当前位置:文档之家› 三星S7572如何显示电池电量百分比

三星S7572如何显示电池电量百分比

三星S7572如何显示电池电量百分比
三星S7572如何显示电池电量百分比

三星S7572如何显示电池电量百分比?

开启电池电量百分比,可以方便您了解电池的基本使用情况。具体操作方法如下:1.在待机模式下,点击【应用程序】。

2.点击【设定】。

3.点击【显示】。

4.用手指向上滑动手机屏幕,将【显示电池电量百分比】打钩。

以上操作完成后,将看到屏幕右上角显示电量百分比。

LTC 具温度 电压和电流测量功能的多节电池电量测量芯片

LTC2943 - 具温度、电压和电流测量功能的多节电池电量测量芯片 特点 ?可测量累积的电池充电和放电电量 ?至 20V 工作范围可适合多种电池应用 ?14 位 ADC 负责测量电池电压、电流和温度 ?1% 电压、电流和充电准确度 ?±50mV 检测电压范围 ?高压侧检测 ?适合任何电池化学组成和容量的通用测量 ?I2C / SMBus 接口 ?可配置警报输出 / 充电完成输入 ?静态电流小于120μA ?小外形 8 引脚 3mm x 3mm DFN 封装 典型应用 描述 LTC2943可测量便携式产品应用中的电池充电状态、电池电压、电池电流及其自身温度。其具有宽输入电压范围,因而可与高达20V的多节电池配合使用。一个精准的库仑计量器负责对流经位于电池正端子和负载或充电器之间的一个检测电阻器电流进行积分运算。电池电压、电流和温度利用一个内部14位无延迟增量累加(No Latency ΔΣTM) ADC来测量。测量结果被存储于可通过内置I2C / SMBus接口进行存取的内部寄存器中。 LTC2943具有针对所有4种测量物理量的可编程高门限和低门限。如果超过了某个编程门限,则该器件将采用SMBus警报协议或通过在内部状态寄存器中设定一个标记来传送警报信号。LTC2943仅需采用单个低阻值检测电阻器以设定测量电流范围。 应用 ?电动工具 ?电动自行车 ?便携式医疗设备 ?视频摄像机

程序: #include <> #include <> #include "" #include "" #include "" #include "" #include "" #include <> 00; Check I2C Address."; Shared between loop() and restore_alert_settings() .\nPlease ensure I2C lines of Linduino are connected to the LTC device"); } } (ack_error); (F("*************************")); print_prompt(); } } } *\n")); (F("* Set the baud rate to 115200 and select the newline terminator.*\n")); (F("* *\n"));

关于手机电池电量显示不正确的问题研究

关于手机电池电量显示不正确的问题研究 问题一:电量30%的时候还好好的,然后看电影,播了几分钟看了下电量,还有27%,然后突然就自动关机了,而且按电源键无法开机。 问题二:充至80%拔掉充电器几秒后,电量显示忽然降至低值(如7%),再次插充电器,电池图标有显示闪电,但未显示电量上升动画,充电显示电量仍不上升。拔掉充电线重启,恢复正常电量。不拔重启则不恢复正常。问题三:手机电量格一直显示69%的电量,但实际的电量只有26% 1 安卓智能手机2 安卓平板电脑 1 原因一:手机固件问题,系统固件不过关,电量显示不正确, 解决方法:更新固件版本。2 原因二:刷机时电量很低,刷机的时候系统电量统计信息batterystates.bin正好重置开始计时导致电量显示错误 解决方法:将电池电量用完然后关机充电充满100%,进入recovery模式清空电量统计信息然后开机。 或:连接充电器开机,进入system/app,删除batterystates.bin,然后关机,拔出充电器,开机。3

手机电池主板已坏,需要更换或者修理主板。4 电池和机板接触不良,挤压或超负运载自动断电,导致关机,处理:擦净电池和机板导电金属片! 手机使用时间长后,电池仓内与电池接触的铜片氧化或有污垢,使用清洁剂(有去锈迹效果的那种)及牙刷对电池及手机电池仓的接触铜片刷洗一次。5 电池不是原装电池,电池虚电,电池亏损,看似有电,在带负荷时突然断电,处理:杷电池虚电一次性放尽,一次充足后使用!若不能解决问题就更换正版原装电池 6 你可能不知道你的手机在刷完新的ROM后会保留原有的电池统计信息,这样导致的结果就是你的手机电池续航时间可能出现异常,比如显示电量100%,但是实际上并没有充满。拔下充电器后,没有几分钟就掉到90%,校准后,电池充到100%,数个小时后才会掉99,98……原理是删除系统中的batterystats.bin电池统计信息文件,并生成一个新的文件,这样就可以删除之前保留的虚假电池信息,所以这也要求手机必须获取ROOT权限。为了更好的使用效果下面我编辑的使用方法:1,手机充电,至提示充满,提示百分之百,拔下充电器2,手机关机,然后充电,至提示充满,提示百分之百,拔下充电器。3,手机开机,完全进入系统立刻关机,连接充电,至提示充满,提示百分之百拔下充电器。4,手机开机,打开校准软件,连接充电器至提示充满,提示百分之百,然后再多充10分钟。5,点击“电池校正”按钮即可,重新校准可能需要数天才能完成,成功进行校准之后你的手机续航将会恢复到正常水平 电池保养常识: 1 记忆效应镍氢充电电池上常见的现象。具体表现就是:如果长期不充满电就开始

三星笔记本内存条

三星笔记本内存条 购买内存条的时候你们知道三星内存条怎么样吗?下面是小编收集整理的三星笔记本内存条,希望对大家有帮助~~ 三星笔记本内存条评价: 三星是大品牌,很不错 简要看完DDR3内存的时序和SPD信息后,接下来就开始正式的测试,为最大限度发挥内存的性能,测试使用了Intel新一代22nmIvyBridge处理器Corei53570K,Intel官方指导内存支持频率为DDR31600。搭配的华硕P8Z68-V主板,内存超频最高可以支持双通道DDR32800MHz规格,最大容量为32GB,当然主板支持Intel 的X.M.P技术。 内存方面自然是本次测试的重点,选用了一对俗称三星“金条”的DDR31600内存,产品DDR31600频率这一档内存时序为11-11-11,而根据以前的经验产品可以轻松超越DDR32133MHz,并且保持在较好的时序下,而市面上就有一些内存就完全基于三星金条,只不过套了一个散热马甲,频率预设这在DDR32133MHz,当然无可厚非三星金条确实有不错超频潜能。 三星新款内存模组编号为M378B5273DH0-CK0,生产日期为2012年第38周,产品使用的内存颗粒编号为K4B2G0446D-BCK0,不过在官方查询到的资料上面并没有这样一个产品,官方有的编号为K4B2G0446D-HCK0以及我们熟知的K4B2G0446D-HCH9。

内存颗粒编号K4B2G0446D-BCK0 三星笔记本内存条相关文章: 1.怎么看三星内存条真假 2.三星内存条如何看型号 3.三星s6如何清理内存条 4.笔记本电脑配置添加内存条的技巧 5.三星内存条都有防伪吗 6.三星内存条频率怎么看 7.三星内存条怎么看频率 8.2016年三星笔记本购买什么好

YX017A-HL5 充电4灯电量显示IC

YX017A-HL5 充电4灯电量显示IC 一、概述 主要特点: 1、采用低电平触发或锁定方式控制锂电池电量显示,以4灯格度方式显示 2、低电平触发控制逻辑如下(类似轻触按键方式): A:芯片上电默认微功耗休眠待机,平时无操作无显示时都进入休眠微功耗状态 B:芯片chg脚施加低电平触发信号后,电量灯长亮显示10秒后自动关闭显示 芯片chg脚施加锁定的低电平信号后(即充电管理IC的充电信号),电量灯开始闪 烁显示充电状态及当前电量 芯片chg脚解除锁定的低电平充电信号后,电量灯长亮显示10秒后自动关闭显示 C:电量长亮显示方式如下: (1): A:低于3.20V: led1 5HZ急闪报警 (2): B:3.20V-3.55V: led1 长亮 (3): C:3.55V-3.75V: led1、led2 长亮 (4): D:3.75V-3.90V: led1、led2、led3 长亮 (5): E:3.90V-4.20V: led1、led2、led3 、led4长亮 D: 充电电量闪烁显示方式如下:(闪烁频率为2HZ) (1) B:led1 闪亮 (2) C:led1 长亮; led2 闪亮 (3) D:led1、led2 长亮; led3 闪亮 (4) E:led1、led2 、led3长亮; led4 闪亮 (5) F:充满后led1、led2、led3 、led4 长亮 (6)J:chg脚除能,10秒后自动关闭显示

3、芯片VDD采用5V供电设计,若是单节锂电供电,则需采用5.0V输出小型升压IC给芯片供电;若是双节锂电供电,则需采用5.0V输出的低静态电流稳压IC给芯片供电 4、单节锂电供电设计时,在电池经电容滤波输出的地方,直接用一个1K电阻取样电池电压给到芯片6脚;双节锂电供电设计时,用2个相同阻值的精密电阻串联分压后从中间点取样电压给芯片6脚作为检测判断,注意紧靠6脚需用一个104电容滤波处理 二、 IC引脚功能说明 三、 引脚应用参考线路(实际需根据自己的产品应用设计) 单锂电供电应用参考 序号 名称 功能说明 1 VDD 电源+,5.0V 2 Led1 电量指示灯(低电平输出) 3 Led2 电量指示灯(低电平输出) 4 chg 充电信号输入端(低电平使能) 5 Led3 电量指示灯(低电平输出) 6 Test 外部电压检测端口 7 Led4 电量指示灯(低电平输出) 8 GND 电源地

ltc2943-具温度、电压和电流测量功能的多节电池电量测量芯片

特点 可测量累积的电池充电和放电电量 至 20V 工作范围可适合多种电池应用 14 位 ADC 负责测量电池电压、电流和温度 1% 电压、电流和充电准确度 ±50mV 检测电压范围 高压侧检测 适合任何电池化学组成和容量的通用测量 I2C / SMBus 接口 可配置警报输出 / 充电完成输入 静态电流小于120μA 小外形 8 引脚 3mm x 3mm DFN 封装 典型应用 描述 LTC?2943 可测量便携式产品应用中的电池充电状态、电池电压、电池电流及其自身温度。其具有宽输入电压范围,因而可与高达20V 的多节电池配合使用。一个精准的库仑计量器负责对流经位于电池正端子和负载或充电器之间的一个检测电阻器电流进行积分运算。电池电压、电流和温度利用一个内部14位无延迟增量累加(No Latency ΔΣTM) ADC 来测量。测量结果被存储于可通过内置I2C / SMBus 接口进行存取的内部寄存器中。 LTC2943 具有针对所有 4 种测量物理量的可编程高门限和低门限。如果超过了某个编程门限,则该器件将采用SMBus 警报协议或通过在内部状态寄存器中设定一个标记来传送警报信号。LTC2943 仅需采用单个低阻值检测电阻器以设定测量电流范围。 应用 电动工具 电动自行车 便携式医疗设备 视频摄像机

程序: #include <> #include <> #include "" #include "" #include "" #include "" #include "" #include <>

00; Check I2C Address."; Shared between loop() and restore_alert_settings() .\nPlease ensure I2C lines of Linduino are connected to the LTC device"); } } (ack_error); (F("*************************")); print_prompt(); } } } *\n")); (F("* Set the baud rate to 115200 and select the newline terminator.*\n")); (F("* *\n"));

三星笔记本电脑营销方案策划

三星笔记本电脑营销方案策划 合作单位:汉中卓诚科技一、三星品牌概述 三星集团是世界500强企业之一。2007年度《商业周刊》全球最佳品牌100强排行榜,三星电子全球排名第21位,其169亿美元的品牌价值也使其成为连续五年品牌价值上升最快的公司之一。与三星电子的品牌成长一样,三星笔记本见证了三星电子的品牌成长,并取得了令人瞩目的成绩。 2001年10月9日,三星笔记本携NV5000新品正式登陆中国,凭借技术、品质、服务的领先优势,在强手如林的笔记本电脑市场上稳居前列。众所周知,三星是电子行业内垂直整合能力最强的厂家。笔记本电脑的关键零部件,如LCD显示屏、内存、光驱、硬盘等都可以自行设计生产。尤其在LCD显示屏方面,三星是世界第一大笔记本电脑用显示屏生产厂家,全球市场占有率大约为25%。三星R65正是使用了自产的高亮度、高清晰度的15寸高亮液晶屏幕,大大提升了图像品质,表现图像细节更加锐丽,色彩更加逼真细腻。 自2005年三星笔记本电脑提出了“创新为你”的品牌理念之后,三星旗下的新品都围绕“创新”来设计,一切目的源于服务用户,无论是在外观、硬件、软件还是其他设计方面,创新设计都是为了方便使用者的操作,将时尚外观、高性能和超便携性进行了更加完美的结合。延续的风格设计,可以统一三星自有的品牌形象,也可以方便三星用户日后的产品升级或更新。让用户可以毫无顾虑地在三星时尚、科技、方便、快捷的环境中享受生活、享受工作。 从各种温度的环境到外力施压、从振动跌落到扭曲变形、从液晶屏幕到键盘等,17项严格的测试保证了笔记本的可靠性和耐用性。20,000次的屏幕开合测试、每点5000 次的10千克力抗压测试、500万次的反复键盘操作测试等,通过近乎“残酷”的质量测试,带给用户放心使用的坚实品质。 三星笔记本特点:1靓丽时尚,外观高雅。2 LED 背光液晶屏。3超长电池使用时间。4采用INTEL迅弛2平台技术。5安全保密性。6丰富端口,无限扩展。7银离子技术造就“无菌”笔记本电脑 二、市场现状分析及营销目标确定 (一)市场现状 近年来,国内笔记本的价格屡创新低,从2003年集体提出的万元笔记本概念,到了2004年变成了众厂商在6999元上的低价角力,延续到现在更拉低到了4999元、3999元,甚至出现2000多元的低价记录。 综观2009年,国内笔记本市场依然保持了迅猛的增长势头,出货量不断攀升,“宽屏”、“轻薄”、“net-book”等亮点继续闪现,焦点事件和新品频繁发布更是几乎贯穿全年。笔记本电脑的主流价位处于5000-8000元价格区间。从新蓝率先推出了3999元的笔记本,燃起了低价战火,神舟不甘落后,不仅价格直追,而且发布了多款产品。作为回应,各大厂商也开始了低价运动,联想旭日150C 在上半年降价到5999元,戴尔的低端产品也在不断涌出,不乏4999和5999元的机型。而目前惠普、东芝、宏基和华硕也已经将价格触角伸到了4999元价位。就连Thinkpad也推出了4999元的产品。而一向主攻时尚高端市场的索尼也把12英寸轻薄机型拉下了万元大关。再加上长城、方正、同方、TCL等国内品牌接

开题报告——基于单片机的锂离子电池电量检测系统毕业设计论文

(此文档为word格式,下载后您可任意编辑修改!) 南昌工程学院 09 级毕业(设计)论文开题报 告 机械与电气工程学院系(院)电气工程及其自动化专 业 题目基于单片机的锂离子电池电量检测系统设计 班级09电气工程及其自动化(1)班 学号 指导教师饶繁星

日期2013 年 1 月 4 日 南昌工程学院教务处订制

题目:基于单片机的锂离子电池电量检测系统设计 一、选题的依据及课题的意义 随着手机、数码相机、摄像机、手提电脑、音频视频播放器等便携式电子设备的迅猛发展,由于其便携性的特点,便携式设备必须由电池来进行供电。目前,便携式仪表的主流供电电池有铅酸电池,镍镉电池,镍氢电池,锂电池和锂聚合物电池等。与其它主流可充电电池相比,具有高单体电池电压、高功率密度、长循环寿命、无记忆效应、低自放电率等优点。锂电池是指以锂为负极材料的化学电池的总称,大致可分为两类:锂金属电池和锂离子电池。锂离子电池不含有金属态的锂,该类电池具有较高能量质量比和能量体积比。 为了提高电池的使用率及全面掌握电池的状态,大多数设备在应用场合需要显示电池组的剩余电量信息,以供使用者明确电池组的工作状态,及时对电池组进行充电。在电池放电过程中,电池电压与剩余电量、工作时间之间并不是线性关系,所以并不能简单地采用电压采样、函数计算剩余电量。针对该要求,设计了一种基于单片机的锂离子电池电量检测系统,该检测系统的设计对全面掌握锂离子电池的电量状态,提高其利用率具有现实意义。本设计的研究成果若能广泛应用于便携式电子产品,为人类日常生活和生活质量的提高有着深远的意义。

二、研究概况及发展趋势综述 锂电池常用的电量检测方法有两种,一种是利用库仑计,根据电池工作的电流与时间进行计算出电池的实际容量,此种检测方法是最准确的检测方法,一般用的芯片有TI,美信等电池管理芯片,但是成本太高,调试复杂。另一种方法是利用电池工作的电压曲线来分析出电池的容量,这种方式比较简单,成本也低,由于直接采用比较器如LM339,LM324等,检测精度低,检测相对很不准确,温漂大,功耗大。 在满足要求的前提下,本设计尽可能采用简单的锂离子电池电量检测方案,提出的基于单片机的锂离子电池电量检测方案,抗干扰能力强,并且可以实现对锂离子电池电量的高精度检测。 在本设计方案中,没有考虑电池老化等复杂因素对电量检测精度产生的负面影响,所以检测结果稍有误差。未来在要求更高精度的锂离子电池电量检测应用中,该检测系统必须考虑这些复杂问题对检测精度的影响,还需要做进一步的改进,让检测精度提高一个水平。

(整理)三星笔记本的BIOS设置.

设置BIOS时常用按键及其功能:F1键查看设置程序的帮助;↑↓键用于移动光标;←→改变设置程序的基本选项菜单;F5/F6键用于改变菜单项的值;F9键可以加载设置程序的默认设置;ESC键用于返回上级菜单或转到“Exit”菜单;Enter键用于选中菜单项或进入子菜单;F10键可以保存更改并退出设置程序。 一、Main菜单;(用于更改基本系统和环境设置) System Time [12:38:53]设置系统时间System Date [02/08/2009]设置系统日期 IDE Channed 0 Master FUJITSU MH22160BH G2-(S1)本本的硬盘型号 CPU Type Intel(R) Atim(TM) CPU N270本本所用CPU类型 CPU Speed 1.60GHzCPU频率 Total Memory 1024MB本本的内存容量 BIOS Version 04CABIOS版本号 MICOM Version 04CAMICOM设备版本号 二、Advanced菜单:(用于配置有关计算机周边设备和芯片组的高级功能) Hyperthreading: [Enabled] [Disabled] 打开关闭超线程 Processor Power Management: [Enabled]打开关闭处理器电源管理 Legacy USB Support [Enabled]支持包 括USB1.1在内的USB设备 Large Disk Access Mode [DOS] [Other]大型磁盘访问模式支持,默认为DOS EDB (Execute Disable Bit) [Enabled] Execute Disable Bit是Intel在新一代CPU中引入的一项硬件特性,它能帮助CPU在某些基于缓冲区溢出的恶意攻击下,实现自我保护,从而避免诸如“冲击波”之类病毒的恶意攻击,“Execute Disable Bit”需Windows XP SP2及以上系统的配合才能正常工作。 Internal LAN [Enabled] 打开关闭内置有线网卡 Touch Pad Mouse [Enabled]打开关闭触摸板CPU Power Saving Mode [Enabled]打开关闭CPU电源保护管理模式

电池电量检测芯片

电池电量检测芯片 时间:2011-12-17 22:29:42来源:作者: 电池电量监测计就是一种自动监控电池电量的IC,其向做出系统电源管理决定的处理器报告监控情况。一个不错的电池电量监测计至少需要一些测量电池电压、电池组温度和电流的方法、一颗微处理器、以及一种业经验证的电池电量监测计算法。bq2650x 和 bq27x00 均为完整的电池电量监测计,其拥有一个用于电压和温度测量的模数转换器(ADC) 以及一个电流和充电感应ADC。这些电池电量监测计还拥有一颗运行TI 电池电量监测计算法的内部微处理器。这些算法将对锂离子(Li-ion)电池的自放电、老化、温度和放电率进行补偿。该微处理器可以使主机系统处理器不用进行没完没了的计算。 电池电量监测计提供了诸如?电量剩余状态?等信息,同时bq27x00 系统还提供了?剩余运行时间?信息。主机在任何时候都可以询问到这种信息,并由主机来决定是通过LED 还是通过屏幕显示消息来通知最终用户有关电池的信息。由于系统处理器只需要一个12C 或一个HDQ 通信驱动,因此使用电池电量监测计非常简单。 电池组电路描述 图1 描述了电池组中的应用电路。根据所使用电池电量监测计IC 的不同,电池组将至少具有三到四个可用外部终端。 图1 典型的应用电路 VCC 和BAT 引脚将接入电池电压,用于IC 功率和电池电压的测量。一只低阻值感应电阻被安装在电池的接地端,以使感应电阻两端的电压能够被电池电量监测计的高阻抗SRP 和SRN 输入监控到。流经感应电阻的电流有助于我们确定电池的已充电量或已放电量。在选择感应电阻值时,设计人员必须考虑到其两端的电压不应该超过100 mV。太小的电阻值在低电流条件下可能会带来误差。电路板布局必须确保SRP 和SRN 到感应电阻的连接尽可能地靠近感应电阻的各个端点;即Kelvin 连接测量。

电池电量检测方法及原理 pdf

FUEL GAUGE 电池电量检测方法及原理锂电池具有高存储能量、寿命长、重量轻和无记忆效应等优点,已经在现行便携式设备中得到了广泛的使用,尤其是在手机、多媒体播放器、GPS终端等消费类电子设备中。这些设备不但单纯地只是支持单一的通讯功能,还支持流媒体播放和高速的无线发送和接收等等功能。随着越来越多功能的加入且要获得更长单次充电的使用时间,便携式设备中锂电池的容量也不断地增大,以智能手机为例,主流的电池容量已经800mAH增长到现在1500mAH,并且还有继续增长的趋势。 随着大容量电池的使用,如果设备能够精确的了解电池的电量,不仅能够很好地保护了电池,防止其过放电,同时也能够让用户精确地知道剩余电量来估算所能使用的时间,及时地保存重要数据。因此,在PMP和GPS中,电量计不断加入到设备中,并且电量计也在智能手机中得到了应用,尤其是在一些Windows Mobile操作系统的智能手机中,如图1所示,电池电量的显示已由原来的柱状图变为了数字显示。 本文介绍和比较三种种不同电量计的实现方法,并且以意法半导体的STC3100电池监控IC为例,在其Demo实现了1%精度的电池精度计量。 (a)柱状图电量显示(b)数字精确电量显示 图1 Windows Mobile 手机中电量计量 1,电量计的实现方法和分类。 据统计,现行设备中有三种电量计,分别是: 直接电池电压监控方法,也就是说,电池电量的估计是通过简单地监控电池的电压得来的,尽管该方法精度较低和缺乏对电池的有效保护,但其简单易行,所以在现行的设备中得到最广泛的应用。然而锂电池本身特有的放电特性,如图2所示。不难从中发现,电池的电量与其电压不是一个线性的关系,这种非线性导致电压直接检测方法的不准确性,电量测量精度超过20%。电池电量只能用分段式显示,,如图1.a所示,无法用数字显示精确的电池电量。手机用户经常发现,在手机显示还有两格电的时候,电池的电量下降得非常快,也就是因为这时候电池已经进入Phase3。 图2 锂电池放电曲线

锂电池充电器LCD电量显示驱动方案

中国锂电行业门户 锂电池充电器LCD电量显示驱动方案 随着便携式应用的高速发展,如手机和数码相机等产品配套的锂电池充电器也需要跟上便携式应用的发展脚步。在各种各样的锂电池充电器中,座充和万能充电器是目前最受欢迎的产品。据统计,这两种产品在世界范围内每月的销售量高达3千万个。 目前的充电器应用中,比较普遍的显示功能是通过LED或LCD灯的亮、暗、闪烁等状态来表 示是否充电以及电池是否充饱。在充电的过程中,客户只能看到两个状态,充满和未充满。而无 法显示电池更加详细的电量信息,在遇到突发事件时,这个缺点经常带来很大的麻烦。比如,当 充电器使用者急于了解电池何时能充满,或者电池目前充电到哪个阶段。有些情况下,知道电池 已经充到20%还是80%对使用者来说是相当重要的。 针对上述问题,思旺电子开发出一款为锂电池充电器(万能充/座充)设计的配套LCD/LED 驱动电路SE9120,在显示电池电量的同时还能显示充电进度和电池充饱状态。下文将重点介绍 SE9120的主要技术特点。 SE9120主要功能 SE9120主要功能包括电池电量检测及充电进度显示功能,能够通过电路内部自动判断电池极性,自动切换到电池正确的极性,解决用户在装载电池时需要人工判断电池极性的问题。在检测 电池极性的同时,SE9120能够检测电池的电量,同时SE9120是第一款创新的用4位分段显示的方法,驱动4柱LCD屏,使用户可以查看电池电量的集成电路。配合SE9020的充电器方案应用中,在充电的同时也可以显示电池充电的进度,用4位分段显示电池充电的电量变化及最终充饱的状态。 SE9120是一款高智能的数模混合电路,该芯片采用数模混合方式,通过4位柱状显示LCD屏 或LED屏,在显示电池电量的同时还能显示充电进度和电池充饱状态。SE9120的内部结构如图1 所示。主要包括五大功能模块:基准电压单元;电池电量检测单元;显示逻辑单元;LCD驱动单元;LED背光驱动单元。

笔记本电池电量显示原理

电池电量计的原理与计算(图) [日期:2008-1-11] 来源:今日电子/21IC 作者:Maxim公司陈祝清[字体:大中小] 充电电池简介 目前大量应用的充电电池包括铅酸蓄电池、镍镉/镍氢电池、锂离子/锂聚合物电池。这几种电池的特性如表1所示。 铅酸蓄电池容量大,内阻低(一般400Ah的2V蓄电池内阻大约为0.5mΩ),可进行大电流放电,但是笨重且体积庞大、不便于携带,常用在汽车和工业场合。其电极材料含铅,可对环境造成极大污染。铅酸蓄电池对充电控制的要求不高,可以进行浮充。 镍镉电池容量较大,内阻低、放电电压平稳,适合作为直流电源。与其他种类的电池相比,镍镉电池耐过充电和过放电,操作简单方便,但是具有记忆效应,应尽量在完全放电之后进行充电。电极材料含有剧毒重金属镉,随着环保要求的提高,其市场份额越来越小。 镍氢电池是在镍镉电池的基础上发展而来的,采用金属化氢替代有毒的镉,在大部分场合可以替代镍镉电池。其容量约为镍镉电池的1.5~2倍,且没有记忆效应。相对于镍氢电池,它对充电控制的要求较高,目前大量使用在一些便携电子产品中。 锂离子电池是目前最常见的二次锂电池,拥有高能量密度,与高容量镍镉/镍氢电池相比,其能量密度为前者的 1.5~2倍。其平均使用电压为3.6V,是镍镉电池、镍氢电池的3倍。它的内阻较大,不能进行大电流充放电,并且需要精确的充放电控制,以防止电池损坏并达

到最佳使用性能。锂离子电池广泛使用在各种便携电子产品中,包括手机、笔记本电脑、m p3等。 锂聚合物电池是一种新型的二次锂电池,具有更大的容量;内阻较低,允许10C充放电电流。它和锂离子电池一样需要精确的充放电控制。目前,锂聚合物电池主要用于一些需要大电流充放电的应用中,如动力/模型汽车等。 充电电池容量估算方法 在多数便携应用中,都需要随时了解电池剩余容量以估算电池使用时间。 图1 简化的电池电量计框图 最早应用的方法是通过监视电池开路电压来获得剩余容量。这是因为电池端电压和剩余容量之间有一个确定的关系,测量电池端电压即可估算其剩余容量。这种方法的局限是:1)对于不同厂商生产的电池,其开路电压与容量之间的关系各不相同。2)只有通过测量电池空载时的开路电压才能获得相对准确的结果,但是大多数应用都需要在运行中了解电池的剩余容量,此时负载电流在内阻上产生的压降将会影响开路电压测量精度。而电池内阻的离散性很大,且随着电池老化这种离散性将变得更大,因此要补偿该压降带来的误差将十分困难。综上所述,通过开路电压来实时估算电池剩余容量的方法在实际应用中无法达到足够的精度,只能提供一个大致的参考值。 另一种大量应用的方法是通过测量流入/流出电池的净电荷来估算电池剩余容量。这种方法

TP4056锂电池充电芯片数据手册

应用 ·移动电话、PDA ·MP3、MP4播放器 ·数码相机 ·电子词典 ·GPS ·便携式设备、各种充电器 描述 TP4056是一款完整的单节锂离子电池采用恒定电流/恒定电压线性充电器。其底部带有散热片的SOP8封装与较少的外部元件数目使得TP4056成为便携式应用的理想选择。TP4056可以适合USB 电源和适配器电源工作。 由于采用了内部PMOSFET 架构,加上防倒充电路,所以不需要外部隔离二极管。热反馈可对充电电流进行自动调节,以便在大功率操作或高环境温度条件下对芯片温度加以限制。充电电压固定于4.2V ,而充电电流可通过一个电阻器进行外部设置。当充电电流在达到最终浮充电压之后降至设定值1/10时,TP4056将自动终止充电循环。 当输入电压(交流适配器或USB 电源)被拿掉时,TP4056自动进入一个低电流状态,将电池漏电流降至2uA 以下。TP4056在有电源时也可置于停机模式,以而将供电电流降至55uA 。TP4056的其他特点包括电池温度检测、欠压闭锁、自动再充电和两个用于指示充电、结束的LED 状态引脚。 特点 ·高达1000mA 的可编程充电电流 ·无需MOSFET 、检测电阻器或隔离二极管 ·用于单节锂离子电池、采用SOP 封装的完整线性充电器 ·恒定电流/恒定电压操作,并具有可在无过热危险的情况下实现充电速率最大化的热调节功能 ·精度达到±1.5%的4.2V 预设充电电压 ·用于电池电量检测的充电电流监控器输出 ·自动再充电 ·充电状态双输出、无电池和故障状态显示 ·C/10充电终止 ·待机模式下的供电电流为55uA ·2.9V涓流充电器件版本 ·软启动限制了浪涌电流 ·电池温度监测功能 ·采用8引脚SOP-PP 封装。 完整的充电循环完整的充电循环((1000mAh 电池电池)) 绝对最大额定值 ·输入电源电压(V CC ):-0.3V~8V ·PROG :-0.3V~V CC +0.3V ·BAT :-0.3V~7V ·:-0.3V~10V ·:-0.3V~10V ·TEMP :-0.3V~10V ·CE :-0.3V~10V ·BAT 短路持续时间:连续 ·BAT 引脚电流:1200mA ·PROG 引脚电流:1200uA ·最大结温:145℃ ·工作环境温度范围:-40℃~85℃ ·贮存温度范围:-65℃~125℃ ·引脚温度(焊接时间10秒):260℃

锂电池容量自测方法

锂电池容量自测方法 一.锂电池容量自测 CECT9898贴牌手机锂电池标称容量3800mAh,其电池体积与其它品牌手机1500mAh电池体积相当。本人利用手头现有的五金|工具和专业知识,自行对本人持有的CECT9898贴牌手机的电池进行一次容量测试。 根据GB/T18287-2000《蜂窝电话用锂离子电池总规范》,手机电池容量可以简单叙述为:在20±5℃温度下,将充满电的电池按五小时率放电至终止电压(2.75V)时的所提供的电量。基于此定义,自行设计、制作放电测试电路。 放电电路的主体为恒流源,3V辅助电源|稳压器采用干电池。先用另一手机电池将电路调试好,再断开干电池(恒流源的偏置断开),放电电流变为零,然后换上刚充满电的CECT9898手机锂电池,连通干电池,开始计时、测试。 测试于2007年11月23日晚进行,环境温度16℃。测试的电池(S/N:HSY07102647)已经过3次完全充放电,每次充电不少于12小时,放电至手机自动关机。电池前二天用手机自带座充充电12小时,测试前再次用手机充电二十分钟,手机显示已充满。用DT9206数字万用表自测座充充电电压4.20V,电池充满后空载电压4.17V。 由于电压从2.80V跌落到2.75V的时间太块,来不及记录,因此表中最后一分钟

数据不列入计算。根据电池容量定义,电池容量为电流-时间特性图中的斜阴影部分面积,约等于1680mAh(毫安时)。 本测试中引起误差的主要原因有: 1.放电时间(实际266分钟)略少于国家标准规定的5小时,即放电电流略偏大,考虑到电池的内阻因素,会使测试结果略偏小。 2.恒流源精度不够,低于国标要求(电流变化1%以内),主要系晶体管温度变化引起。 3.电流表精度低于国标要求(应≤0.5级精度) 4.电池充电方式与国标要求稍有区别(国标要求充电时间不能大于8小时),但满足使用中的电池最大容量条件。 基于此,此次个人检测该电池容量为1700mAh左右,远低于标称容量3800mAh。 说明,本人保证以上测试数据的真实性,但本测试仅作为个人行为,其测试原理、过程、结论仅为个人看法,不作为判断合格依据。 二.电流自测

锂电池充电电路详解

锂电池充电电路图 锂电池是继镍镉、镍氢电池之后,可充电电池家族中的佼佼者.锂离子电池以其优良的特性,被广泛应用于: 手机、摄录像机、笔记本电脑、无绳电话、电动工具、遥控或电动玩具、照相机等便携式电子设备中。 一、锂电池与镍镉、镍氢可充电池: 锂离子电池的负极为石墨晶体,正极通常为二氧化锂。充电时锂离子由正极向负极运动而嵌入石墨层中。放电时,锂离子从石墨晶体内负极表面脱离移向正极。所以,在该电池充放电过程中锂总是以锂离子形态出现,而不是以金属锂的形态出现。因而这种电池叫做锂离子电池,简称锂电池。 锂电池具有:体积小、容量大、重量轻、无污染、单节电压高、自放电率低、电池循环次数多等优点,但价格较贵。镍镉电池因容量低,自放电严重,且对环境有污染,正逐步被淘汰。镍氢电池具有较高的性能价格比,且不污染环境,但单体电压只有1.2V,因而在使用范围上受到限制。 二、锂电池的特点: 1、具有更高的重量能量比、体积能量比; 2、电压高,单节锂电池电压为3.6V,等于3只镍镉或镍氢充电电池的串联电压; 3、自放电小可长时间存放,这是该电池最突出的优越性; 4、无记忆效应。锂电池不存在镍镉电池的所谓记忆效应,所以锂电池充电前无需放电; 5、寿命长。正常工作条件下,锂电池充/放电循环次数远大于500次; 6、可以快速充电。锂电池通常可以采用0.5~1倍容量的电流充电,使充电时间缩短至1~2小时; 7、可以随意并联使用; 8、由于电池中不含镉、铅、汞等重金属元素,对环境无污染,是当代最先进的绿色电池; 9、成本高。与其它可充电池相比,锂电池价格较贵。 三、锂电池的内部结构: 锂电池通常有两种外型:圆柱型和长方型。 电池内部采用螺旋绕制结构,用一种非常精细而渗透性很强的聚乙烯薄膜隔离材料在正、负极间间隔而成。正极包括由锂和二氧化钴组成的锂离子收集极及由铝薄膜组成的电流收集极。负极由片状碳材料组成的锂离子收集极和铜薄膜组成的电流收集极组成。电池内充有有机电解质溶液。另外还装有安全阀和PTC元件,以便电池在不正常状态及输出短路时保护电池不受损坏。 单节锂电池的电压为3.6V,容量也不可能无限大,因此,常常将单节锂电池进行串、并联处理,以满足不同场合的要求。字串5 四、锂电池的充放电要求; 1、锂电池的充电:根据锂电池的结构特性,最高充电终止电压应为4.2V,不能过充,否则会因正极的锂离子拿走太多,而使电池报废。其充放电要求较高,可采用专用的恒流、恒压充电器进行充电。通常恒流充电至4.2V/节后转入恒压充电,当恒压充电电流降至100mA 以内时,应停止充电。 充电电流(mA)=0.1~1.5倍电池容量(如1350mAh的电池,其充电电流可控制在135~2025mA之间)。常规充电电流可选择在0.5倍电池容量左右,充电时间约为2~3小时。 2、锂电池的放电:因锂电池的内部结构所致,放电时锂离子不能全部移向正极,必须保留一部分锂离子在负极,以保证在下次充电时锂离子能够畅通地嵌入通道。否则,电池寿命就相应缩短。为了保证石墨层中放电后留有部分锂离子,就要严格限制放电终止最低电压,也就是说锂电池不能过放电。放电终止电压通常为3.0V/节,最低不能低于2.5V/节。电池放

锂电池线性充电管理芯片LTC4065及其应用

锂电池线性充电管理芯片LTC4065及其应用 摘要锂电池具有体积小、能量密度高、无记忆效应、循环寿命高、高电压电池和自放电率低等优点,近年来已经成为微型移动终端设备的首选电源。本文介绍了基于LTC4065芯片的线性充电管理方案,仅需要非常少的外围元件配合,就可以实现低成本、超小尺寸的单节锂电池充电管理。 关键词锂电池充电管理LTC4065 SG2003 随着移动计算技术和无线通信技术的发展,微型移动终端设备在移动数据采集、传输、处理及个人信息服务等领域得到越来越多的应用。锂电池因其体积小、能量密度高、无记忆效应、循环寿命高、高电压电池和自放电率低等优点,近年来已经成为微型移动终端设备的首选电源。锂电池的特性以及应用环境的需求,对微型移动终端设备充电方案的设计提出了更高的要求。因此在充电方案的设计中需要综合考虑成本、体积、噪声、效率等因素。 LTC4065是一款用于单节锂电池的完整恒定电流/恒定电压线性充电管理芯片,可提供高达750 mA且准确度为5%的可设置的充电电流,并支持直接使用USB端口对单节锂电池进行充电。同时其热反馈功能可调节充电电流,以便在大功率工作或高环境温度条件下对芯片温度加以限制,确保安全工作。由于采用了内部MOSFET架构,因此无需使用外部检测电阻器或隔离二极管。很少的外部元件数目加上其2 mm×2 mm DFN封装,使得LTC4065尤其适合无线PDA、蜂窝电话、无线传感器终端等应用。功能齐全的LTC4065还包括自动再充电、低电池电量充电调节、软启动等丰富功能。 1 LTC4065的引脚功能 LTC4065采用了热处理能力较强的6引脚小外形封装(DFN),且实现产品无铅化,底部采用裸露衬垫,直接焊接至PCB以实现电接触和额定散热性能。引脚排列如图1所示。 各引脚功能如下: 引脚1,GND,接地端。 引脚2,CHRG,漏极开路充电状态输出。充电状态指示引脚具有三种状态:下拉、2 Hz 脉动和高阻抗状态。该输出可以被用作一个逻辑接口或一个LED驱动器。对电池进行充电时,有一个内部N沟道MOSFET将GHRG引脚拉至低电平。当充电电流降至全标度电流的10%时,CHRG引脚被强制为高阻抗状态。如果电池电压处于2.9 V以下的持续时间达到充电时间的1/4,则认为电池失效,而且CHRG引脚将以2 Hz的频率脉动。 引脚3,BA T,充电电流输出。该引脚向电池供应充电电流,并将最终浮动电压调节至4.2 V。该引脚上的一个内部精确电阻分压器负责设定此浮动电压,并在停机模式时断接。 引脚4,VCC,正输入电源。该引脚向充电器供电。VCC的变化范围是3.75~5.5 V。该引脚应通过一个最小1μF的电容器进行旁路。当VCC处于BA T引脚电压的32 mV以内时,LTC4065进入停机模式,从而使IBA T降至约1μA。 引脚5,EN,使能输入引脚。把该引脚拉至手动停机门限(一般为O.82 V)以上,将把LTC4065置于停机模式。在停机模式中,LTC4065的电源电流低于20μA。使能为缺省状态,但不用时应将该引脚连至GND。 引脚6,PROG,充电电流设置和充电电流监视引脚。充电电流是通过连接一个精度为1%的接地电阻器RPROG来设置的。 2 工作原理 LTC4065主要是为实现对单节电池充电而设计的线性电池充电管理芯片。该芯片利用其内部功率MOSFET对电池进行恒流和恒压充电。充电电流可利用外部电阻编程设定,最大

锂电池电量关系

锂电池电压电量关系 锂离子电池电压与容量的关系及容量计算方法 锂离子电池电压与容量的关系及容量计算方法 锂离子电池开路电压与电池容量的对应关系分析 先给出一个表格:如下,百分比是电池的剩余容量,右侧是对应的电池的开路电压(OCV). 100%----4.20V 90%-----4.06V 80%-----3.98V 70%-----3.92V 60%-----3.87V 50%-----3.82V 40%-----3.79V 30%-----3.77V 20%-----3.74V 10%-----3.68V 5%------3.45V 0%------3.00V 以下是这个表格的来龙去脉. 一.首先几个概念解释: 1.OCV:open circuit voltage的缩写,开路电压. 2.锂离子电池:本篇讨论的是目前手机上普遍采用的以4.2V恒压限制充电的单节锂离子电池. 3.mAh:电池容量的计量单位,实际就是电池中可以释放为外部使用的电子的总数. 折合物理上的标准的单位就是大家熟悉的库仑. 库仑的国际标准单位为电流乘于时间的安培秒. 1mAh=0.001安培*3600秒=3.6安培秒=3.6库仑 mAh不是标准单位,但是这个单位可以很方便的用于计量和计算. 比如一颗900mAh的电池可以提供300mA恒流的持续3小时的供电能力. 4.fuel gauging:电量计量,原意是油量计量,后在电化学上被引用为电量计量的意思. 最科学的并且是最原始的电池的电量计量方法是对流经的电子流量的统计.即库仑计(coulomb count). ★要想获得锂离子电池的电量使用的正确情况,只有用库仑计.就象大家家里面的水量计量用的水表的作用原理.要计算流经的电荷的多少才能获得锂离子电池的电量使用情况.

LTC2943 具温度电压和电流测量功能的多节电池电量测量芯片

LTC2943 - 具温度、电压与电流测量功能的多节电池电量测量芯片特点 ?可测量累积的电池充电与放电电量 ?3、6V 至 20V 工作范围可适合多种电池应用 ?14 位 ADC 负责测量电池电压、电流与温度 ?1% 电压、电流与充电准确度 ?±50mV 检测电压范围 ?高压侧检测 ?适合任何电池化学组成与容量的通用测量 ?I2C / SMBus 接口 ?可配置警报输出 / 充电完成输入 ?静态电流小于120μA ?小外形 8 引脚 3mm x 3mm DFN 封装 典型应用

描述 LTC?2943 可测量便携式产品应用中的电池充电状态、电池电压、电池电流及其自身温度。其具有宽输入电压范围,因而可与高达 20V 的多节电池配合使用。一个精准的库仑计量器负责对流经位于电池正端子与负载或充电器之间的一个检测电阻器电流进行积分运算。电池电压、电流与温度利用一个内部 14位无延迟增量累加(No Latency ΔΣTM) ADC 来测量。测量结果被存储于可通过内置 I2C / SMBus 接口进行存取的内部寄存器中。 LTC2943 具有针对所有 4 种测量物理量的可编程高门限与低门限。如果超过了某个编程门限,则该器件将采用 SMBus 警报协议或通过在内部状态寄存器中设定一个标记来传送警报信号。LTC2943 仅需采用单个低阻值检测电阻器以设定测量电流范围。 应用 ?电动工具 ?电动自行车

?便携式医疗设备 ?视频摄像机 程序: #include #include #include "Linduino、h" #include "LT_I2C、h" #include "UserInterface、h" #include "QuikEval_EEPROM、h" #include "LTC2943、h" #include

相关主题
文本预览
相关文档 最新文档