当前位置:文档之家› 矩阵教学设计

矩阵教学设计

矩阵教学设计
矩阵教学设计

矩阵复习课教学设计

江苏省海州高级中学申磊

一、教学内容分析

《普通高中课程标准实验教科书·数学(选修4-2)》(苏教版)。本节课程不是大学教材中矩阵内容的简单下放,而是通过平面图形的几何变换来讲解常见的简单二阶矩阵,把矩阵作为一个研究平面图形变换的基本工具,作为广泛意义上的一种“代数”来学习和介绍。

二、设计思想

《标准》强调数学文化的重要作用,体现数学的文化的价值。数学教育不仅应该帮助学生学习和掌握数学知识和技能,还应该有助于学生了解数学的价值。让学生逐步了解数学的思想方法、理性精神,体会数学家的创新精神,以及数学文明的深刻内涵。

三、教学目标

通过几何变换讨论二阶方阵的乘法及性质、矩阵的逆和矩阵的特征向量,矩阵的简单应用。

四、教学重点和难点

重点:通过几何图形变换,学习二阶矩阵的基本概念、性质和思想;

难点:切变变换,逆变换(矩阵),特征值与特征向量。

五、教学过程设计

【课堂准备】

1.选题:由教师根据本章教学目标及重难点选择适当的题目制成导学案,印刷成导学案并提前一天发给学生;

2.做题:提前一天每位同学独立完成导学案,然后学习小组内部根据各自的做题情况展开讨论;

3.精彩展示:课前教师把任务分配到各个小组,由组长确定每人的具体任务,上台来展示;

4.点评:最后又其他组的成员给出点评,不足之处再有教师补充。

【教学过程】

1.出示课题:教师简明叙述本章内容及重难点

2.交流、分享:(由教师主持。小组推荐发言人;以下记录均为发言概述)

基础训练(学生在原位回答问题,回答问题方式:本题考查点是什么,答案是什么,怎么做?教师点评)

(1) 学生1:函数小史计算:(1)????????????121011 (2)??

????-??????120110 (2)教师点评:掌握二阶矩阵与平面列向量在乘法规则是解题的关键

(3)学生2: 曲线xy=1绕坐标原点逆时针旋转90°后得到的曲线方程是__________,变换对应的矩阵是_________.

(4)教师带头鼓掌并简单评价

(5)学生3:已知A=??????1220,B=??

????--2301则AB=___________,BA=___________ (6)教师带头鼓掌并简单评价

(7)学生4:

设矩阵12122M ?-???=??????

的逆矩阵是1a b M c d -??=????,则a c +的值为 (8)教师带头鼓掌并简单评价

(9)学生5:已知200,0202x y x A B y x y +????==????---????

,若A=B ,求x ,y. (10)教师点评:两个矩阵相等的充要条件是它们的行数与列数分别相等,并且对应位置的元素也分别相等.

(11)学生6:已知变换??

????-+=??????''→??????y x y x y x y x 252,试将它写成矩阵的乘法形式. (12)教师点评:一般地,对于平面向量变换T ,如果变换规则为T :??????y x →??????''y x =?????

?++dy cx by ax ,那么根据二阶矩阵与平面列向量在乘法规则可以改写为

T :??????y x →??????''y x =??????d c b a ??

????y x 的矩阵形式. 能力测试(学生上黑板展示,再有其他组同学给予点评)

(13)学生7:已知在矩阵M 的作用下点A (1,2)变成了点A ′(11,5),点B (3,-1)变成了点B ′(5,1),点C (x ,0)变成了点C ′(y ,2),求(1)矩阵M ;求(2)x 、y 值.

(14)学生8点评:求变换矩阵通常用待定系数法.

(15)学生9:求关于直线y=3x 的反射变换对应的矩阵A .

(16)学生10点评:一般地若过原点的直线m 的倾斜角为α,则关于直线m

的反射变换矩阵为: A=??

????-αααα2cos 2sin 2sin 2cos

(17)学生11:已知矩阵[])(x f A =,[]x x B -=1,??

????=a x C 2,若A=BC ,

求函数)(x f 在[1,2] 上的最小值.

(18)学生12点评:(本题运用了行矩阵与列矩阵的乘法规则及两个矩阵相等的充要条件;求含参数的二次函数在闭区间上的最值问题,通常需要分类讨论.

(19)学生

13:若)(cos sin sin cos R x ∈=θθ

θθθ,试求32)(2-+=x x x f 的最值。 (20)学生14:已知矩阵???

?????-=32521M ,向量??????=161α,求α3M (21)学生15:记0,0a b k A S c d k ????==????????

,其中k R ∈,作矩阵乘法SA ,AS , S 与单位矩阵、零矩阵的关系?

当k>0时,矩阵S 对应的变换TS 有何几何意义?

研究TS 与伸压变换的关系?

(22)学生16点评:仔细体会两个二阶矩阵乘法可交换的条件;从矩阵乘法的代数运算和几何意义两个不同的方面理解矩阵乘法和变换复合之间的内在联系;复杂的变换都可以通过简单的初等变换复合而成。

3.课堂小结:

(完整版)可逆矩阵教案.doc

§1.4可逆矩阵 ★ 教学内容: 1.可逆矩阵的概念; 2.可逆矩阵的判定; 3.利用转置伴随矩阵求矩阵的逆; 4.可逆矩阵的性质。 ★教学课时: 100 分钟 /2 课时。 ★教学目的: 通过本节的学习,使学生 1.理解可逆矩阵的概念; 2.掌握利用行列式判定矩阵可逆以及利用转置伴随矩阵求矩阵的逆的方法; 3.熟悉可逆矩阵的有关性质。 ★教学重点和难点: 本节重点在于使学生了解什么是可逆矩阵、如何判定可逆矩阵及利用转置伴随矩阵求 逆的方法;难点在于转置伴随矩阵概念的理解。 ★ 教学设计: 一可逆矩阵的概念。 1.引入:利用数字乘法中的倒数引入矩阵的逆的概念。 2.定义 1.4.1(可逆矩阵)对于矩阵A,如果存在矩阵 B ,使得 AB BA E 则称 A 为可逆矩阵,简称 A 可逆,并称 B 为 A 的逆矩阵,或 A 的逆,记为A1。 3.可逆矩阵的例子: ( 1)例 1 单位矩阵是可逆矩阵; ( 2)例 2 1 0 1 0 A , B 1 ,则 A 可逆; 1 1 1 1 0 0 ( 3)例 3 对角矩阵 A 0 2 0 可逆; 0 0 3 1 1 1 1 1 0 ( 4)例 4 A0 1 1 , B 0 1 1 ,则A可逆。 0 0 1 0 0 1 4.可逆矩阵的特点: (1)可逆矩阵A都是方阵; (2)可逆矩阵A的逆唯一,且A1和A是同阶方阵;

( 3)可逆矩阵 A 的逆 A 1 也是可逆矩阵,并且 A 和 A 1 互为逆矩阵; ( 4)若 A 、 B 为方阵,则 AB E A 1 B 。 二 可逆矩阵的判定及转置伴随矩阵求逆 1.方阵不可逆的例子: 例 5 例 6 1 1 A 0 0 1 2 A 2 4 不可逆; 不可逆; 2.利用定义判定矩阵可逆及求逆的方法: ( 1)说明利用定义判定及求逆的方法, ( 2)说明这种方法的缺陷; 3.转置伴随矩阵求逆 ( 1)引入转置伴随矩阵 1)回顾行列式按一行一列展开公式及推论 a i1 A s1 a i 2 A s2 L a in A sn D,i s (i 1,2,L , n) , 0,i s a 1 j A 1t a 2 j A 2t L a nj A nt D, j t ( j 1,2,L , n) ; 0, j t 2)写成矩阵乘法的形式有: a 11 a 12 L a 1n A 11 A 21 L A n1 A 0 L 0 a 21 a 22 L a 2 n A 12 A 22 L A n2 0 A L M M O M M M O M A E M M O M a n1 a n 2 L a nn A 1n A 2n L A nn 0 0 L A 3)定义 1.4.2(转置伴随矩阵)设 A ij 式是 A (a ij )n n 的行列式中 a ij 的代数余 子式,则 A 11 A 21 L A n1 A * A 12 A 22 L A n 2 M M O M A 1n A 2n L A nn 称为 A 的转置伴随矩阵。 ( 2)转置伴随矩阵求逆: 1) AA * A E ; 2)定理 1.4.1 A 可逆的充分必要条件是 A 0 (或 A 非奇异),且

矩阵的分块及应用

矩阵的分块及应用 武夷学院毕业设计(论文) 矩阵的分块及应用院系:专业:姓名:学号: 指导教师:职称:完成日期:数学与计算机系计算机科学与技术陈航20073011014 魏耀华教授年月日武夷学院教务处制摘要矩阵分块,就是把一个大矩阵按照一定规则分成小矩阵,它是矩阵运算的一种常用技巧与方法。分块矩阵的理论不但在工程技术和实际生产中有着广泛的应用,而且在线性代数中求矩阵乘积、行列式的值、逆矩阵、矩阵的秩和矩阵的特征根的过程中也起到重要作用。分块矩阵的初等变换则是处理分块矩阵有关问题的重要工具,它在线性代数中有非常广泛的应用。讨论了分块矩阵的概念、分块矩阵的运算、分块矩阵的性质以及分块矩阵的广义初等矩

阵,归纳并提出了分块矩阵的一些应用,这些应用主要涉及到矩阵的秩,逆矩阵,行列式以及矩阵正定和半正定等方面。通过引用了大量的实例说明了对矩阵进行适当分块可以使高等代数中的许多计算与证明问题迎刃而解。关键词: 分块矩阵;初等变换;计算;逆矩阵;证明。I Abstract Partitioned matrices mean dividing a big matrix into the small matrices according to the certain rule. It is a common technique and method in matrix operation. The theories of partitioned matrices have not only a wide range of applications in engineering and production, but also play an important role to the process for seeking matrix product and the value of determinant and inverse matrix and rank of matrix and the characteristic in linear algebra. Elementary transformation of partitioned matrices is an important tool to deal with the partition matrix. Also, it is

同济大学线性代数教案第一章线性方程组与矩阵

线性代数教学教案 第一章线性方程组与矩阵 授课序号01 1112121 2 n n m m mn a a a a a a ?? ?? ??? ,有时为了强调矩阵的行数和列数,也记为

n a ???. 212 n n n nn a a a ? ??? . 1112 00n n nn a a a a ?? ?? ? ? ?与上三角矩阵200 n nn a ? ??? . 000 0n a ??? ??? ,或记为100 1? ???? . 负矩阵的定义:对于矩阵()ij m n a ?=A ,称矩阵21 22 n m m m mn mn b a b a b ?? +++? ,

a b+

21 2 n m m mn a a a ????,转置矩阵212.m n n nm a ? ??? 矩阵的转置满足的运算规律(这里k 为常数,A 与B 为同型矩阵)阶方阵()ij a =A 如果满足222n n m mn n a x +21 2 n m m mn a a a ????称为该线性方程组的系数矩阵n x ???,m b = ? ??? β,有:

2221122221 21122n n n m m mn n m m mn n a a a x a x a x a x ??? ? =??? ???? ? ++ +????? . 再根据矩阵相等的定义,该线性方程组可以用矩阵形式来表示:=Ax β.

授课序号02 21 2 t s s st ????A A A ,21 2 t s s st ? = ? ??? B B B B ,的行数相同、列数相同,则有 21 22 t s s s st st ?? ±±±? B A B A B . 111221 2 t s s st ? ? ??? A A A A A ,都有21 2 t s s st k k ? ??? A A A .

分块矩阵及其应用

分块矩阵及其应用 徐健,数学计算机科学学院 摘要:在高等代数中,分块矩阵是矩阵内容的推广. 一般矩阵元素是数量, 而分块矩阵则是将大矩阵分割成小矩形矩阵,它的元素是每个矩阵块.分块矩阵的引进使得矩阵工具的利用更加便利,解决相关问题更加强有力,所以其应用也更广泛. 本文主要研究分块矩阵及其应用,主要应用于计算行列式、解决线性方程组、求矩阵的逆、证明与矩阵秩有关的定理. 关键词:分块矩阵;行列式;方程组;矩阵的秩 On Block Matrixes and its Applications Xu Jian, School of Mathematics and Computer Science Abstract In the higher algebra, block matrix is a generalization of matrix content. In general, matrix elements are numbers. However, the block matrix is a large matrix which is divided into some small rectangular matricies, whose elements are matrix blocks. The introduction of the block matrix makes it more convenient to use matrix, and more powerful to solve relevant problems. So the application of the block matrix is much wider. This paper mainly studies the block matrix and its application in the calculation of determinant, such as solving linear equations, calculating inverse matrix, proving theorem related to the rank of matrix , etc. Keywords Block matrix; Determinant; System of equations; Rank of a matrix

分块矩阵求逆

一、分4块的矩阵求逆 对于分块矩阵A B 求其逆在计量经济学,马尔科夫链等科目中常常遇到,本文综合了 C D,格林等文件,提供一个一般的汇总性文件,方便查阅。 本文采用初等变化法求逆,假设先对矩阵进行了合适的分块并且灰色部分的逆存在: A B | I 0 C D | 0 I 第1行左乘-CA-1并加到第2行有: A B | I 0 0D-CA-1B | -CA-1I 第2行左乘-B(D-CA-1B)-1并加到第1行有: A 0 | I+ B(D-CA-1B)-1 CA-1-B(D-CA-1B)-1 0 D-CA-1B|-CA-1I 第1行左乘A-1,第2行左乘(D-CA-1B)-1后,右边的矩阵为原始矩阵的逆:

注意是左乘,右乘不行,因为右乘副对角线上的矩阵可能没法做矩阵乘法。 二、分9块的矩阵求逆 对于分9块的矩阵A=[A B C;D E F;G H K]求逆,可先把矩阵进行适当划分,使得以下各灰色部分可逆,然后分别左乘矩阵P和右乘矩阵Q,P、Q如下所示,易见P、Q均可逆。 P A Q I 0 0 | A B C | I -A-1B -A-1C -DA-1 I 0 | D E F | 0 I 0 = B(具体见下三行) -GA-10 I | G H K| 0 0 I A 0 0 0 E-DA-1B F-DA-1C [(K-GA-1C)-(H-GA-1B)(E-DA-1B)-1(F-DA-1C)] 0 H-GA-1B K-GA-1C 要求各灰色部分可逆

可见大矩阵B的逆主要是求其右下角的逆,而这是个分四块矩阵,用第一部分方法即可求得。因为PAQ=B,所以A=P-1BQ-1,A-1=QB-1P,经过最终计算,A-1表示如下: 其中: M=(E-DA-1B)-1+(E-DA-1B)-1(F-DA-1C)[(K-GA-1C)-(H-GA-1B)(E-DA-1B)-1(F-DA-1C)]-1 (H-GA-1B)(E-DA-1B)-1 N=-(E-DA-1B)-1(F-DA-1C)[(K-GA-1C)-(H-GA-1B)(E-DA-1B)-1(F-DA-1C)]-1 R=-[(K-GA-1C)-(H-GA-1B)(E-DA-1B)-1(F-DA-1C)]-1 (H-GA-1B)(E-DA-1B)-1 S=[(K-GA-1C)-(H-GA-1B)(E-DA-1B)-1(F-DA-1C)]-1 此方法原则上还可依此递推至分为n2块矩阵求逆。

42矩阵教案

§2.1.1矩阵的概念 教学目标: 知识与技能:1.掌握矩阵的概念以及基本组成的含义(行、列、元素) 2.掌握零矩阵、行矩阵、列矩阵、矩阵相等的概念. 3.尝试将矩阵与生活中的问题联系起来, 用矩阵表示丰富的问题, 体会矩阵的现实意义. 过程与方法: 从具体的实例开始,通过具体的实例让学生认识到,某些几何变换可以用矩阵来表示,丰富学生对矩阵几何意义的理解,并引导学生用映射的观点来认识矩阵、解线性方程组 情感、态度与价值观: 体会代数与几何的有机结合,突出数形结合的重要思想 教学重点:矩阵的概念以及基本组成的含义 教学难点:矩阵的概念以及基本组成的含义 教学过程: 一、问题情境: 设O (0, 0),P (2, 3),则向量OP → (2, 3),将OP →的坐标排成一列,并简记为???? ?? 2 3 2 (1)某电视台举办歌唱比赛,甲、乙两名选手初、复赛成绩如下: (2)某牛仔裤商店经销A 、B 、C 、D 、E 五种不同牌子的牛仔裤,其腰围大小分别有28英寸、30英寸、32英寸、34英寸四种,在一个星期内,该商店的销售情况可用下列矩阵形式表示: A B C D E 28英寸 1 3 0 1 2 30英寸 5 8 6 1 2 32英寸 2 3 5 6 0 34英寸 0 1 1 0 3 3.图——矩阵 2 3 2 3 ???? ??80 90 86 88

二、建构数学 矩阵: 记号:A ,B ,C ,…或(a ij ) (其中i,j 分别元素a ij 所在的行和列) 要素:行——列——元素 矩阵相等行列数目相等并且对应元素相等。 特别:(1)2×1矩阵,2× 2矩阵(二阶矩阵),2×3矩阵 (2)零矩阵 (3)行矩阵:[a 11,a 12] 列矩阵:???? ?? a 11 a 21 ,一般用,等表示。 (4)行向量与列向量 三、教学运用 例1、用矩阵表示图中的△ABC , 其中A(-1 , 0) , B(0 , 2) , C(2 , 0) . 思考: 如果用矩阵M=00??? 12 3 2 40? ?? 表示平面中的图形, 那么该图形有什么几何特征? 例2、某种水果的产地为A 1 , A 2 , 销地为B 1 , B 2 , 请用矩阵表示产地A i 运到销 地B j 的水果数量(a ij ), 其中i=1 , 2 , j=1 , 2 . 0 1 1 0 1 0 1 0 1 1 0 1 0 0 1 0 A B C 0 3 1 3 0 0 1 0 2

浅谈分块矩阵的性质及应用

浅谈分块矩阵的性质及应用 摘要:本文主要谈及分快矩阵的思想在线性代数的证明。解线性方程组,矩阵得知 逆及矩阵的逆,和初等变换中的应用。 关键词:分块矩阵;线性方程组;矩阵的秩及矩阵的逆;初等变换 On the nature of block matrix and its application Abstract: this thesis uses the blocking matrix method into proving and applying the linear algebra, tries to solve the linear equations, and the proof of other relative matrix rank and elementary matrix. Key word s: Block matrix; Linear algebra; rank of matrix; elementary matrix.前言: 矩阵得分快是处理问题的一重要方法,把一个告诫矩阵分成若干个地界矩阵,在运算中把低阶矩阵当作数一样处理,这样高阶矩阵就化作低阶矩阵,长能使我们迅速接近问题的本质,从而达到解决问题的目的,使解题更简洁,思路更开阔,因此本文主要谈及分块矩阵再求行列式的值,解线性方程组,求矩阵的秩及逆等方面的应用。 1.预备知识: 分块矩阵的定义:将分块矩阵A用若干条纵线和横线分成许多个小矩阵,每一个小矩阵称为 A的子块,一子块为元素的形式上的矩阵成为分块矩阵。 分块矩阵的运算:

1.2.1分块矩阵的加法: 设分块矩阵 A 与 B 的行数相同,列数相同,采用相同的得分块法,有 A=1111n m mn A A A A ?? ? ? ???K M O M L ,1111n m mn B B B B B ?? ?= ? ??? K M O M L 其中ij A 与ij B 的行数相同,列数相同,那么A+B=111111111n n m m n mn A B A B A B A B ++?? ? ? ?++?? K M O M L 1.2.2分块矩阵与数的乘法: A=1111n m mn A A A A ?? ? ? ???K M O M L ,1111n m mn A A A A A λλλλλ?? ? = ? ??? K M O M L 1.2.3设A 为m l ?矩阵,B 为l n ?矩阵,分块成 1111111 1 t r s st t tr A A B B A B A A B B ???? ? ?== ? ? ? ????? K K M O M M O M L L 其中1i A ,2i A ……,it A 的列数分别等于1j B ,2j B ……,tj B 的行数,那么 1111 r s sr C C AB C C ?? ? = ? ??? K M O M L ,其中1 t ij ik ik k C A B ==∑(i=1……s ;j=1,……,r) 1.2.4设1111 t s st A A A A A ?? ? = ? ???K M O M L ,则1111T T t T T T s st A A A A A ?? ?= ? ?? ? K M O M L 2. 分块矩阵的性质及应用: 分块矩阵的性质: 设A 为n 阶矩阵,若A 的分块矩阵只有在对角线上有非零子块,其余子块都为零矩阵,且在对角线上的子块都是方阵,即

分块矩阵求逆公式及证明

分块矩阵求逆公式及证明 A 12 ,如果A ii (i=1,2)的逆存在,则 A 22 A 11 B 12 * A 12B 22 A 21B 11 A 22B 21 A 21 B 12 A 22B 22 将B 22代入方程(2)可以得到: B q 厂-A -1|A 12F 2 将B/弋入方程(1)可以得到: B qi = A ;;(I iq + A 12F 2A 21A ;1) 证毕。 同理可得,A ;1的另外一种表达形式为: F -F -1A A -1 1 A I ;;; ;; 1 12 22 ,其中 F 广(A ii-A i2A 22;;A 2i ) A - -1 -1 -1 化 1 A 11 (I + A 12F 2A 21A 11 ) _A 11A 12F 2 ; -F 2A 21A 11 F 2 其中 F 2= (A 2^A 21A 11A 12 F 1 证明: 设A 的逆为B 二 B 11 _B 21 B B :,其中B 与A 分块形式相同'则: A 11 A 12 B 11 A 22 _ -B 21 B q? I 11 B 22H 22 - A 11B 11 A 12B 21 111 (1 ) 定理: A= A 11 A 21 ⑷- A 21A -?⑵二 A 22 B 22 -1 - A 21A 11B 22 -1 1 1 22 = B 22 二(A 22 一 A 21A 11A 12) F 2 (3) - A 21A 11 (1) — A 22B 21 - A 21A 11A 12B 21 =-A 21A -1 二 B 21 二一 B 22A 21A 11

第二章矩阵教案讲稿【哈工大版】

教学单元教案格式 线性代数课程教案 教学目的及要求:

线性代数课程教案 教学内容及过程 教学引入: 前面介绍了利用行列式求解线性方程组的方法,即Cramer法则。但是Cramer 法则有它的局限性: 系数行列式D 0 ;方程组中变量的个数等于方程的个数。 接下来要学习的还是关于解线性方程组,即Cramer 法则无法用上的-――用“矩阵”的方法解线性方程组。本节课主要学习矩阵的概念及其运算。 矩阵这一具体概念是由19 世纪英国数学家凯利首先提出并形成矩阵代数这一系统理论的。数学上,一个m×n 矩阵就是一m 行n 列的矩形阵列。矩阵由数组成。在本门课程中,它是求解线性方程组的一种重要工具。 教学内容与教学设计: 第二章矩阵 2.1 矩阵的概念 2.2 矩阵的运算 2.3 可逆矩阵 2.4 矩阵的初等变换和初等矩阵 2.5 矩阵的秩 2.6 分块矩阵 2.1 矩阵的概念 一、定义 例题1:某种物资有 3 个产地,4 个销地,调配量如表 2.1所示 16351635 那么,表中的数据可以构成一个矩 形 数表:3120或 3 1 20 40124012 定义1:由m n 个数或代数式a ij i1,2, ,m; j1,2,,n构成的一个 m 行n 列的矩形 列 旁批 矩阵是线性代数的核心,矩阵的概念、运算和理论贯穿线性代数的始终。矩阵是一个表格,它的运算与数的运算是既有联系又有区别;矩阵与行列式也有很大的关联,但二者不能等同混淆。

a 11 a 12 a 1n a 11 a 12 a 1n a 21 a 22 a 2n 或 a 21 a 22 2n 称为一个 m 行n 列的矩阵。其中a ij 称为矩 a m1 a m2 a mn a m1 a m2 a mn 阵的第 i 行 j 列的元素 i 1,2, ,m; j 1,2, ,n 。 矩阵的元素属于数域 F ,称其为数域 F 的矩阵。若无特别说明,本书里的矩阵均指 实 数域 R 上的矩阵。一般用大写的字母 A ,B ,C , 表示矩阵;有时为了突出矩阵的行 列规模,也对大写字母右边添加下标,如 m n 的矩阵 A 可以表为 A m n ;还有,要同时表 明矩阵的规模和元素时也采用形式 a ij m n 标记。若矩阵的所有元素为零,则称其为 零矩 ij m n 阵,记为 0m n ,不引起混淆时也可简记为 0 。 当矩阵 A m n 的行列数相等时,即 m n 时称其为 n 阶方(矩)阵 A 或简称为方阵 A ; 一阶方阵也常作为一个数对待。 对于n 阶方阵 A a ij n n ,由它的元素按原有排列形式构 成 的行列式称为方阵 A 的行列式,记为 A 或detA 。 定义 2:如果两个矩阵 A a ij m n , B b ij s t 具有相同的行数、列数,即 m s,n t , 且对应位置 上的元素相等 a ij b ij ,那么称矩阵 A 与矩阵 B 相等,记为 A B 。 1 a c 1 4 例题 2:设矩阵 A ,B ,且 A B ,试求a,b,c, d 2 b 3 0 3d 解:因为 A B ,故有: 1 c 1,a 4,2 b 0,3 3d 联解求得: a 4,b 2, c 0,d 1。 二、几种特殊矩阵 1) m n 矩阵 A (a ij )m n ,当 m 称为 n 阶方阵 ,记为 A n . 特别地,一阶方阵 (a) a . n 时,即 a 11 a 12 a 21 a 22 a 1n a 2n a n1 a n2 a nn

矩阵的分块求逆及解线性方程组

实验3 矩阵的分块求逆及解线性方程组 一、 问题 化已知矩阵为上三角矩阵,构作范德蒙矩阵,高阶非奇异矩阵的分块求逆,求非齐次线性方程组的通解。 二、 实验目的 学会用Matlab 语言编程,实施矩阵的初等变换将已知矩阵化为上三角矩阵;掌握 用循环语句由已知向量构造范德蒙矩阵;了解高阶非奇异矩阵用不同分块法求逆矩阵的误差分析;能根据由软件求得的非齐次线性方程组增广矩阵的阶梯型的最简形式写出线性方程组的通解。 三、 预备知识 1. 线性代数知识: (1) 向量},,,{21n x x x X =作出的 n 阶范德蒙矩阵为 ??? ?? ??? ??---112112222 1 21111 n n n n n n x x x x x x x x x (2)分块矩阵???? ??=2221 1211A A A A A ,其中11A 为方的可逆子块,求逆矩阵有如下公式: 设??? ? ??=-2221 1211 1 B B B B A ,则2212111121 12111212222,)(B A A B A A A A B ----=-=, 1 11211211111111212221,----=-=A A B A B A A B B (3)常用的矩阵范数为Frobenius 范数;2 1112||||||??? ? ??=∑∑==n i n j ij F a A 2. 本实验所用Matlab 命令提示: (1)输入语句:input('输入提示'); (2)循环语句:for 循环变量=初始值 :步长 :终值 循环语句组 end (3)条件语句: if(条件式1) 条件块语句组1 elseif(条件式2) 条件块语句组2 else 条件块语句组3 end (4)矩阵和向量的范数:norm(A); (5)求矩阵A 的秩:rank (A ); (6)求矩阵A 的阶梯型的行最简形式:rref(A)。

矩阵的运算教案

9.2 矩阵的运算 一、新课引入: 小王、小李在两次数学考试中答对题数如下表表示: 题型 答题 姓 数 名 期中 期末 填空题 选择题 解答题 填空题 选择题 解答题 小王 10 3 2 8 4 4 小李 9 5 3 7 3 3 填空题每题4分,选择题4分,解答题每题10分; 1、观察: 2、思考(1):如何用矩阵表示他们的答对题数?他们期中、期末的成绩? 思考(2):如果期中占40%,期末占60%,求两同学的总评成绩; 3、讨论:今天如何通过矩阵运算来研究上述问题? 二、新课讲授 1、矩阵的加法 (1)引入:记期中成绩答题数为A ,期末答题数为B ,则: ???? ??=3592310A ??? ? ??=337448B 确定两次考试的小王,小李的各题型答题总数的矩阵C ??? ? ??=+=68166718B A C (2)矩阵的和(差): 当两个矩阵A B 、的维数相同时,将它们各位置上的元素加(减)所得到的矩阵称为矩阵A B 、的和(差),记作:()A B A B +-。 (3)运算律: 加法运算律:A B B A +=+; 加法结合律:()()A B C A B C ++=++。 2、矩阵的数乘 (1)引入:计算小王、小李各题型平均答题数的矩阵: ()9 3.531 8432A B ??+= ??? (2)矩阵与实数的积: 设α为任意实数,把矩阵A 的所有元素与α相乘得到的矩阵叫做矩阵A 与实数α的乘

积矩阵,记作:A α。 (3)运算律:(R γλ∈、) 分配律:()B A B A γγγ+=+;A A A λγλγ+=+)(; 结合律:()()()A A A γλλγγλ==。 3、例题举隅 例2、已知???? ??=???? ??-=1683,5231B A ,求B A + 例3、已知? ?? ? ??=???? ??-=3-74-3,1564B A ,求B A - 例4、某公司有三家分厂一月份的水费、电费和燃料费如表所示(单位:元),现在公司限 定各分厂的水费、电费、燃料费都至少要节约20%,用矩阵表示这三家分厂各项费用的限定额 例5、给出二元一次方程组???=+=+2 221 11c y b x a c y b x a 存在唯一解的条件 4、矩阵的乘法 (1)引入:总评成绩如何计算 (2)矩阵的乘积: 一般,设A 是k m ?阶矩阵,B 是n k ?阶矩阵,设C 为n m ?矩阵,如果矩阵C 中第 i 行第j 列元素ij C 是矩阵A 第i 个行向量与矩阵B 的第j 个列向量的数量积,那么C 矩阵 叫做A 与B 的乘积,记作:C AB =。 (3)运算律: 分配律:AC AB C B A +=+)(;CA BA A C B +=+)(; 结合律:()()()B A B A AB γγγ==;()()BC A C AB =。 注意:(1)交换律不成立,即:BA AB ≠; (2)只有当矩阵A 的列数与矩阵B 的行数相等时,矩阵之积才有意义。 5、例题举隅 例 6、已知??? ? ??=???? ??=2-01412,751-3B A ,求AB

(完整版)逆矩阵的几种求法与解析(很全很经典)

逆矩阵的几种求法与解析 矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷.逆矩阵又是矩阵理论的很重要的内容, 逆矩阵的求法自然也就成为线性代数研究的主要内容之一.本文将给出几种求逆矩阵的方法. 1.利用定义求逆矩阵 定义: 设A 、B 都是n 阶方阵, 如果存在n 阶方阵B 使得AB= BA = E, 则称A 为可逆矩阵, 而称B 为A 的逆矩阵.下面举例说明这种方法的应用. 例1 求证: 如果方阵A 满足A k= 0, 那么EA 是可逆矩阵, 且 (E-A )1-= E + A + A 2+…+A 1-K 证明 因为E 与A 可以交换, 所以 (E- A )(E+A + A 2+…+ A 1-K )= E-A K , 因A K = 0 ,于是得 (E-A)(E+A+A 2+…+A 1-K )=E , 同理可得(E + A + A 2+…+A 1-K )(E-A)=E , 因此E-A 是可逆矩阵,且 (E-A)1-= E + A + A 2+…+A 1-K . 同理可以证明(E+ A)也可逆,且 (E+ A)1-= E -A + A 2+…+(-1)1-K A 1-K . 由此可知, 只要满足A K =0,就可以利用此题求出一类矩阵E ±A 的逆矩阵. 例2 设 A =? ? ?? ? ???? ???0000 30000020 0010,求 E-A 的逆矩阵. 分析 由于A 中有许多元素为零, 考虑A K 是否为零矩阵, 若为零矩阵, 则可以采用例2 的方法求E-A 的逆矩阵. 解 容易验证

A 2 =????????? ???0000000060000200, A 3=? ? ?? ? ? ? ?? ???00000000 00006000 , A 4=0 而 (E-A)(E+A+ A 2+ A 3)=E,所以 (E-A)1-= E+A+ A 2+ A 3= ? ? ?? ? ???????1000 31006210 6211. 2.初等变换法 求元素为具体数字的矩阵的逆矩阵,常用初等变换法.如果A 可逆,则A 可通过初等变换,化为单位矩阵I ,即存在初等矩阵S P P P ,,21Λ使 (1)s p p p Λ21A=I ,用A 1-右乘上式两端,得: (2) s p p p Λ21I= A 1- 比较(1)(2)两式,可以看到当A 通过初等变换化为单位矩阵的同时,对单位矩阵I 作同样的初等变换,就化为A 的逆矩阵A 1-. 用矩阵表示(A I )??? →?初等行变换 为(I A 1-),就是求逆矩阵的初等行变换法,它是实际应用中比较简单的一种方法.需要注意的是,在作初等变换时只允许作行初等变换.同样,只用列初等变换也可以求逆矩阵. 例1 求矩阵A 的逆矩阵.已知A=???? ? ?????521310132. 解 [A I]→??????????100521010310001132→???? ? ?????001132010310100521 → ??????????--3/16/16/1100010310100521→???? ??????-----3/16/16/110012/32/10103/46/136/1001

分块矩阵的应用论文

分块矩阵的应用 引言 矩阵作为数学工具之一有其重要的实用价值,它常见于很多学科中,如:线性代数、线性规划、统计分析,以及组合数学等,在实际生活中,很多问题都可以借用矩阵抽象出来进行表述并进行运算,如在各循环赛中常用的赛格表格等,矩阵的概念和性质相对矩阵的运算较容易理解和掌握,对于矩阵的运算和应用,则有很多的问题值得我们去研究,其中当矩阵的行数和列数都相当大时,矩阵的计算和证明中会是很烦琐的过程,因此这时我们得有一个新的矩阵处理工具,来使这些问题得到更好的解释,矩阵分块的思想由此产生. 矩阵分块,就是把一个大矩阵看成是由一些小矩阵组成的.就如矩阵的元素(数) 一样,特别是在运算中,把这些小矩阵当作数一样来处理.把矩阵分块运算有许多方便之处.因为在分块之后,矩阵间的相互关系可以看得更清楚,在实际操作中与其他方法相比,一般来说,不仅非常简洁,而且方法也很统一,具有较大的优越性,是在处理级数较高的矩阵时常用的方法.比如,从行列式的性质出发,可以推导出分块矩阵的若干性质,并可以利用这些性质在行列式计算和证明中的应用分块矩阵;也可以借助分块矩阵的初等变换求逆矩阵及矩阵的秩等;再如利用分块矩阵求高阶行列式,如设A 、C 都是n 阶矩阵,其中0A ≠,并且AC CA =,则可求得A B AD BC C D =-;分块矩阵也可以在求解线性 方程组应用. 本文将通过对分块矩阵性质的研究,比较系统的总结讨论分块矩阵在计算和证明方面的应用,从而确认分块矩阵为处理很多代数问题带来很大的便利.

1 分块矩阵的定义及相关运算性质 1.1分块矩阵的定义 矩阵分块,就是把一个大矩阵看成是由一些小矩阵组成的.就如矩阵的元素(数) 一样,特别是在运算中,把这些小矩阵当作数一样来处理. 定义1设A 是一个m n ?矩阵,若用若干横线条将它分成r 块,再用若干纵线条将它 分成s 块,于是有rs 块的分块矩阵,即1111...............s r rs A A A A A ???? =?????? ,其中ij A 表示的是一个矩阵. 1.2分块矩阵的相关运算性质 1. 2.1加法 设() ij m n A a ?=() ij m n B b ?=,用同样的方法对,A B 进行分块 () ij r s A A ?=,() ij r s B B ?=, 其中ij A ,ij B 的级数相同, 则 ()ij ij r s A B A B ?+=+. 1.2.2数乘 设是任() () ,ij ij m n r s A a A k ??==为任意数,定义分块矩阵() ij r s A A ?=与k 的数乘为 () ij r s kA kA ?= 1.2.3乘法 设() () ,ij ij s n n m A a B b ??==分块为()(),ij ij r l l r A A B B ??==,其中ij A 是i j s n ?矩阵,ij B 是 i j n m ?矩阵,定义分块矩阵() ij r l A A ?=和()ij l r B B ?=的乘积为 () 1122...,1,2,...;1,2,3,...,ij i j i j il lj C A B A B A B i t j l =+++==.、 1.2.4转置 设() ij s n A a ?=分块为() ij r s A A ?=,定义分块矩阵() ij r s A A ?=的转置为 () ji s r A A ?''= 1.2.5分块矩阵的初等变换 分块矩阵A 的下列三种变换称为初等行变换:

矩阵的初等变换 教 案

线性代数教案 周次课题课时课型教具 8.2矩阵的初等变换与矩阵的秩(1) 2 新授教材 教学目的1、理解矩阵的初等变换定义 2、理解阶梯型矩阵的定义以及如何运用矩阵的初等行变换求阶梯型矩阵 教学重点矩阵的初等变换、阶梯型矩阵 教学方法例证法、启发诱导法、讲授法 教学过程 一、复习与导入 矩阵的相等、矩阵的和与差、数乘矩阵以及矩阵的乘法。 数有加减乘除四则运算,矩阵有没有矩阵的除法? 3’ 二、讲授新课 例1 求下列线性方程组的解: 解用消元法求解,并采用分离系数法在右边写出求解过程中所相应的矩形数 表(矩阵): 对换④、⑤的位置得 39’

对换④、⑤的位置得 (-4)×⑤+④得 ⑥得 最后,将 代入⑤,得 ;再将 代入①得 .因此,这个方程组的解为

. 通过线性方程组与矩阵对比,总结出结论 一、矩阵的初等变换1 定义:①互换矩阵的某两行(列)的位置 ②用一个非零数k遍乘矩阵的某一行(列) ③将矩阵中某一行(列)遍乘一个常数k加到另一行(列)上 2 举例说明具体变化规律 例2 二、阶梯型矩阵与行简化阶梯型矩阵 1 定义 8.11 矩阵为阶梯型矩阵B满足:

(1)零行(元素全为0的行)在最下方; (2)首非零元素(即非零行的第一个不为零的元素)的列标号随行标号的增 加而严格递增。(每一个非零行的第一个非零元素正下方的元素必须全为零) 若阶梯形矩阵还满足非零行的首行非零元都是1,叫做行简化阶梯型矩阵。 2 例1回顾、总结——矩阵经过若干步初等行变换化成阶梯型矩阵 3 思考题:同一个矩阵的阶梯型矩阵是否唯一 4 例3 求矩阵的阶梯型矩阵 5 练习 p245 4 (1) 三、小结 1、矩阵的初等变换 2、阶梯型矩阵与行简化阶梯型矩阵 2’四、作业:习题2.4(2).5(2)(3)(4) 1’课后反思 1、教学方法: 2、教学效果: 3、问题: 4、解决措施:

分块矩阵及其应用

分块矩阵及其应用 【摘要】矩阵论是代数学中是一个重要的组成部分和主要的研究对象。而分块矩阵可以降低较高级数的矩阵级数,使矩阵的结构更加清晰,从而使矩阵的相关计算简化,并且可以证明一些与矩阵有关的问题。本文详细且全面论述了分块矩阵阵的概念、分块矩阵的运算和其初等变换,而且证明了矩阵的分块在高等代数中的应用,包括用分块矩阵证明矩阵秩的问题,用分块矩阵求行列式问题,用分块矩阵求逆矩阵的问题,分块矩阵相似的问题。 【关键词】:分块矩阵;矩阵的秩;逆矩阵;行列式 目录 1引言 (2) 2矩阵分块的定义和性质 (2) 2.1 矩阵分块的定义 (2) 2.2 分块矩阵的运算 (2) 2.3 分块矩阵的初等变换 (3) 2.4 n阶准对角矩阵的性质 (3) 3分块矩阵在高等代数中的应用 (4) 3.1 分块矩阵在矩阵的秩的相关证明中的应用 (4) 3.2 利用分块矩阵计算行列式 (7) 3.3 分块矩阵在求逆矩阵方面的应用 (11) 3.4 分块矩阵在解线性方程组方面的应用 (16) 4总结 (19) 参考文献 (20)

1 引言 矩阵是高等代数中的一个重要内容,也是高等数学的很多分支研究问题的工具。在学习高等代数的时候常常碰到一些很难的问题,我们要经常用到矩阵的分块去解决,它可以使矩阵的结构更简单,从而使问题的解决更简明。比如当我们处理阶数较高或具有特殊结构的矩阵时,用处理一般低阶矩阵的方法,往往比较困难,为了研究问题的方便,也为了显示出矩阵中某些部分的特性,我们常把一个大型矩阵分成若干子块,把每个子块看作一个元素,从而构成一个分块矩阵,这是处理矩阵问题的重要技巧。利用矩阵的分块,可以把高阶矩阵划分成阶数较低的“块”,然后对这些以“块”为元素的矩阵施行矩阵的运算。本文就分块矩阵的加法、乘法、转置、初等变换等运算性质,及分块矩阵在证明矩阵相关秩的问题、矩阵求逆、行列式展开计算等方面的应用作了较为深入的研究。矩阵的分块能使矩阵的一些证明和计算变的非常简洁和快速,易于理解和掌握,而且能开拓思维,提高灵活应用知识解决问题的能力。

选修4-2矩阵与变换教案

第一讲二阶矩阵、二阶矩阵与平面向量的乘法、二阶矩阵与线性变换。 一、二阶矩阵 1.矩阵的概念 ①OP → = →的坐标排成一列,并简记为??????2 3 ???? ?? 2 3 ③ 概念一: 象?????? 2 3 80908688?????? 23324m ?? ??-?? 的矩形数字(或字母)阵列称为矩阵.通常用大写的拉丁字母A 、B 、C…表示, 横排叫做矩阵的行,竖排叫做矩阵的列. 名称介绍: ①上述三个矩阵分别是2×1矩阵,2×2矩阵(二阶矩阵),2×3矩阵,注意行的个数在前。 ②矩阵相等:行数、列数相等,对应的元素也相等的两个矩阵,称为A =B 。 ③行矩阵:[a 11,a 12](仅有一行) ④列矩阵:???? ?? a 11 a 21 (仅有一列) — 2 — 3 — ???? ??80 90 86 88 231,3242x y mz x y z ++=??-+=?简记为23324m ????-??

⑤向量a → =(x,y ),平面上的点P (x,y )都可以看成行矩阵[,]x y 或列矩阵x y ??????,在本书中规定所有的平面向量均写成列向量x y ?????? 的形式。 练习1: 1.已知??????-=243x A ,? ? ? ???-=21z y B ,若A=B ,试求z y x ,, 2.设23x A y ??=????,2m n x y B x y m n ++?? =??--?? ,若A=B ,求x,y,m,n 的值。 概念二: 由4个数a,b,c,d 排成的正方形数表a b c d ?? ????称为二阶矩阵。a,b,c,d 称为矩阵的元素。 ①零矩阵:所有元素均为0,即0000?? ?? ?? ,记为0。 ②二阶单位矩阵:1001?? ???? ,记为E 2. 二、二阶矩阵与平面向量的乘法 定义:规定二阶矩阵A=a b c d ??????,与向量x y α→??=???? 的乘积为ax by A cx dy α→+??=??+??,即A α→=a b c d ??????x y ??????=ax by cx dy +?? ?? +?? 练习2: 1.(1)?? ? ??????? ??-131021=

(完整版)矩阵的运算教案.doc

9.2 矩阵的运算 一、新课引入: 小王、小李在两次数学考试中答对题数如下表表示: 题型 期中 期末 答题 姓 数 填空题 选择题 解答题 填空题 选择题 解答题 名 小王 10 3 2 8 4 4 小李 9 5 3 7 3 3 填空题每题 4 分,选择题 4 分,解答题每题 10 分; 1、观察: 2、思考( 1):如何用矩阵表示他们的答对题数?他们期中、期末的成绩?思 考( 2):如果期中占 40% ,期末占 60% ,求两同学的总评成绩; 3、讨论:今天如何通过矩阵运算来研究上述问题? 二、新课讲授 1、矩阵的加法 (1)引入:记期中成绩答题数为 A ,期末答题数为 B ,则: 10 3 2 8 4 4 A B 9 5 3 7 3 3 确定两次考试的小王,小李的各题型答题总数的矩阵 C 18 7 6 C A B 16 8 6 (2)矩阵的和(差): 当两个矩阵 A 、 B 的维数相同时,将它们各位置上的元素加(减)所得到的矩阵称为矩 阵 A 、 B 的和(差) , 记作: A B A B 。 ( 3)运算律: 加法运算律: 加法结合律: A B B A ; A B C A B C 。 2、矩阵的数乘 (1)引入:计算小王、小李各题型平均答题数的矩阵: 1 9 3.5 3 2 A B 4 3 8 ( 2)矩阵与实数的积: 设 为任意实数, 把矩阵 A 的所有元素与相乘得到的矩阵叫做矩阵 A 与实数 的乘

积矩阵,记作: A 。 (3)运算律:( 、 R ) 分配律: A B A B ; ( ) A A A ; 结合律: A A A 。 3、例题举隅 1 3 3 8 例 2、已知 A 5 , B ,求 A B 2 6 1 4 6 3 - 4 例 3、已知 A 1 , B ,求 A- B 5 7 - 3 例 4、某公司有三家分厂一月份的水费、电费和燃料费如表所示(单位:元),现在公司限 定各分厂的水费、电费、燃料费都至少要节约 20%,用矩阵表示这三家分厂各项费用的限定额 例 5、给出二元一次方程组 a 1 x b 1 y c 1 存在唯一解的条件 a 2 x b 2 y c 2 4、矩阵的乘法 ( 1)引入:总评成绩如何计算 ( 2)矩阵的乘积: 一般,设 A 是 m k 阶矩阵, B 是 k n 阶矩阵,设 C 为 m n 矩阵,如果矩阵 C 中第 i 行第 j 列元素 C ij 是矩阵 A 第 i 个行向量与矩阵 B 的第 j 个列向量的数量积,那么 C 矩阵 叫做 A 与 B 的乘积,记作: (3)运算律: C AB 。 分配律: A(B C ) AB AC ; ( B C ) A BA CA ; 结合律: AB A B A B ; AB C A BC 。 注意: ( 1)交换律不成立,即: AB ( 2)只有当矩阵 A 的列数与矩阵 BA ; B 的行数相等时,矩阵之积才有意义。 5、例题举隅 3 -1 2 1 4 例 6、已知 A , B 1 0 ,求 AB 5 7 - 2

相关主题
文本预览
相关文档 最新文档