当前位置:文档之家› 半导体制冷片选择

半导体制冷片选择

半导体制冷片选择
半导体制冷片选择

致冷片的性能

在应用致冷片前,要进一步的了解它的性能,实际上致冷片的冷端从周围吸收的热Qπ外,还有两个,一个是焦耳热QJ;另一个是传导热QK。电流从元件内部通过就产生焦耳热,焦耳热的一半传到冷端,另一半传到热端,传导热从

热端传到冷端。

产冷量QC=Qπ-QJ-QK=(2P-2n).Tc.I-1/2j2R-K(Th-Tc)

式中,R表示一对电偶的总电阻,K是总热导。

热端散掉的热Qh=Qπ+Qj-Qk=(2p-2n).Th.I+1/2I2R-K(Th-Tc)

从上面两公式中可以看出,输入的电功率恰好就是热端散掉的热与冷端吸收的热之差,这就是“热泵”的一种:

Qh-Qc=I2R=P

由上式得出一个电偶在热端放出的热量Qh等于输入电功率与冷端产冷量之和,相反得出冷端产冷量Qc等于热端

放出的热量与输入电功率之差。

Qh=P+Qc Qc=Qh-P

致冷片的选择过程

半导体致冷应用产品的心脏部分是半导体致冷片,根据半导体温差电堆的特点,弱点及应用范围,选用电堆时首

先应确定以下几个问题:

1、确定电堆的工作状态。根据工作电流的方向和大小,就可以决定电堆的致冷,加热和恒温性能,尽管最常用

的是致冷方式,但也不应忽视它的致热和恒温性能。

2、确定致冷时热端实际温度。因为电堆是温差片件,要达到最佳的致冷效果,电堆必须安装在一个良好的散热片上,根据散热条件的好坏,决定致冷时电堆热端的实际温度,要注意,由于温度梯度的影响,电堆热端实际温度总是要比散热片表面温度高,通常少则零点几度,多则高几度、十几度。同样,除了热端存在散热梯度以外,被冷却的

空间与电堆冷端之间也存在温度梯度。

3、确定电堆的工作环境和气氛。这包括是工作在真空状况还是在普通大气,干燥氮气,静止或流动空气及周围

的环境温度,由此来考虑保温(绝热)措施,并决定漏热的影响。

4、确定电堆工作对象及热负载的大小。除了受热端温度影响以外,电堆所能达到的最低温度或最大温差是在空

载和绝热两个条件下确定的,实际上工作的,电堆既不可能真正绝热,也必须有热负载,否则无意义。

5、确定致冷片的级数。电堆级数的选定必须满足实际温差的要求,即电堆标称的温差必须高于实际要求的温差,

否则达不到要求,但是级数也不能太多,因为电堆的价格随着级数的增加而大大提高。

6、电堆的规格。选定电堆的级数以后,就可以选定电堆的规格,特别是电堆的工作电流。因为同时能满足温差及产冷的电堆有好几种,但是由于工作条件不同,通常选用工作电流最小的电堆,因为这时配套电源费用较小,然而电堆的总功率是决定因素,同样的输入电功率减少工作电流就得增加电压(每对元件0.1v),因而元件对数就得增加。

7、确定电堆的数量。这是根据能满足温差要求的电堆产冷总功率来决定的,它必须保证在工作温度时电堆产冷量的总和大于工作对象热负载的总功率,否则无法达到要求。电堆的热惯性非常小,空载下不大于一分钟,但是由于负载的惯性(主要是由于负载的热容量造成的),因此实际要达到设定温度时的工作速度要远远大于一分钟,多时达几小时。如工作速度要求愈大,电堆的数量也就愈多,热负载的总功率是由总热容量加上漏热量(温度愈低、漏热量

愈大)。

上述七个方面是选用电堆时考虑的一般原则,根据上述原用户首先应根据需要提出要求来选择致冷片件。一般的

要求:

①、给定使用的环境温度Th ℃

②、被冷却的空间或物体达到的低温度Tc ℃

③、已知热负载Q(热功率Qp 、漏热Qt)W

已知Th、Tc和Q,再根据温差致冷片的特性曲线就可估算所需的电堆及电堆数量。

1、确定致冷片的型号规格

2、选定型号后,查阅该型号的温差电致冷特性曲线图。

3、由使用环境温度和散热方式确定致冷片的热端温度Th,得出相近的Tc。

4、在相应的特性曲线图中查出冷端Qc的产冷量。

5、由所需的产冷量Q除以每个电堆的产冷量Qc就得到所需的电堆数量N=Q/Qc

■GL模組(半導體製冷片)

GLII Module

<<

GL 模組通用規格

1. 最大耐熱溫度:150℃(保證使用溫度範圍:—40~100℃)

2. 允許的最大壓縮載荷:1MPa

3. 引線規格:PVC UL 規格品

4. 耐濕密封:KE347(信越有機矽類)或者以近似產品密封模組的面。

半导体制冷片工作原理

半导体制冷片工作原理 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

半导体制冷片工作原理 致冷器件是由半导体所组成的一种冷却装置,随着近代的半导体发展才有实际的应用,也就是致冷器的发明。其工作原理是由直流电源提供电子流所需的能量,通上电源后,电子负极(-)出发,首先经过P型半导体,于此吸热量,到了N型半导体,又将热量放出,每经过一个NP模块,就有热量由一边被送到令外一边造成温差而形成冷热端。冷热端分别由两片陶瓷片所构成,冷端要接热源,也就是欲冷却之。在以往致冷器是运用在CPU的,是利用冷端面来冷却CPU,而热端面散出的热量则必需靠风扇来排出。致冷器也应用于做成车用冷/热保温箱,冷的方面可以冷饮机,热的方面可以保温热的东西。 半导体致冷器的历史 致冷片是由半导体所组成的一种冷却装置,于1960左右才出现,然而其理论基础Peltier effect 可追溯到19世纪。下图(1)是由X及Y两种不同的金属导线所组成的封闭线路,通上电源之后,A 点的热量被移到B点,导致A点温度降低,B点温度升高,这就是着名的Peltier effect。这现象最早是在1821年,由一位德国科学家Thomas Seeback首先发现,不过他当时做了错误的推论,并没有领悟到背后真正的科学原理。到了1834年,一位法国表匠,同时也是兼职研究这现象的物理学家JeaNPeltier,才发现背后真正的原因,这个现象直到近代随着半导体的发展才有了实际的应用,也就是「致冷器」的发明。 一、因半导体致冷片薄而轻巧,体积很小,不占空间,并可以携带,做成车用电冷/热保温箱,放置车上,不占空间,并可变成冰箱及保温箱,夏天可以摆上几瓶饮料,就可以便冰饮,在冬天就可以变成保温箱。 图(1) 致冷器件的作用原理致冷器的名称相当多,如 Peltier cooler、thermoelectric、thermoelectric cooler (简称或、thermoelectric module,另外又称为热帮浦 (heat pump)。 二、致冷器件的结构与原理 下图(2)是一个制冷器的典型结构。 图(2) 致冷器的典型结构 致冷器是由许多N型和P型半导体之颗粒互相排列而 成,而NP之间以一般的导体相连接而成一完整线路,通 常是铜、铝或其它金属导体,最后由两片陶瓷片像夹心 饼干一样夹起来,陶瓷片必须绝缘且导热良好,外观如 下图(3)所示,看起来像三明治。 图(3) 致冷器的外观 以下详细说明N型和P型半导体的原理: 三、N型半导体 (1) 如果在锗或硅中均匀掺杂五价元素,由于价电子间 会互相结合而形成共价键,故每个五价元素会与邻近四 价之锗或硅原子互成一共价键,而多出一个电子来,如图(4)所示,这就称为N型半导体。(N表示negative,电子带负电) 。 图(4) N型半导体 (2) 由于加入五甲元素后会添加电子,故五价元素又被称为施体原子。 (3) 加入五价元素而产生之自由电子,在N型半导体里又占大多数,故称为多数载体(majority carriers) 。由温度的引响所产生之电子─电洞对是少数,所以N型半导体中称电洞为少数载体(minority carriers) 。 四、P型半导体 (1) 如果在锗或硅中均匀掺杂三价元素,由于价电子间会互相结合而形成共价键,故每个三价元素会与邻近四价之锗或硅原子互成一共价键,而多缺少一个电子,在原子中造成一个空缺来,这个空

半导体制冷片工作原理

半导体制冷片工作原理 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

半导体制冷片工作原理 致冷器件是由半导体所组成的一种冷却装置,随着近代的半导体发展才有实际的应用,也就是致冷器的发明。其工作原理是由直流电源提供电子流所需的能量,通上电源后,电子负极(-)出发,首先经过P型半导体,于此吸热量,到了N型半导体,又将热量放出,每经过一个NP模块,就有热量由一边被送到令外一边造成温差而形成冷热端。冷热端分别由两片陶瓷片所构成,冷端要接热源,也就是欲冷却之。在以往致冷器是运用在CPU的,是利用冷端面来冷却CPU,而热端面散出的热量则必需靠风扇来排出。致冷器也应用于做成车用冷/热保温箱,冷的方面可以冷饮机,热的方面可以保温热的东西。 半导体致冷器的历史 致冷片是由半导体所组成的一种冷却装置,于1960左右才出现,然而其理论基础Peltier effect可追溯到19世纪。下图(1)是由X及Y两种不同的金属导线所组成的封闭线路,通上电源之后,A点的热量被移到B点,导致A点温度降低,B点温度升高,这就是着名的Peltier effect。这现象最早是在1821年,由一位德国科学家Thomas Seeback首先发现,不过他当时做了错误的推论,并没有领悟到背后真正的科学原理。到了1834年,一位法国表匠,同时也是兼职研究这现象的物理学家JeaNPeltier,才发现背后真正的原因,这个现象直到近代随着半导体的发展才有了实际的应用,也就是「致冷器」的发明。 一、因半导体致冷片薄而轻巧,体积很小,不占空间,并可以携带,做成车用电冷/热保温箱,放置车上,不占空间,并可变成冰箱及保温箱,夏天可以摆上几瓶饮料,就可以便冰饮,在冬天就可以变成保温箱。 二、致冷器件的结构与原理

半导体制冷片的利弊(精)

原理: 半导体制冷片的工作运转是用直流电流 , 它既可制冷又可加热, 通过改变直流电流的极性来决定在同一制冷片上实现制冷或加热,这个效果的产生就是通过热电的原理。 优点 半导体制冷片作为特种冷源,在技术应用上具有以下的优点和特点: 1、不需要任何制冷剂 ,可连续工作,没有污染源没有旋转部件,不会产生回转效应,没有滑动部件是一种固体片件,工作时没有震动、噪音、寿命长,安装容易。 2、半导体制冷片具有两种功能,既能制冷,又能加热,制冷效率一般不高,但制热效率很高,永远大于 1。因此使用一个片件就可以代替分立的加热系统和制冷系统。 3、半导体制冷片是电流换能型片件,通过输入电流的控制,可实现高精度的温度控制,再加上温度检测和控制手段,很容易实现遥控、程控、计算机控制,便于组成自动控制系统。 4、半导体制冷片的温差范围,从正温 90℃到负温度 130℃都可以实现。 缺点: 1、半导体制冷片热惯性非常小,制冷制热时间很快,在热端散热良好冷端空载的情况下, 通电不到一分钟,制冷片就能达到最大温差。 2、半导体制冷片的反向使用就是温差发电,半导体制冷片一般适用于中低温区发电。 3、半导体制冷片的单个制冷元件对的功率很小,但组合成电堆,用同类型的电堆串、并联的方法组合成制冷系统的话, 功率就可以做的很大, 因此制冷功率可以做到几毫瓦到上万瓦的范围。

4、半导体制冷的热面温度不应超过 60℃ ,否则就有损坏的可能。若在额定的工作电压(12V 下,一般的散热风扇根本无法为制冷片提供足够的散热能力,容易造成制冷片过热损坏。同时千万不要在无散热器的情况下为致冷器长时间通电, 否则会造成致冷器内部过热而烧毁。半导体制冷片具有两种功能, 既能制冷, 又能加热,制冷效率一般不高,但制热效率很高,永远大于 1。要是这样的话安 全问题有代考虑! 其次散热片由于间距太小, 很容易被灰尘堵住, 而且清洗不了, 这样就很容易因为温度过高而烧毁,从而影响整车的安全。 使用说明: 一、正确的安装、组装方法:1、制冷片一面安装散热片,一面安装导冷系统,安装表面平面度不大于 0.03mm ,要除去毛刺、污物。 2、制冷片与散热片和导冷块接触良好,接触面须涂有一薄层导热硅脂。 3、固定制冷片时既要使制冷片受力均匀,又要注意切勿过度,以防止瓷片压裂。 二、正确的使用条件:1、使用直流电源电压不得超过额定电压 ,电源波纹系数小于 10%。 2、电流不得超过组件的额定电流。 3、制冷片正在工作时不得瞬间通反向电压 (须在 5分钟之后。 4、制冷片内部不得进水。 5、制冷片周围湿度不得超过 80%。

半导体制冷片工作原理

半导体制冷片工作原理 致冷器件是由半导体所组成的一种冷却装置,随着近代的半导体发展才有实际的应用,也就是致冷器的发明。其工作原理是由直流电源提供电子流所需的能量,通上电源后,电子负极(-)出发,首先经过P型半导体,于此吸热量,到了N型半导体,又将热量放出,每经过一个NP模块,就有热量由一边被送到令外一边造成温差而形成冷热端。冷热端分别由两片陶瓷片所构成,冷端要接热源,也就是欲冷却之。在以往致冷器是运用在CPU的,是利用冷端面来冷却CPU,而热端面散出的热量则必需靠风扇来排出。致冷器也应用于做成车用冷/热保温箱,冷的方面可以冷饮机,热的方面可以保温热的东西。 半导体致冷器的历史 致冷片是由半导体所组成的一种冷却装置,于1960左右才出现,然而其理论基础Peltier effect可追溯到19世纪。下图(1)是由X及Y两种不同的金属导线所组成的封闭线路,通上电源之后,A点的热量被移到B点,导致A点温度降低,B点温度升高,这就是着名的Peltier effect。这现象最早是在1821年,由一位德国科学家Thomas Seeback首先发现,不过他当时做了错误的推论,并没有领悟到背后真正的科学原理。到了1834年,一位法国表匠,同时也是兼职研究这现象的物理学家JeaNPeltier,才发现背后真正的原因,这个现象直到近代随着半导体的发展才有了实际的应用,也就是「致冷器」的发明。 一、因半导体致冷片薄而轻巧,体积很小,不占空间,并可以携带,做成车用电冷/热保温箱,放置车上,不占空间,并可变成冰箱及保温箱,夏天可以摆上几瓶饮料,就可以便冰饮,在冬天就可以变成保温箱。 图(1) 致冷器件的作用原理致冷器的名称相当多,如 Peltier cooler、thermoelectric、thermoelectric cooler (简称或、thermoelectric module,另外又称为热帮浦 (heat pump)。 二、致冷器件的结构与原理

半导体制冷片选择

致冷片的性能 在应用致冷片前,要进一步的了解它的性能,实际上致冷片的冷端从周围吸收的热Qπ外,还有两个,一个是焦耳热QJ;另一个是传导热QK。电流从元件内部通过就产生焦耳热,焦耳热的一半传到冷端,另一半传到热端,传导热从 热端传到冷端。 产冷量QC=Qπ-QJ-QK=(2P-2n).Tc.I-1/2j2R-K(Th-Tc) 式中,R表示一对电偶的总电阻,K是总热导。 热端散掉的热Qh=Qπ+Qj-Qk=(2p-2n).Th.I+1/2I2R-K(Th-Tc) 从上面两公式中可以看出,输入的电功率恰好就是热端散掉的热与冷端吸收的热之差,这就是“热泵”的一种: Qh-Qc=I2R=P 由上式得出一个电偶在热端放出的热量Qh等于输入电功率与冷端产冷量之和,相反得出冷端产冷量Qc等于热 端放出的热量与输入电功率之差。 Qh=P+Qc Qc=Qh-P 致冷片的选择过程 半导体致冷应用产品的心脏部分是半导体致冷片,根据半导体温差电堆的特点,弱点及应用范围,选用电堆时首 先应确定以下几个问题: 1、确定电堆的工作状态。根据工作电流的方向和大小,就可以决定电堆的致冷,加热和恒温性能,尽管最常用 的是致冷方式,但也不应忽视它的致热和恒温性能。 2、确定致冷时热端实际温度。因为电堆是温差片件,要达到最佳的致冷效果,电堆必须安装在一个良好的散热片上,根据散热条件的好坏,决定致冷时电堆热端的实际温度,要注意,由于温度梯度的影响,电堆热端实际温度总是要比散热片表面温度高,通常少则零点几度,多则高几度、十几度。同样,除了热端存在散热梯度以外,被冷却的 空间与电堆冷端之间也存在温度梯度。 3、确定电堆的工作环境和气氛。这包括是工作在真空状况还是在普通大气,干燥氮气,静止或流动空气及周围 的环境温度,由此来考虑保温(绝热)措施,并决定漏热的影响。 4、确定电堆工作对象及热负载的大小。除了受热端温度影响以外,电堆所能达到的最低温度或最大温差是在空 载和绝热两个条件下确定的,实际上工作的,电堆既不可能真正绝热,也必须有热负载,否则无意义。 5、确定致冷片的级数。电堆级数的选定必须满足实际温差的要求,即电堆标称的温差必须高于实际要求的温差, 否则达不到要求,但是级数也不能太多,因为电堆的价格随着级数的增加而大大提高。 6、电堆的规格。选定电堆的级数以后,就可以选定电堆的规格,特别是电堆的工作电流。因为同时能满足温差及产冷的电堆有好几种,但是由于工作条件不同,通常选用工作电流最小的电堆,因为这时配套电源费用较小,然而电堆的总功率是决定因素,同样的输入电功率减少工作电流就得增加电压(每对元件0.1v),因而元件对数就得增加。 7、确定电堆的数量。这是根据能满足温差要求的电堆产冷总功率来决定的,它必须保证在工作温度时电堆产冷量的总和大于工作对象热负载的总功率,否则无法达到要求。电堆的热惯性非常小,空载下不大于一分钟,但是由于负载的惯性(主要是由于负载的热容量造成的),因此实际要达到设定温度时的工作速度要远远大于一分钟,多时达几小时。如工作速度要求愈大,电堆的数量也就愈多,热负载的总功率是由总热容量加上漏热量(温度愈低、漏热量 愈大)。 上述七个方面是选用电堆时考虑的一般原则,根据上述原用户首先应根据需要提出要求来选择致冷片件。一般的 要求:

0-15A PID智能半导体制冷片恒流驱动源

0-15A智能PID半导体制冷片恒流驱动源 (型号:TEC-300W-15A-20V) 一:功能描述 半导体制冷是利用帕尔帖效应原理工作的,具有高精度、长寿命、体积小、无噪声、无磨损、无振动、无污染、既可制冷又可加热等特点,是真正的绿色产品。本系列TEC制冷电源带有完美的PID控制软件,智能无级控温,既可制冷又可加热。可用于控制激光器件、医疗器件、半导体器件、红外探测器、光电倍增管、或其它任何需要温度控制的地方。该产品采用现代最新电力电子器件和高速微处理器(MPU)程序控制技术,以及PWM调制、双向电源、PID调节技术,具有优良的电压、电流输出特性,开关机时无过冲、反冲、浪涌现象,并带有过流、过温、欠温等保护电路,以及一组常开/常闭的温度报警信号输出。 TEC-300W-15A-20V使用了单元模块并联技术,基于一个高性能、高精度、高效率的恒流源子模块,通过n个子模块的简单叠加,实现任意大电流输出。相比较传统电源,这一设计具有搭积木式结构,具有很多优点: 第一:结构简单且容易实现任意大小电流输出,使用子模块搭积木式结构,客户维护方便快捷。 第二:基于子模块高精度、高效率的特点,系统也具有精度高,效率超高特点。 第三:相比较传统电压驱动源,恒流驱动源更具有寿命长的特点。 电源输入:24V±0.5V 电流输入:15A 电源输出:0-15A 电压输出:1-20V 慢启动时间:500mS 效率大于:92%

图1 TEC-300W-15A-20V恒流源接线图 二:控制接口 控制接口采用10芯IDC10接口,在线路板的左下角位置,参加图2所示。 图2 控制接口示意图 下面分别介绍各个端口的功能: 3、4脚:+5V输出端口 该端口提供不超过100mA的电流输出, 用于电流显示表头的正极供电。 5、6脚:GND 该端口提供不超过100mA的电流输出, 用于电流显示表头的负极供电和用于连接调节电流的电位器的负极。 7、8脚:V ADJ用于调节电流大小 该端口用于控制电源的电流输出大小,外接可调电位器。电位器的中间抽头和该端口连接,用于控制电源输出电流大小,该端口输入电压不能超过5V。 温控仪整体尺寸48*24*78mm,开孔尺寸:45*22mm,外形示意图和接线头如图3所示。 图3 PID温控仪示意图 三:首次使用步骤 第1步:连接温控仪的控制端口和恒流驱动电源的端子。 第2步:连接TEC(注意正负极)。 第3步:连接24V350W开关电源(注意正负极)。 第4步:将电流调节电位器逆时针调节到零,接通24V电源。 第5步:将PID温度控制仪的4、5脚短路。 第6步:顺时针调节电流调节电位器,使得恒流输出电流和TEC的额定电流匹配。

半导体加热制冷片

半导体加热制冷片 peltier制冷片安装方法2010-3-13 星期六(Saturday) 晴 致冷器的安装方法一般有三种:焊接、粘合、螺栓压缩固定。在生产上具体用哪一种方法安装,要根据产品的要求来定,总的来说对于这三种的安装时,首先都要用无水酒精棉将致冷器件的两端面擦洗干净,储冷板和散热板的安装表面应加工,表面平面度不大于0.03mm,并清洗干净,以下就是三种安装的操作过程。 1、焊接。 焊接的安装方法要求致冷器件外表面必须是金属化,储冷板和散热板也必须能够上焊料(如:铜材的储冷板或散热板)安装时先将储冷板、散热板、致冷器进行加温,(温度和焊料的熔点差不多)在各安装表面都熔上约70℃——110℃之间的低温焊料0.1mm。然后将致冷器件的热面和散热板的安装面,致冷器件的冷面和储冷板的安装面平行接触并且旋转挤压,确保工作面的接触良好后冷却。该安装方法较复杂,不易维修,一般应用在较特殊的场合。 2、粘合。 粘合的安装方法是用一种具有导热性能较好的粘合剂,均匀的涂在致冷器件、储冷板、散热板的安装面上。粘合剂的厚度在0.03mm,将致冷器的冷热面和储冷板、散热板的安装面平行的挤压,并且轻轻的来...... peltier制冷片TE电源2010-3-13 星期六(Saturday) 晴 半导体致冷器是输入直流电源工作的,必须配备专用电源。 1、直流电源。直流电源的优点是可以直接使用,不需要转换,缺点是电压电流必须适用于半导体致冷器,有些可以通过半导体致冷器的串、并联的方式解决。 2、交流电流。这是一个最普通的电源,使用时必须整流为直流才能供致冷器使用。由于致冷器件是低电压大电流器件,应用时先降压、整流、滤波,有些为了方便使用还要加上温度测量,温度控制,电流控制等。 3、由于半导体致冷器是直流电源供应,电源的波纹系数必须小于10%,否则对致冷效果有较大的影响。 4、半导体致冷器的工作电压及电流必须符合所工作器件的需要,例如:型号为TEC112706的器件,则127为致冷器件,PN的电偶对数,致冷器的工作极限电压V=电偶对数×0.11,06为允许通过最大的电流值。 5、致冷器冷热交换时的通电必须待两端面恢复到室温时(一般需要5分钟以上方可进行),否则易造成致冷器的线路损坏和陶瓷片的破裂。...... peltier制冷片散热方式2010-3-13 星期六(Saturday) 晴 半导体致冷器件的散热是一门专业技术,也是半导体致冷器件能否长期运行的基础。良好的散热才能获得最低冷端温度的先决条件。以下就是半导体致冷器的几种散热方式:

半导体制冷片正确的安装方法电子元器件

半导体制冷片正确的安装方法北京海腾顺达电子 一、正确的安装、组装方法: 1、制冷片一面安装散热片,一面安装导冷系统,安装表面平面度不大于0.03mm,要除去毛刺、污物。 2、制冷片与散热片和导冷块接触良好,接触面须涂有一薄层导热硅脂。 3、固定制冷片时既要使制冷片受力均匀,又要注意切勿过度,以防止瓷片压裂。 二、正确的使用条件: 1、使用直流电源电压不得超过额定电压,电源波纹系数小于10%。 2、电流不得超过组件的额定电流。 3、制冷片正在工作时不得瞬间通反向电压(须在5分钟之后)。 4、制冷片内部不得进水 5、制冷片周围湿度不得超过80%。 三、CDL1系列制冷组件使用中的注意问题: 1、当采用非专用设备检验该器件时,在工作参数下,热端的温度必须低于80℃,(含改变电流方向冷端变成热端)。在热端没有散热条件下,瞬间通电进行试验,即用手触摸制冷器的两个端面,感到有一定

的热感,一面稍有冷感即可。否则由于热端温度太高,极易造成器件短路或断路,使制冷器报废。 2、在一般条件下,鉴别制冷组件的极性时可将制冷组件冷端朝上放置,引线端朝向人体方向,此时右侧引线即为正极,通常用红色表示;左侧为负极,通常用黑色,兰或白色表示,此种极性是制冷组件工作时的接线方法。需制热时,只要改变电流极性即可。制冷工作时,必须采用直流电源,电源的绞波系数应小于10%。 3、制冷电偶对数及极限电压的识别方法,电偶对数即指PN结点的数量。例如:制冷器的型号为CDL1-12703,则127为制冷组件的电偶对数,03为允许电流值(单位安培),制冷组件的极限电压V;电偶对数×0.11,例如:CDLl-12703的极限电压V=l27×0.11=13.97(V)。 4、各种制冷组件不论在使用还是在试验中,冷热交换时必须待两端面恢复到室温时,(一般需要15分钟以上方可进行)。否则易造成陶瓷片炸裂。 5、为了提高制冷组件的寿命,使用前应该对制冷组件四周外露PN 元件进行固化处理。方法用706单组固化橡胶,均匀地涂在制冷组件四周PN元件上,不要涂在两个端面上。所涂的橡胶24小时自然固化,固化后呈乳白色有弹性的固体。固化的目的是使制冷组件电偶与外界空气完全隔离。起防潮的作用,可提高制冷组件寿命约50%。 6、在安装时,首先用无水酒精棉,将制冷组件的两端擦洗干净,均匀的涂上很蒲的一层导热硅脂:安装表面(储冷板、散热板)应加工,

半导体制冷片工作原理

半导体制冷片工作原理

————————————————————————————————作者: ————————————————————————————————日期:

半导体制冷片工作原理 致冷器件是由半导体所组成的一种冷却装置,随着近代的半导体发展才有实际的应用,也就是致冷器的发明。其工作原理是由直流电源提供电子流所需的能量,通上电源后,电子负极(-)出发,首先经过P型半导体,于此吸热量,到了N型半导体,又将热量放出,每经过一个NP模块,就有热量由一边被送到令外一边造成温差而形成冷热端。冷热端分别由两片陶瓷片所构成,冷端要接热源,也就是欲冷却之。在以往致冷器是运用在CPU的,是利用冷端面来冷却CPU,而热端面散出的热量则必需靠风扇来排出。致冷器也应用于做成车用冷/热保温箱,冷的方面可以冷饮机,热的方面可以保温热的东西。半导体致冷器的历史 致冷片是由半导体所组成的一种冷却装置,于1960左右才出现,然而其理论基础Peltier effect 可追溯到19世纪。下图(1)是由X及Y两种不同的金属导线所组成的封闭线路,通上电源之后,A点的热量被移到B点,导致A点温度降低,B点温度升高,这就是著名的Peltier effect。这现象最早是在1821年,由一位德国科学家ThomasSeeback首先发现,不过他当时做了错误的推论,并没有领悟到背后真正的科学原理。到了1834年,一位法国表匠,同时也是兼职研究这现象的物理学家JeaNPeltier,才发现背后真正的原因,这个现象直到近代随着半导体的发展才有了实际的应用,也就是「致冷器」的发明。 一、因半导体致冷片薄而轻巧,体积很小,不占空间,并可以携带,做成车用电冷/热保温箱,放置车上,不占空间,并可变成冰箱及保温箱,夏天可以摆上几瓶饮料,就可以便冰饮,在冬天就可以变成保温箱。

普通半导体制冷片型号、规格、参数

普通半导体制冷片型号、规格、参数 普通半导体制冷片型号、规格、参数普通半导体制冷片型号、规格、参数2011-09-25 14:36 半导体制冷片的工作原理是:当一块N 型半导体材料和一块P 型半导体材料联结成电偶对时,在这个电路中接通直流电流后,就能产生能量的转移,电流由N 型元件流向P 型元件的接头吸收热量,成为冷端由P 型元件流向N 型元件的接头释放热量,成为热端。吸热和放热的大小是通过电流的大小以及半导体材料N、P 的元件对数来决定,以下三点是热电制冷的温差电效应。一八二二年德国人塞贝克发现当两种不同的导体相连接时,如两个连接点保持不同的温差,则在导体中产生一个温差电动势:ES=S.△T 式中:ES 为温差电动势S(?)为温差电动势率(塞贝克系数) △T 为接点之间的温差一八三四年法国人珀尔帖发现了与塞贝克效应的效应,即当电流流经两个不同导体形成的接点时,接点处会产生放热和吸热现象,放热或吸热大小由电流的大小来决定。Qл=л.Iл=aTc 式中:Qπ为放热或吸热功率π为比例系数,称为珀尔帖系数I 为工作电流 a 为温差电动势率Tc 为冷接点温度当电流流经存在温度梯度的导体时,除了由导体电阻产生的焦耳热之外,导体还要放出或吸收热量,在温差为△T 的导体两点之间,其放热量或吸热量为:Qτ=τ.I.△T Qτ为放热或吸热功率τ为汤姆逊系数I 为工作电流△T 为温度梯度以上的理论直到本世纪五十年代,苏联科学院半导体研究所约飞院士对半导体进行了大量研究,于一九五四年发表了研究成果,表明碲化铋化合物固溶体有良好的制冷效果,这是最早的也是最重要的热电半导体材料,至今还是温差制冷中半导体材料的一种主要成份。约飞的理论得到实践应用后,有众多的学者进行研究到六十年代半导体制冷材料的优值系数,才达到相当水平,得到大规模的应用,也就是我们现在的半导体制冷片件。中国在半导体制冷技术开始于50 年代末60 年代初,当时在国际上也是比较早的研究单位之一,60 年代中期,半导体材料的性能达到了国际水平,60 年代末至80 年代初是我国半导体制冷片技术发展的一个台阶。在此期间,一方面半导体制冷材料的优值系数提高,另一方面拓宽其应用领域。中国科学院半导体研究所投入了大量的人力和物力,获得了半导体制冷片,因而才有了现在的半导体制冷片的生产及其两次产品的开发和应用。1、不需要任何制冷剂,可连续工作,没有污染源没有旋转部件,不会产生回转效应,没有滑动部件是一种固体片件,工作时没有震动、噪音、寿命长,安装容易。2、半导体制冷片具有两种功能,既能制冷,又能加热,制冷效率一般不高,但制热效率很高,永远大于1。因此使用一个片件就可以代替分立的加热系统和制冷系统。3、半导体制冷片是电流换能型片件,通过输入电流的控制,可实现高精度的温度控制,再加上温度检测和控制手段,很容易实现遥控、程控、计算机控制,便于组成自动控制系统。4、半导体制冷片热惯性非常小,制冷制热时间很快,在热端散热良好冷端空载的情况下,通电不到一分钟,制冷片就能达到最大温差。5、半导体制冷片的反向使用就是温差发电,半导体制冷片一般适用于中低温区发电。6、半导体制冷片的单个制冷元件对的功率很小,但组合成电堆,用同类型的电堆串、并联的方法组合成制冷系统的话,功率就可以做的很大,因此制冷功率可以做到几毫瓦到上万瓦的范围。7、半导体制冷片的温差范围,从正温90℃到负温度130℃都可以实现。1、军事方面:导弹、雷达、潜艇等方面的红外线探测、导行系统。 2、医疗方面;冷力、冷合、白内障摘除片、血液分析仪等。 3、实验室装置方面:冷阱、冷箱、冷槽、电子低温测试装置、各种恒温、高低温实验仪片。 4、专用装置方面:石油产品低温测试仪、生化产品低温测试仪、细菌培养箱、恒温显影槽、电脑等。 5、日常生活方面:空调、冷热两用箱、饮水机、电子信箱等。此外,还有其它方面的应用,这里就不一一提了。半导体制冷片件的散热是一门专业技术,也是半导体制冷片件能否长期运行的基础。良好的散热才能获得最低冷端温度的先决条件。以下就是半导体制冷片的几种散热方式:1、自然散热。采用导热较好的材料,紫铜铝材料做成各种散热片,在静止的空气中自由的散发热量,使用方便,缺点是体积太大。2、充液散热。用较好的散热材料做成水箱,用

半导体制冷片工作原理

半导体制冷器的原理与使用 一、原理概述 半导体制冷器的用途很多 ,可用于制作便携冷藏/保温箱、冷热饮水机等。也用于电子器件的散热。目前制冷器所采用的半导体材料最主要为碲化铋,加入不纯物经过特殊处理而成 N 型或 P 型半导体温差元件。以市面常见的TEC1-12605为例,其 额定电压为:12v, 额定电流为5A,最大温差可达60摄氏度,外型尺寸为4 X 4 X 0.4Cm,重约25克。它的工作特点是一面制冷而一面发热。 接通直流电源后,电子由负极(-)出发,首先经过 P 型半导体,在此吸收热量,到了 N 型半导体,又将热量放出, 每经过一个NP 模组,就有热量由一边被送到另外一边,造成温差,从而形成冷热端。下图是一个致冷器的典型结构,由许多 N 型和 P 型半极体之颗粒互相排列而成, 而 N P 之间以一般的导体相连接而成一完整线路,通常是铜、铝或其他金属导体,最后用两片陶瓷片像汉堡包一样夹起来。 二、安装使用 制冷片的安装及使用很简单。在安装前,最好准备一点导热硅脂,然后,找一节干电池,接在制冷器两根引线上,就可感到一端明显发凉而另一端发热,记住引线的极性并确定好制冷器的冷、热端。 正式安装时,在制冷器两端均匀涂上导热硅脂,在CPU与散热器之间插入制冷片,请注意先试好的冷热面方向,冷面贴着CPU,热面与强力的(功率越高越好)散热片接触。然后想法固定好三者。要注意风扇的卡子不能太短,否则会很难固定。 固定好后,就可以给制冷片和风扇接上电源了(一定要注意极性),如果你机箱电源功率小于250W,我劝你别接到机箱电源上,否则有可能因电源功率不足,造成电脑无法正常工作。推荐使用外接电源,在12V电压下制冷片的制冷量和冷热面温差都比较合适。

半导体制冷器的原理与使用

半导体制冷器的原理与使用 1半导体致冷器作为特种冷源,在技术应用上具有以下的优点和特点:1 不需要任何致冷剂,可连续工作,没有污染源没有旋转部件,不会产生回转效应,没有滑动部件是一种固体器件,工作时没有震动、噪音、寿命长,安装容易。 2 半导体致冷器具有两种功能,既能致冷,又能加热,致冷效率一般不高,但致热效率很高,永远大于1。因此使用一个器件就可以代替分立的加热系统和致冷系统。 3 半导体致冷器是电流换能型器件,通过输入电流的控制,可实现高精度的温度控制,再加上温度检测和控制手段,很容易实现遥控、程控、计算机控制,便于组成自动控制系统。 4 半导体致冷器热惯性非常小,致冷致热时间很快,在热端散热良好冷端空载的情况下,通电不到一分钟,致冷器就能达到最大温差。 5 半导体致冷器的反向使用就是温差发电,半导体致冷器一般适用于中低温区发电。 6 半导体致冷器的单个致冷元件对的功率很小,但组合成电堆,用同类型的电堆串、并联的方法组合成致冷系统的话,功率就可以做的很大,因此致冷功率可以做到几毫瓦到上万瓦的范围。 7 半导体致冷器的温差范围,从正温90℃到负温度130℃都可以实现。通过以上分析,半导体温差电器件应用范围有:致冷、加热、发电,致冷和加热应用比较普遍,有以下几个方面: 8 军事方面:导弹、雷达、潜艇等方面的红外线探测、导行系统。 9 医疗方面:冷力、冷合、白内障摘除器、血液分析仪等。 10 实验室装置方面:冷阱、冷箱、冷槽、电子低温测试装置、各种恒温、高低温实验仪器。 11 专用装置方面:石油产品低温测试仪、生化产品低温测试仪、细菌培养箱、恒温显影槽、电脑等。 12 日常生活方面:空调、冷热两用箱、饮水机、电子信箱等。

关于半导体制冷片的几个常见问题

1、制冷量,一般我们所说的制冷片的功率指的是耗电量,而不是制冷量,现在的制冷片的制冷效率一般在60%左右,也就是能效比0.6左右,很低的(压缩机的热泵至少2.0以上)。以100瓦为例:100瓦的制冷片一般也就能产生60瓦左右的制冷量(每秒大约可以从冷面吸收60焦尔左右的热量)而热面所产生的热量是非常大的,除了100瓦的功耗所产生的热量还有60瓦左右的从冷面吸收的热量总共大约160瓦左右,冷热面的温度相差比较悬殊. 2、电流的问题,我们所说的最大电流是在最大电压和最好散热情况下的电流,比如TEC1-12706的半导体制冷片,一般在12V工作电压的带动下,电流一般在4A 多一点,如果在最大电压15V的情况下那就会有所增加可以达到5A培多点,还有在热面散热不好的情况下电流也会有所下降,特别是大点功率的制冷片这种现象比较突出,比如是最大电流12A的半导体的制冷片实际使用的时候那可能就只有10A不到点的电流。 3、电源问题,直流电,制冷片的功耗是相当大的,所以对电源的要求是比较高的,如果要驱动最大电流6安培制冷片的话那电源的也必须选择输出最大电流大于等于6A的电源,否则会损坏到你的电源,一般电脑电源有输出12V12A的接口,再大的话需要购买更大的开关电源。 4、制冷片的制冷效果和热面的散热效果有很大关系,热面的散热效果不好冷面温度就很难降下来,由于热面温度较高,所以散热一定要做好才行。一般60W 以上功率的制冷片热面是可以使用CPU散热器进行散热的,再大功率的那就需要更大更强劲的散热系统了,可以采用超大的铝合金或铜制散热器,甚至水冷 5、制冷片怕摔怕磕,所以一定要轻拿轻放 6、冷热面的测试,可以使用一节五号干电池接通(0-最大电压都可以使制冷片工作),然后就可以感觉得到制冷片的冷热面,如果极性接反了,冷热面也就随极性转换了,所以安装的时候不用刻意区分冷热面,倒一下线头就可以了。 7、有客人问制冷片能不能降到0度以下,用在CPU上好不好?这个问题很难回答,这和很多情况有关,比如制冷片的功率大小,热面的温度(散热效果)、冷面的负载大小(空载的话零下20度都没问题)等等。 8、有人也会问做一个冷藏箱可以能冷到多少度?这些问题也是很难回答的,你所作空间的大小,电源情况,散热情况,箱体的保温情况,室内的环境温度,这都是有密切联系的,所以在大家询问的时候我们也是尽量回避这样的问题,请谅解。 9、饮水机使用的一般是12706的制冷片,小冰箱制冷片坏了,一般电子小冰箱所使用的也是12706的制冷片,车载冰箱都用12704或12705,尺寸有所不一,有4*4cm,3*3cm也有5*5cm(极少),购买时请先确认,另外好多朋友都问,是否可以使用大点功率的制冷片来提升小冰箱的制冷性能?这个是不可以的,因为制冷片功率大了,那电源和散热也必须加强,原本的箱体不具备这样的条件所以是不可以的。 10、关于制冷片寿命的问题,在正常情况下,比如在额定的工作电压,工作电流,良好的散热情况,然后还要准确安装的条件下,使用寿命30万小时。

陶瓷制冷片的知识祥解

陶瓷制冷片的知识祥解 制冷片的介绍 半导体制冷片(TE)也叫热电制冷片,是一种热泵,它的优点是没有滑动部件,应用在一些空间受到限制,可靠性要求高,无制冷剂污染的场合。 半导体制冷片的工作运转是用直流电流,它既可制冷又可加热,通过改变直流电流的极性来决定在同一制冷片上实现制冷或加热,这个效果的产生就是通过热电的原理,以下的图就是一个单片的制冷片,它由两片陶瓷片组成,其中间有N型和P型的半导体材料(碲化铋),这个半导体元件在电路上是用串联形式连结组成 半导体制冷片的工作原理是:当一块N型半导体材料和一块P型半导体材料联结成电偶对时,在这个电路中接通直流电流后,就能产生能量的转移,电流由N型元件流向P型元件的接头吸收热量,成为冷端由P型元件流向N型元件的接头释放热量,成为热端。吸热和放热的大小是通过电流的大小以及半导体材料N、P的元件对数来决定,以下三点是热电制冷的温差电效应。 1、塞贝克效应(SEEBECK EFFECT) 一八二二年德国人塞贝克发现当两种不同的导体相连接时,如两个连接点保持不同的温差,则在导体中产生一个温差电动势: ES="S".△T 式中:ES为温差电动势 S(?)为温差电动势率(塞贝克系数) △T为接点之间的温差 2、珀尔帖效应(PELTIER EFFECT) 一八三四年法国人珀尔帖发现了与塞贝克效应的效应,即当电流流经两个不同导体形成的接点时,接点处会产生放热和吸热现象,放热或吸热大小由电流的大小来决定。 Qл=л.I л=aTc 式中:Qπ 为放热或吸热功率 π为比例系数,称为珀尔帖系数 I为工作电流 a为温差电动势率 Tc为冷接点温度 3、汤姆逊效应(THOMSON EFFECT)

关于半导体制冷片的几个常见问题

. ;. 1、制冷量,一般我们所说的制冷片的功率指的是耗电量,而不是制冷量,现 在的制冷片的制冷效率一般在60%左右,也就是能效比0.6左右,很低的(压缩机的热泵至少2.0以上)。以100瓦为例:100瓦的制冷片一般也就能产生60瓦左右的制冷量(每秒大约可以从冷面吸收60焦尔左右的热量)而热面所产生的热量是非常大的,除了100瓦的功耗所产生的热量还有60瓦左右的从冷面吸收的热量总共大约160瓦左右,冷热面的温度相差比较悬殊. 2、电流的问题,我们所说的最大电流是在最大电压和最好散热情况下的电流,比如TEC1-12706的半导体制冷片,一般在12V工作电压的带动下,电流一般在4A 多一点,如果在最大电压15V的情况下那就会有所增加可以达到5A培多点,还有在热面散热不好的情况下电流也会有所下降,特别是大点功率的制冷片这种现象比较突出,比如是最大电流12A的半导体的制冷片实际使用的时候那可能就只有10A不到点的电流。 3、电源问题,直流电,制冷片的功耗是相当大的,所以对电源的要求是比较高的,如果要驱动最大电流6安培制冷片的话那电源的也必须选择输出最大电流大于等于6A的电源,否则会损坏到你的电源,一般电脑电源有输出12V12A的接口,再大的话需要购买更大的开关电源。 4、制冷片的制冷效果和热面的散热效果有很大关系,热面的散热效果不好冷面温度就很难降下来,由于热面温度较高,所以散热一定要做好才行。一般60W 以上功率的制冷片热面是可以使用CPU散热器进行散热的,再大功率的那就需要更大更强劲的散热系统了,可以采用超大的铝合金或铜制散热器,甚至水冷 5、制冷片怕摔怕磕,所以一定要轻拿轻放 6、冷热面的测试,可以使用一节五号干电池接通(0-最大电压都可以使制冷片工作),然后就可以感觉得到制冷片的冷热面,如果极性接反了,冷热面也就随极性转换了,所以安装的时候不用刻意区分冷热面,倒一下线头就可以了。 7、有客人问制冷片能不能降到0度以下,用在CPU上好不好?这个问题很难回答,这和很多情况有关,比如制冷片的功率大小,热面的温度(散热效果)、冷面的负载大小(空载的话零下20度都没问题)等等。 8、有人也会问做一个冷藏箱可以能冷到多少度?这些问题也是很难回答的,你所作空间的大小,电源情况,散热情况,箱体的保温情况,室内的环境温度,这都是有密切联系的,所以在大家询问的时候我们也是尽量回避这样的问题,请谅解。 9、饮水机使用的一般是12706的制冷片,小冰箱制冷片坏了,一般电子小冰箱所使用的也是12706的制冷片,车载冰箱都用12704或12705,尺寸有所不一,有4*4cm,3*3cm也有5*5cm(极少),购买时请先确认,另外好多朋友都问,是否可以使用大点功率的制冷片来提升小冰箱的制冷性能?这个是不可以的,因为制冷片功率大了,那电源和散热也必须加强,原本的箱体不具备这样的条件所以是不可以的。 10、关于制冷片寿命的问题,在正常情况下,比如在额定的工作电压,工作电流,良好的散热情况,然后还要准确安装的条件下,使用寿命30万小时。

半导体制冷片TEC1-12703参数资料和注意事项

半导体制冷片主要参数 芯片型号:TEC1-12703 外形尺寸:40*40*3.6mm 元件对数 127 导线规格:引线长100±5mm RV标准导线单头5mm镀锡 内部阻值:4.0~4.3Ω(环境温度23±1℃,1kHZ Ac测试) 最大温差:△Tmax(Qc=0) 60℃以上。 工作电流:Imax=3A(额定电压启动时) 额定电压:DC12V(Vmax:15.5V) 致冷功率:Qcmax 18W 装配压力:85N/cm2 工作环境:温度范围 -55℃~83℃(过高的环境温度降直接影响制冷效率)封装工艺:四周标准704硅橡胶密封 包装标准:泡沫盒包装,存放条件环境温度-10℃~40℃ 存放条件:-40~60℃

制冷片原理介绍 热电制冷是热电效应主要是珀尔帖效应在制冷技术方面的应用。实用的热电制冷装置是由热电效应比较显著、热电制冷效率比较高的半导体热电偶构成的。 半导体热电偶由N 型半导体和P型半导体组成。N 型材料有多余的电子,有负温差电势。P 型材料电子不足,有正温差电势;当电子从P 型穿过结点至N 型时,其能量必然增加,而且增加的能量相当于结点所消耗的能量。这一点可用温差降低来证明。 热电堆的上面是冷端,下面是热端。借助热交换器等各种传热手段,使热电堆 相反,当电子从N型流至P型材料时,结点的温度就会升高。直接接触的热电偶电路在实际的引用中不可用,所以上图的连接方法来代替,实验证明,在温差电路中引入第三种材料(铜连接片和导线)不会改变电路的特性。 这样,半导体元件可以各种不同的连接方法满足使用者的要求。把一只P型半导体和一只N 型半导体联结成热电偶,接上直流电源后,在接头处就会产生温差和热量的转移.在上面的接头处,电流方向是N至P,温度下降并且吸热,这就是冷端。而在下面的一个接头处,电流方向是P 至N ,温度上升并且放热,因此是热端。 按图中把若干对半导体热电偶对在电路上串联起来,而在传热方面则是并联的,这就构成了一个常见的制冷热电堆。按图示接上直流电源后,这个的热端不断散热并且保持一定的温度,把热电堆的冷端放到工作环境中去吸热降温,这就是热电制冷的工作原理。 制冷片使用注意事项 1、当不知道致冷器的冷热面时,可采用这样的方法,将红线接电源正极,黑线接负极,并可在没有散热条件下,瞬间通电进行试验,即用手触摸致冷器的两个端面,会感到有一面的发热,一面稍有冷感,发热的一面为热面,冷感的一面为冷面。但时间不能超过5秒,否则由于热端温度太高,极易造成器件烧坏。 2、在一般条件下,引线用红色通常表示为正极:通常用黑色表示为负极,这是热电致冷器工作时的接线方法。需致热时.只要改变电流极性即可。致冷工作必须采用开关电源,电源的纹波系数应小于10%。

半导体制冷片使用说明

半导体制冷片使用说明 一、正确的安装、组装方法 1(制冷片一面安装散热片,一面安装导冷系统,安装表面平面度不大于 0.03mm,要除去毛刺、污物。 2(制冷片与散热片和导冷块接触良好,接触面须涂有一薄层导热硅脂。 3(固定制冷片时既要使制冷片受力均匀,又要注意切勿过度,以防止瓷片压裂。二、正确的使用条件 1(使用直流电源电压不得超过额定电压,电源波纹系数小于10,。 2(电流不得超过组件的额定电流。 3(制冷片正在工作时不得瞬间通反向电压(须在5分钟之后)。 4(制冷片内部不得进水。 5(制冷片周围湿度不得超过80,。 三、TEC1系列制冷组件使用中的注意问题 1、当采用非专用设备检验该器件时,在工作参数下,热端的温度必须低于80?,(含改变电流方向冷端变成热端)。 在热端没有散热条件下,瞬间通电进行试验,即用手触摸制冷器的两个端面,感到有一定的热感,一面稍有冷感即可。 否则由于热端温度太高,极易造成器件短路或断路,使制冷器报废。 2、在一般条件下,鉴别制冷组件的极性时可将制冷组件冷端朝上放置,引线端朝向人体方向,此时右侧引线即为正极, 通常用红色表示;左侧为负极,通常用黑色,兰或白色表示,此种极性是制冷组件工作时的接线方法。需制热时,只要

改变电流极性即可。制冷工作时,必须采用直流电源,电源的绞波系数应小于10,。 3、制冷电偶对数及极限电压的识别方法,电偶对数即指PN结点的数量。例如:制冷器的型号为TECl-12703,则127为制 冷组件的电偶对数,03为允许电流值(单位安培),制冷组件的极限电压V;电偶对数×0.11,例如:TECl-12703的极限电 压V=l27 ×0.11=13.97(V)。 4、各种制冷组件不论在使用还是在试验中,冷热交换时必须待两端面恢复到室温时,(一般需要15分钟以上方可进行)。 否则易造成陶瓷片炸裂。 5、为了提高制冷组件的寿命,使用前应该对制冷组件四周外露PN元件进行固化处理。方法用706单组固化橡胶,均匀地 涂在制冷组件四周PN元件上,不要涂在两个端面上。所涂的橡胶24小时自然固化,固化后呈乳白色有弹性的固体。固化 的目的是使制冷组件电偶与外界空气完全隔离。起防潮的作用,可提高制冷组件寿命约50,。 6、在安装时,首先用无水酒精棉,将制冷组件的两端擦洗干净,均匀的涂上很蒲的一层导热硅脂:安装表面(储冷板、 散热板)应加工,表面平面度不大于0.03MM,并清洗干净;在安装过程中制冷组件的冷端工作面一定要与储冷板接触良 好,热端应与散热板接触良好(如用螺丝紧固,用力应均匀,切勿过度);储冷板、散热板的尺寸大小取决于冷却方法 及冷却功率大小,可视情况自行决定;为达到最佳制冷效果,储冷板和散热板之间应当用隔 热材料充填,其厚度在25 ~ 30mm为宜。

相关主题
文本预览
相关文档 最新文档