当前位置:文档之家› 问题连铸坯

问题连铸坯

问题连铸坯
问题连铸坯

连铸坯质量决定着最终产品的质量,

连铸坯表面缺陷是影响连铸机产量和铸坯质量的重要缺陷。据统计,各类缺陷中裂纹占50%。铸坯出现裂纹,重者会导致拉漏或废品,轻者要进行精整。这样既影响铸机生产率,又影响产品质量,因而增加了成本。铸坯内部缺陷影响产品的机械性能、使用性能和使用寿命。如图6-1所示,铸坯缺陷可分为以下3类:

图6-1 连铸坯表面缺陷示意图

1一角部横裂纹;2一角部纵裂纹;

3一表面横裂纹;4一宽面纵裂纹;

5一星状裂纹;6—振动痕迹;

7一气孔;8一大型夹杂物

(1)表面缺陷:包括表面纵裂纹、横裂纹、网状裂纹、皮下夹渣、皮下气孔、表面凹陷等。

(2)内部缺陷:包括中间裂纹、皮下裂纹、压下裂纹、夹杂、中心裂纹和偏析等。

(3)形状缺陷:方坯菱变(脱方)和板坯鼓肚。

连铸坯凝固过程有哪些特点?

与模铸比较,连铸凝固过程的特点是:

(1)连铸坯凝固是热量传递过程。钢水浇入结晶器边传热、边凝固、边运行,形成了液相穴相当长的连铸坯(板坯长20多米),为加速凝固,在连铸机内布置了3个冷却区:

—一次冷却区:钢水在结晶器内形成足够厚且均匀的坯壳,保证出结晶器不拉漏。

—二次冷却区:喷水冷却以加速内部热量的传递使铸坯完全凝固。

—三次冷却区:使铸坯温度均匀化。

(2)连铸坯凝固是沿液相在凝固温度区间把液体转变为固体的过程。连铸坯可看成是液相很长的钢锭,以一个固定速度在连铸机内沿弧形轨道运动。铸坯在运动中凝固。实质上是沿液相固液界面的潜热释放和传递过程。而在凝固界面的晶体强度非常小(仅1~3N/mm2),由变形到断裂的应变为0.2~0.4%。因此,当铸坯所受的外力(如鼓肚力、矫直力、热应力等)超过上述临界值,就在固液界面产生裂纹,并沿柱状晶扩展,直到凝固壳能抵抗外力为止。这是铸坯产生内裂纹的原因。

(3)连铸坯凝固是分阶段的凝固过程。凝固生长经历了三个阶段:

—钢水在结晶器形成初生坯壳。

—带液芯的铸坯在二次冷却区稳定生长。

—临近凝固末期的液相加速生长。

在凝固过程中,结晶器注流在液相引起的流动和混合对铸坯凝固有重要影响。研究指出:液相上部为强制对流区,对流区高度决定于注流方式、浸入式水口类型和铸坯断面。在液相下部液体流动主要是坯壳收缩、晶体下沉所引起的自然对流,或者是由铸坯鼓肚所引起的流动。流动对铸坯结构、夹杂物上浮及溶质元素偏析有重要影响。

(4)已凝固坯壳在连铸机内冷却可看成是经历形变热处理。凝固壳一方面受到力的作用,另一方面受到喷水冷却,随温度的降低发生相变,组织也发生变化,可能发生硫化物、氮化物质点在晶界沉淀,增加高温脆性,是铸坯产生表面裂纹的根源。

因此,应深入认识上述四个方面相互联系和相互制约的规律,才能在设备和工艺上制订正

确的对策,使连铸机达到生产效率高和铸坯质量好的目的。

.提高连铸坯表面质量有哪些措施?

铸坯表面缺陷主要是指夹渣、裂纹等。如表面缺陷严重。在热加工之前必须进行精整,否则会影响金属收得率和成本。生产表面无缺陷铸坯是热送热装的前提条件。

铸坯表面缺陷形状各异,形成原因是复杂的。从总体上说,铸坯表面缺陷主要受结晶器钢水凝固过程的控制。为保证表面质量,在操作上必须注意以下几点:

(1)结晶器液面的稳定性:钢液面波动会引起坯壳生长的不均匀,渣子也会被卷入坯壳。试验指出:液面波动与铸坯皮下夹渣深度的关系如下:

液面波动范围,mm皮下夹渣深度,mm

±20<2

±40<4

>40<7

当皮下夹渣深度<2mm,铸坯在加热时可消除,夹渣深度在2~5㎜时铸坯必须进行表面清理。钢液面波动在±10mm,可消除皮下夹渣。因此,选择灵敏可靠的液面控制系统,保证液面波动在允许范围内,是非常重要的。

(2)结晶器振动:铸坯表面薄弱点是弯月面坯壳形成的“振动痕迹”。振痕对表面质量的危害是:1)振痕波谷处是横裂纹的发源地,2)波谷处是气泡、渣粒聚集区。为此,采用高频率小振幅的结晶器振动机构,可以减少振痕深度。

(3)初生坯壳的均匀性:结晶器弯月面初生坯壳不均匀会导致铸坯产生纵裂和凹陷,以致造成拉漏。坯壳生长的均匀性决定于钢成分、结晶器冷却、钢液面稳定性和保护渣润滑性能。

(4)结晶器钢液流动:结晶器由注流引起的强制流动,不应把液面上的渣子卷入内部。浸入式水口插入深度小于50mm,液面上渣粉会卷入凝固壳,形成皮下夹渣;浸入式水口插入深度>170mm,皮下夹渣也会增多。因此,浸入水口插入深度和出口倾角是非常重要的参数。

(5)保护渣性能:应有良好的吸收夹杂物能力和渣膜润滑能力。

9.提高连铸坯内部质量应采取哪些措施?

铸坯内部质量是指低倍结构、成分偏析、中心疏松、中心偏析和裂纹等。铸坯经过热加工后,有的缺陷可以消失、有的变形、有的则原封不动的保留下来,对产品性能带来不同程度的危害。

铸坯内部缺陷的产生,涉及到铸坯凝固传热、传质和应力的作用,生成机理是极其复杂的。但总的来说,铸坯内部缺陷是受二次冷却区铸坯凝固过程控制的。改善铸坯内部质量的措施有:

(1)控制铸坯结构:首要的是要扩大铸坯中心等轴晶区,抑制柱状晶生长。这样可减轻中心偏析和中心疏松。为此采用钢水低过热度浇注、电磁搅拌等技术都是有效的扩大等轴晶区的办法。

(2)合理的二次冷却制度:在二次冷却区铸坯表面温度分布均匀,在矫直点表面温度大于900℃,尽可能不带液芯矫直。为此采用计算机控制二次冷却水量分布、气一水喷雾冷却等。

(3)控制二次冷却区铸坯受力与变形:在二次冷却区凝固壳的受力与变形是产生裂纹的根源。为此采用多点弯曲矫直、对弧准确、辊缝对中、压缩浇铸技术等。

(4)控制液相穴钢水流动,以促进夹杂物上浮和改善其分布。如结晶器采用电磁搅拌技术、改进浸入式水口设计等。

连铸坯表面纵裂产生的原因及其防止方法有哪些?

连铸坯表面纵裂纹,会影响轧制产品质量。如长300mm、深2.5mm的纵裂纹在轧制板材上留下1125mm分层缺陷。纵裂纹严重时会造成拉漏和废品。

研究指出:纵裂纹发源于结晶器弯月面初生坯壳厚度的不均匀性。作用于坯壳拉应力超过钢的允许强度,在坯壳薄弱处产生应力集中导致断裂,出结晶器后在二次冷却区扩展。

纵裂产生的原因可归纳为:1)水口与结晶器不对中而产生偏流冲刷凝固壳。2)保护渣熔化性能不良、液渣层过厚或过薄导致渣膜厚薄不均,使局部凝固壳过薄。液渣层<10mm,纵裂纹明显增加。3)结晶器液面波动。液面波动>10㎜,纵裂发生几率30%。4)钢中S+P含量。钢中S>0.02%,P>0.017%,钢的高温强度和塑性明显降低,发生纵裂趋向增大。5)钢中C 在0.12~0.17%,发生纵裂倾向增加。

防止纵裂发生的措施是:1)水口与结晶器要对中。2)结晶器液面波动稳定在±10mm。3)合适的浸入式水口插入深度。4)合适的结晶器锥度。5)结晶器与二次冷却区上部对弧要准。

6)合适的保护渣性能。7)采用热顶结晶器,即在弯月面区75mm铜板内镶入不锈钢等导热性差的材料,减少了弯月面区热流50~70%,延缓了坯壳收缩,减轻了凹陷,因而也减小了纵裂发生几率。

连铸板坯缺陷特征和缺陷图谱

连铸板坯缺陷特征和 缺陷图谱 首钢京唐板坯质检编制 2010年8月8日

一.连铸坯质量特征综述 1.1连铸坯质量定义和特征 所谓连铸坯质量是指的到合格产品所允许的铸坯缺陷的严重程度。对铸坯质量要求而言,主要有四项指标,即连铸坯几何形状、表面质量、内部组织致密性和钢的洁净性;而这些质量要求与连铸机本身设计,采取的工艺以及凝固特点密切相关。 1.2铸坯的检查和清理的意义 提高钢的质量,降低成本,加强产品市场的竞争力是企业追求的目标,生产无缺陷连铸坯以保证高附加值产品优良的性能是永恒的主题,连铸坯的裂纹和夹杂物所产生的缺陷可以说是影响产品质量的两大障碍,生产无缺陷或缺陷不足以影响产品质量的连铸坯,这是要努力达到的目标,而连铸坯裂纹和夹杂物所产生的缺陷是受设备、工艺、管理等多种因素制约的。因此设备、工艺和管理的现代化加上人的质量意识是提高产品质量的关键。,但是在连铸生产中,铸坯的各种缺陷总是无法避免的,铸坯清理对钢厂保障铸坯质量、降低废品比例具有重要意义。 (1)火焰铸坯清理的注意事项 1)一般对表面质量要求较高的钢种,铸坯清理的目的以检查铸坯表面和皮下质量为主,包括夹杂物、气泡、裂纹等分布情况,在清理检查的基础上提供铸坯的进一步处理(清除缺陷、决定铸坯表面质量级别、是否送机器去皮、决定钢种是否达到热送条件等)的意见。 2)微合金钢如Nb、V微合金钢和包晶钢等容易产生角部横裂纹,往往位于铸坯振痕谷底,也需要用火焰清理才能发现。这方面也应引起足够重视。 3)对于包晶钢、中碳钢等钢种,则以人工清理肉眼可见缺陷为主,包括铸坯常见的表面缺陷,如纵裂、角横裂、重接、凹陷、夹渣、毛刺等,以便尽量降低铸坯判废损失。 (2)不良的火焰清理的危害 虽然火焰清理是检查和去除连铸坯表面缺陷的一个极好的方法。但是,这项操作的确需要掌握一定的技巧,一旦能够正确地操作可确保最终产品不产生额外的表面缺陷。连铸坯表面上的深槽、凸脊和界面必须平滑以确保清理操作本身不造成额外表面缺陷。如果采取了正确的操作,轧制表面通常不会产生与清理操作有关的缺陷。一个确保光滑过渡的良好操作是清理工作宽度要6倍于清理深度,如果没有采用正确的清理操作,那么缺陷会折叠,轧制后看起来像一条连续的划伤。 二连铸板坯内部缺陷 1.1中心疏松和缩孔 【定义与特征】在板坯断面上就可以发现中心附近有许多细小的空隙,中心疏松严重时会形成中心缩孔。 【鉴别与判定】用肉眼观察,铸坯轧制压缩比达3~5mm时,中心疏松可焊合,所以小的中心疏松和缩孔可以放过。但是严重的中心疏松会对产品质量危害甚大,所以必须进行切尺处理。 【图谱】

连铸坯质量考核制度

连铸钢坯质量考核制度 为了加强连铸坯质量管理,确保下道工序正常生产,结合实际生产需要,现制定连铸坯质量考核制度: 1、钢坯五大元素的控制,应严格按照公司内控标准执行, 五大元素超出内控标准的,考核炼钢厂1000元/项。2、连铸坯长度允许偏差为+80mm,超出该范围考核炼钢厂 100元/根。 3、连铸坯边长允许偏差为±5mm,超出该范围考核炼钢厂 100元/根。 4、连铸坯两对角线之差应≤10mm,超出该范围则判定为脱 方,脱方钢坯考核炼钢厂500元/根。 5、连铸坯切斜应≤12mm,超出该范围考核炼钢厂200元/ 根。 6、连铸坯鼓肚应≤5mm,超出该范围考核炼钢厂200元/ 根。 7、连铸坯弯曲度不得大于20mm/m,总弯曲度不得大于总 长度的2%,超出该范围考核炼钢厂200元/根。 8、连铸坯表面不得有目视可见的重接、翻皮、结疤、夹杂, 一经发现,考核炼钢厂500元/根。 9、连铸坯不得有深度或高度大于3mm的划痕、压痕、擦伤、 气孔、皱纹、冷溅、凸块、凹坑(包括由于手工切割造 成连铸坯端部不平整、凸块、凹坑、裂痕),一经发现,

考核炼钢厂200元/根。 10、连铸坯端面不允许有中心偏析产生的黑点、缩孔、裂纹及皮下气泡(允许有5个以下气泡),一经发现,考核炼钢厂500元/根。 11、连铸坯应按炉组批发运并喷写炉批号,随炉号跟踪卡一同发送到下道工序,此三项若不能按要求执行,考核炼钢厂200元/项。 以上连铸坯质量问题一经发现需及时整改,如流转到下道工序则按照上述制度考核,同时按废坯退回炼钢;如发现弄虚作假,对责任单位考核2000元/次。 技术中心 2014年7月29日

大型连铸坯质量控制

GCr15连铸坯组织及缺陷的超声波检测 赵荒培 (中冶京诚(营口)装备技术有限公司营口115004) 本文采用UT评估大型轴承钢连铸坯的质量。提出组织衰减、表征缩孔及指示性缺陷的数字表述等三项指标。可作为评判连铸坯质量的判据。 关键词:UT, 连铸坯,轴承钢,质量 随着国内工业的发展,轴承钢需求量日益增加。轴承钢连铸坯(≥Ф600mm)的组织与缺陷对最终产品质量有相关影响。因此,提高轴承钢的质量的研究对于企业的发展,满足市场需求起着重要的作用[1-4]。 常规的连铸坯的宏观检查虽然能直观地观察到偏析,疏松、缩孔等缺陷;但其单一横截面的检测不易对整体质量进行准确的评估。相对于装备制造行业而言,对连铸坯进行检查,以便较早除去对后面工序无价值的不合格品,可以改善制造方法和作业方法以及提高效率。 本文采用检测连铸坯的超声波组织衰减及其孔洞式缺陷。并试图制定一个适用于对生产具有参考意义的方法。 1 大型连铸坯检测依据 1.1 GCr15低倍组织的特点 GCr15轴承钢是一种典型的高碳特殊钢。其低倍组织有两个显著地特点:(1)凝固组织与宏观碳偏析关系颇为复杂;(2)由于其高碳、铬所导致的凝固温度区较宽,其低倍组织缩孔出现的概率较大。 连铸坯由外至内,柱状晶、树枝晶、和等轴晶组成。外层的超声波穿透性好于内部等轴晶。钢锭的结晶由外至内,激冷层-柱状晶(树枝晶)-等轴晶(自由晶)。柱状晶的超声波的穿透性比等轴晶好。金属的显微组织的差异对超声波衰减有显著影响。衰减小的具有较细的晶粒而致密。其底波和伤波下降较小。 1.2 UT检测的目的 UT是用于非破坏性方法把材料中的缺陷作为超声波能量的变化检测出来简洁方法[5-10]。可以直接而客观地估计:是否存在缺陷,其位置、分布与形状等。这些推断必须加上材料的性质、制造的方法等冶金学的统计经验和知识,而且有时还需要与其它的方法结合使用。

连铸坯质量缺陷

连铸坯的质量缺陷及控制 摘要 连铸坯质量决定着最终产品的质量。从广义来说所谓连铸坯质量是得到合格产品所允许的连铸坯缺陷的严重程度,连铸坯存在的缺陷在允许范围以内,叫合格产品。连铸坯质量是从以下几个方面进行评价的: (1)连铸坯的纯净度:指钢中夹杂物的含量,形态和分布。 (2)连铸坯的表面质量:主要是指连铸坯表面是否存在裂纹、夹渣及皮下气泡等缺陷。连铸坯这些表面缺陷主要是钢液在结晶器内坯壳形成生长过程中产生的,与浇注温度、拉坯速度、保护渣性能、浸入式水口的设计,结晶式的内腔形状、水缝均匀情况,结晶器振动以及结晶器液面的稳定因素有关。 (3)连铸坯的内部质量:是指连铸坯是否具有正确的凝固结构,以及裂纹、偏析、疏松等缺陷程度。二冷区冷却水的合理分配、支撑系统的严格对中是保证铸坯质量的关键。 (4)连铸坯的外观形状:是指连铸坯的几何尺寸是否符合规定的要求。与结晶器内腔尺寸和表面状态及冷却的均匀程度有关。 下面从以上四个方面对实际生产中连铸坯的质量控制采取的措施进行说明。 关键词:连铸坯;质量;控制 1 纯净度与质量的关系 纯净度是指钢中非金属夹杂物的数量、形态和分布。夹杂物的存在破坏了钢基体的连续性和致密性。夹杂物的大小、形态和分布对钢质量的影响也不同,如果夹杂物细小,呈球形,弥散分布,对钢质量的影响比集中存在要小些;当夹杂物大,呈偶然性分布,数量虽少对钢质量的危害也较大。 此外,夹杂物的尺寸和数量对钢质量的影响还与铸坯的比表面积有关。一般板坯和方坯单位长度的表面积(S)与体积(V)之比在0.2~0.8。随着薄板与薄带技术的发展,S/V 可达10~50,若在钢中的夹杂物含量相同情况下,对薄板薄带钢而言,就意味着夹杂物更接近铸坯表面,对生产薄板材质量的危害也越大。所以降低钢中夹杂物就更为重要了。 提高钢的纯净度就应在钢液进入结晶器之前,从各工序着手尽量减少对钢液的污染,并最大限度促使夹杂物从钢液中排除。为此应采取以下措施:

304不锈钢连铸坯表面缺陷分析

304不锈钢连铸坯表面缺陷分析 摘要:本文对304不锈钢连铸坯进行了解剖分析。在25%的铸坯深振痕或渣坑缺陷试样中观察到了微裂纹或气孔。 关键词:304不锈钢,连铸板坯,表面缺陷 Investigation on Surface Defects of 304 Stainless Steel Slab Abstract: This paper dissected 304 stainless steel slabs. In 25 percents of samples, small cracks or pinholes can be observed under deep oscillation marks or slag hollows. Key Words: 304 stainless steel, slab, surface defect 在不锈钢生产,特别是不锈钢冷轧产品生产中,产品的表面质量控制非常重要。众所周知,钢中非金属夹杂物是冷轧产品表面质量最重要的影响因素之一。我公司在几十年的不锈钢生产中,对钢中非夹杂物的控制做了大量研究和改进工作。特别是自2004年开始,随着我公司不锈钢产量的迅猛增长和大量不锈钢新品种的开发,质量提升成为提高产品竞争力、扩大市场占有率的关键环节。其中,钢质洁净度研究成为重点关注课题,开展了大量试验研究和工艺攻关[1-3],产品质量得到了明显提升,对我公司不锈钢产品顺利进入钟表、高档装饰面板、高档水槽等行业起到了有力的支撑和推动作用。 近年来,我公司不锈钢钢质洁净度得到大幅提高,产品质量已较为稳定,但目前在奥氏体不锈钢冷轧产品生产中仍存在0.4%左右的“夹杂”废品,且在某些时间内“夹杂”废品的比例会上升到1%以上。随着各项研究工作的逐步推进和深入,我们发现这些冷轧产品“夹杂”缺陷并非都是由非金属夹杂物造成的。 在奥氏体不锈钢连铸生产过程中,连铸板坯的表面质量不仅会严重影响连铸坯修磨率,从而影响全线产品成材率,而且会严重影响冷轧产品表面质量。其中一些连铸坯表面和皮下缺陷在轧材表面会形成形貌类似“夹杂”的缺陷。这些连铸坯表面缺陷的形成与钢种特性、结晶器保护渣物性、结晶器冷却条件、结晶器振动参数等因素有着直接关系。 本文未对奥氏体不锈钢连铸板坯表面缺陷的形成原因及解决措施进行论述。本文选取奥氏体不锈钢中产量最大的304不锈钢,对其连铸板坯表面凹坑、振痕紊乱等缺陷进行了解剖分析。目的是提高我们对连铸坯表面缺陷的认识,为深入研究其产生原因起到铺垫作用。1.奥氏体不锈钢连铸板坯表面缺陷形貌特征及分布 在奥氏体不锈钢连铸板坯表面存在多种缺陷。部分连铸板坯宽面靠近两边部的区域存在局部纵向凹陷,少量连铸坯宽面中部也存在凹陷。连铸坯宽度越大,出现局部凹陷的几率也越大。 多数连铸坯宽面距边部30~180mm的范围内振痕较深,且振痕有紊乱的现象。部分连铸坯在宽面上不规则的分布有渣坑。随着奥氏体不锈钢中合金含量的提高和钢的组织越来越趋向于纯奥氏体组织,铸坯表面的局部凹陷及小渣坑也越多。即钢种从304到316L再到310,连铸板坯表面小渣坑出现的几率增大,数量增多。图1是奥氏体不锈钢连铸板坯表面几种常见缺陷的示意图。 2.缺陷分析方法 为分析局部凹陷、渣坑、深振痕和振痕紊乱处的连铸板坯表面及皮下缺陷,在4个炉号的8块304不锈钢连铸坯表面取了16个缺陷部位试样,试样尺寸约15×15×15mm。从中各取8个试样分别进行水平方向解剖和纵向解剖。然后用光学显微镜和扫描电镜观察剖面上是否存在大颗粒夹杂、微裂纹或其它缺陷。 这8块连铸坯的全氧量在27~33ppm,硫含量在10~14ppm。

连铸坯的缺陷与控制技术

目录 摘要 (1) ABSTRACT (2) 引言 (3) 1 连铸坯的形状质量控制 (4) 1.1鼓肚变形 (4) 1.1.1 鼓肚产生的原因 (4) 1.1.2 采取的措施 (4) 1.2菱形变形(脱方) (4) 1.2.1 脱方成因 (5) 1.2.2 减少脱方的措施 (5) 1.3圆铸坯变形 (6) 1.3.1 椭圆形变形 (6) 1.3.2 不规则变形 (6) 2 连铸坯的表面质量控制 (7) 2.1振动痕迹 (7) 2.2表面裂纹 (7) 2.2.1 表面纵裂纹 (7) 2.2.2 表面横裂纹 (8) 2.3表面夹渣 (10) 2.3.1 表面夹渣形成的原因 (10) 2.3.2 解决表面夹渣的方法[5] (11) 2.4保护渣性能对连铸圆坯表面质量的影响[7] (11) 3 连铸坯的内部质量控制 (13) 3.1连铸坯的中心裂纹 (13) 3.1.1内部裂纹产生的原因及预防措施 (13) 3.2连铸坯的内部夹杂物 (14) 3.2.1夹杂物的分类 (15)

3.2.2 夹杂物的来源[9] (15) 3.2.3 连铸坯中夹杂物的控制方法[10] (16) 结论 (18) 致谢 (19) 参考文献 (20)

摘要 连铸坯质量决定着最终产品的质量。从广义来说所谓的连铸坯质量是得到严格产品所允许范围以内,叫合格产品。连铸坯质量是从一下几个方面进行评价的: 1. 连铸坯的外观形状:是指连铸坯的几何尺寸是否符合规定的要求。与结晶器内腔尺寸和表面状态及冷却的均匀程度有关。 2. 连铸坯的表面质量:主要是指连铸坯表面是否存在裂纹,夹渣等缺陷。连铸坯这些表面缺陷主要是钢液在结晶器内坯壳形成生长过程中产生的,与浇注温度,拉坯速度,保护渣性能,浸入式水口的设计,结晶式的内腔形状,水缝均匀情况,结晶器振动以及结晶器液面的稳定因素有关。 3. 连铸坯的内部质量:是指连铸坯是否具有正确的凝固结构,以及裂纹,偏析,疏松等缺陷程度。二冷区冷却水的合理分配,支撑系统的严格对中是保证铸坯质量的关键。 4. 连铸坯的纯净度:只钢中夹杂物的含量,形态和分布。 关键词:连铸坯;纯净度;裂纹;保护渣

连铸坯质量的控制

连铸坯的质量控制系统 专业: 班级: 姓名:XXX

目录 1连铸坯纯净度与产品质量 (1) 1.1纯净度与质量的关系 (1) 1.2提高纯净度的措施 (2) 2连铸坯质量 (3) 2.1 连铸坯的几何形状质量 (3) 2.1.1 铸坯形状缺陷类型 (4) 2.1.2 铸坯形状缺陷产生原因及防止措施 (4) 2.1.3 铸坯鼓肚 (4) 2.1.4 铸坯菱变 (4) 2.1.5 铸坯变成梯形坯 (5) 2.2 连铸坯表面质量 (5) 2.2.1 连铸坯表面振痕 (5) 2.2.2 振痕形成机理 (5) 2.2.3 振痕对铸坯质量的影响 (6) 2.2.4 影响振痕深度的因素 (6) 2.2.5 减少振痕深度的措施 (7) 2.2.6 铸坯表面裂纹 (7) 2.2.7 表面纵裂纹 (8) 2.2.8 铸坯角部纵裂纹 (11) 2.2.9 表面横裂纹 (12) 2.2.10 角部横裂纹 (13) 2.2.11 铸坯表面星状和网状裂纹 (15) 2.2.12 铸坯表面夹渣(杂) (16)

2.2.13 铸坯气孔和气泡 (17) 2.2.14 铸坯表面凹陷 (17) 2.2.15 铸坯表面增碳和偏析 (18) 2.2.16 重皮和重结及结疤 (18) 2.3 连铸坯内部质量 (19) 2.3.1 铸坯内部裂纹 (19) 2.3.2 皮下裂纹 (19) 2.3.3 中间裂纹 (20) 2.3.4 矫直裂纹 (21) 2.3.5 压下裂纹 (21) 2.3.6 断面裂纹----中心线裂纹 (22) 2.3.7三角区裂纹 (23) 2.3.8角部附近的裂纹 (24) 2.3.9白点及发纹 (25) 2.3.10铸坯中心偏析、疏松和缩孔 (25) 2.3.11铸坯内部夹渣(杂) (26) 3连铸坯星状缺陷 (27) 3.1 鼓肚变形 (27) 3.2 菱形变形 (28) 3.3 圆铸坯变形 (29) 致谢 (30)

高速线材表面质量缺陷的产生原因及排除方法

高速线材表面质量缺陷的产生原因及排除方法 摘要:对高速线材常见表面质量缺陷裂纹、折叠、耳子、划痕等进行了原因分析,并提出了相应排除方法。 关键词:高速线材、表面质量缺陷、原因分析、排除方法。 概述:在高速线材的生产中,成品的表面缺陷是影响产品质量的一个重要因素,其大致有以下几种:裂纹、折叠、耳子、划痕、碳化钨辊环的破裂和掉肉、麻面、结疤(翘皮或鳞皮)。 2原因分析及排除方法 2.1裂纹 裂纹是指线材表面沿轧制方向有平直或弯曲、折曲,或以一定角度向线材内部渗透的缺陷。裂纹长度和深度不同,在线材的长度方向上都能发现。有的裂纹内有夹杂物,两侧也有脱碳现象。 2.1.1线材表面产生裂纹的主要原因在于钢坯上未消除的裂纹(无论纵向或横向)、皮下气泡及非金属夹杂物都会在线材表面造成裂纹。连铸坯上的针孔如不消除,经轧制被延伸、氧化、溶解就会造成成品的线状发纹。针孔是连铸坯的重要缺陷之一,不显露时很难检查出来,应特别予以注意。高碳钢线材轧制后冷却速度过快,也可能造成成品裂纹,后者还能出现横向裂纹。轧后控冷不当形成的裂纹无脱碳现象伴生,裂纹中一般无氧化铁皮。另外坯料清理不好也会产生此类问题。轧制过程中形成裂纹的原因主要有以下几点: (1)轧槽不合适,主要是尖角和轧槽尺寸有问题。 (2)轧槽表面太粗糙或损坏。 (3)粗轧前几道导卫的划伤。 (4)粗大的氧化铁皮轧进轧件表面及内部,而且这通常在粗轧前几道产生。 (5)导卫使用不当主要是尺寸太大。 2.1.2若产生裂纹,应从以下几方面进行检查,排除故障: (1)高压水除鳞是否正常工作,是否某架轧机轧辊的冷却水路被堵塞或偏离轧槽。 (2)导卫是否偏离轧制线,有无氧化铁皮堵塞在某个导卫中。

连铸的生产工艺流程

连铸的生产工艺流程:将装有精炼好钢水的钢包运至回转台,回转台转动到浇注位置后,将钢水注入中间包,中间包再由水口将钢水分配到各个结晶器中去。结晶器是连铸机的核心设备之一,它使铸件成形并迅速凝固结晶。拉矫机与结晶振动装置共同作用,将结晶器内的铸件拉出,经冷却、电磁搅拌后,切割成一定长度的板坯。 连铸钢水的准备 一、连铸钢水的温度要求: 钢水温度过高的危害:①出结晶器坯壳薄,容易漏钢;②耐火材料侵蚀加快,易导致铸流失控,降低浇铸安全性;③增加非金属夹杂,影响板坯内在质量;④铸坯柱状晶发达;⑤中心偏析加重,易产生中心线裂纹。钢水温度过低的危害:①容易发生水口堵塞,浇铸中断;②连铸表面容易产生结疱、夹渣、裂纹等缺陷;③非金属夹杂不易上浮,影响铸坯内在质量。 二、钢水在钢包中的温度控制: 根据冶炼钢种严格控制出钢温度,使其在较窄的范围内变化;其次,要最大限度地减少从出钢、钢包中、钢包运送途中及进入中间包的整个过程中的温降。 实际生产中需采取在钢包内调整钢水温度的措施:

1)钢包吹氩调温 2)加废钢调温 3)在钢包中加热钢水技术 4)钢水包的保温 中间包钢水温度的控制 一、浇铸温度的确定 浇铸温度是指中间包内的钢水温度,通常一炉钢水需在中间包内测温3次,即开浇后5min、浇铸中期和浇铸结束前5min,而这3次温度的平均值被视为平均浇铸温度。 浇铸温度的确定可由下式表示(也称目标浇铸温度): T=TL+△T 。 二、液相线温度: 即开始凝固的温度,就是确定浇铸温度的基础。推荐一个计算公式:T=1536-{78[%C]+7.6[%Si]+4.9[%Mn]+34[%P]+30[%S]+5.0[%Cu]+3.1[% Ni]+1.3[%Cr]+3.6[%Al]+2.0[%Mo]+2.0[%V]+18[%Ti]} 三、钢水过热度的确定 钢水过热度主要是根据铸坯的质量要求和浇铸性能来确定。

连铸坯缺陷及对策

连铸坯在凝固过程中形成裂纹的原因 随着市场竞争的日趋激烈,产品的质量已经成为占有市场的主要砝码,连铸坯作为炼钢厂的终端产品,其质量直接影响着轧材单位的产量和轧材质量,据统计炼钢厂连铸坯质量缺陷中约70%为连铸坯裂纹,连铸坯裂纹成为影响连铸坯产量和质量的重要缺陷之一,下面将对铸坯在凝固过程中裂纹的形成做简要分析: 一、铸坯凝固过程的形成 铸坯在连铸机内的凝固可看成是一个液相穴很长的钢锭,而凝固是沿液相穴的固液界面在液固相温度区间把液体转变为固体把潜热释放出来的过程。在固液界面间刚凝固的晶体强度和塑性都非常小,当作用于凝固壳的热应力、鼓肚力、矫直力、摩擦力、机械力等外力超过所允许的外力值时,在固液界面就产生裂纹,这就形成了铸坯内部裂纹。而已凝固的坯壳在二冷区接受强制冷却,由于铸坯线收缩,温度的不均匀性,坯壳鼓肚、导向段对弧形不准,固相变引起质点如(AlN)在晶界的沉淀等,容易使外壳受到外力和热负荷间歇式的突变,从而产生裂纹就是表面裂纹。 二、连铸坯裂纹形态和影响因素 连铸坯裂纹形态分为表面裂纹和内部裂纹,表面裂纹有纵向、横向角部裂纹、表面横裂和纵裂、网状裂纹和凹陷等,内部裂纹有中间、中心和矫直裂纹等。 连铸坯裂纹的影响因素: 连铸坯表面裂纹主要决定于钢水在结晶器的凝固过程,它是受结晶器传热、振动、润滑、钢水流动和液面稳定性所制约的,铸坯内部裂纹主要决定于二冷区凝固冷却过程和铸坯支撑系统(导向段)的对弧准确性。铸坯凝固过程坯壳形成裂纹,从工艺设备和钢凝固特性来考虑影响裂纹形成的因素可分为: 1、连铸机设备状态方面有: 1)结晶器冷却不均匀 2)结晶器角部形状不当。 3)结晶器锥度不合适。 4)结晶器振动不良。 5)二冷水分布不均匀(如喷淋管变形、喷咀堵塞等)。 6)支承辊对弧不准和变形。

连铸方坯的缺陷及其处理

连铸方坯的缺陷及其处理 1 表面缺陷 1.1 气孔和针孔 定义 : 垂直铸坯表面并在铸坯表面肉眼可见的小气孔并可能以针孔的形式深入表面。 原因 : 钢水脱氧不足、凝固时产生一氧化碳; 脱氧后又钢流二次氧化吸收的气体; 结晶器保护渣质量不合要求; 钢包及中间包烘烤不好 改进方法: 钢水完全脱氧; 不浇注过氧化的钢水; 保持浇注温度;(注温不能过高) 使用干燥的钢水罐及中间罐; 保护渣不能受潮,摆放时间不能太久。 1.2 坯头气孔及针孔 定义: 同1.1,但仅出现在每次浇注的第一根钢坯坯头处 原因: 钢液温度太低; 结晶器中钢水氧化; 保护渣受潮或杂质多; 结晶器内壁上有冷凝水; 引锭头潮湿; 填入结晶器中切屑及废钢有锈、有油或潮湿; 中间罐内衬及钢水罐内衬潮湿; 改进方法: 保持浇注温度; 采用适宜的保护渣; 采用干燥和洁净的废钢及切屑; 绝对避免在结晶器内壁及锭头上产生冷凝水; 干燥及烘烤中间罐; 1.3 夹渣 定义: 表面分布不均匀的夹渣,有时针孔和渣聚集,呈疏松态的外观

原因: 由保护渣耐火材料颗粒和钢水氧化产物以及出钢渣等引起,随着钢流带入并被卷至铸坯表面。 改进方法: 用挡渣出钢; 采用适宜的保护渣及耐火材料; 钢水不能过氧化,注温要合适。 1.4 振动波纹及折叠 定义: 在与铸坯轴线垂直方向上,铸坯表面上以均匀间距分布的波纹振痕,在不利的情况下出现折叠。 原因: 浇注速度波动大,使结晶器中钢液面不稳定。 改进方法: 保持均匀的浇注速度,稳定结晶器钢水液面。 调整振动频率使其与拉速相适应。 1.5 结疤与重皮 定义: 铸坯角部和表面上出现的疤痕 原因: 由于结晶器内坯壳破裂、钢水渗入到结晶器和铸坯之间的夹缝,以及保护渣结块造成。 改进方法: 保证结晶器具有准确的锥度,当结晶器使用时间过长而磨损会使坯壳过早脱离结晶器内壁而导致坯壳破裂。 1.6 分层: (双浇) 定义: 铸坯中间出现分界层 原因: 浇注中断又重新开始浇注时,使两次浇注连接出现重接。 改进方法: 浇注过程中不要断流,拉速要相对稳定,不要忽高忽低。 1.7 纵裂 定义: 分布在铸坯角部的纵向裂纹, 角部纵裂常是拉漏的预兆。 原因: 针孔、气泡及夹杂; 结晶器内坯壳不均匀冷却; 由于铜结晶器中和足辊上有沟槽,缺口,渣子等而引起裂纹; 结晶器壁磨损或单面磨损使该处坯壳提前脱离结晶器壁; 浇注速度过高或浇注温度过高,坯壳厚度薄; 足辊对位不准; 二次冷却水不均匀;

对连铸坯渣沟问题的分析

对轴承钢铸坯渣沟问题的分析对于我厂前段时间生产的220方连铸坯表面有严重渣沟缺陷,严重的渣沟需进行铸坯的修磨方可出厂。笔者对此进行查证,分析如下。 1.渣沟缺陷的外观特征 (1)铸坯表面出现一道不影响轧制的浅沟 (2)随着浅沟逐渐变宽,出现焊点状的钢水渗漏 2.渣沟缺陷的形成机理 经过对许多资料的学习,认为以下观点符合我们实际生产的情况,可以以此形成机理为基础展开研究解决渣沟问题。 由渣沟中存在有振痕的事实,根据振痕形成理论——对于使用保护渣润滑的铸坯,渣沟是由于结晶器下行时,粘在结晶器壁上的渣圈对初生坯壳进行挤压,致使坯壳向内弯曲而形成。可以推断渣块块必然来源于渣圈。即渣圈中局部存在的较大渣粒,在结晶嚣下行时,对初生坯壳施加了较大的挤压力,致使该处的初生坯壳产生了较大的内弯,在随后结晶器上行过程中,由于泵吸作用,在该内弯处有较多的液渣被吸入,这些较多的保护渣,在随后稳定的坯壳形成过程中。阻碍了该处坯壳由于钢水静压力而产生的向外鼓胀,这样一直持续到坯壳达到足够的厚度、在坯壳与结晶器之间开始形成稳定的气隙。此时这种较大的内弯也同振痕一起被固定在坯壳上。因为渣圈对坯壳的挤压作用是连续不断的,所以形成的这种较大的内弯也是连续不断的,而这种连续不断的内弯就是我们所说的渣构。 并且提出此观点者还认为,渣沟或“冷疤”在经过一段连续化、密集化的渗漏后,会随着一个大渣块的出现而自行消失。此现象在我们厂并没有被重点观测,也不失为一个可以验证此观点的途径。 。出现渗漏的原因:渣沟内部的坯壳本身较簿.而且由于沟内存在振痕,振痕的谷底显然是渣沟缺陷中坯壳更薄弱的地方。当渣沟足够深即坯壳足够薄时,在这些更为薄弱的地方。钢水会突破坯壳与渣层的阻力渗出,特别是在结晶器与坯壳间形成稳定的气隙以后,气隙的形成致使渣道内空间增大,体积密度减小,渣层对坯壳的支撑减弱,这种渗漏出现的可能性进一步增大。渣沟中局部出现渗漏时,随着钢水的再次遇冷凝固,下渣的通道被堵塞,渣道内的压力上升,因而阻碍了渗漏的进一步发展,所以初期发生的渗漏是不连续和间断的,但是随着渣沟的进一步发展、进一步变宽变深,阻碍渗漏发生所需的压力会逐渐增加:当一处渗漏所形成的压力不足以抗拒钢水的静压力时,连续的渗漏就会发生。因此,渣沟发展到一定宽度和深度后,渗漏就会逐渐呈

怎样提高连铸坯质量

怎样提高连铸坯质量 钢材其他合金在完成冶炼过程后,往往首先要浇铸成锭,然后进行其它深加工,注定的凝固组织形态、组织致密度及成分偏析等对后续加工工艺及最终的制件质量具有决定性的影响。连铸坯表面缺陷是影响连铸机产量和铸坯质量的重要缺陷。据统计,各类缺陷中裂纹占50%。铸坯出现裂纹,重者会导致拉漏或废品,轻者要进行精整。这样既影响铸机生产率,又影响产品质量,因而增加了成本。铸坯内部缺陷影响产品的机械性能、使用性能和使用寿命。 连铸坯主要存在着以下几个方面的缺陷:(1)连铸坯纯净度达不到要求。主要指钢中夹杂物的含量超标,形态和分布不合理。夹杂物主要有非金属夹杂物,金属夹杂物,夹渣。其中非金属夹杂和夹渣属脆性物质,轧制时,如果这两种缺陷超标准,极易损坏轧槽导卫,导致轧制故障。同时,极大的影响成品材的质量。(2)铸坯的表面质量。指铸坯表面是否存在裂纹.夹渣及皮下气泡等缺陷。较小的表面缺陷,在轧制时,可以焊接并消除,但在总延伸~定的情况下.表面缺陷超标准,不仅破坏生产的正常进行,而且材的质量也达不到要求。(3)铸坯内部质量。指铸坯是否具有正确的凝固结构,以及内部裂纹,偏析、疏松等缺陷程度,同样这些缺陷的大小、数量也应控制在合理的范围内,否则将直接导致棒材质量不合格。(4)连铸坯的外观形状。指连铸坯的几何尺寸是否符合规定的要求,如菱形变形(也称脱方),铸坯的鼓肚(凸起),以及与菱形变形相关的凹陷,形状缺陷通常是影响生产的正常进行。如脱方严重,菱变大于12mm,鼓肚大于5mm,将直接导致粗轧件冲击出口导卫,以及轧件拉丝划伤,严重的将在成品材上形成折叠。 纯净度是指钢中非金属夹杂物的数量、形态和分布。要根据钢种和产品质量,把钢中夹杂物降到所要求的水平,应从以下5方面着手:—尽可能降低钢中[O]含量。—防止钢水与空气作用。—减少钢水与耐火材料的相互作用。—减少渣子卷入钢水内。—改善流动促进钢水中夹杂物上浮。从工艺操作上,应采取以下措施: (1)无渣出钢:转炉采用挡渣球,电炉采用偏心炉底出钢,防止出钢渣大量下到钢包。 (2)钢包精炼:根据钢种选择合适的精炼方法,以均匀温度、微调成分、降低氧含量、去除气体夹杂物等。 (3)无氧化浇注:钢水经钢包处理后,钢中总氧含量可由130ppm下降到20ppm 以下。如钢包→中间包注流不保护或保护不良,则中间包钢水中总氧量又上升到60~ 100ppm范围,恢复到炉外精炼前的水平,使炉外精炼的效果前功尽弃。 (4)中间包冶金:中间包采用大容量,加挡墙和坝等是促进夹杂物上浮的有效措施。如6t中间包,板坯夹杂废品率12%,夹杂物为0.82个/m2;12t中间包+挡墙,板坯夹杂废品为0,夹杂物为0.04个/m2。 (5)浸入式水口+保护渣:保护渣应能充分吸收夹杂物。浸入式水口材料、水口形状和插入深度应有利于夹杂物上浮分离。

连铸坯缺陷及预防措施

连铸坯缺陷及预防措施 1、方坯晶间裂纹、 根源 ?Cu 、Ni、Sn、Nb 与Al等元素的影响; ?铸机表面凹限,即使轻微凹限也会引起裂纹; ?保护渣不合适; ?结晶器液面波动严重; ?菱变严重; ?结晶器锥度太小; 措施 减少杂质元素含量; 导致晶间裂纹的最主要原因是粗大晶粒结构以及沿晶粒边界的沉析,所以防止其产生的主要措施是在结晶器初始凝固阶段得以形成细小而均匀的结构; 防止产生凹馅; 用多水口代替直水口; 2、气泡及针孔 铸坯皮下通气孔称为针孔,而皮下闭气孔称为气泡 根源 ?脱氧不好,氢、氮含量高; ?润滑过度,油中含水; ?保护渣中含水; ?中间塞棒吹氩过度;结晶器波动 措施 ?有效地脱氧; ?注流及钢液面进行有效保护; ?加热润滑油及保护渣; ?采用EMS可有效减少针孔与铸坯表面皮下气泡的数量; ?减少结晶器液面波动 3、铸坯表面夹渣 根源 ?钢水脱氧不够; ?钢水中氧化铝含量高,SiO2、MnO与FeO含量低(铝镇静钢); ?耐火材料质量差;结晶器喂铝线; ?中包水口及结晶器中形成的块渣进入钢水。 措施 ?采用无渣出钢; ?对钢水进行有效脱氧,采用保护浇注; ?中间包碱性覆盖剂; ?加深中包,增大中包钢液深度; ?中包采用挡堰; ?采用能快速吸收钢水夹杂的保护渣(高碱度); ?加大保护渣的用量; ?减少结晶器液面波动,水口侵入深度必须100-150mm 4、横向裂纹

横向裂纹通常出现在角部,但中部区域也会出现,横向裂纹一般出现在振痕的底部。 1、因热脆而形成的表面裂纹 ?C含量0.17-0.25%; ?S含量高; ?随合金元素含量增加,如:Al、Nb、V 及大于1%Mn,裂纹数量增加; ?Al、Nb、N及C沉析于晶粒表面; ?二冷区冷却不挡导致晶粒粗大; ?二冷区支撑辊对中不好; ?保护渣选择不当; ?负滑脱时间过长。 2、横向角部裂纹 角部冷却过度; ?结晶器冷却不当; ?结晶器和支撑辊对中不好; ?矫直温度过低; ?高如:Al、Nb、V 及大于1%Mn含量钢水非常敏感,加入钛能有效降低裂纹的程度;?二冷区冷却不均或冷却过度; ?保护渣不合适; ?铜管弯月面区域变形过大; ?钢水温度过低; ?结晶器锥度过大。 措施: ?使S含量<0.020%; ?拉矫机区域温度保持在900℃以上; ?采用多点矫直; ?如果在奥氏体晶粒面存在AlN,加入0.02-0.04%Ti,降低可溶性N含量则可有效减少横向裂纹; ?准确控制结晶器及其锥度、变形和磨损等; ?严格控制结晶器震动; ?调整好二冷区冷却及支撑辊。 5、纵向表面裂纹 纵向裂纹的源头在结晶器,但在整个工艺过程中由于热应力及机械应力,裂纹会长大。该类型的裂纹大多数出现在含1%Mn,0.03%Nb及V的高强度钢种中,与S、P一样,高铝和氮含量也会有影响。 根源: ?高Al、Nb、V、Mn、N、S、P含量; ?变化拉速和增加拉速; ?结晶器液面波动; ?浸入式水口对中不好; ?浇注温度过高; ?结晶器状况不佳;结晶器振动不规则; ?保护渣不合适; ?出结晶器后及喷淋段上部冷却过度;结晶器与足辊对中不好。

连铸坯凝固与铸坯质量

连铸坯凝固与铸坯质量 50.钢中微量元素对连铸坯质量有何影响? 所谓钢中微量元素分为两类:一类为有意加入的元素,如为改善机械切削性能加入S、Pb、Se、Te,为抗腐蚀加Cu等。另一类不是有意加入而是由炼钢炉料和浇注过程带入的元素,如来自炉料的元素有Cu、As、Sb、Zn、Sn、S、P,来自结晶器的Cu,来自保护渣的S 等。 对于炉料带入的这些微量元素,对用高废钢的电炉冶炼是一个实际问题,在冶炼过程去除这些元素是很困难的,残留在钢中对质量的影响是: (1)结晶器裂纹:结晶器弯月面铜板由于热疲劳的原因常常出现网状裂纹。如果保护渣中的硫和钢中的锌渗入铜板会形成深的裂纹而报废。 (2)铸坯表面裂纹:由于铸坯表面铁的氧化而使Cu、Sn、Sb等元素富集,形成细小表面晶间裂纹。一般对钢筋钢无多大影响,而对特殊钢就会带来危害。铸坯表面Ni的富集,可以抵销Cu的有害作用,因为Cu—Ni形成晶间化合物熔点较高。 (3)铸坯内部裂纹和偏析加重。微量元素S、P偏析是输送酸性气体的高强度管线钢产生裂纹的根源。因此要求把钢中硫降低到5ppm,磷降到25ppm,以满足所要求性能。 只有采用精选炉料或炉料搭配使用(如采用海绵铁),以减少炉料带入的微量元素。提高钢质量。 51.脱氧方式对连铸坯质量有何影响? 脱氧方式会影响钢中夹杂物类型、钢水流动性和钢的清洁度,因此选择脱氧方式是非常重要的。一般的钢常用Si、Mn脱氧较好,这些脱氧剂一般形成可变形的球形硅酸盐夹杂物,这种夹杂物能上浮排除且不影响钢水可浇性。用铝脱氧会形成高熔点(2050℃)成串簇状不变形的Al203夹杂,这种夹杂物会影响钢水的可浇性,还会沉积在中间包水口壁上造成水口堵塞,影响浇注正常进行。采用Si-Ca脱氧,脱氧效果、夹杂物形态和钢水的可浇性都较好,但价格较贵,加入时产生烟雾,污染工作环境。 52.特殊钢凝固有哪些特点? 特殊钢中加入了合金元素,其凝固特性与普碳钢有所不同,这是连铸时要注意之点。 (1)钢中含有较强的活泼元素:如不锈钢中含有Al、Ti等元素容易和0、N结合,生成Al2O3、TiO2、TiN、Ti(CN) (Cr—Al)2O3、(Mn—Ti)2O4等复杂的夹杂物,给浇注操作(如堵水口)和铸坯质量带来危害。 (2)凝固温度区间变化大:合金元素含量较高,意味着液相线和固相线温度区间较大。如奥氏体不锈钢(18~20%Cr,8~10%Ni)的TL(液相线温度)=1449℃,Ts(固相线温度)=1393℃,△T=TL一TS=56℃;铁素体不锈钢(10~11%Cr)的TL=1507℃,Ts=1482℃,△T=25℃。钢中C由0.2%增加到0.5%,△T由30℃增加到60℃。凝固温度区间的变化,在选择钢水过热度、二次冷却水量和水量分配时必须予以考虑。 (3)凝固结构:铸坯凝固结构对产品质量有十分重要影响。根据钢中合金元素含量不同,钢液凝固有3种类型:1)钢水凝固成δ相或γ相,如铁素体的Cr钢和奥氏体的Cr-Ni钢; 2)钢水首先凝固成δ相,然后转变成γ相。如含有δ相的Ni-Cr奥氏体钢;3)钢水首先凝固成δ相,然后发生δ→γ→α相的转变。如C

连铸坯内部缺陷

连铸坯内部缺陷 连铸坯的内部质量,主要取决与其中心致密度。而影响连铸坯中心致密度的缺陷是各种内部裂纹、中心偏析和中心疏松,以及铸坯内部的宏观非金属夹杂物。连铸坯的内裂、中心偏析和疏松这些内部缺陷的产生,在很大程度上和铸坯的二次冷却以及自二冷区至拉矫机的设备状态有关。 1)内部裂纹形成的原因 各种应力(包括热应力、机械应力等)作用在脆弱的凝固界面上产生的裂纹成为内部裂纹。通常认为内裂纹是在凝固的前沿发生的,大都伴有偏析的存在,因而也把内裂纹称为偏析裂纹。还有一种说法是内裂纹是在凝固前沿发生的,其先端和凝固界面相连接,所以内裂纹也可以称为凝固界面裂纹。除了较大的裂纹,一般内裂纹可在轧制中焊合。 连铸坯的内部裂纹是指从铸坯表面一下直至铸坯中心的各种裂纹,其中包有中间裂纹、对角线裂纹、矫直弯曲裂纹、中心裂纹、角部裂纹。无论内裂文的类型如何,其形成过程大都经过三个阶段:1 拉伸力作用到凝固界面;2 造成柱状晶的晶界见开裂;3 偏析元素富集的钢液填充到开裂的空隙中。内裂发生的一般原因,是在冷却、弯曲和矫直过程中,铸坯的内

部变形率超过该刚中允许的变形率。通常在压缩比足够大的情况下,且钢的纯净度较高时,内裂纹可以在轧制中焊合,对一般用途的钢不会带来危害;但是在压缩比小,钢水纯净度较低,或者对铸坯心部质量有严格要求的铸坯,内裂就会使轧制材性能变坏并降低成材率。 2)中心裂纹 铸坯中心裂纹在轧制中不能焊合,在钢板的断面上会出现严重的分层缺陷,在钢卷或薄板的表面呈中间波浪形缺陷,在轧制中还会发生断带事故,给成品材的轧制和使用带来影响 A裂纹的成因分析 铸坯裂纹的形成时传热、传质和应力相互作用的结果。带液芯的高温铸坯在铸机内运行过程中,各种力的作用是产生裂纹的外因,而钢对裂纹的敏感性是产生裂纹的内因。铸坯是否产生裂纹决定于钢高温力学性能、凝固冶金行为和铸机运行状态,板坯中心裂纹是由于凝固末端铸坯鼓肚或中心偏析、中心凝固收缩产生的。 1 控制铸机的运行状态 刚的高温力学性能与铸坯裂纹有直接关系,铸坯凝固过程固、液及诶按承受的应力(如热应力、鼓肚

连铸坯在凝固过程中形成裂纹的原因[终稿]

连铸坯在凝固过程中形成裂纹的原因[终稿] 随着市场竞争的日趋激烈,产品的质量已经成为占有市场的主要砝码,连铸坯作为炼钢厂的终端产品,其质量直接影响着轧材单位的产量和轧材质量,据统计炼钢厂连铸坯质量缺陷中约70%为连铸坯裂纹,连铸坯裂纹成为影响连铸坯产量和质量的重要缺陷之一,下面将对铸坯在凝固过程中裂纹的形成做简要分析: 一、铸坯凝固过程的形成 铸坯在连铸机内的凝固可看成是一个液相穴很长的钢锭,而凝固是沿液相穴的固液界面在液固相温度区间把液体转变为固体把潜热释放出来的过程。在固液界面间刚凝固的晶体强度和塑性都非常小,当作用于凝固壳的热应力、鼓肚力、矫直力、摩擦力、机械力等外力超过所允许的外力值时,在固液界面就产生裂纹,这就形成了铸坯内部裂纹。而已凝固的坯壳在二冷区接受强制冷却,由于铸坯线收缩,温度的不均匀性,坯壳鼓肚、导向段对弧形不准,固相变引起质点如(,,,)在晶界的沉淀等,容易使外壳受到外力和热负荷间歇式的突变,从而产生裂纹就是表面裂纹。 二、连铸坯裂纹形态和影响因素 连铸坯裂纹形态分为表面裂纹和内部裂纹,表面裂纹有纵向、横向角部裂纹、表面横裂和纵裂、网状裂纹和凹陷等,内部裂纹有中间、中心和矫直裂纹等。 连铸坯裂纹的影响因素: 连铸坯表面裂纹主要决定于钢水在结晶器的凝固过程,它是受结晶器传热、振动、润滑、钢水流动和液面稳定性所制约的,铸坯内部裂纹主要决定于二冷区凝固冷却过程和铸坯支撑系统(导向段)的对弧准确性。铸坯凝固过程坯壳形成裂纹,从工艺设备和钢凝固特性来考虑影响裂纹形成的因素可分为: ,、连铸机设备状态方面有:

,)结晶器冷却不均匀 ,)结晶器角部形状不当。 ,)结晶器锥度不合适。 ,)结晶器振动不良。 ,)二冷水分布不均匀(如喷淋管变形、喷嘴堵塞等)。 ,)支承辊对弧不准和变形。 ,、工艺参数控制方面有: ,)化学成份控制不良(如C、Mn\S)。 ,)钢水过热度高。 ,)结晶器液面波动太大。 ,)保护渣性能不良。 ,)水口扩径。 ,)二次冷却水分配不良,铸坯表面温度回升过大。 ,)铸坯带液芯矫直。 ,)铸坯在脆性区(700~900?)矫直。 ,、钢的凝固特性方面有: ,)凝固冷却过程的相变。 ,)铸坯凝固结构(柱状晶与等轴晶的比例)。 ,)凝固壳高温力学行为。 ,)凝固过程的偏析。 三、连铸坯裂纹形成原因分析 表面裂纹起源于结晶器钢水的凝固过程中,在二冷区加速了裂纹的扩展,而内部裂纹起源液相穴固液交界面并伴随有偏析线。 ,、纵裂纹

连铸板坯缺陷图谱及产生的原因分析

第二篇连铸板坯缺陷(AA)

第二篇连铸板坯缺陷(AA) (1) 2.1表面纵向裂纹(AA01) (4) 2.2表面横裂纹(AA02) (5) 2.3星状裂纹(AA03) (6) 2.4角部横裂纹(AA04) (7) 2.5角部纵裂纹(AA05) (9) 2.6气孔(AA06) (10) 2.7结疤(AA07) (11) 2.8表面夹渣(AA08) (12) 2.9划伤(AA09) (13) 2.10接痕(AA13) (14) 2.11鼓肚(AA11) (15) 2.12脱方(AA10) (16) 2.13弯曲(AA12) (17) 2.14凹陷(AA14) (18) 2.15镰刀弯(AA15) (19) 2.16锥形(AA16) (20) 2.17中心线裂纹(AA17) (21) 2.18中心疏松(AA18) (22) 2.19三角区裂纹(AA19) (24) 2.20中心偏析(AA20) (26) 2.21中间裂纹(AA21) (27)

2.1表面纵向裂纹(AA01) 图2-1-1 1、缺陷特征 表面纵向裂纹沿浇注方向分布在连铸板坯上下表面,裂纹深度一般为2mm~15mm,裂纹部位伴有轻微凹陷。在连铸浇注过程中,当连铸板坯坯壳在结晶器内所受到的应力超过了坯壳所能承受的抗拉强度时,即产生表面纵向裂纹。表面纵向裂纹缺陷在结晶器内产生,出结晶器后若二次冷却不良,裂纹将进一步加剧。 2、产生原因及危害 产生原因: ①钢中碳含量处于裂纹敏感区内; ②结晶器钢水液面异常波动。当结晶器钢水液面波动超过10mm时,表面纵向裂纹缺陷易于产生; ③结晶器保护渣性能不良。保护渣液渣层过厚、过薄或渣膜厚薄不均,使连铸板坯凝固壳局部过薄而产生表面纵向裂纹; ④中间包浸入式水口与结晶器对中不良,钢水产生偏流冲刷连铸板坯凝固壳,而产生表面纵向裂纹。 危害:轻微的表面纵裂纹经火焰清理后均能消除;表面纵向裂纹严重时可能会造成漏钢;表面纵向裂纹若送热轧进行轧制可能导致热轧产品出现分层、开裂缺陷。 3、预防及消除方法 ①控制好钢中碳含量,使钢中碳含量不在裂纹敏感区; ②减少结晶器钢水液面异常波动,将结晶器钢水液面波动控制在±5mm以内; ③选择合适的结晶器保护渣; ④保证中间包浸入式水口与结晶器对中,防止钢水出浸入式水口侧孔后出现偏流。 4、检查判断 肉眼检查,必要时用钢卷尺测量裂纹长度及其分布位置; 表面纵向裂纹一般通过火焰清理可以消除,火焰清理不合格的表面纵向裂纹缺陷坯判废。

连铸坯凹陷、纵裂缺陷事故分析.doc

YJ0714-连铸坯凹陷、纵裂缺陷事故分析 案例简要说明:依据国家职业标准和冶金技术专业教学要求,归纳提炼出所包含的知识和技能点,弱化与教学目标无关的内容,使之与课程学习目标、学习内容一致,成为一个承载了教学目标所要求知识和技能的教学案例。该案例是连铸坯凹陷、纵裂缺陷事故分析与处理案例,体现了连铸保护渣、连铸冷却制度等知识点和岗位技能,与本专业连续铸钢课程铸坯缺陷单元的教学目标相对应。

连铸坯凹陷、纵裂缺陷事故分析 1.背景介绍

某小型转炉炼钢厂,拥有两座脱碳转炉,容量均为50t,方坯连铸机。该厂生产满足不同需求的窄带钢。 2013年2月26日轧钢车间在轧制E3-2319炉次时,发现三支凹陷纵裂,四支角部凹陷铸坯,由于已轧制的三十六件带钢无法确认是否存在此缺陷,被迫回炉处理,构成连铸方坯角部凹陷、纵裂事故。 2.主要内容 2.1.事故经过 2013年2月26日轧钢三车间在轧制E3-2319炉次时,发现三支凹陷纵裂,四支角部凹陷铸坯,由于已轧制的三十六件带钢无法确认是否存在此缺陷,被迫回炉处理,构成连铸方坯角部凹陷、纵裂事故。 2.2.事故原因分析 一、转炉工序 (一)成份控制(%) 从成份控制看,各成份均在钢种内控范围内,不是造成铸坯缺陷的原因。(一)温度节奏控制(℃、min) 从流程温度看,符合连铸GF08工艺要求,不是造成铸坯凹陷的主要原因。 因此可以排除转炉钢水的影响。 二、连铸工序

(1)现场勘查,本次铸坯凹陷缺陷、纵裂距角部60-70mm,一般经验认为,因结晶器问题造成的纵裂缺陷应距角部20-30mm,所以本次缺陷可排除结晶器的影响。 (2)本炉次浇钢时间24分钟,钢包容量42吨,推算拉速1.16米/分,拉速控制应在合理范围内,可以判断拉速影响不大。 (3)150*330坯型采用的是双侧孔侵入式水口,在双侧口垂直面有标记线,安装时采用标记线对中方式,现场了解侵入式水口安装时都格外小心,本炉次拉钢时钢水液面平稳,安装错误的可能性不大,可以排除影响。 (4)综合分析,本炉次产生铸坯凹陷、纵裂缺陷最大的可能原因,应是保护渣性能缺陷,导致结晶器内热传递不均匀,铸坯凝固应力集中造成。 2.3.预防措施 (1)将现用保护渣送检,待检验结果出来后,结合厂家做好优化方案。 (2)每次停机检查、清理喷嘴,确保喷淋效果。 (3)每月最少一次对铸机样弧。 (4)倒运凉铸坯时对外观轻微缺陷的要将表面氧化铁皮进行清理,能够满足目测是否铸坯存在凹陷、裂纹的缺陷,外观无缺陷的最少1根/吊的抽检。 (5)倒运热铸坯时钢坯倒运工对每吊铸坯全方位检查,发现问题铸坯及时反馈,采取措施。 (6)配水工严格控制结晶器水温差在7—9度之间。 (7)生产过程中出现缺陷铸坯时,拉钢工第一时间更换中包长水口防止因水口内腔冲刷导致钢水流场改变,同步检查铸坯二冷回温情况。 控制结晶器液面波动在正负3mm范围内,拉速不得长期低拉速,连铸二冷回温不得大于150度/米。 3.教学目标 (1)进行事故判定,掌握方坯裂纹、凹陷的成因和相关的预防措施;

相关主题
文本预览
相关文档 最新文档