坯凝固与传热

连铸坯凝固与传热 连铸过程中铸坯的凝固和传热是连铸设备设计工艺、工艺控制和质量控制的基础,是连铸工作必须掌握的知识。 第1节连铸坯凝固传热的特点 钢液在连铸过程中的凝固是一个热量释放和传递的过程,有两个特点。 *在运动(动态)过程中凝固放热 *在不同时期散热和传热的方式是不同的 一、连铸坯的凝固过程实质上是一个传热的过程。 钢液在转变成固态过程中是分为几个过程。热量Q包括: 1.过热:从浇注温度T C冷却到液相线温度T L放出的热量,C1(T C-T L); 2.潜热:从液相线温度T L冷却至固相线温度T S放出的热量以L f表示; 3.显热:从固相线温度T S冷却到环境温度To放出的热量C S(Y S-T O); 大约有1/3的热量是从液态→固态放出的, 而其余热量是完全凝固后冷却放出的。 连铸过程中钢液凝固可分三个传热冷却区。 *一次冷却区:形成足够厚度的坯壳以保证铸坯出结晶器不漏钢。 *二次冷却区:使铸坯完全凝固。 *三次冷却区:空冷区。 从热平衡来看 *钢水结晶器→二冷区→空冷区大约有60%的热量放出来,铸坯才能完全凝固。这部分热量放出的速度决定了铸机的生产率和铸坯的质量。 *铸坯切割后还有40%热量要放出来,为了利用这部分热量,节约能源,采用热装直轧或连浇连轧工艺。 二钢热凝固过程是液体转变固体的加工过程 凝固是发生在铸坯传热过程中的主要现象,铸坯在运动过程中凝固,实质是固——液交界面潜热的释放和传递过程。 1.凝固温度区间(T L -T S )将液体转变成固体加工过程。

这时在固——液交界面有个脆性区,其强度σ=0;收缩率ψ=0。极易在此区产生裂纹,因此称裂纹敏感区。固——液界面糊状区。晶体强度和塑性都非低或称临界强度,如这时受到外力作用。如热应力,鼓肚应力,矫直力等超上述临界值(ó为1-3N/mm2,由应变到断裂的临界应变为0.2-0.4%)产生裂纹和偏析裂纹。 2.在二冷区受喷水冷却时 在这个区已凝固坯壳不断进行线收缩和坯壳温度分布不均匀性及坯壳鼓胀和夹辊不完全对中等原因,是坯壳受到机械和热应力的作用(有时是反复的)也易使铸坯产生裂纹。 由上所述,不难看出要获得高质量铸坯必须具备的条件: 1)为了保证铸坯有良好的质量,应从铸机的设计和维修方面,尽可能使铸坯在运行过程中,使其凝固坯壳具有最小的变形; 2)从传热方面就应控制铸坯在不同冷却区热量导出的速度和坯壳的热负荷适应于钢的高温性能的变化。因此,可以说控制铸坯传热是获得良好铸坯质量的关键所在。 3.铸坯凝固是分阶段进行的(三个阶段) 1)钢液在结晶器内形成初生坯壳; 2)带有液心的坯壳在二冷区快速均匀的生长; 3)临界凝固末期(中心体积结晶)坯壳加速增长。 钢液在结晶器内凝固过程中主要是受到注流流动的影响—形成强制的循环区,它的高度和强度取决于注流流量,注流方式,水口形式,铸坯断面等因素的影响。它对坯壳均匀性,凹坑,表面纵裂纹等都在此产生。 在二冷区,凝固主要受坯壳收缩和晶体下沉所引起的自然对流流动的影响,也可能由于铸坯鼓肚所引起的流动。二冷区坯壳内的流体流动对铸坯组织结构,内裂纹,夹杂物的分布,和偏析等都有决定性的影响。 4.凝固坯壳在冷却过程是热处理的过程。 1)从力的方面:凝固的坯壳在运动过程中承受着热应力和机械应力,使其坯壳发生不同程度的变形; δ(铁2)从冶金学方面:连铸过程中,钢液凝固过程要发生相变,? → →γ

相关主题
文本预览
相关文档 最新文档