当前位置:文档之家› 蛋白质与氨基酸的关系(新、选)

蛋白质与氨基酸的关系(新、选)

蛋白质与氨基酸的关系(新、选)
蛋白质与氨基酸的关系(新、选)

一、蛋白质与氨基酸的关系

一般认为,动物蛋白质的营养实质上是氨基酸的营养。只有当组成蛋白质的各种氨基酸同时存在且按需求比例供给时,动物才能有效地合成蛋白质。饲粮中缺乏任何一种氨基酸,即使其他必需氨基酸含量充足, 体蛋白质合成也不能正常进行。同样,体蛋白合成潜力越大的动物(如高瘦肉型猪),对氨基酸的需求量就越高。

畜禽饲粮中必需氨基酸的需要量取决于饲粮中的粗蛋白水平。例如, 仔猪饲粮中蛋白质含量由10%增至22%时, 饲粮赖氨酸的需要量则从0.6 % 增至1.2 % 。另一方面,饲粮粗蛋白质需要量取决于氨基酸的平衡状况。一般而言,依次平衡第一至第四限制性氨基酸后,饲粮的粗蛋白质需要量可降低2-4个百分点。

二、氨基酸间的相互关系

组成蛋白质的各种氨基酸在机体代谢过程中, 亦存在协同、转化、替代和拮抗等关系。

蛋氨酸可转化为胱氨酸,也可能转化为半胱氨酸, 但其逆反应均不能进行。因此, 蛋氨酸能满足总含硫氨基酸的需要, 但是蛋氨酸本身的需要量只能由蛋氨酸满足。半胱氨酸和胱氨酸间则可以互变。苯丙氨酸能满足酪氨酸的需要, 因为它能转化为酪氨酸, 但酪氨酸不能转化为苯丙氨酸。由于上述关系,在考虑必需氨基酸的需要时, 可将蛋氨酸与胱氨酸、苯丙氨酸与酪氨酸合并计算。

氨基酸间的拮抗作用发生在结构相似的氨基酸间, 因为它们在吸收过程中共用同一转移系统, 存在相互竞争。最典型的具有拮抗作用的氨基酸是赖氨酸和精氨酸。饲粮中赖氨酸过量会增加精氨酸的需要量。当雏鸡饲粮中赖氨酸过量时, 添加精氨酸可缓解由于赖氨酸过量所引起的失衡现象。亮氨酸与异亮氨酸因化学结构相似, 也有拮抗作用。亮氨酸过多可降低异亮氨酸的吸收率, 使尿中异亮氨酸排出量增加。此外, 精氨酸和甘氨酸可消除由于其他氨基酸过量所造成的有害作用, 这种作用可能与它们参加尿酸的形成有关。

一、蛋白质与氨基酸的关系

一般认为,动物蛋白质的营养实质上是氨基酸的营养。只有当组成蛋白质的各种氨基酸同时存在且按需求比例供给时,动物才能有效地合成蛋白质。饲粮中缺乏任何一种氨基酸,即使其他必需氨基酸含量充足, 体蛋白质合成也不能正常进行。同样,体蛋白合成潜力越大的动物(如高瘦肉型猪),对氨基酸的需求量就越高。

畜禽饲粮中必需氨基酸的需要量取决于饲粮中的粗蛋白水平。例如, 仔猪饲粮中蛋白质含量由10%增至22%时, 饲粮赖氨酸的需要量则从0.6 % 增至1.2 % 。另一方面,饲粮粗蛋白质需要量取决于氨基酸的平衡状况。一般而言,依次平衡第一至第四限制性氨基酸后,饲粮的粗蛋白质需要量可降低2-4个百分点。

二、氨基酸间的相互关系

组成蛋白质的各种氨基酸在机体代谢过程中, 亦存在协同、转化、替代和拮抗等关系。

蛋氨酸可转化为胱氨酸,也可能转化为半胱氨酸, 但其逆反应均不能进行。因此, 蛋氨酸能满足总含硫氨基酸的需要, 但是蛋氨酸本身的需要量只能由蛋氨酸满足。半胱氨酸和胱氨酸间则可以互变。苯丙氨酸能满足酪氨酸的需要, 因为它能转化为酪氨酸, 但酪氨酸不能转化为苯丙氨酸。由于上述关系,在考虑必需氨基酸的需要时, 可将蛋氨酸与胱氨酸、苯丙氨酸与酪氨酸合并计算。

氨基酸间的拮抗作用发生在结构相似的氨基酸间, 因为它们在吸收过程中共用同一转移系统, 存在相互竞争。最典型的具有拮抗作用的氨基酸是赖氨酸和精氨酸。饲粮中赖氨酸过量会增加精氨酸的需要量。当雏鸡饲粮中赖氨酸过量时, 添加精氨酸可缓解由于赖氨酸过量所引起的失衡现象。亮氨酸与异亮氨酸因化学结构相似, 也有拮抗作用。亮氨酸过多可降

低异亮氨酸的吸收率, 使尿中异亮氨酸排出量增加。此外, 精氨酸和甘氨酸可消除由于其他氨基酸过量所造成的有害作用, 这种作用可能与它们参加尿酸的形成有关。

一、蛋白质与氨基酸的关系

一般认为,动物蛋白质的营养实质上是氨基酸的营养。只有当组成蛋白质的各种氨基酸同时存在且按需求比例供给时,动物才能有效地合成蛋白质。饲粮中缺乏任何一种氨基酸,即使其他必需氨基酸含量充足, 体蛋白质合成也不能正常进行。同样,体蛋白合成潜力越大的动物(如高瘦肉型猪),对氨基酸的需求量就越高。

畜禽饲粮中必需氨基酸的需要量取决于饲粮中的粗蛋白水平。例如, 仔猪饲粮中蛋白质含量由10%增至22%时, 饲粮赖氨酸的需要量则从0.6 % 增至1.2 % 。另一方面,饲粮粗蛋白质需要量取决于氨基酸的平衡状况。一般而言,依次平衡第一至第四限制性氨基酸后,饲粮的粗蛋白质需要量可降低2-4个百分点。

二、氨基酸间的相互关系

组成蛋白质的各种氨基酸在机体代谢过程中, 亦存在协同、转化、替代和拮抗等关系。

蛋氨酸可转化为胱氨酸,也可能转化为半胱氨酸, 但其逆反应均不能进行。因此, 蛋氨酸能满足总含硫氨基酸的需要, 但是蛋氨酸本身的需要量只能由蛋氨酸满足。半胱氨酸和胱氨酸间则可以互变。苯丙氨酸能满足酪氨酸的需要, 因为它能转化为酪氨酸, 但酪氨酸不能转化为苯丙氨酸。由于上述关系,在考虑必需氨基酸的需要时, 可将蛋氨酸与胱氨酸、苯丙氨酸与酪氨酸合并计算。

氨基酸间的拮抗作用发生在结构相似的氨基酸间, 因为它们在吸收过程中共用同一转移系统, 存在相互竞争。最典型的具有拮抗作用的氨基酸是赖氨酸和精氨酸。饲粮中赖氨酸过量会增加精氨酸的需要量。当雏鸡饲粮中赖氨酸过量时, 添加精氨酸可缓解由于赖氨酸过量所引起的失衡现象。亮氨酸与异亮氨酸因化学结构相似, 也有拮抗作用。亮氨酸过多可降低异亮氨酸的吸收率, 使尿中异亮氨酸排出量增加。此外, 精氨酸和甘氨酸可消除由于其他氨基酸过量所造成的有害作用, 这种作用可能与它们参加尿酸的形成有关。

v

最新文件仅供参考已改成word文本。方便更改

检测蛋白质中氨基酸的含量的各种方法及优劣讨论

蛋白质中氨基酸的含量测定 组成蛋白质的基本单位是氨基酸,氨基酸通过脱水缩合形成肽链。蛋白质是由一条或多条多肽链组成的生物大分子,其含量测定是生化药品研究中最常用、最基本的分析方法之一。目前其常用的测定方法有凯氏定氮法、福林酚法、双缩脲法、BcA法、考马斯亮蓝法、紫外分光光度法及荧光法。 1凯氏定氮法 1.1 方法本法系依据蛋白质为含氮的有机化合物,当与硫酸和硫酸铜、硫酸钾一同加热消化时使蛋白质分解,分解的氨与硫酸结合生成硫酸铵。然后碱化蒸馏使氨游离,用硼酸液吸收后以硫酸滴定液滴定,根据酸的消耗量乘以氮转化为蛋白质的换算系数,即为蛋白质的含量。本法各国药典收载的方法一致。故参照《中国药典》2005年版三部[41附录方法,按纯蛋白类供试品及添加无机含氮物质及有机非蛋白质含氮物质的供试品分别拟定各测定方法。 1.2讨论 1.2.1 凯氏定氮法虽耗时较长,但它是蛋白质测定方法中最经典的测定方法,本法所测的结果为蛋白质绝对浓度而非相对浓度,可用于标准蛋白质含量的准确测定。 1.2.2 本法灵敏度较低,适用于O.2~2.o mg氮的测定,干扰少。 1.2.3 蛋白质是复杂的含氮有机化合物,一般蛋白质的含氮量为16%,故含氮量转化为蛋白质的系数为6.25。但由于不同蛋白质的结构差异,其换算系数会稍有区别,如乳制品为6.38,动物胶为5。65等,因此一些特殊蛋白质应在各论中相应说吩其转 化系数。 1.2.4 在本法附注中起草了非蛋白氮供试品溶液制备的两种常用方法用于非氮的测定,一般采用钨酸沉淀法,但当供试品中含有氨基酸(精氨酸)时,由于其会影响蛋白质的沉淀,故建议采用三氯醋酸沉淀法

蛋白质与氨基酸的关系

一、蛋白质与氨基酸的关系 一般认为,动物蛋白质的营养实质上是氨基酸的营养。只有当组成蛋白质的各种氨基酸同时存在且按需求比例供给时,动物才能有效地合成蛋白质。饲粮中缺乏任何一种氨基酸,即使其他必需氨基酸含量充足, 体蛋白质合成也不能正常进行。同样,体蛋白合成潜力越大的动物(如高瘦肉型猪),对氨基酸的需求量就越高。 畜禽饲粮中必需氨基酸的需要量取决于饲粮中的粗蛋白水平。例如, 仔猪饲粮中蛋白质含量由10%增至22%时, 饲粮赖氨酸的需要量则从0.6 % 增至1.2 % 。另一方面,饲粮粗蛋白质需要量取决于氨基酸的平衡状况。一般而言,依次平衡第一至第四限制性氨基酸后,饲粮的粗蛋白质需要量可降低2-4个百分点。 二、氨基酸间的相互关系 组成蛋白质的各种氨基酸在机体代谢过程中, 亦存在协同、转化、替代和拮抗等关系。 蛋氨酸可转化为胱氨酸,也可能转化为半胱氨酸, 但其逆反应均不能进行。因此, 蛋氨酸能满足总含硫氨基酸的需要, 但是蛋氨酸本身的需要量只能由蛋氨酸满足。半胱氨酸和胱氨酸间则可以互变。苯丙氨酸能满足酪氨酸的需要, 因为它能转化为酪氨酸, 但酪氨酸不能转化为苯丙氨酸。由于上述关系,在考虑必需氨基酸的需要时, 可将蛋氨酸与胱氨酸、苯丙氨酸与酪氨酸合并计算。 氨基酸间的拮抗作用发生在结构相似的氨基酸间, 因为它们在吸收过程中共用同一转移系统, 存在相互竞争。最典型的具有拮抗作用的氨基酸是赖氨酸和精氨酸。饲粮中赖氨酸过量会增加精氨酸的需要量。当雏鸡饲粮中赖氨酸过量时, 添加精氨酸可缓解由于赖氨酸过量所引起的失衡现象。亮氨酸与异亮氨酸因化学结构相似, 也有拮抗作用。亮氨酸过多可降低异亮氨酸的吸收率, 使尿中异亮氨酸排出量增加。此外, 精氨酸和甘氨酸可消除由于其他氨基酸过量所造成的有害作用, 这种作用可能与它们参加尿酸的形成有关。 一、蛋白质与氨基酸的关系 一般认为,动物蛋白质的营养实质上是氨基酸的营养。只有当组成蛋白质的各种氨基酸同时存在且按需求比例供给时,动物才能有效地合成蛋白质。饲粮中缺乏任何一种氨基酸,即使其他必需氨基酸含量充足, 体蛋白质合成也不能正常进行。同样,体蛋白合成潜力越大的动物(如高瘦肉型猪),对氨基酸的需求量就越高。 畜禽饲粮中必需氨基酸的需要量取决于饲粮中的粗蛋白水平。例如, 仔猪饲粮中蛋白质含量由10%增至22%时, 饲粮赖氨酸的需要量则从0.6 % 增至1.2 % 。另一方面,饲粮粗蛋白质需要量取决于氨基酸的平衡状况。一般而言,依次平衡第一至第四限制性氨基酸后,饲粮的粗蛋白质需要量可降低2-4个百分点。 二、氨基酸间的相互关系 组成蛋白质的各种氨基酸在机体代谢过程中, 亦存在协同、转化、替代和拮抗等关系。 蛋氨酸可转化为胱氨酸,也可能转化为半胱氨酸, 但其逆反应均不能进行。因此, 蛋氨酸能满足总含硫氨基酸的需要, 但是蛋氨酸本身的需要量只能由蛋氨酸满足。半胱氨酸和胱氨酸间则可以互变。苯丙氨酸能满足酪氨酸的需要, 因为它能转化为酪氨酸, 但酪氨酸不能转化为苯丙氨酸。由于上述关系,在考虑必需氨基酸的需要时, 可将蛋氨酸与胱氨酸、苯丙氨酸与酪氨酸合并计算。 氨基酸间的拮抗作用发生在结构相似的氨基酸间, 因为它们在吸收过程中共用同一转移系统, 存在相互竞争。最典型的具有拮抗作用的氨基酸是赖氨酸和精氨酸。饲粮中赖氨酸过量会增加精氨酸的需要量。当雏鸡饲粮中赖氨酸过量时, 添加精氨酸可缓解由于赖氨酸过量所引起的失衡现象。亮氨酸与异亮氨酸因化学结构相似, 也有拮抗作用。亮氨酸过多可降

知识点总结:蛋白质及氨基酸生化基础

蛋白质 ▲蛋白质的化学知识 历史 1.1838, Mulder发现了组成生物体的复杂含氮物。 2.1902, Fischer, Hofmeister同时提出肽键理论。(Nobel,1902) 3.1950, Pauling提出蛋白质的二级结构的基本单位:α-螺旋和β-折叠,肽键6个原子在同一平面。(Nobel, 1954) 4.1953, Sanger确定了牛胰岛素一级结构。(Nobel,1958) 5.1961, Anfinsen证明蛋白质的一级结构决定其三级结构, 利用核糖核酸酶的变性和复性 20种氨基酸–一级氨基酸, Primary amino acid ?缩写 丙氨酸(Ala),缬氨酸(Val),亮氨酸(Leu),异亮氨酸(Ile),脯氨酸(Pro),苯丙氨酸(Phe),色氨酸(Trp),蛋氨酸/甲硫氨酸(Met),甘氨酸(Gly),丝氨酸(Ser),苏氨酸(Thr),半胱氨酸(Cys),酪氨酸(Tyr),天冬酰胺(Asn),谷氨酰胺(Gln),赖氨酸(Lys),精氨酸(Arg),组氨酸(His),天冬氨酸(Asp),谷氨酸(Glu) 口诀: ?分类及特性: ?非极性,通过疏水作用稳定蛋白质的结构, Met, Val, Ala, Gly, Ile, Leu ?芳香族氨基酸,相对非极性,都能参与疏水作用。Trp, Try, Phe ?极性不带电:水中溶解度较大或更加亲水,可以与水形成氢键。Ser, Thr, Cry, Asn, Gln, Pro ?植物受到逆境条件的危害,积累Pro。积累一定量的溶质降低水势。Pro主要以游离状态广泛存在于植物中,水溶性最大的氨基酸,具有较强的水和能力。Pro大量积累,含量甚至高达百倍以上。 ?带正电和的三个碱性氨基酸,最为亲水,侧链上有第二个氨基,Arg有带正电的胍基,His有可带电的咪唑基。Lys ?旋光性与手性原子上的构型没有确定的关系。 ?氨基酸的理化性质 ?一般物理性质:无色晶体,熔点较高,溶解度各不同,在紫外有特征吸收的仅三个芳香族的氨基酸Trp、Tyr、Phe。测定280nm处的紫外吸收值。 ?两性电解质:同一氨基酸分子上可以同时解离携带正电荷和负电荷,被称为两性电解质ampholyte。氨基和羧基在不同的PH条件下表现出不同的解离状态。电荷总量为零时(净电荷为零),溶液的PH值为等电点 isoelectric point, pI. ? -氨基参与的反应 ?与亚硝酸反应(Van Slyke 定氮) ?与甲醛发生羟甲基化反应,直接测定氨基酸浓度。 ?烃基化反应(DNFB)法,二硝基氟苯法,桑格反应,Sanger reaction, 鉴定多肽N端氨基酸的重要方法 ?烃基化反应(PITC)法。Edman氨基酸顺序分析法。N端测序,苯异硫氰酸酯。能够不断重复循环,将肽链N端氨基酸逐一进行标记和解离。 ?酰基化反应(丹磺酰氯法),N端测序,丹磺酰-氨基酸有很强的荧光性质,DNS-Cl

蛋白质的性质和分类

蛋白质凭借游离的氨基和羧基而具有两性特征,在等电点易生成沉淀。不同的蛋白质等电点不同,该特性常用作蛋白质的分离提纯。生成的沉淀按其有机结构和化学性质,通过pH的细微变化可复溶。蛋白质的两性特征使其成为很好的缓冲剂,并且由于其分子量大和离解度低,在维持蛋白质溶液形成的渗透压中也起着重要作用。这种缓冲和渗透作用对于维持内环境的稳定和平衡具有非常重要的意义。 在紫外线照射、加热煮沸以及用强酸、强碱、重金属盐或有机溶剂处理蛋白质时,可使其若干理化和生物学性质发生改变,这种现象称为蛋白质的变性。酶的灭活,食物蛋白经烹调加工有助于消化等,就是利用了这一特性。 (二)蛋白质的分类 简单的化学方法难于区分数量庞杂、特性各异的这类大分子化合物。通常按照其结构、形态和物理特性进行分类。不同分类间往往也有交错重迭的情况。一般可分为纤维蛋白、球状蛋白和结合蛋白三大类。 1.纤维蛋白包括胶原蛋白、弹性蛋白和角蛋白。 (1) 胶原蛋白胶原蛋白是软骨和结缔组织的主要蛋白质,一般占哺乳动物体蛋白总量的30%左右。胶原蛋白不溶于水,对动物消化酶有抗性,但在水或稀酸、稀碱中煮沸,易变成可溶的、易消化的白明胶。胶原蛋白含有大量的羟脯氨酸和少量羟赖氨酸,缺乏半胱氨酸、胱氨酸和色氨酸。 (2) 弹性蛋白弹性蛋白是弹性组织,如腱和动脉的蛋白质。弹性蛋白不能转变成白明胶。 (3) 角蛋白角蛋白是羽毛、毛发、爪、喙、蹄、角以及脑灰质、脊髓和视网膜神经的蛋白质。它们不易溶解和消化,含较多的胱氨酸(14-15%)。粉碎的羽毛和猪毛,在15-20磅蒸气压力下加热处理一小时,其消化率可提高到70-80%,胱氨酸含量则减少5-6%。 2.球状蛋白 (1) 清蛋白主要有卵清蛋白、血清清蛋白、豆清蛋白、乳清蛋白等,溶于水,加热凝固。 (2) 球蛋白球蛋白可用5-10%的NaCl溶液从动、植物组织中提取;其不溶或微溶于水,可溶于中性盐的稀溶液中,加热凝固。血清球蛋白、血浆纤维蛋白原、肌浆蛋白、豌豆的豆球蛋白等都属于此类蛋白。 (3) 谷蛋白麦谷蛋白、玉米谷蛋白、大米的米精蛋白属此类蛋白。不溶于水或中性溶液,而溶于稀酸或稀碱。 (4) 醇溶蛋白玉米醇溶蛋白、小麦和黑麦的麦醇溶蛋白、大麦的大麦醇溶蛋白属此类蛋白。不溶于水、无水乙醇或中性溶液,而溶于70-80%的乙醇。 (5) 组蛋白属碱性蛋白,溶于水。组蛋白含碱性氨基酸特别多。大多数组蛋白在活细胞中与核酸结合,如血红蛋白的珠蛋白和鲭鱼精子中的鲭组蛋白。 (6) 鱼精蛋白鱼精蛋白是低分子蛋白,含碱性氨基酸多,溶于水。例如鲑鱼精子中的鲑精蛋白、鲟鱼的鲟精蛋白、鲱鱼的鲱精蛋白等。鱼精蛋白在鱼的精子细胞中与核酸结合。 球蛋白比纤维蛋白易于消化,从营养学的角度看,氨基酸含量和比例也较纤维蛋白更理想。 3. 结合蛋白 结合蛋白是蛋白部分再结合一个非氨基酸的基团(辅基)。如核蛋白(脱氧核糖核蛋白、核糖体),磷蛋白(酪蛋白、胃蛋白酶),金属蛋白(细胞色素氧化酶、铜蓝蛋白、黄嘌呤氧化酶),脂蛋白(卵黄球蛋白、血中β1-脂蛋白),色蛋白(血红蛋白、细胞色素C、黄素蛋白、视网膜中与视紫质结合的水溶性蛋白)及糖蛋白(γ球蛋白、半乳糖蛋白、甘露糖蛋白、氨基糖蛋白)。

最经典总结-组成蛋白质的氨基酸的结构及种类

考点一组成蛋白质的氨基酸及其种类(5年6考) 组成蛋白质的氨基酸的结构及种类 观察下列几种氨基酸的结构 (1)写出图中结构的名称 a.氨基; b.羧基。 (2)通过比较图中三种氨基酸,写出氨基酸的结构通式 (3)氨基酸的不同取决于R基的不同,图中三种氨基酸的R基依次为 (4)氨基酸的种类:约20种 ■助学巧记 巧记“8种必需氨基酸” 甲(甲硫氨酸)来(赖氨酸)写(缬氨酸)一(异亮氨酸)本(苯丙氨酸)亮(亮氨酸)色(色氨酸)书(苏氨酸) 注:评价蛋白质食品营养价值主要依据其必需氨基酸的种类和含量。

组成蛋白质的氨基酸的种类与结构 1.(海南卷)关于生物体内组成蛋白质的氨基酸的叙述,错误的是() A.分子量最大的氨基酸是甘氨酸 B.有些氨基酸不能在人体细胞中合成 C.氨基酸分子之间通过脱水缩合形成肽键 D.不同氨基酸之间的差异是由R基引起的 解析甘氨酸应是分子量最小的氨基酸,它的R基是最简单的氢。 答案 A 2.下图为氨基酸分子的结构通式,下列叙述正确的是() A.结构④在生物体内约有20种 B.氨基酸脱水缩合产生水,水中的氢来自于②和③ C.结构④中含有的氨基或羧基全部都参与脱水缩合 D.生物体内n个氨基酸形成一条多肽链需要n种密码子 解析①为氨基,③为羧基,④为侧链基团(R基)。构成人体氨基酸的种类约有20种,A正确;脱水缩合形成水,水中氢来自①③,B错误;R基中的氨基或羧基不参与脱水缩合,C错误;生物体内n个氨基酸形成一条多肽链需要n个密码子而不是需要n种密码子,D错误。 答案 A 解答本类题目的关键是熟记氨基酸的结构通式,如下图所示

找出氨基酸的共同体,即图中“不变部分”(连接在同一碳原子上的—NH2、—COOH和—H),剩下的部分即为R基。倘若找不到上述“不变部分”,则不属于构成蛋白质的氨基酸。

第一章蛋白质化学习题答案

(一)名词解释 1.两性离子:指在同一氨基酸分子上含有等量的正负两种电荷,又称兼性离子或偶极离子。 2.必需氨基酸:指人体(和其它哺乳动物)自身不能合成,机体又必需,需要从饮食中获得的氨基酸。 3. 氨基酸的等电点:指氨基酸的正离子浓度和负离子浓度相等时的pH值,用符号pI表示。 6.构型:指在立体异构体中不对称碳原子上相连的各原子或取代基团的空间排布。构型的转变伴随着共价键的断裂和重新形成。 7.蛋白质的一级结构:指蛋白质多肽链中氨基酸的排列顺序,以及二硫键的位置。 8.构象:指有机分子中,不改变共价键结构,仅单键周围的原子旋转所产生的原子的空间排布。一种构象改变为另一种构象时,不涉及共价键的断裂和重新形成。构象改变不会改变分子的光学活性。

9.蛋白质的二级结构:指在蛋白质分子中的局部区域内,多肽链沿一定方向盘绕和折叠的方式。 10.结构域:指蛋白质多肽链在二级结构的基础上进一步卷曲折叠成几个相对独立的近似球形的组装体。 11.蛋白质的三级结构:指蛋白质在二级结构的基础上借助各种次级键卷曲折叠成特定的球状分子结构的构象。 13.蛋白质的四级结构:指多亚基蛋白质分子中各个具有三级结构的多肽链以适当方式聚合所呈现的三维结构。 15.超二级结构:指蛋白质分子中相邻的二级结构单位组合在一起所形成的有规则的、在空间上能辨认的二级结构组合体。 17.范德华力:中性原子之间通过瞬间静电相互作用产生的一种弱的分子间的力。当两个原子之间的距离为它们的范德华半径之和时,范德华力最强。 18.盐析:在蛋白质溶液中加入一定量的高浓度中性盐(如硫酸氨),

使蛋白质溶解度降低并沉淀析出的现象称为盐析。 19.盐溶:在蛋白质溶液中加入少量中性盐使蛋白质溶解度增加的现象。 20.蛋白质的变性作用:蛋白质分子的天然构象遭到破坏导致其生物活性丧失的现象。蛋白质在受到光照、热、有机溶剂以及一些变性剂的作用时,次级键遭到破坏导致天然构象的破坏,但其一级结构不发生改变。 21.蛋白质的复性:指在一定条件下,变性的蛋白质分子恢复其原有的天然构象并恢复生物活性的现象。 22.蛋白质的沉淀作用:在外界因素影响下,蛋白质分子失去水化膜或被中和其所带电荷,导致溶解度降低从而使蛋白质变得不稳定而沉淀的现象称为蛋白质的沉淀作用。 23.凝胶电泳:以凝胶为介质,在电场作用下分离蛋白质或核酸等分子的分离纯化技术。 24.层析:按照在移动相(可以是气体或液体)和固定相(可以是液体或固体)之间的分配比例将混合成分分开的技术。

2018版高中生物人教版必修一学案:2.2.1 氨基酸及蛋白质的形成 含答案

第2节 生命活动的主要承担者——蛋白质 第1课时 氨基酸及蛋白质的形成 学习目标 1.能写出氨基酸的结构通式并说出其特点(重难点)。2.据图说出氨基酸的脱水缩合及蛋白质空间结构的形成过程(重难点)。 |基础知识| 一、氨基酸及其种类 1.氨基酸的作用 组成蛋白质的基本单位。 2.氨基酸 (1)结构通式: ①写出字母所代表的结构: a .氨基; b .羧基。 ②氨基酸的种类、性质不同取决于R 基不同。 (2)氨基酸的种类及分类: ①种类:组成生物体蛋白质的氨基酸约有20种。 二、蛋白质的形成过程 1.蛋白质的结构层次 氨基酸――→脱水缩合 二肽―→三肽―→多肽――→盘曲、折叠 蛋白质 2.蛋白质的形成过程

(1)过程:脱水缩合。 (2)写出序号代表的物质或结构: 产物①:水。 产物②:二肽。 结构③:肽键。 |自查自纠| 1.组成蛋白质的氨基酸都只含有一个氨基与一个羧基,并且连接在同一个碳原子上;每一条肽链至少含有一个游离的氨基与一个游离的羧基。() 2.生物体内组成蛋白质的氨基酸中,有些氨基酸不能在人体细胞中合成。() 3.脱水缩合发生在相邻氨基酸的氨基和羧基之间,H2O中的H来自于—COOH和—NH2,O来自于—COOH。() 4.连接两个氨基酸分子的化学键叫做磷酸键,表示式为NH—CO。() 5.蛋白质由C、H、O、N、P元素组成,只有一条肽链。() 6.组成蛋白质的氨基酸之间可按不同的方式脱水缩合。() 7.生物体内组成蛋白质的氨基酸中,不同氨基酸之间的差异是由R基引起的。() 8.含有两个肽键的化合物称为二肽。() 答案 1.× 2.√ 3.√ 4.× 5.× 6.×7.√8.× |图解图说| ★把氨基酸分子比喻成人,两只手分别代表氨基和羧基,两条腿代表氢,头代表R基,躯干代表中心碳原子 ________________________________________________________________________ ________________________________________________________________________ ★三个同学手牵手连在一起,牵在一起的手代表“肽键”。两端同学的没牵在一起的手分别代表肽链两端游离的氨基和羧基。 ________________________________________________________________________ ________________________________________________________________________

食品营养学_练习题_第六章蛋白质和氨基酸

第六章蛋白质和氨基酸 一、填空 1、除8种必需氨基酸外,还有组氨酸是婴幼儿不可缺少的氨基酸。 2、营养学上,主要从蛋白质含量、被消化吸收程度和被人体利用程度三方面来全面评价食品蛋白质的营养价值。 3、谷类食品中主要缺少的必需氨基酸是赖氨酸。 4、最好的植物性优质蛋白质是大豆蛋白。 5、谷类食品含蛋白质7.5-15% 。 6、牛奶中的蛋白质主要是酪蛋白。 7、人奶中的蛋白质主要为乳清蛋白。 8、蛋白质和能量同时严重缺乏的后果可产生干瘦性营养不良。 9、蛋白质与糖类的反应是蛋白质或氨基酸分子中的氨基与还原糖的羰基之间的反应,称为羰氨反应,该反应主要损害的氨基酸是赖氨酸,蛋白质消化性和营养价值也因此下降。 10、谷类蛋白质营养价值较低的主要原因是优质蛋白质含量较低。 11、蛋白质净利用率表达为消化率*生物价。 12、氮平衡是指摄入氮和排出氮的差值。 二、选择 1、膳食蛋白质中非必需氨基酸A具有节约蛋氨酸的作用。 A.半胱氨酸 B.酪氨酸 C.精氨酸 D.丝氨酸 2、婴幼儿和青少年的蛋白质代谢状况应维持D。 A.氮平衡 B. 负氮平衡 C.排出足够的尿素氮 D.正氮平衡 3、膳食蛋白质中非必需氨基酸B具有节约苯丙氨酸的作用。 A.半胱氨酸 B.酪氨酸 C.丙氨酸 D.丝氨酸 4、大豆中的蛋白质含量是D。 A.15%-20% B.50%-60% C.10%-15% D.35%-40% 5、谷类食物中哪种氨基酸含量比较低? B A.色氨酸 B.赖氨酸 C.组氨酸 D.蛋氨酸 6、合理膳食中蛋白质供给量占膳食总能量的适宜比例是B。 A. 8% B. 12% C.20% D.30% 7、在膳食质量评价内容中,优质蛋白质占总蛋白质摄入量的百分比应为D。 A. 15% B. 20% C.25% D.30% 8、以下含蛋白质相对较丰富的蔬菜是B。 A. 木耳菜 B. 香菇 C. 菠菜 D. 萝卜 9、评价食物蛋白质营养价值的公式×100表示的是D。 A.蛋白质的消化率 B.蛋白质的功效比值 C.蛋白质的净利用率 D.蛋白质的生物价 10、限制氨基酸是指D。

构成蛋白质的氨基酸种类

构成蛋白质的氨基酸种类、分子量、功能和作用(一) 序号分类名称 缩写及 分子量 生理功能 必需氨基酸 1 赖氨酸Lys 146.13 促进大脑发育,是肝及胆的组成成分,能促进脂肪代谢,调节松果腺、乳腺、黄体及卵巢,防止细胞退化; 2 蛋氨酸 (甲硫氨酸) Met 149.15 参与组成血红蛋白、组织与血清,有促进脾脏、胰脏及淋巴的功能; 3 色氨酸 Trp 204.11 促进胃液及胰液的产生; 4 苯丙氨酸 Phe 165.09 参与消除肾及膀胱功能的损耗; 5 苏氨酸 Thr 119.18 有转变某些氨基酸达到平衡的功能; 6 异亮氨酸 Ile 131.11 参与胸腺、脾脏及脑下腺的调节以及代谢;脑下腺属总司令部作用于甲状腺、性腺; 7 亮氨酸Leu 131.11 作用平衡异亮氨酸; 8 缬氨酸 Val 117.09 作用于黄体、乳腺及卵巢; 指人体(或其它脊椎动物)不能合成或合成速度远不适应机体的需要,必需由食物蛋白供给,这些氨基酸称为必需氨基酸。成人必需氨基酸的需要量约为蛋白质需要量的20%~37%。 条件必需氨基酸 9 精氨酸Arg 174.4 它能促使氨转变成为尿素,从而降低血氨含量。它也是精子蛋白的主要成分,有促进精子生成,提供精子运动 能量的作用。 10 组氨酸 His 155.09 在组氨酸脱羧酶的作用下,组氨酸脱羧形成组胺。组胺具有很强的血管舒张作用,并与多种变态反应及发炎有 关。

人体虽能够合成,但通常不能满足正常的需要,因此,又被称为半必需氨基酸或条件必需氨基酸,在幼儿生长期这两种是必需氨基酸。人体对必需氨基酸的需要量随着年龄的增加而下降,成人比婴儿显著下降。(近年很多资料和教科书将组氨酸划入成人必需氨基酸) 构成蛋白质的氨基酸种类、分子量、功能和作用(二) 序号分类名称 分子量及缩 写 生理功能和作用 非必需氨基酸 11 丙氨酸Ala 89.06 预防肾结石、协助葡萄糖的代谢,有助缓和低血糖,改善身体能量。 12 脯氨酸Pro 115.08 脯氨酸是身体生产胶原蛋白和软骨所需的氨基酸。它保持肌肉和关节灵活,并有减少紫外线暴露和正常老化造 成皮肤下垂和起皱的作用。 13 甘氨酸Gly 75.05 在中枢神经系统,尤其是在脊椎里,甘氨酸是一个抑制性神经递质。 14 丝氨酸Ser 105.06 是脑等组织中的丝氨酸磷脂的组成部分,降低血液中的胆固醇浓度,防治高血压 15 半胱氨酸Cys 121.12 异物侵入时可强化生物体自身的防卫能力、调整生物体的防御机构。 16 酪氨酸 Tyr 181.09 是酪氨酸酶单酚酶功能的催化底物,是最终形成优黑素和褐黑素的主要原料。 17 天冬酰胺Asn 132.6 天冬酰胺有帮助神经系统维持适当情绪的作用,有时还有助于预防对声音和触觉的过度敏感,还有助于抵御疲 劳。 18 谷氨酰胺Gln 146.08 平衡体内氨的含量,谷酰胺的作用还包括建立免疫系统,加强大脑健康和消化功能 19 天冬氨酸Asp 133.6 它可作为K+、Mg+离子的载体向心肌输送电解质,从而改善心肌收缩功能,同时降低氧消耗,在冠状动脉循环 障碍缺氧时,对心肌有保护作用。它参与鸟氨酸循环,促进氧和二氧化碳生成尿素,降低血液中氮和二氧化碳 的量,增强肝脏功能,消除疲劳。 20 谷氨酸 Glu 147.08 参与脑的蛋白和塘代谢,促进氧化,改善中枢神经活动,有维持和促进脑细 胞功能的作用,促进智力的增加 指人(或其它脊椎动物)自己能由简单的前体合成,不需要从食物中获得的氨基酸。 备注:以上简单阐述了各种氨基酸在体内发挥的生理作用,没有阐述其药理和保健作用。以上分类是从营养学角度区分。

01 实验一 氨基酸及蛋白质的性质

第一部分 基础生化实验 实验一 氨基酸及蛋白质的性质 【实验目的】 1. 加深理解所学有关的蛋白质性质的理论知识 2. 掌握氨基酸和蛋白质常用的定性、定量分析的方法及原理 一、蛋白质呈色反应 蛋白质的呈色反应是指蛋白质所含的某些氨基酸及其特殊结构,在一定条件下可与某些试剂发生了生成有色的物质的反应。 不同蛋白质分子所含的氨基酸残基也是不完全相同,因此所发生的成色反应也不完全一样。另外呈色反应并不是蛋白质的专一反应,某些非蛋白质类物质(含有-CS-NH 、-CH 2-NH 2、-CRH-NH 2、-CHOH-CH 2NH 2等基团的物质)也能发生类似的颜色反应。因此,不能仅仅根据呈色反应的结果为阳性就来判断被测物质一定是蛋白质。 注意:本次实验为定性实验,试剂的量取用滴管完成。 (一)双缩脲反应 【实验原理】 当尿素经加热至180℃左右时,两分子尿素脱去一分子氨,进而缩合成一分子双缩脲。其在碱性条件下双缩脲与铜离子结合成红紫色络合物,此反应称为双缩脲反应。其反应过程如下: C O H 2N H 2N + C O H 2N H 2N H 22 O O + NH 多肽及蛋白质分子结构中均含有许多肽键,其结构与双缩脲分子中的亚酰胺键相同。因此,在碱性条件下与铜离子也能呈现出类似于双缩脲的呈色反应。其反应过程如下: 【试剂】 1. 蛋白质溶液(鸡蛋清用蒸馏水稀释10倍,通过2-3层沙布滤去不容物) 2. 0.1%甘氨酸溶液

3.0.01%精氨酸溶液 4.10%NaOH溶液 5.1%CuSO4溶液 6.尿素结晶 【实验操作】 1. 双缩脲的制备 取少许尿素结晶 (约火柴头大小)放入干燥的试管中,微火加热至尿素熔解至硬化,刚硬化时立即停止加热,此时双缩脲即已形成。冷却后加10%氢氧化钠溶液约1ml、并震荡,再加入1%硫酸铜溶液2滴,再震荡,观察颜色的变化。 注意:a.在操作过程中试管不能冲向其他人以防止烫伤; b.控制加热的时间既不能过长也不能过短; c.加热时火不能太大,防止碳化。 2. 观察现象 另外取试管4支,按照下表加入各种试剂,观察并解释现象。 表1. 试剂 管号 1 2 3 4 蛋白质样液(ml) 1.0 0.01%精氨酸(ml) 1.0 0.1%甘氨酸(ml) 1.0 10%NaOH(ml) 2.0 2.0 2.0 2.0 蒸馏水(ml) 1.0 现象 (二)茚三酮反应 【实验原理】 在弱酸条件下(pH5-7),蛋白质或氨基酸与茚三酮共热,可生成蓝紫色缩合物。此反应为一切蛋白质和α—氨基酸所共有(亚氨基酸如脯氨酸和羟脯氨酸产生黄色化合物)。含有氨基的其他化合物亦可发生此反应。 第一步: C O C O C OH OH +C COOH H NH2 R C O C O C H OH +RCHO NH 3CO2 ++ 第二步:

蛋白质中氨基酸数

蛋白质中氨基酸数、氨基数、羧基数、肽链数、肽键数、脱水数、分子量等各因素之间的数量关系是高考的必考点,为生物计算题型的命题提供了很好的素材,因此,对蛋白质中有关数量的计算题应重点关注。现对此归类如下: 题型1 有关蛋白质相对分子质量的计算 在解答这类问题时,必须明确的基本关系式是:蛋白质的相对分子质量=氨基酸数×氨基酸的平均相对分子质量-脱水数×18(水的相对分子质量)【例1】组成生物体某蛋白质的20种氨基酸的平均相对分子质量为128,一条含有100个肽键的多肽链的分子量为多少 【解析】本题中含有100个肽键的多肽链中氨基酸数为:100+1=101,肽键数为100,脱水数也为100,则依上述关系式,蛋白质分子量=101×128-100×18=11128。 题型2 有关蛋白质中氨基酸数、肽链数、肽键数、脱水数的计算在解答这类问题时,必须明确的基本知识是蛋白质中氨基酸数、肽链数、肽键数、脱水数的数量关系。基本关系式有: n个氨基酸脱水缩合形成一条多肽链,则肽键数=(n-1)个; n个氨基酸脱水缩合形成m条多肽链,则肽键数=(n-m)个; 无论蛋白质中有多少条肽链,始终有:脱水数=肽键数=氨基酸数肽链数 【例2】若某蛋白质的分子量为11935,在合成这个蛋白质分子的过程中脱水量为1908,假设氨基酸的平均分子量为127,则组成该蛋白质分子的肽链有() 条 B. 2条 条条 【答案】C

【解析】据脱水量,可求出脱水数=1908÷18=106,形成某蛋白质的氨基酸的分子质量之和=11935+1908=13843,则氨基酸总数=13843÷127=109,所以肽链数=氨基酸数脱水数=109-106=3。 变式:现有一分子式为C63H103O45N17S2的多肽化合物,已知形成该化合物的氨基酸中有一个含2个氨基,另一个含3个氨基,则该多肽化合物水解时最多消耗多少个水分子 【解析】本题首先要搞清楚,多肽水解消耗水分子数=多肽形成时生成水分子数;其次,要知道,要使形成多肽时生成的水分子数最多,只有当氨基酸数最多和肽链数最少两个条件同时满足时才会发生。已知的2个氨基酸共有5个N原子,所以剩余的12个N原子最多可组成12个氨基酸(由于每个氨基酸分子至少含有一个-NH2),即该多肽化合物最多可由14个氨基酸形成;肽链数最少即为1条,所以该化合物水解时最多消耗水分子数=14-1=13。答案:13. 题型3 有关蛋白质中至少含有氨基数和羧基数的计算 【例3】某蛋白质分子含有4条肽链,共有96个肽键,则此蛋白质分子中至少含有-COOH和-NH2的数目分别为( ) A. 4、100 B. 4、 4 C. 1 00、100 D. 96、96 【答案】B 【解析】以一条由n个氨基酸组成的肽链为例:在未反应前,n个氨基酸至少含有的-COOH和-NH2的数目都为n(因每个氨基酸至少含有1个-COOH和1个-NH2),由于肽链中包括(n-1)个肽键,而形成1个肽键分别消耗1个-COOH 和1个-NH2,所以共需消耗(n-1) 个-COOH和(n-1)个-NH2 ,所以至少含有的-COOH和-NH2的数目都为1,与氨基酸R基团中-COOH和-NH2 的数目无关。本题中蛋白质包含4条肽链,所以至少含有-COOH和-NH2的数目都为4。 题型4 有关蛋白质中氨基酸的种类和数量的计算

2018年浙科版生物必修1 第1章 微专题突破 氨基酸形成蛋白质的相关数量关系总结

氨基酸形成蛋白质的相关数量关系总结 1.链状肽 (1)多肽中各原子数的计算: ①碳原子数=氨基酸的分子数×2+R基上的碳原子数。 ②氢原子数=各氨基酸中氢原子的总数-脱去的水分子数×2+二硫键数×2。 ③氧原子数=各氨基酸中氧原子的总数-脱去的水分子数。 ④氮原子数=肽链数+肽键数+R基上的氮原子数=各氨基酸中氮原子的总数。 ⑤由于R基上的碳原子数不好确定,且氢原子数较多,因此以氮原子数或氧原子数的计算为突破口,计算氨基酸的分子式或氨基酸个数最为简便。 ⑥含2个氨基的氨基酸数=N原子数-肽键数-1。 ⑦含2个羧基的氨基酸数为:O原子数-肽键数-2 2。 (2)基团数和相对分子质量的计算: ①脱水数=肽键数=氨基酸数-肽链数。 ②氨基数=肽链数+R基上的氨基数=各氨基酸中氨基的总数-肽键数。 ③羧基数=肽链数+R基上的羧基数=各氨基酸中羧基的总数-肽键数。 ④蛋白质相对分子质量=氨基酸平均相对分子质量×氨基酸数-18×脱水数。 2.环状肽 环状多肽主链中无氨基和羧基,环状肽中氨基或羧基数目取决于构成环状肽的氨基酸R基中的氨基和羧基的数目,如下图所示。(Aa表示氨基酸) 由图示可知:肽键数=脱去的水分子数=氨基酸数。

1.现有氨基酸800个,其中氨基总数为810个,羧基总数为808个,则由这些氨基酸合成的含有2条肽链的蛋白质共有肽键、氨基和羧基的数目依次为() A.798、2和2 B.798、12和10 C.799、1和1 D.799、11和9 【解析】800个氨基酸中有氨基810个和羧基808个,则说明10个氨基和8个羧基在R基中。800个氨基酸合成的含有2条肽链的蛋白质,其肽键数目=800-2=798,氨基数目=10+2=12,羧基数目=8+2=10。 【答案】 B 2.已知天冬酰胺的R基为—C2H4ON,现有分子式为C63H103O31N17S2的多肽,其中含有2个天冬酰胺,那么,此多肽中的肽键数最多是() A.17个B.16个 C.15个D.14个 【解析】由分子式可知,该多肽中含17个N,因所含的2个天冬酰胺的R基中都含有1个N,故该多肽最多由15氨基酸脱水缩合而成,若是链状多肽,应含有14个肽键;若是环状多肽,则含有15个肽键。 【答案】 C 3.某蛋白质由m条肽链、n个氨基酸组成,则该蛋白质至少含有氧原子的个数是() 【导学号:36500023】A.n-m B.n+m C.n-2m D.n+2m 【解析】肽键中含有一个氧原子,肽链一端的羧基中含有2个氧原子,每条肽链的氧原子数是氨基酸数+1,因此n个氨基酸组成的m条肽链至少含有氧原子的个数为n+m。 【答案】 B 4.如图是由n个氨基酸组成的某蛋白质的结构图,其中二硫键“—S—S—”是一种连接蛋白质中两条肽链之间的化学键(—SH+—SH→—S—S—+2H)。则()

氨基酸分析

2.2.56氨基酸分析(1)(见注解) 氨基酸分析是指利用方法对蛋白质,多肽和其他药物制剂进行氨基酸组成或含量的分析。蛋白质和多肽一般是氨基酸残基以共价键的形式组成的线性大分子。蛋白质或多肽中氨基酸的序列决定了其分子的性质。蛋白质普遍是由大分子以折叠的方式形成的特定构象,而多肽则比较小,可能只有几个氨基酸组成。氨基酸分析方法可以用于对蛋白质和多肽的量化,基于氨基酸的组成来确定蛋白质或多肽的类型,支撑蛋白质和多肽的结构分析,评估碎片肽段,并检测可能存在于蛋白质或多肽中的不规则氨基酸。并且在氨基酸分析之前必须进行将蛋白质或多肽水解为个别氨基酸。伴随着蛋白质或多肽的水解,氨基酸分析的过程和其他药物制剂中氨基酸的游离是一致的。通常我们采用易于分析的方法来测定样品中的氨基酸成分。 设备 用于氨基酸分析方法通常是基于色谱分离氨基酸的方法设定的。当前的方法是利用自动化色谱仪进行分析。氨基酸分析仪通常是一个能够产生梯度的低压或高压的液相色谱仪,并在色谱柱上分离氨基酸。除非样品在柱前进行了衍生化,否则这些仪器必须具备柱后衍生化的能力。检测器使用的是紫外可见光检测器或荧光检测器。此外,还需具有一个记录仪器(例如,积分仪),用于转化检测到的信号及用于定量测定。而且,这些仪器是专门用于氨基酸分析使用的。 一般预防策施 在氨基酸分析中,分析师关注的一个重点是背景的污染。高纯度的试剂是必要的(例如,低纯度的盐酸的使用在分析中会产生甘氨酸污染)。分析试剂通常是每隔几周更换一次,并且仅使用HPLC级别的溶剂。所用试剂使用之前必须用过滤器将溶剂中可能潜在的微生物和外来材料污染过滤除去,保持溶剂贮存器出于密封状态,并且不可将氨基酸分析仪放置于光照条件下。 实验室的操作规范决定了氨基酸分析的质量。仪器应放置在实验室的空旷区域。保持实验室的卫生干净。根据维修计划,及时清洁和校准移液管,将移液吸头放置在相应的盒子中,分析师不得用手处理移液管。分析师需要穿戴一次性的乳胶手套或同等质量的其他手套。限制测试样品瓶开启和关闭的次数,因为飞灰可以提高甘氨酸,丝氨酸和丙氨酸的浓度。 良好的仪器状态是氨基酸分析结果可接受的一个关键步骤。在日常使

“氨基酸缩合形成蛋白质相关计算分析”专题

“氨基酸缩合形成蛋白质相关计算的分析”专题 类型一白质中氨基酸数、肽链数、肽键数、脱水数的计算 ●链状肽:肽键数=脱水数=氨基酸数-肽链数 ●环状肽:肽键数=脱水数=氨基酸数 例1某蛋白质分子共有四条肽链,300个肽键,则形成这个蛋白质分子所需氨基酸分子数以及它们在脱水缩合过程中生成的水分子数分别是() A.296和296 B.304和304 C.304和300 D.300和300 例2氨基酸分子脱水缩合形成含2条肽链的蛋白质分子时,相对分子量减少了900,由此可知,此蛋白质分子中含有的氨基酸数和肽键数分别是() A.52、52B.50、50 C.52、50D.50、49 类型二蛋白质中游离氨基和羧基数目的计算 氨基酸脱水缩合形成肽链的过程中,羧基和羟基皆被破坏,若不考虑R基中的氨基和羧基,则仅肽链的两端分别存在1个游离氨基和1个游离羧基羧基,即蛋白质中游离氨基和羧基位于蛋白质多肽链的两端及氨基酸的R基中: ●蛋白质中游离氨基(羧基)数=肽链数+ R基中的氨基(羧基)数 =各氨基酸中氨基(羧基)总数—肽键数 【注意】有时需考虑其他化学变化过程,如二硫键(—S—S—)的形成等,在肽链上出现二硫键时,与二硫键结合的部位要脱去两个H。 例3现有1000个氨基酸,其中氨基有1020个,羧基1050个,则由此合成的4条肽链中氨基、羧基的数目分别是() A.1016、1046 B.4、4 C.24、54 D.1024、1054 例4含有215个N原子的200个氨基酸,形成了5个四肽、4个六肽和1个2条肽链构成的蛋白质分子。这些多肽和蛋白质分子中,肽键与氨基数目的最大值分别是() A.200和200 B.200和215 C.189和11 D.189和26 类型三蛋白质中氨基酸分子式和种类的计算 组成蛋白质的氨基酸约20种,氨基酸的多样性由R基决定,分子通式可表示为C2H4O2NR。故此类型题目的关键是观察所给蛋白质及氨基酸的分子式,根据脱水缩合原理反向推断。 例 5 谷胱甘肽(C10H17O6N3S)是存在于动植物和微生物细胞中的一种重要三肽,它是由谷氨酸(C5H9O4N)、甘氨酸(C2H5O2N)和半胱氨酸缩合而成的,则半胱氨酸可能的分子式为()

蛋白质氨基酸分析测试

蛋白质氨基酸分析测试 一、实验课程: 组成蛋白质的氨基酸的定量分析 二、实验项目: 三、主要仪器设备 日立L-8900高速氨基酸分析仪 1 实验目的 用于检测样品中蛋白水解氨基酸、游离氨基酸的种类及含量,广泛应用于食品、纺织等领域检测。 2 仪器用具和材料 L-8900高速氨基酸分析仪、氮吹仪、真空泵、水解瓶等。 3 基本知识 用水解的方法将蛋白质的肽链打开,形成单一的氨基酸进行分析。所有的氨基酸 在低PH值的条件下都带有正电荷,在阳离子交换树脂上均被吸附,但吸附的程度 不同,碱性氨基酸结合力最强、其次为芳香族氨基酸、中性氨基酸、酸性氨基酸 结合力最弱。按照氨基酸分析仪设定的洗脱程序,用不同离子强度、PH值的缓冲 液依次将氨基酸按吸附力的不同洗脱下来,被洗脱下来的氨基酸与茚三酮反应液 在加热的条件下反应(135度),生成可在分光光度计中检测到的蓝紫色物质外标 法定量。 4 实验步骤: 1水解样品 (1)药液 0.02 N HCI稀释3倍以上(根据氨基酸的浓度)作样品。

(2)蛋白质固体 a 6N-HCI,110℃水解样品24小时。 b 减压干燥,除去HCI。 c 0.02NHCI容量, 0.22um的滤膜过滤(最终浓度以200ug/ml为宜)。 2打开工作站主画面,点击control——instrument status键进入 3 单击connect联机,大约两分钟后初始化完成。 4点击File——Sequence,建立样品表。 5依次输入未知样品顺序、样品号、数据路径、文件名称、样品个数、重复次数。 6 点击下一步,输入样品瓶号、标准瓶号、进样体积、样品间隔数。 7点击下一步,标准品号、路径、文件名、标准品个数、重复次数。 8点击完成,生成的样品表。 9点击File-Method-Open,调用方的。 10点击单一运行(Single Run),及序列运行(Sequence Run)。 11采样结束后进行数据处理。

有机化学 第十四章 氨基酸和蛋白质的性质

第十四章氨基酸和蛋白质的性质 蛋白质和核酸是生命现象的物质基础,是参与生物体内各种生物变化最重要的组分。蛋白质存在于一切细胞中,它们是构成人体和动植物的基本材料,肌肉、毛发、皮肤、指甲、血清、血红蛋白、神经、激素、酶等都是由不同蛋白质组成的。蛋白质在有机体中承担不同的生理功能,它们供给肌体营养、输送氧气、防御疾病、控制代谢过程、传递遗传信息、负责机械运动等。核酸分子携带着遗传信息,在生物的个体发育、生长、繁殖和遗传变异等生命过程中起着极为重要的作用。 人们通过长期的实验发现:蛋白质被酸、碱或蛋白酶催化水解,最终均产生α-氨基酸。因此,要了解蛋白质的组成、结构和性质,我们必须先讨论α-氨基酸。 第一节氨基酸 氨基酸是羧酸分子中烃基上的氢原子被氨基(-NH2)取代后的衍生物。目前发现的天然氨基酸约有300种,构成蛋白质的氨基酸约有30余种,其中常见的有20余种,人们把这些氨基酸称为蛋白氨基酸。其它不参与蛋白质组成的氨基酸称为非蛋白氨基酸。 一、α-氨基酸的构型、分类和命名 构成蛋白质的20余种常见氨基酸中除脯氨酸外,都是α-

氨基酸,其结构可用通式表示: RCHCOOH NH2 这些α-氨基酸中除甘氨酸外,都含有手性碳原子,有旋光性。其构型一般都是L-型(某些细菌代谢中产生极少量D-氨基酸)。 氨基酸的构型也可用R、S标记法表示。 根据α-氨基酸通式中R-基团的碳架结构不同,α-氨基酸可分为脂肪族氨基酸、芳香族氨基酸和杂环族氨基酸;根据R-基团的极性不同,α-氨基酸又可分为非极性氨基酸和极性氨基酸;根据α-氨基酸分子中氨基(-NH2)和羧基(-COOH)的数目不同,α-氨基酸还可分为中性氨基酸(羧基和氨基数目相等)、酸性氨基酸(羧基数目大于氨基数目)、碱性氨基酸(氨基的数目多于羧基数目)。 氨基酸命名通常根据其来源或性质等采用俗名,例如氨基乙酸因具有甜味称为甘氨酸、丝氨酸最早来源于蚕丝而得名。在使用中为了方便起见,常用英文名称缩写符号(通常为前三个字母)或用中文代号表示。例如甘氨酸可用Gly或

蛋白质与氨基酸的关系教案资料

精品文档 一、蛋白质与氨基酸的关系 一般认为,动物蛋白质的营养实质上是氨基酸的营养。只有当组成蛋白质的各种氨基酸同时存在且按需求比例供给时,动物才能有效地合成蛋白质。饲粮中缺乏任何一种氨基酸,即使其他必需氨基酸含量充足, 体蛋白质合成也不能正常进行。同样,体蛋白合成潜力越大的动物(如高瘦肉型猪),对氨基酸的需求量就越高。 畜禽饲粮中必需氨基酸的需要量取决于饲粮中的粗蛋白水平。例如, 仔猪饲粮中蛋白质含量由10%增至22%时, 饲粮赖氨酸的需要量则从0.6 % 增至1.2 % 。另一方面,饲粮粗蛋白质需要量取决于氨基酸的平衡状况。一般而言,依次平衡第一至第四限制性氨基酸后,饲粮的粗蛋白质需要量可降低2-4个百分点。 二、氨基酸间的相互关系 组成蛋白质的各种氨基酸在机体代谢过程中, 亦存在协同、转化、替代和拮抗等关系。 蛋氨酸可转化为胱氨酸,也可能转化为半胱氨酸, 但其逆反应均不能进行。因此, 蛋氨酸能满足总含硫氨基酸的需要, 但是蛋氨酸本身的需要量只能由蛋氨酸满足。半胱氨酸和胱氨酸间则可以互变。苯丙氨酸能满足酪氨酸的需要, 因为它能转化为酪氨酸, 但酪氨酸不能转化为苯丙氨酸。由于上述关系,在考虑必需氨基酸的需要时, 可将蛋氨酸与胱氨酸、苯丙氨酸与酪氨酸合并计算。 氨基酸间的拮抗作用发生在结构相似的氨基酸间, 因为它们在吸收过程中共用同一转移系统, 存在相互竞争。最典型的具有拮抗作用的氨基酸是赖氨酸和精氨酸。饲粮中赖氨酸过量会增加精氨酸的需要量。当雏鸡饲粮中赖氨酸过量时, 添加精氨酸可缓解由于赖氨酸过量所引起的失衡现象。亮氨酸与异亮氨酸因化学结构相似, 也有拮抗作用。亮氨酸过多可降低异亮氨酸的吸收率, 使尿中异亮氨酸排出量增加。此外, 精氨酸和甘氨酸可消除由于其他氨基酸过量所造成的有害作用, 这种作用可能与它们参加尿酸的形成有关。 一、蛋白质与氨基酸的关系 一般认为,动物蛋白质的营养实质上是氨基酸的营养。只有当组成蛋白质的各种氨基酸同时存在且按需求比例供给时,动物才能有效地合成蛋白质。饲粮中缺乏任何一种氨基酸,即使其他必需氨基酸含量充足, 体蛋白质合成也不能正常进行。同样,体蛋白合成潜力越大的动物(如高瘦肉型猪),对氨基酸的需求量就越高。 畜禽饲粮中必需氨基酸的需要量取决于饲粮中的粗蛋白水平。例如, 仔猪饲粮中蛋白质含量由10%增至22%时, 饲粮赖氨酸的需要量则从0.6 % 增至1.2 % 。另一方面,饲粮粗蛋白质需要量取决于氨基酸的平衡状况。一般而言,依次平衡第一至第四限制性氨基酸后,饲粮的粗蛋白质需要量可降低2-4个百分点。 二、氨基酸间的相互关系 组成蛋白质的各种氨基酸在机体代谢过程中, 亦存在协同、转化、替代和拮抗等关系。 蛋氨酸可转化为胱氨酸,也可能转化为半胱氨酸, 但其逆反应均不能进行。因此, 蛋氨酸能满足总含硫氨基酸的需要, 但是蛋氨酸本身的需要量只能由蛋氨酸满足。半胱氨酸和胱氨酸间则可以互变。苯丙氨酸能满足酪氨酸的需要, 因为它能转化为酪氨酸, 但酪氨酸不能转化为苯丙氨酸。由于上述关系,在考虑必需氨基酸的需要时, 可将蛋氨酸与胱氨酸、苯丙氨酸与酪氨酸合并计算。 氨基酸间的拮抗作用发生在结构相似的氨基酸间, 因为它们在吸收过程中共用同一转移系统, 存在相互竞争。最典型的具有拮抗作用的氨基酸是赖氨酸和精氨酸。饲粮中赖氨酸过量会增加精氨酸的需要量。当雏鸡饲粮中赖氨酸过量时, 添加精氨酸可缓解由于赖氨酸过量所引起的失衡现象。亮氨酸与异亮氨酸因化学结构相似, 也有拮抗作用。亮氨酸过多可降 精品文档

相关主题
文本预览
相关文档 最新文档