当前位置:文档之家› 牛顿的微积分

牛顿的微积分

牛顿的微积分
牛顿的微积分

第二节牛顿的微积分

一《流数简论》

《流数简论》表明,牛顿微积分的来源是运动学.1666年,他在坐标系中通过速度分量来研究切线,既促使了流数法的产生,又提供了它的几何应用的关键.

牛顿把曲线f(x,y)=0看作动点的轨迹,动点的坐标x,y是时间的函数,而动点的水平速度分量和垂直速度和垂直速度为边的矩形对角线,所以曲线f(x,y)=0的切线斜率

所以牛顿便在后来称它们为流数,实际上就是x和y对t的导数:

而它们的比就是y对x的导数

布尼茨发明的,我们这里采用它们是为了叙述方便.

牛顿考虑的第一个问题是:给定x和y的关系f(x,y)=0,求

的次数……令这些乘积的总和等于零.这个方程就给出速度(流数)之间的关系.若用子表示,则为

它是牛顿用来计算流数之比(即求导)的基本法则.实际上,这个式子

牛顿是用“无穷小”概念和他一年前发明的二项式定理来证明(1)式的.他认为,作非匀速运动的物体在无穷小时间间隔o中的运动情况同作匀速运动的物体在有限时间间隔中的情况相同,“因此,如果到某一时刻,它们已描绘的线段为x和y,那么到下一时刻所描绘的线段就是x+xo和y+yo.”牛顿用x+xo和y+yo代替f(x,y)=0中的x和y,于是有

按二项式展开并略去o的二次以上(含二次)的项,得

除以o后便得到(1)式.作为一个实例,可把y=x n写成f(x,y)=y-x n的形式,由(1)式推出

的代数式).他对这一问题的研究导致了微积分基本定理的发现,即:

其中A表示曲线y=f(x)下的面积.从《流数简论》可以看出,他是用如下方法推导这一重要定理的:

设y表示曲线f(x)下的面积abc(图11.13),并把它看作垂

平行移动,描绘出面积x和y,它们随时间而增加的速度是be和bc,”显然,be=1而bc=f(x).因此,牛顿认为面积y随时间的变化率是

这显然等价于(2)式,就是说函数曲线下的面积的变化率等于曲线的纵坐标.他把求积问题看作求变化率的逆过程,即把y看作f(x)的积分(不定积分).

牛顿的工作可以清楚地说明切线及面积的互逆关系.如果面积y=

在解决了基本的微积分问题后,牛顿又进一步提出变量代换法,它

变量z=1+x n,其流数比为

这便是我们熟知的幂函数微分公式,它的现代形式为

类似地,牛顿在积分中也采用了代换法,并在稍后的着作中总结出代换积分公式.这个问题将在下面讨论.

《流数简论》中,牛顿还导出函数的积和商的微分法则.设y=u(x)·v(x),则由计算流数之比的基本法则得到

至于函数和的微分,牛顿认为是显然的,没有作为公式列出.

由于牛顿首次引入“流数”和“变化率”的概念,明确提出一般性的微积分算法,特别是提出微积分基本定理,所以说他“发明”了微积分.不过,他当时只是观察到这一重要定理,至于定理的证明则是在他的第二本微积分着作中才出现的.

二、《运用无穷多项方程的分析学》

(下简称《分析学》)

在这本书中,牛顿假定曲线下的面积为

z=ax m,

其中m是有理数.他把x的无穷小增量叫x的瞬,用o表示.由曲线、x轴、y轴及x+o处纵坐标所围成的面积用z+oy表示(图11.14),其中oy是面积的瞬,于是有

z+oy=a(x+o)m.

根据二项式定理

考虑到z=ax m,并用o去除等式两边,得

略去仍然含o的项,得x

y=max m-1.

这就是相应于面积z的纵坐标y的表达式,或者说是面积z在点的变化率

线为y=max m-1;反之,若曲线是y=max m-1,则它下面的面积是z=ax m.在这里,牛顿不仅给出了求变化率的普遍方法,而且证明了微积分基本定理.从计算角度来说,他实际上给出了两个基本的求导和积分公式(用现代符号表出)

(ax m)′=max m-1;

在证明了面积的导数是y值,并断言逆过程是正确的以后,牛顿给出下面的法则:若y值是若干项的和,则面积是由每一项得到的面积的和,用现在的话来说,就是函数之和的积分等于各函数的积分的和:

∫[f1(x)+f2(x)+…+f n(x)]dx=∫f1(x)dx

+∫f2(x)dx+…+∫f n(x)dx.

他对如下的积分性质也有明确认识:

∫af(x)dx =a∫f(x)dx.

他利用上述知识得到各种曲线下的面积,解决了许多能表成和式的问题.

在此基础上,牛顿提出了利用无穷级数进行逐项积分的方法.例如

然后对这个无穷级数逐项积分,得

他说,只要b是x的倍数,取最初几项就可以了.

y=1-x2+x4-x6+x8- (1)

y=x-2-x-4+x-6-x-8+ (2)

他说,当x很小时,应该用(1)式,若x较大就必须用(2)式了.可见他已意识到级数收敛和发散的区别,不过还没有提出收敛的概念.

同《流数简论》相比,《分析学》的另一项理论进展表现在定积分上.牛顿把曲线下的面积看作无穷多个面积为无限小的面积之和,这种观念与现代是接近的.为了求某一个区间的确定的面积即定积分,牛顿提出如下方法:先求出原函数,再将上下限分别代入原函数而取其差.这就是着名的牛顿—莱布尼茨公式,是他与莱布尼茨各自独立发明的.若采用现代数学符号,该公式可表述为:若F(x)是f(x)在区间[a,b]

中应用极广的定积分计算问题便转化为求原函数问题,所以它是十分重要的.

《分析学》中还有其他一些出色的成果,例如,书中给出求高次方程近似根的方法(即牛顿法),导出正弦级数及余弦级数,等等.

到此为止,牛顿已经建立起比较系统的微积分理论及算法.不过他在概念上仍有不清楚的地方.第一,他的无穷小增量o是不是0?牛顿认为不是.既然这样,运算中为什么可以略去含o

的项呢?牛顿没有给出合乎逻辑的论证.第二,牛顿虽然提出变化率的概念,但没有提出一个普遍适用的定义,只是把它想象成“流动的”速度.牛顿自己也认为,他的工作主要是建立有效的计算方法,而不是澄清概念,他对这些方法仅仅作了“简略的说明而不是准确的论证.”牛顿的态度是实事求是的.

三、《流数法和无穷级数》(下简称《流数法》)

这是一部内容广泛的微积分专着,是牛顿在数学方面的代表作.在前两部书的基础上,牛顿提出了更加完整的理论.

从书中可以看出,牛顿的流数概念已发展到成熟的阶段.他把随时间变化的量,即以时间为自变量的函数称为流量,以字母表的后几个字母v,x,y,z来表示;把流量的变化速度,即变化率称为流数,以表

保留,并且仍用o表示.

他在书中明确表述了他的流数法的理论依据,说:“流数法赖以建立的主要原理,乃是取自理论力学中的一个非常简单的原理,这就是:数学量,特别是外延量,都可以看成是由连续轨迹运动产生的;而且所有不管什么量,都可以认为是在同样方式下产生的.”又说:“本人是靠另一个同样清楚的原理来解决这个问题的,这就是假定一个量可以无限分割,或者可以(至少在理论上说)使之连续减小,直至……比任何一个指定的量都小.”牛顿在这里提出的“连续”思想及使一个量小到“比任何一个指定的量都小”的思想是极其深刻的,他正是在这种思想的主导下解决了如下两类基本问题.

第一类:已知流量的关系求它们的流数之比,即已知y=f(x)或

例如书中的问题1:如果流量x和y之间的关系是x3-ax2+axy-y3=0,求它们的流数之比.程中的x和y,得

展开后利用x3-ax2+axy-y3=0这一事实再把余下的项除以o,得

至此牛顿说:“我们已假定o是无限微小,它可以代表流动量的瞬,所以与它相乘的诸项相对于其他诸项来说等于没有.因此我把它们丢掉,而剩下

从表面看,这种方法与《流数简论》中的方法一致.所不同的是,

数.《简论》中求流数之比的基本法则也被牛顿赋予一般的意义.

例如,假定y=x n,牛顿首先建立

然后用二项式定理展开右边,消去y=x n,用o除两边,略去仍含o的项,结果得

当然,在对具体函数微分时,不必采用无穷小而可直接代入公式.

第二类:已知一个含流数的方程,求流量,即积分.

(x),则

数简论》中,牛顿在具体积分中已经采用了这种方法,只是到这时才明确总结出公式.从《简论》及《流数法》两书来看,他推导此式的思路大致如下:

由(2),(3)得

由微积分基本定理,得

牛顿在书中还推出分部积分公式,即

∫uv′dx=uv-∫vu′dx.

其中u和v都是x的函数.若求∫uv′dx有困难而求∫vu′dx 比较容易时,就可利用分部积分公式求积分.

牛顿总结了他的积分研究成果,列成两个积分表,一个是“与直线图形有关的曲线一览表”,另一个是“与圆锥曲线有关的曲线一览表”.这两个表为积分工作提供了许多方便.

至此,牛顿已建立起比较完整的微分和积分算法,他当时统称为流数法.他充分认识到这种方法的意义,说流数法(即微积分)是一种“普遍方法”,它“不仅可以用来画出任何曲线的切线……而且还可以用来解决其他关于曲度、面积、曲线的长度、重心的各种深奥问题.”《流数法》一书便充分体现了微积分的用途,下面略举几例.

例1,在“问题3——极大值和极小值的确定”中,牛顿给出了通过解方程f′(x)=0来求

f(x)极值的方法.他写道:“当一个量取极大值或极小值时,它的流数既不增加也不减少,因为如果增加,就说明它的流数还是较小的,并且即将变大;反之,如果减少,则情况恰好相反.所

以求出它的流数,并且令这个流数等于0.”他用这种方法解出了九个问题.其中之一是求方程x3-ax2+axy-y3=0中x的最大值.他先求出x和y的流数之比,得

即 3y2=ax.

把上式代入原方程后,就很容易求得相应的x值和y值了.

例2,已知曲线方程为x3-ax2+axy y3=0,AB和BD分别为曲线上D点的横、纵坐标,求作过D点的切线(图11.15).牛顿先求得流数之间的关系

由此得出

因BD=y,所以

牛顿说:“给定D点后,便可得出DB和AB,即y和x,BT的长度也就给定,由此可确定切线TD.”

例3,在“问题12——曲线长度的确定”中,牛顿采用流数法计算弧长.设QR是给定曲线,RN⊥MN,牛顿分别记MN=s.NR=t,QR=v(图11.16),它们的流数分别为s,t,v,然后“想象直线NR向右移动到最接近的可能位置nr,由R向nr引垂线RS,则MN,NR和QR分别增加RS,Sr和Rr.”牛顿说:“因为RS,Sr和Rr相互之比是这些线段的流数之间的

若换成现在通用的坐标x,y和弧长s,则牛顿的结果为

只要对t积分,就可求出弧长s了.

综上所述,《流数法》不仅在基本思想上比《分析学》有了发展,而且提供了更加有效的计算方法.但牛顿的基本方法仍是弃去无穷小,因而同《分析学》一样出现逻辑困难.他尝试建立没有无穷小的微积分,于是有《曲线求积术》(下简称《求积术》)之作.

四、牛顿的极限理论

牛顿的四部微积分专着中,《曲线求积术》是最后写成(1693)但最早出版(1704)的一部.在书中,导数概念已被引出,而且把考察对象由二个变量构成的方程转向关于一个变量的函数.牛顿的流数演算已相当熟练和灵活了,他算出许多复杂图形的面积.阿达玛(J.Hadamard,1865—1963)称赞说,该书“论述的有理函数积分法,几乎不亚于目前的水平.”

值得注意的是,在《求积术》中,牛顿认为没有必要把无穷小量引入微积分.他在序言中明确指出:“数学的量并不是由非常小的部分组成的,而是用连续的运动来描述的.直线不是一部分一部分的连接,而是由点的连续运动画出的,因而是这样生成的;面是由线的运动,体是由面的运动,角是由边的旋转,时间段落是由连续的流动生成的.”在这种思想指导下,他放弃了无穷小的概念,代之以最初比和最后比的新概念.为了求函数y=x n的导数,牛顿让x“由流动”而成为x+o,于是x n变为

的最后比等于1比nx n-1.所以量x的流数与量x n的流数之比等于1比nx n-1.”牛顿认为这个比即增量的最初比,可见最初比与最后比的实质是一样的,都表示y关于x的导数,或者说是y对于x的变化率.用现在的符号可写成y′=nx n-1.

牛顿还对他的最后比作出下面的几何解释:如图11.17,假定bc移向BC,使得c和C重合,那么增量CE、Ec、Cc的最后比等于△CET的各边之比,即把这些增量看作初生量的最初比.”他说,“只有点C与c完全重合了,直线CK才会与切线(CH)重合,而CE、Ec、Cc的最后比才能求出.”显然,他是把切线CH当作割线CK的极限位置.

实际上,早在《自然哲学的数学原理》(下简称《原理》)一书中,牛顿就表述了明确的极限思想.他说:“消失量的最后比严格地说并不是最后量的比,而是这些量无限减小时它们的比所趋近的极限.它们与这个极限之差虽然可以比任何给定的差更小,但这些量在无限缩小之前既不能超过也不能达到它.”在这部最早发表的包含微积分成果的书(当然不是最早写成的)中,牛顿已经把微积分的大厦建筑在极限的基础之上,他用极限观点解释了微积分中的许多概念.例如,他认为表示定积分的曲边图形与“消失的平行四边形的终极和”相重合.牛顿指出,当这些平行四边形(相当于今天讲定积分几何意义时的长条矩形)的最大宽度无限减小时,就成为“消失的平行四边形”,而曲边图形就是所有这些消失图形的终极和了.牛顿在《原理》中阐发的极限思想,成为他撰写《求积术》的理论基础.当然,他还没有提出如同我们现在使用的严格的极限定义.

牛顿在微积分发展中的作用

牛顿在微积分发展中的作用 (王伟迪13124157 理科基础班) 摘要:微积分的创立,被誉为是“人类精神的最高胜利”,是由常量数学向变量数学转变的一件具有划时代意义的大事。16世纪后半叶,牛顿和莱布尼茨在许多数学家所做的大量准备工作的基础上,各自创立微积分。本文主要论述了微积分的产生,微积分的发展,以及牛顿对微积分所做出的贡献。 关键词:牛顿微积分产生发展贡献 一:微积分的产生 微积分是微分学和积分学的总称。微分学的主要内容包括:极限理论、导数、微分等,积分学的主要内容包括:定积分、不定积分等。如今,微积分已成为基本的数学工具而被广泛地应用于自然科学的各个领域。公元17世纪,在欧洲资本主义开始萌芽、科学和生产技术开始发展的情况下,航海、天文、力学、军事、生产等科学技术给数学提出了一系列迫切需要解决的问题。从数学角度归纳起来主要集中在以下4个方面: 第一类:变速运动求即时速度的问题。 第二类:求曲线的切线的问题。 第三类:求函数的最大值和最小值问题。 第四类:求曲线长、曲边梯形面积、不规则物体的体积、物体的重心、压强等问题。

许多著名的科学家都为解决上述几类问题作了大量的研究工作,英国伟大的科学家牛顿和德国数学家莱布尼茨分把两个貌似毫不相关的问题联系在一起,一个是切线问题(微分学的中心问题),一个是求积问题(积分学的中心问题)。这引起了广泛的社会关注。 微积分的发展简史为:(1)微积分的概念(2)微积分的萌芽(3)微积分的发展(4)微积分的建立(5)微积分创立的历史意义。 二:牛顿对微积分的贡献 牛顿(1642~1727),英国数学家、物理学家、天文学家和自然哲学家。牛顿在数学上最卓越的贡献是创建微积分。在17世纪60年代的短短几年里牛顿成功地将他17世纪的前辈们发展出的关于切线和面积的所有材料统一并推广成为我们今天的微积分教科书中展示的神奇的解决问题的工具。牛顿于1661年入剑桥大学三一学院,受教于巴罗,同时钻研伽利略、开普勒、笛卡儿和沃利斯等人的著作。牛顿在通过自学掌握了17世纪的全部成就后,从1664年后期到1666年后期花费了两年时间理出了他关于微积分的基本思想。就数学思想的形成而言,笛卡儿的《几何学》和沃利斯的《无穷算术》对他影响最深,正是这两部著作引导牛顿走上了创立微积分之路。 牛顿对微积分问题的研究始于他对笛卡尔圆法发生兴趣而开始寻找更好的切线求法。起初他的研究是静态的无穷小量方法,像费尔马那样把变量看成是无穷小元素的集合。1669年,他完成了第一篇有关微积分的论文。这篇论文是牛顿第一阶段工作的具体体现.在

牛顿与微积分的发展

牛顿与微积分的发展 牛顿(1642~1727),英国数学家、物理学家、天文学家和自然哲学家。牛顿在数学上最卓越的贡献是创建微积分。传记作家理查德·威斯法说,伊萨克·牛顿是“塑造了人类才智诸领域的寥寥无几的超级天才之一,一个无法归结为我们用以理解同类的标准的人”,因为微积分仅仅是他对我们理解周围世界作出重大贡献的许多领域中的一个。在17世纪60年代的短短几年里牛顿成功地将他17世纪的前辈们发展出的关于切线和面积的所有材料统一并推广成为我们今天的微积分教科书中展示的神奇的解决问题的工具。 牛顿于1661年入剑桥大学三一学院,受教于巴罗,同时钻研伽利略、开普勒、笛卡儿和沃利斯等人的著作。牛顿在通过自学掌握了17世纪的全部成就后,从1664年后期到1666年后期花费了两年时间理出了他关于微积分的基本思想。就数学思想的形成而言,笛卡儿的《几何学》和沃利斯的《无穷算术》对他影响最深,正是这两部著作引导牛顿走上了创立微积分之路。他对微积分的研究大致可分三个阶段: 第一阶段是静态的无穷小量方法,象费尔马那样把变量看作是无穷小元素的集合; 第二阶段是变量流动生成法,认为变量是由点、线或面的连续运动产生的,因此他把变量称为“流”,变量的变化率称为“流数”; 第三阶段是牛顿称之为最初比和最后比的方法,这种方法又是牛顿对第一阶段无穷小量方法的彻底否定. 第一阶段: 1667年牛顿完成了他的第一篇微积分论文: 《运用无穷多次方程的分析学》,正式发表于1711年.这篇论文是牛顿第一阶段工作的具体体现.在这篇文章中他总结了前人各种求积方法.给出了求一个变量对另一个变量的瞬时变化率的普遍方法,而且证明了: 求积运算是求变化率的逆过程.这就揭示了微积分的基本性质,即得到现在成为微积分学基本定理的牛顿——莱布尼茨公式.这篇文章是牛顿创立微积分的标志.但其中还有不少含混的地方. 第二阶段: 牛顿第二阶段的工作,主要体现在1671年的《流数法和无穷级数》中,在这篇论文中牛顿主要解决了两个问题: (1) 已知变量的关系y = f(x),求它们流数比(牛顿用表示y的流数); (2) 已知一个含流数的方程,求变量之间的关系,这是问题(1)的逆问题,相当于求积分或解微分方程. 当时牛顿把微积分叫做流数法,并明确指出流数法的普遍意义: 流数法“不仅可以用来做出任何曲线的切线,而且还可以用来处理其他关于曲度(即曲率)、

牛顿与微积分

牛顿和微积分 大多数现代历史学家都相信,牛顿与莱布尼茨独立发展出了微积分学,并为之创造了各自独特的符号。根据牛顿周围的人所述,牛顿要比莱布尼茨早几年得出他的方法,但在1693年以前他几乎没有发表任何内容,并直至1704年他才给出了其完整的叙述。其间,莱布尼茨已在1684年发表了他的方法的完整叙述。此外,莱布尼茨的符号和“微分法”被欧洲大陆全面地采用,在大约1820年以后,英国也采用了该方法。莱布尼茨的笔记本记录了他的思想从初期到成熟的发展过程,而在牛顿已知的记录中只发现了他最终的结果。牛顿声称他一直不愿公布他的微积分学,是因为他怕被人们嘲笑。牛顿与瑞士数学家尼古拉·法蒂奥·丢勒(Nicolas Fatio de Duillier)的联系十分密切,后者一开始便被牛顿的引力定律所吸引。1691年,丢勒打算编写一个新版本的牛顿《自然哲学的数学原理》,但从未完成它。一些研究牛顿的传记作者认为他们之间的关系可能存在爱情的成分。不过,在1694年这两个人之间的关系冷却了下来。在那个时候,丢勒还与莱布尼茨交换了几封信件。在1699年初,皇家学会(牛顿也是其中的一员)的其他成员们指控莱布尼茨剽窃了牛顿的成果,争论在1711年全面爆发了。牛顿所在的英国皇家学会宣布,一项调查表明了牛顿才是真正的发现者,而莱布尼茨被斥为骗子。但在后来,发现该调查评论莱布尼茨的结语是由牛顿本人书写,因此该调查遭到了质疑。这导致了激烈的牛顿与莱布尼茨的微积分学论战,并破坏了牛顿与莱布尼茨的生活,直到后者在1716年逝世。这场争论在英国和欧洲大陆的数学家间划出了一道鸿沟,并可能阻碍了英国数学至少一个世纪的发展。

17世纪牛顿的数学成就

17世纪牛顿对微积分的贡献 17世纪数学最重要的成就之一是微积分的创立,而牛顿就对微积分做了许多重要的贡献。 流数术的初建 牛顿对微积分问题的研究始于1664年秋,当时他反复阅读笛卡儿《几何学》,对笛卡儿求切线的“圆法”发生兴趣并试图寻找更好的方法。说在此时,牛顿首创了小o记号表示x的无限小且最终趋于零的增量。 1665年夏至1667年春,牛顿在家乡躲避瘟疫期间,继续探讨微积分并取得了突破性进展。据他自述,1665年11月发明“正流数术”(微分法),次年5月又建立了“反流数术”(积分法)。1666年10月,牛顿将前两年的研究成果整理成一篇总结性论文,此文现以《流数简论》(Tract on Fluxions)著称,当时虽未正式发表,但在同事中传阅。《流数简论》(以下简称《简论》)是历史上第一篇系统的微积分文献。 《流数简论》反映了牛顿微积分的运动学背景。该文事实上以速度形式引进了“流数”(即微商)概念,虽然没有使用“流数”这一术语。牛顿在《简论》中提出微积分的基本问题如下: (a)设有两个或更多个物体A,B,C,…在同一时刻内描画线段x,y ,z。已知表示这些线段关系的方程,求它们的速度p,q,r的关系。 (b)已知表示线段x和运动速度p、q之比p/q 的关系方程式,求另一线段y。牛顿对多项式情形给出(a)的解法。 对于问题(b),牛顿的解法实际上是问题(a)的解的逆运算,并且也是逐步列出了标准算法。特别重要的是,《简论》中讨论了如何借助于这种逆运算来求面积,从而建立了所谓“微积分基本定理”当然,《简论》中对微积分基本定理的论述并不能算是现代意义下的严格证明。 牛顿在后来的著作中对微积分基本定理又给出了不依赖于运动学的较为清楚的证明。在牛顿以前,面积总是被看成是无限小不可分量之和,牛顿则从确定面积的变化率入手通过反微分计算面积。前面讲过,面积计算与求切线问题的互逆关系,以往虽然也曾被少数人在特殊场合模糊地指出,但牛顿却能以足够的敏锐与能力将这种互逆关系明确地作为一般规律揭示出来,并将其作为建立微积分普遍算法的基础。正如牛顿本人在《流数简论》中所说:一旦反微分问题可解,许多问题都将迎刃而解。这样,牛顿就将自古希腊以来求解无限小问题的各种特殊技巧统一为两类普遍的算法——正、反流数术亦即微分与积分,并证明了二者的互逆关系而将这两类运算进一步统一成整体。这是他超越前人的功绩,正是在这样的意义下,我们说牛顿发明了微积分。 在《流数简论》的其余部分,牛顿将他建立的统一算法应用于求曲线切线、曲率、拐点、曲线求长、求积、求引力与引力中心等16类问题,展示了他的算法的极大的普遍性与系统性。 流数术的发展 《流数简论》标志着微积分的诞生,但它在许多方面是不成熟的。牛顿于1667年春天回到剑桥,对自己的微积分发现未作宣扬。他在这一年10月当选为三一学院成员,次年又获硕士学位,并不是因为他在微积分方面的工作,而是因为在望远镜制作方面的贡献。但从那时起直到1693年大约四分之一世纪的时间里,牛顿始终不渝努力改进、完善自己的微积分学说,先后定成了三篇微积

微积分发展中牛顿与莱布尼茨的贡献

微积分发展中牛顿与莱布尼茨的贡献 微积分(Calculus )是高等数学中研究函数的微分、积分以及有关概念和应用的数学分支。它是数学的一个基础学科。内容主要包括极限、微分学、积分学及其应用。微分学包括求导数的运算,是一套关于变化率的理论。它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。 1.微积分产生 到了十七世纪,有许多科学问题需要解决,这些问题也就成了促使微积分产生的因素。归结起来,大约有四种主要类型的问题:第一类是研究运动的时候直接出现的,也就是求即时速度的问题。第二类问题是求曲线的切线的问题。第三类问题是求函数的最大值和最小值问题。第四类问题是求曲线长、曲线围成的面积、曲面围成的体积、物体的重心、一个体积相当大的物体作用于另一物体上的引力。 微积分学的创立,极大地推动了数学的发展,过去很多初等数学束手无策的问题,运用微积分,往往迎刃而解,显示出微积分学的非凡威力。 一门科学的创立决不是某一个人的业绩,他必定是经过多少人的努力后,在积累了大量成果的基础上,最后由某个人或几个人总结完成的。微积分也是这样。 在十七世纪的许多著名的数学家、天文学家、物理学家都为解决上述几类问题作了大量的研究工作,如法国的费马、笛卡尔、罗伯瓦、笛沙格;英国的巴罗、瓦里士;德国的开普勒;意大利的卡瓦列利等人都提出许多很有建树的理论。为微积分的创立做出了贡献。 到十七世纪下半叶,在前人工作的基础上,英国大科学家牛顿和德国数学家莱布尼茨分别在自己的国度里独自研究和完成了微积分的创立工作,虽然这只是十分初步的工作。他们的最大功绩是把两个貌似毫不相关的问题联系在一起,一个是切线问题(微分学的中心问题),一个是求积问题(积分学的中心问题)。牛顿和莱布尼茨正是在这样的时刻出场的.时代的需要与个人的才识,使他们完成了微积分创立中最后也是最关键的一步. 2.牛顿的“流数术” 牛顿于1661年入剑桥大学三一学院,受教于巴罗,同时钻研伽利赂,开普勒,笛卡儿和沃利斯等人的著作.而笛卡儿的《几何学》和沃利斯的《无穷算术》对他影响最深,正是这两部著作引导牛顿走上了创立微积分之路. 1665年8月,剑桥大学因瘟疫流行而关闭,牛顿离校返乡,随后在家乡躲避瘟疫的两年,竞成为牛顿科学生涯中的黄金岁月.制定微积分,发现万有引力和颜色理论,……,可以说牛顿一生大多数科学创造的蓝图,都是在这两年描绘的. 2.1流数术的初建 牛顿对微积分问题的研究始于1664年秋,当时他反复阅读笛卡儿《几何学》,对笛卡儿求切线的"圆法"发生兴趣并试图寻找更好的方法.就在此时,牛顿首创了小o 记号表示x 的无限小且最终趋于零的增量. 1665年夏至1667年春,牛顿在家乡躲避瘟疫期间,继续探讨微积分并取得了突破性进展.1665年11月发明"正流数术"(微分法),次年5月又建立了"反流数术"(积分法). 1666年10月,牛顿将前两年的研究成果整理成一篇总结性论文,此文现以《流数简论》著称,《流数简论》是历史上第一篇系统的微积分文献. 《流数简论》反映了牛顿微积分的运动学背景。该文事实上以速度形式引进了“流数”(即微商)概念,虽然没有使用“流数”这一术语。牛顿在《简论》中提出微积分的基本问题如下: (a )设有两个或更多个物体A ,B ,C ,…在同一时刻内描画线段x ,y ,z ,…。已知表示这些线段关系的方程,求它们的速度p ,q ,r ,…的关系。 (b )已知表示线段x 和运动速度p 、q 之比q p 的关系方程式,求另一线段y 。

牛顿对微积分的贡献

Isaac Newton was born on 25 December 1642at Woolsthorpe Manor in Woolsthorpe-by-Colsterworth, a hamlet in the county of Lincolnshire. Apple incident John Conduitt, Newton's assistant at the Royal Mint and husband of Newton's niece, also described the event when he wrote about Newton's life: In the year 1666 Newton retired again from Cambridge to his mother in Lincolnshire (Other said the main reason of his retired was the plague). At the same time, he was worried meandering in a garden it came into his thought that the power of gravity (which brought an apple from a tree to the ground) was not limited to a certain distance from earth, but that this power must extend to the whole universe. Except Eve’s apple, Newton’s apple is been called the second apple that changed humans’ history. “No great discovery was ever made without a bold guess”quote of Newton

浅谈牛顿莱布尼茨度微积分的贡献

浅谈牛顿、莱布尼兹对微积分的贡献 姓名:马志霞学号:200971010129 班级:09级数学(1)班 摘要本文主要论述了微积分的产生、牛顿和莱布尼茨对微积分的贡献以及他们创立微积分的比较。 关键词牛顿莱布尼兹微积分产生贡献比较 一、微积分的产生 微积分是微分学和积分学的总称。微分学的主要内容包括:极限理论、导数、微分等,积分学的主要内容包括:定积分、不定积分等。如今,微积分已成为基本的数学工具而被广泛地应用于自然科学的各个领域。以下四种主要类型的问题: 第一类:变速运动求即时速度的问题。 第二类:求曲线的切线的问题。 第三类:求函数的最大值和最小值问题。 第四类:求曲线长、曲边梯形面积、不规则物体的体积、物体的重心、压强等问题。这些科学问题需要解决是促使微积分产生的因素。许多著名的科学家都为解决上述几类问题作了大量的研究工作,英国伟大的科学家牛顿和德国数学家莱布尼茨分把两个貌似毫不相关的问题联系在一起,一个是切线问题(微分学的中心问题),一个是求积问题(积分学的中心问题)。1686年,莱布尼茨发表了第一篇积分学的文献。他所创设的微积分符号,远远优于牛顿的符号,这对微积分的发展有极大的影响。现在我们使用的微积分通用符号就是当时莱布尼茨选用的。 微积分学的创立,极大地推动了数学的发展,对过去很多束手无策的初等数学问题运用微积分就会迎刃而解。微积分学不但极大的推动了数学的发展,而且也极大的推动了天文学、力学、物理学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学各个分支中的发展,并在这些学科中应用越来越广泛。 二、莱布尼兹对微积分的贡献 莱布尼兹创立微积分首先是出于几何问题的思考。1673年,他因在帕斯卡的有关论文中“突然看到一束光明”,而提出了自己的“微分三角形”理论。借助于这种无限小三角形,他迅速地、毫无困难地了建立大量定理,其中包括后来“在巴罗和格里高利的著作中见到的几乎所有定理”。 在对微分特征三角形的研究中,莱布尼兹逐渐认识到了什么是求曲线切线和求曲线下面积的实质,并发现了这两类问题的互逆关系。在1666年,莱布尼兹便在序列的求和运算与求差运算间发现了它们的互逆关系。从1672年开始,莱布尼兹将他对数列研究的结果与微积分运算联系起来。他通过把曲线的纵坐标想象成一组无穷序列,得出了“求切线不过是求差,求积不过是求和”的结论。他引进了微分记号dx来表示两相邻x的值的差,并给出幂函数的微分与积分公式。不久,他又给出了计算复合函数微分的链式法则。1677年,莱布尼兹在一篇手稿中明确陈述了微积分基本定理。 1684年莱布尼兹发表了他的第一篇微分学论文《新方法》,该文是莱布尼兹对自己1673年以来微分学研究的概括,其中定义了微分并广泛采用了微分记号,并明确陈述了函数和、差、积、商、乘幂与方根的微分公式。他还得出了复合函数的链式微分法则,以及后来又将乘积微分的“莱布尼兹法则”推广到了高阶情形,这些表明莱布尼兹非常重视微积分的形式运算法则和公式系统。《新方法》还包含了微分法在求极值、拐点以及光学等方面的广泛应用。1686年,莱布尼兹又发表了他的第一篇积分学论文《深奥的几何与不可分量及无限的分析》。这篇论文初步论述了积分或求积问题与微分或切线问题的互逆关系,说明了他的方法和符号,

伟大数学家牛顿简介

牛顿生平简介 牛顿(Newton Isaac,1642—1727)是英国数学家、物理学家、天文学家。牛顿出生于一个普通农民家庭,而且还是一个遗腹子,小时智力一般,对读书无兴趣。后来他发奋读书,以特别优异的成绩考入英国剑桥大学三一学院,22岁(1664年)获得学士学位。1665年,伦敦地区流行鼠疫,剑桥大学暂时关闭。牛顿回到出生地,在乡村幽居的两年中(1665—1666),终日思考各种问题,探索大自然的奥秘。他平生三大发明:微积分,万有引力定律,光谱分析都萌发于此地,时年23岁。1667年,牛顿回到剑桥大学攻读硕士学位,1669年获得“路卡斯教授”的职位(时年27岁)。 牛顿对数学的贡献最突出的有三项:流数术(微积分)、二项式定理与广义算术(代数学)。单就数学方面的贡献,他就与古希腊的数学之神阿基米德、德国的数学王子高斯齐名,被称为世界上最伟大的三位数学家。牛顿生平对科学有四大贡献:创建微积分,为近代数学奠定基础;奇迹般地做了光谱分析,打开了通向近代光学的大门;发现了万有引力定律,孕育了近代天文学;总结了力学三大定律,创立了牛顿经典力学。由于牛顿对科学做出了巨大的贡献,受到人们的高度崇敬。莱布尼兹说:“在从世界开始到牛顿生活的年代的全部数学中,牛顿的工作超过一半。”汤姆森(Thomson)说:“牛顿的发现对英国及人类的贡献超过所有英国国王。”牛顿被后人誉为“一个为人类增添光辉的人”。牛顿墓碑上的碑铭最后一句是“他是人类真正的骄傲”。 牛顿终生未娶,全身心献身于科学事业。牛顿知识雄厚,思路宽阔,勤于思考。他曾说:“我的成功归功于精心的思索”。“没有大胆的猜想就做不出伟大的发现”。“我并没有什么方法,只不过对于一件事情,总是花很长时间热心地去考虑罢了”。“只有不断地思考才能到达发现的彼岸”。 牛顿一生功绩卓著,成绩斐然,但他自己却很谦虚,临终时留下这样一段遗言:“我不知道,世人会怎样看我,不过,我自己觉得,我只像一个在海滨玩耍的孩子,一会儿拣起一块比较光滑的卵石,一会儿找到个美丽的贝壳;而在我面前,真理的大海还完全没有发现。”牛顿还说:“如果我之所见要比笛卡尔等人要远一点,那只是因为我是站在巨人的肩膀上的缘故。”

牛顿莱布尼茨对微积分的贡献

一、牛顿对微积分的贡献 牛顿(I.Newton,1642-1727)1642年生于英格兰伍尔索普村的一个农民家庭。1661年牛顿进入剑桥大学三一学院,受教于巴罗。笛卡儿的《几何学》和沃利斯的《无穷算术》,这两部著作引导牛顿走上了创立微积分之路。 牛顿于1664年秋开始研究微积分问题,在家乡躲避瘟疫期间取得了突破性进展。1666年牛顿将其前两年的研究成果整理成一篇总结性论文—《流数简论》,这也是历史上第一篇系统的微积分文献。在简论中,牛顿以运动学为背景提出了微积分的基本问题,发明了“正流数术”(微分);从确定面积的变化率入手通过反微分计算面积,又建立了“反流数术”;并将面积计算与求切线问题的互逆关系作为一般规律明确地揭示出来,将其作为微积分普遍算法的基础论述了“微积分基本定理”。 这样,牛顿就以正、反流数术亦即微分和积分,将自古以来求解无穷小问题的各种方法和特殊技巧有机地统一起来。正是在这种意义下,牛顿创立了微积分。 牛顿对于发表自己的科学著作持非常谨慎的态度。1687年,牛顿出版了他的力学巨著《自然哲学的数学原理》,这部著作中包含他的微积分学说,也是牛顿微积分学说的最早的公开表述,因此该巨著成为数学史上划时代的著作。而他的微积分论文直到18世纪初才在朋友的再三催促下相继发表。 二、莱布尼茨顿微积分的贡献 莱布尼茨(W.Leibniz,1646-1716)出生于德国莱比锡一个教授家庭,青少年时期受到良好的教育。1672年至1676年,莱布尼茨作为梅因茨选帝侯的大使在巴黎工作。这四年成为莱布尼茨科学生涯的最宝贵时间,微积分的创立等许多重大的成就都是在这一时期完成或奠定了基础。 1684年,莱布尼茨整理、概括自己1673年以来微积分研究的成果,在《教师学报》上发表了第一篇微分学论文《一种求极大值与极小值以及求切线的新方法》(简称《新方法》),它包含了微分记号以及函数和、差、积、商、乘幂与方根的微分法则,还包含了微分法在求极值、拐点以及光学等方面的广泛应用。1686年,莱布尼茨又发表了他的第一篇积分学论文,这篇论文初步论述了积分或求积问题与微分或切线问题的互逆关系,包含积分符号并给出了摆线方程: 莱布尼茨对微积分学基础的解释和牛顿一样也是含混不清的,有时他的是有穷量,有时又是小于任何指定的量,但不是零。

牛顿微积分

第二节牛顿的微积分 一、牛顿传略 1643年1月4日牛顿生于英国林肯郡的沃尔索普(Woo l sthorpe)村,父亲是一个农民,在牛顿出生前就死了.虽然母亲也希望他务农,但幼年的牛顿却在做机械模型和实验上显示了他的爱好和才能.例如,他做了一个玩具式的以老鼠为动力的磨和一架靠水推动的木钟.14岁时,由于生活所迫,牛顿停学务农,以后在舅父的帮助下又入学读书.1661年,不满19岁的牛顿考入剑桥大学的三一学院.1665年初,他在毕业前夕发现了二项式定理,同年获文学学士学位,并当了研究生.但不久便由于在伦敦流行鼠疫,剑桥大学关闭,牛顿只好回农村居住.在沃尔索普村的18个月里,牛顿发明了微积分,提出了万有引力定律,还研究了光的性质.牛顿一生的重大成就大都发韧于这期间.后来,他在追忆这段峥嵘的青春岁月时说:“当年我正值发明创造能力最强的年华,比以后任何时期更专心致志于数学和哲学(科学).”我们特别注意到,他于1666年10月写成的《流数后人加的)是世界上第一篇微积分论文,它标志着这一学科的诞生.虽然论文直到本世纪才公开发表,但当时有抄本流传,牛顿的不少朋友和同事都看到过. 1667年,瘟疫过去,牛顿又回到剑桥大学.第二年,他制成世界上第一架反射望远镜.由于他在科学上的出色成就,他的老师巴罗认为他的学识已超过自己,便于1669年10月主动把数学教授的职位让给他,于是牛顿开始了他三十年的大学教授生活. 他在1669年写成《运用无穷多项方程的分析学》(De Ana l ysi per Aequationes Numero Terminorum Infinitas,1711年发表),又于1671年写成《流数法和无穷级数(De Me-thodis Serierum et F l uxionum,1736年发表).这两篇论文同《流数简论》一起,奠定了微积分的理论基础.1672年,他当选为皇家学会会员,并第一次发表论文,内容是关于白色光的组成,引起广泛的兴趣和讨论.1675年,他将关于光的粒子说的论文送交皇家学会.1685年,他开始撰写《自然哲学的数学原理》(Phi l osophiae

莱布尼茨与微积分

莱布尼茨与微积分 今天,微积分已成为基本的数学工具而被广泛地应用于自然科学的各个领域。恩格斯说过:“在一切理论成就中,未有像十七世纪下半叶微积分的发明那样被瞧作人类精神的最高 胜利了,如果在某个地方我们瞧到人类精神的纯粹的与唯一的功绩,那就正就是在这里。”接下来我将从五个方面来介绍莱布尼茨的生平事迹。 一、人物简介 戈特弗里德·威廉·莱布尼茨(Gottfried Wilhelm Leibniz,1646年-1716年),德国哲学家、数学家。涉及的领域及法学、力学、光学、语言学等40多个范畴,被誉为十七世纪的亚里士多德。与牛顿先后独立发明了微积分。 二、人物生平 早期(致力于哲学): 1、生于公元1646年7月1日书香之家,父亲道德哲学教授,母亲出身于教授家庭。 2、 8岁时,莱布尼茨进入尼古拉学校,学习拉丁文、希腊文、修辞学、算术、逻辑、音乐以及《圣经》、路德教义等。 3、 1661年,15岁的莱布尼茨进入莱比锡大学学习法律。

4、 1663年5月,她以《论个体原则方面的形而上学争论》一文获学士学位。 晚期(致力于自然科学): 1、 1667年2月,莱布尼茨发表了她的第一篇数学论文《论组合的艺术》 2、 1672年,莱布尼茨作为一名外交官出使巴黎,深受惠更斯的启发,决心钻研高等数学,并研究了笛卡儿、费尔马、帕斯卡等人的著作,开始微积分的创造性工作。 3、 1684年10月在《教师学报》上发表的论文《一种求极大极小与切线的新方法,它也适用于分式与无理量,以及这种新方法的奇妙类型的计算》,就是最早的微积分文献。 4、 1686年发表她的第一部积分学论文《深奥的几何与不可分量及 无限的分析》,提出摆线方程 y=这篇论文中? 第一次出现在印刷板物上。 5、 1713年,莱布尼茨发表了《微积分的历史与起源》一文,总结了自己创立微积分学的思路,说明了自己成就的独立性。 6、公元1716年11月14日,由于胆结石引起的腹绞痛卧床一周后,莱布尼茨孤寂地离开了人世,终年70岁。

牛顿的微积分

第二节牛顿的微积分 一《流数简论》 《流数简论》表明,牛顿微积分的来源是运动学.1666年,他在坐标系中通过速度分量来研究切线,既促使了流数法的产生,又提供了它的几何应用的关键. 牛顿把曲线f(x,y)=0看作动点的轨迹,动点的坐标x,y是时间的函数,而动点的水平速度分量和垂直速度和垂直速度为边的矩形对角线,所以曲线f(x,y)=0的切线斜率 所以牛顿便在后来称它们为流数,实际上就是x和y对t的导数: 而它们的比就是y对x的导数 布尼茨发明的,我们这里采用它们是为了叙述方便. 牛顿考虑的第一个问题是:给定x和y的关系f(x,y)=0,求 的次数……令这些乘积的总和等于零.这个方程就给出速度(流数)之间的关系.若用子表示,则为 它是牛顿用来计算流数之比(即求导)的基本法则.实际上,这个式子 牛顿是用“无穷小”概念和他一年前发明的二项式定理来证明(1)式的.他认为,作非匀速运动的物体在无穷小时间间隔o中的运动情况同作匀速运动的物体在有限时间间隔中的情况相同,“因此,如果到某一时刻,它们已描绘的线段为x和y,那么到下一时刻所描绘的线段就是x+xo和y+yo.”牛顿用x+xo和y+yo代替f(x,y)=0中的x和y,于是有 按二项式展开并略去o的二次以上(含二次)的项,得 除以o后便得到(1)式.作为一个实例,可把y=x n写成f(x,y)=y-x n的形式,由(1)式推出 的代数式).他对这一问题的研究导致了微积分基本定理的发现,即: 其中A表示曲线y=f(x)下的面积.从《流数简论》可以看出,他是用如下方法推导这一重要定理的: 设y表示曲线f(x)下的面积abc(图11.13),并把它看作垂 平行移动,描绘出面积x和y,它们随时间而增加的速度是be和bc,”显然,be=1而bc=f(x).因此,牛顿认为面积y随时间的变化率是

牛顿与莱布尼茨在数学界的贡献

莱布尼茨 (一) 德国的莱布尼茨(G.W.Ieibnlz,公元1646~1716年),是一位当之无愧的“万能大师”。 数学和哲学,是莱布尼茨显示其杰出天才的诸多领域之一。他在法律、管理、历史、文学、逻辑等方面都作出过卓越贡献,因其在这些领域显赫的成就,人们永远纪念他。用“全才”这个词形容莱布尼茨,可以说并不夸张。 1646年7月1日,莱布尼茨出生于德国莱比锡。他的祖父以上三代人均曾在萨克森政府供职;他的父亲是莱比锡大学的伦理学教授。莱布尼茨的少年时代是在官宦家庭以及浓厚的学术气氛中度过的。 莱布尼茨在6岁时失去父亲,但他父亲对历史的钟爱已经感染了他。虽然考进莱比锡学校,但他主要是靠在父亲的藏书室里阅读自学的。8岁时他开始学习拉丁文,12岁时学希腊文,从而广博地阅读了许多古典的历史、文学和哲学方面的书籍。 13岁时,莱布尼茨对中学的逻辑学课程特别感兴趣,不顾老师的劝阻,他试图改进亚里士多德的哲学范畴。 1661年,15岁的莱布尼茨进入莱比锡大学学习法律专业。他跟上了标准的二年级人文学科的课程,其中包括哲学、修辞学、文学、历史、数学、拉丁文、希腊文和希伯莱文。1663年,17岁的莱布尼茨因其一篇出色的哲学论文《论个体原则方面的形而上学争论——关于“作为整体的有机体”的学说》,获得学士学位。 莱布尼茨需在更高一级的学院,如神学院、法律学院或医学院学习才能拿到博士学位。他选择了法学。但是,法律并没有占据他全部的时间,他还广泛地阅读哲学,学习数学。例如他曾利用暑期到耶拿听韦尔的数学讲座,接触了新毕达哥拉斯主义——认为数是宇宙的基本实在,以及一些别的“异端”思想。 1666年,20岁的莱布尼茨已经为取得法学博士学位做了充分的准备,但是莱比锡的教员们拒绝授予他学位。他们公开的借口是他太年轻,不够成熟,实际上是因为嫉妒而恼怒——当时莱布尼茨掌握的法律知识,远比他们那些人的知识加在一起还要多! 于是,莱布尼茨转到纽伦堡郊外的阿尔特多夫大学,递交了他早已准备好的博士论文,并顺利通过答辩,被正式授予博士学位。阿尔特多夫大学还提供他一个教授的职位,他谢绝了。他说他另有志向——他要改变过学院式生活的初衷,而决定更多地投身到外面的世界中去。 1666年是牛顿创造奇迹的一年——发明了微积分和发现了万有引力;这一年也是莱布尼茨作出伟大创举的一年——在他自称为“中学生习作”的《论组合术》一书中,这个20岁的年轻人,试图创造一种普遍的方法,其间一切论证的正确性都能够归结为某种计算。同时,这也是一种世界通用的语言或文字,其间的符号甚至词语会导致推理,而除了那些事实以外的谬误,只能是计算中的错误。 形成和发明这种语言或数学符号是很困难的,但不借助任何字典看懂这种语言却是很容易的事情。这是莱布尼茨在20岁时所做的“万能符号”之梦——其时为17世纪60年代,而它的发扬光大则是两个世纪之后的事——19世纪40年代格拉斯曼的“符号逻辑”。 莱布尼茨的思想是超越时代的! (二) 1667年,21岁的莱布尼茨在德国纽伦堡加入一个炼金术士团体任秘书。通过这个团体,他结识了政界人物博因堡男爵,男爵将他推荐给迈因茨选帝侯,担任其法律顾问的助手,后来,莱布尼茨很快被提拔到上诉法院陪审法官的职位,从而登上政治舞台。 莱布尼茨试图重新编纂法规,希望通过使用少数几个基本法律概念,定义所有的法律概念;从很少的一套自然、正义且不容置疑的原则中,演绎出所有的具体法规,从而把法规整理好。他想把自然法规结为一个体系,为此他发表了《法学教学新法》。

相关主题
文本预览
相关文档 最新文档